The TOverHeadMap Component v.96 © 1995 Jason Maskell

	Credits:

	Incredible amount of help:	Mark Johnson	

	Beta testing, sample product development: 	Travis Richardson

	For PC Cola	Westfair Foods

Introduction.

	The TOverHeadMap component is designed to let developers create games requiring any kind of tiled map, easily. It is a fairly full featured component, as documented in the technical sections.

	Some notes first, however.

What can the TOverHeadMap do?

	Well, right now it can do quite a fair amount of things. And the more I learn about graphics, the more it can do. I’ve added a very simple sprite-type engine to it. (It’s what’s in the Char.pas unit, and the Chedit.exe.) The scrolling is fairly quick. (I’ve made it the best I could.)

So what games can I make with this thing then?

	Well, right now you can make several. Travis Richardson made an Othello game. This was extremely simple with the component, as the 10x10 board required only three different tiles. Games with only a few tiles, or with non-overlapping tile graphics, are very easy. Games with complex, or organic-style graphics will be harder, but extremely possible. I’ve included layering options, and I’ll improve them as I figure out more about Windows.

	For instance, you could probably make a platform game in this without too much difficulty. You could make an overhead scrolling shoot em up. I’m trying to figure out how to get it to do X-Com style maps. I have a few ideas, but none that would be real easy to implement. If anyone knows how they did it, (including having the guys visible through holes in walls, etc, along with the map terrain), please let me know.

How fast is it?

	

	Well, I’ll tell ya. It’s pretty damn fast. You can sort of tell in the map editor how fast it is, though I’m being very sloppy in that code and updating a lot of controls every time the map moves. With it’s built in smart-scroll routines, it’ll rock your world. (Well, maybe not, but it’s fast enough for most things.)

What’s included to make my life easier, richer, and more meaningful?

	I included a few things that will help. In fact, a few things that are downright necessary. The old files Ohmsave and Save have been replaced with one file, OHMStuff.pas, which adds a few things, such as block definition for the map editor. Check it out.

	The map editor is included. It’s getting really full-featured. Those features are documented in the Map Editor doc, and the source is included. If you can improve the map editor, please do. If you feel the improvements are really good, send me a copy!

	The icon editor is included. Pretty much the same as above. Again, the source is included, and if you can improve it, please do. These two programs also give you a basic idea of a few of the tricks behind the TOverHeadMap stuff.

	The character editor is included. It’s the front end for a very simple sprite engine type thing. Look in the character editor docs for more details. This is not the greatest, but I’ll very likely be expanding it for my own use. No promises, but if I do, it’ll be released.

Why should I pay you anything for it?

	First off, YOU DON’T HAVE TO. If you’re a shareware Delphi author, send me a registered copy of your component(s). If you develop a cool game with it, send me a registered copy of that, and I’ll send you back a real version to distribute it with. Hell, send me a promising start to a cool game and I’ll consider it.

	But, if you just really, really want to pay me for it, or don’t feel you have anything to offer, a mere fee of $40 will get you a fully functional copy. I think that’s pretty cheap, for about 80 hours of learning how to do all this, and actually doing it. The source is available, but that’ll cost ya. If you want it, mail me and we’ll strike a deal.

What about the units included with this package?

	Oh, you mean OhmStuff.pas? It includes various things documented in their separate application docs. Feel free to modify/derive the objects in these units. Just don’t distribute the modified source/components without my permission.

	The other units included with this rather large package include the source for a few of the dinky little components I used to make the map, icon and character editor. They are pretty much public domain. Do with them as you will.

What about the executables included in this package?

	The Map Editor, Icon Editor and Character Editor I threw in pretty much because I figured they would be handy. I knew how to write them quickly, so I figured I would. Please keep in mind they have been quickly hacked together. If you want to modify them to add features, please do. This applies to all of the units and executables included, except for Ohmap.dcu.

	However, one thing about modification. I do not grant license to anyone to distribute modified copies of these programs. If you come up with something really cool with the map editor or something, throw a copy my way and we’ll figure out a deal.

What else have you got to say for yourself?

	Hmm. A few things, I think. First of all, I want this tool to be useful, so if there’s something you don’t like about it, tell me. I’ll very likely fix it, if I think it needs fixing, and if I can fix it. If you’re like my friend Travis, and keep proposing ridiculous feature additions, I’m going to ignore you. ;?>

	I’m also quite committed to developing this component for Delphi 32. As soon as Delphi 32 is available, it’s mine. Soon afterward, it’s likely that a 32 bit version of this component will appear. Hopefully incorporating the Win 95 Game SDK stuff that’s rumored to be in Delphi 32.

Changes from V.96 Beta

Implemented transparent tiles. Unfortunately, they don’t work very well. Doesn’t look like they’ll be really all that useful until I get Delphi 32 and the game SDK. The old windows graphics routines just can’t handle it.

Cleaned up my act a lot, added more documentation, everything should be complete.

The character editor and char.pas got some features added.

Changes from V.95 Beta

	There has been quite a few of them.. In point form, so I don’t forget:

Ohmsave and save have been combined/obsoleted. They’re in Ohmstuff.pas now, along with some new features.

TOverHeadMap’s component’s design has changed a bit. I found a few things that I was doing wrong, and a few things that were just non standard. I fixed em, I think.

TOverHeadMap got some new features, such as drag and drop support. It works, and is implemented in the map and icon editor, to a limited degree.

That’s about it for new stuff. Make sure to check the relevant documentation for feature additions, changes, etc..

Interface:

unit Ohmap;

interface

uses

 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

 StdCtrls, Forms, Dialogs, OhmStuff;

type

 TSelected = class

 X,Y:Integer;

 ScnX,ScnY:Integer;

 Shift:TShiftState;

 end;

 TOverHeadMap = class(TGraphicControl)

 private

 {Private Declarations}

 FOnDrawSelector:TNotifyEvent;

 FOnBeforeDrawSelector:TNotifyEvent;

 FOnBeforePaint:TNotifyEvent;

 FOnAfterPaint:TNotifyEvent;

 FDragMode:TDragMode;

 FDragOver:TDragOverEvent;

 FMap: TOHMap;

 FIconset: array [1..8] of TMapIconList;

 FtileXdim,FtileYdim:Integer; {Tile dimensions}

 Fxpos,Fypos,Fzpos:Integer; {Top left coordinates}

 FZoomLevel,FZoomLevels:Integer;

 FIntegralTile:Boolean;

 FSelector:Boolean;

 FSelectorStyle:Integer;

 FCursX,FCursY,FCursZ,FSelX,FSelY,FSelZ:Integer;

 FScnBuffer,FMaskBuffer:TBitmap;

 FVisible,FTrans,FSharedIconSet:Boolean;

 FSelected:TSelected;

 procedure settileXdim(x:Integer);

 procedure settileYdim(y:Integer);

 procedure setxpos(x:Integer);

 procedure setypos(y:Integer);

 procedure setzpos(z:Integer);

 procedure Setselx(x:Integer);

 procedure Setsely(y:Integer);

 procedure Setselz(z:Integer);

 procedure Setvisible(vis:Boolean);

 procedure SetTrans(tr:Boolean);

 function Getreadiness:Boolean;

 function GetIconSet(Index:Integer):TMapIconList;

 procedure SetIconSet(Index:Integer;Item:TMapIconList);

 procedure SetZoomLevel(level:Integer);

 procedure SetZoomLevels(levels:Integer);

 function GetSelectorVisible:Boolean;

 protected

 { Protected declarations }

 procedure MapNotLoaded(const errorstring:String); virtual;

 procedure IconSetNotLoaded(const errorstring:String); virtual;

 procedure DrawSelector; virtual;

 procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X, Y: Integer); override;

 procedure smartscroll(oldx,oldy:Integer); virtual;

 procedure drawtile(x,y,tile:Integer;fg:Boolean); virtual;

 public

 { Public declarations }

 constructor Create(Aowner:Tcomponent); override;

 destructor Destroy; override;

 function XMapcoord(X:Integer):Integer;

 function YMapcoord(Y:Integer):Integer;

 function XScreenCoord(X:Integer):Integer;

 function YScreenCoord(Y:Integer):Integer;

 procedure Redraw(x,y,z,tile:Integer); virtual;

 procedure Paint; override;

 procedure SetSelectorCoords(x,y,z:Integer); virtual;

 procedure SetMapCoords(x,y,z:Integer); virtual;

 property Zoomlevels:Integer read FZoomlevels write SetZoomlevels;

 property ZoomLevel:Integer read FZoomLevel write SetZoomLevel;

 property SelectorVisible:Boolean read GetSelectorVisible;

 property SelectorStyle:Integer Read FSelectorStyle write FSelectorStyle;

 property SelX:Integer read FSelX write SetSelx;

 property SelY:Integer read FSelY write SetSely;

 property SelZ:Integer read FSelZ write SetSelz;

 property Selected:TSelected read FSelected Write FSelected;

 property Iconset[Index:Integer]:TMapIconList read GetIconset write SetIconset;

 property Map:TOHMap read FMap write FMap;

 property Ready:Boolean read GetReadiness;

 property Canvas;

 published

 {Published declarations }

 property OnDrawSelector:TNotifyEvent read FOnDrawSelector write FOnDrawSelector;

 property OnBeforeDrawSelector:TNotifyEvent read FOnBeforeDrawSelector write FOnBeforeDrawSelector;

 property OnBeforePaint:TNotifyEvent read FOnBeforePaint write FOnBeforePaint;

 property OnAfterPaint:TNotifyEvent read FOnAfterPaint write FOnAfterPaint;

 property OnClick;

 property OnDblClick;

 property OnMouseMove;

 property OnMouseDown;

 property OnMouseUp;

 property OnDragDrop;

 property OnDragOver;

 property DragMode:TDragMode read FDragMode write FDragMode;

 property Enabled;

 property TransparentTiles:Boolean read FTrans write SetTrans;

 property SharedIconSet:Boolean read FSharedIconSet write FSharedIconSet;

 property Visible:Boolean read FVisible write SetVisible;

 property TileXDim:Integer read FtileXdim write SettileXdim default 16;

 property TileYDim:Integer read FtileYdim write SettileYdim default 16;

 property Xpos:Integer read Fxpos write Setxpos;

 property Ypos:Integer read Fypos write Setypos;

 property Zpos:Integer read Fzpos write Setzpos;

 property IntegralTile:Boolean read FIntegralTile write FIntegralTile;

 property Selector:Boolean read FSelector write FSelector;

 end;

The TSelected Object:

	This is the object for tracking where on the map you selected. (It seemed like a good idea at the time.) I took it basically from TListBox’s selected property. Thought this would make TOverHeadMap more standard. So, to reference all the stuff you need when you get an OnClick event, just reference the coordinates in Selected.X, Y.. I’m sure you have the idea. If not, check out all the executable source, and see how it uses it.

TOverHeadMap Properties

Ready:

	Is the map ready to display, or not. Just a quick and dirty shortcut to see if the map and iconset have been loaded. I’m a lazy programmer.

Iconset[1..8]:

	Points to an array of TMapIconLists, which are the objects used to load/save and generally store the necessary data for the icons. This has been changed from previous versions of TOverheadmap to allow for multiple tile sets, ostensibly for scaling. (It’s what I’m currently using it for, and it was a neat feature.)

Map:

	Points to a TOHMap, which is the actual map structure, containing the raw data (no graphics, just tile numbers, etc..)

TransparentTiles:

	This has been implemented, but doesn’t work very well. I suggest you don’t use it. I’m gonna leave it in for right now, but like I said, it’s not all that useful.

SharedIconSet:

	All this does is tell this instance of Toverheadmap to not attempt to free the iconset(s) assigned to it. It allows you to share icon sets.. Pretty simple.

Zoomlevel:

	Is essentially the index to use for the currently displayed tile set. Ie, Iconset[zoomlevel].

Zoomlevels:

	Total number of iconsets, from 1..zoomlevels. Just for internal checking. You can actually have more iconsets loaded than this number (up to 8) and Toverheadmap will still free them, but unless this is set correctly, you cannot switch to them.

Visible:

	This determines whether the component is visible or not. I thought it might be useful in some cases.

Tilexdim,tileydim:

	This is simply the x and y sizes of the tiles. Tiles all have to be, or at least should be, the same size. There may be cases where this is not the case.. I dunno. Implementor beware!

Xpos, Ypos, Zpos:

	This is the upper left position of the map display. Zpos specifies the level that is displayed. Currently a 3d display system is not working, so z is used for level. (no 3d layering implemented.)

Selx,Sely,Selz:

	This is the “selector box” coordinates. See the OnDrawSelector event.

IntegralTile:

	This value, when set to true, insures that no tile will be partially displayed. ie, if set to True, and the tilex and tileydim’s are set to 32, the map will always be x*32,y*32.

Selector,SelectorStyle:

	Selector indicates whether the selector is enabled or not. Selector style indicates which style of Selector is to be displayed. See OnDrawSelector for details.

SelectorVisible:

	Just a simple property I added to tell whether the selector is currently on the screen.

OnBeforeDrawSelector:

	This allows the user to “unpaint” the old selector position cleanly. (Though this is not the easiest thing in the world to do cleanly.)

OnDrawSelector:

	This allows the user to specify an event-handler for this event. Currently the map component doesn’t draw selectors at all, it simple makes the call to the event handler if the user wishes to draw his/her own. This is fairly simple, and if enabled, is called every time the map is repainted. This handler is not called if selector is set to false.

OnBeforePaint:

	This is another event handler for user-draw stuff. This one allows the user to do any background layering.

OnAfterPaint:

	This allows the user to do any foreground layering. The major use of this is drawing in characters, sprites, etc., on the map. Could be used for many other things.

OnClick:

	This is a TNotifyEvent, meaning all you get is a sender. However, do not despair. To get the necessary data, use the Selected property. It has all the necessary stuff.

OnDblClick:

	Same as OnClick, except only when the user double clicks. Fairly obvious.

OnMouseMove:

	This event passes all the same parameters as the two above events, and is triggered every time the mouse moves over the map. The uses for this are: Having the selector-box follow the pointer, tracking drag selects, etc.

Methods

procedure MapNotLoaded(const errorstring:String); virtual;

procedure IconSetNotLoaded(const errorstring:String); virtual;

	These are protected procedures but I declared them virtual in case you need to eliminate the potentially annoying diagnostic messages in a derived class of TOverHeadMap.

procedure DrawSelector; virtual;

	This is an empty procedure that simply calls the users event. If you want to augment TOverHeadMap to add standard selectors, override this.

procedure smartscroll(oldx,oldy:Integer); virtual;

	This routine does the “smart-scroll” of the map. Whatever, it’s virtual. If you can do it better, go ahead. It calls the drawtile method for the tiles it has to draw.

procedure drawtile(x,y,tile:Integer;fg:Boolean); virtual;

	This is the routine that every paint routine calls when it has to draw a new tile. Override it for neat things. The fg flag means ‘foreground’. TOverHeadMap has two buffers, one which is always being displayed. A few of the routines don’t draw directly to the visible buffer, they just copy parts of the background buffer to it. Specifying fg as true means you want drawtile to draw the tile on the foreground buffer as well.

procedure Redraw(x,y,z,tile:Integer); virtual;

	This procedure draws only the one tile at x,y,z over. Useful for when a graphic changes and you don’t want to repaint the map. If tile is -1, it redraws the tile that is supposed to be there. Otherwise, you can specify one.

procedure Paint; override;

	This procedure repaints the map, without being smart about it. This procedure doesn’t attempt to optimize the scroll at all, it simply redraws the entire map. Not the fastest way to do things.

procedure SetSelectorCoords(x,y,z:Integer); virtual;

	This procedure sets the coordinates for the selector box, triggering a redraw of it if it’s visible. The redraw calls the DrawSelector procedure, which only calls the OnDrawSelector procedure if it’s assigned. Drawing the selector is completely up the user. This will likely be implemented as a sprite in the next version.

procedure SetMapCoords(x,y,z:Integer); virtual;

	This procedure sets the coordinates for the map, triggering a smart-scroll. If the coordinates are completely non-visible (none of the screen can be recycled), it simply calls paint. Setting x,y, and zpos will trigger a smart scroll as well, but this is the best way to do it if there’s a possibility of a diagonal map move happening, as you can avoid two redraws.

That’s about it. I may have missed stuff, but I hate writing docs. If you have any further questions, please contact me at maskell@quadrant.net - I’d be glad to help.

