The Character Editor Programme © 1995 Jason Maskell

And

Char.Pas Unit

Notes:

	This is a fairly complex little thing I forgot to document last time. Which is good, perhaps, cause it didn’t work very well. It’s still not the greatest thing since sliced bread, but when one of you brilliant beta testers comes up with a way to make it kick ass, I will be sure to implement it.

Bugs:

	For some unknown reason, the transparency stuff only works if the transparent color is black. I have no clue why this is. I really really wish I could fix it. I will study some more and try to figure out why it is doing this.

The Character Editor:

	I think it’s fairly simple. Pressing the new button gives you a new list. From there you name the character, and import a whole bunch of bitmaps to be it’s various frames. You set the transparent color. When you’re done, you save the list out.

	The
“Fast Animation Mode
” button will trigger mask gene
ration for all of the frames the current character has, and will save them out with the character. Fast animation actually does work. It
’s not mindblowingly awesome or anything, but it
’s fairly quick. One problem is that it does flicker when you go too fast. It
’s certainly not appropriate for a arcade style game.

unit Charactr;

interface

uses

 Graphics, StdCtrls, Classes, Sysutils, Winprocs, Ohmap;

type

 TMapCharacterList = class(TList)

 private

 FMap:TOverHeadMap;

 public

 procedure RenderVisibleCharacters; virtual;

 procedure Savetofile(const filename:String);

 procedure Loadfromfile(const filename:String);

 procedure Clear;

 destructor Destroy; override;

 property MapDisp:TOverHeadMap read FMap write FMap;

 end;

 TFrameStore = class(TList)

 procedure WriteData(Writer:Twriter); virtual;

 procedure ReadData(Reader:TReader); virtual;

 procedure Clear;

 end;

 TMapCharacter = class(TPersistent)

 private

 FName:string;

 FMap:TOverHeadMap;

 FFrame:Integer;

 FFramebm,FFrameMask,FWorkBuf:TBitmap;

 FFrameStore,FMaskStore:TFrameStore;

 FXpos,FYpos,FZpos:Integer;

 FTransColor:TColor;

 FVisible,FFastMode,FIsClone,FRedrawBackground:Boolean;

 procedure SetFrame(num:Integer);

 function GetOnScreen:Boolean;

 procedure SetVisible(vis:Boolean);

 procedure MakeFrameMask(trColor: TColor);

 procedure MakeFrameMasks; {For switching to fast mode...}

 procedure ReplaceTransColor(trColor: TColor);

 procedure SetXPos(x:Integer);

 procedure SetYPos(y:Integer);

 procedure SetZPos(z:Integer);

 procedure SetFastMode(fast:Boolean);

 public

 constructor Create(ParentMap:TOverheadmap); virtual;

 destructor Destroy; override;

 property Name:string read FName write FName;

 property Fastmode:Boolean read FFastMode write SetFastMode;

 property FrameStore:TFrameStore read FFrameStore write FFramestore;

 property MaskStore:TFrameStore read FMaskStore write FMaskStore;

 property Frame:integer read FFrame write SetFrame;

 property Framebm:TBitmap read FFramebm;

 property FrameMask:TBitmap read FFrameMask;

 property TransColor:TColor read FTransColor write FTransColor;

 property Xpos:Integer read FXpos write SetXpos;

 property YPos:Integer read FYpos write SetYpos;

 property ZPos:Integer read FZpos write SetZpos;

 property Map:TOverHeadMap read FMap write FMap;

 property OnScreen:Boolean read GetOnScreen;

 property Visible:Boolean read FVisible write SetVisible;

 property IsClone:Boolean read FIsClone write FIsClone;

 property RedrawBackground:Boolean read FRedrawBackground write FRedrawBackground;

 procedure Render; virtual;

 procedure RenderCharacter(mapcoords:Boolean;cxpos,cypos:Integer;mask,bm,wb:TBitmap); virtual;

 procedure Clone(Source:TMapCharacter); virtual;

 procedure SetCharacterCoords(x,y,z:Integer); virtual;

 procedure WriteData(Writer:Twriter); virtual;

 procedure ReadData(Reader:TReader); virtual;

 end;

TMapCharacterList:

	It’s just like all the other lists involved in this set of components, in that it loads, saves, and has a few unique methods.

procedure RenderVisibleCharacters; virtual;

	This one goes through the list of characters it has, and renders em. (Calls character.render)

procedure Savetofile(const filename:String);

	Saves the list of characters to disk. (duh)	

procedure Loadfromfile(const filename:String);

	Loads above file from disk.

procedure Clear;

	Goes through list of characters, freeing them all and removing them from the list.

destructor Destroy; override;

	Just the default destructor, but frees all of the attached TMapCharacter’s as well.

property MapDisp:TOverHeadMap read FMap write FMap;

	Set this property to the default map display these characters will appear on, and any loaded character files will set their mapdisplay to this. Just another shortcut.

TMapCharacter:

constructor Create(ParentMap:TOverheadmap); virtual;

	This creates a new map character, setting it
’s parent at the same time. Just specify nil if there
’s no specific parent. Be warned however, you will get a gpf if you try to do anything with this char
acter without a valid TOverheadmap set.

property Fastmode:Boolean read FFastMode write SetFastMode;

	This sets
“Fast animation mode
”, which simply makes another framestore for the transparency masks that the character has. This really does speed up the animation a lot.

property FrameStore:TFrameStore read FFrameStore write FFramestore;

	The TFrameStore list that holds all the frames for this character..

property MaskStore:TFrameStore read FMaskStore write FMaskStore;

	The TFrameStore list that holds all the transparency masks for this character.

property Frame:integer read FFrame write SetFrame;

	Current frame number, zero based.

property Framebm:TBitmap read FFramebm;

	The temporary bitmap for the characters current frame.

property FrameMask:TBitmap read FFrameMask;

	As above, but the current frame
’s transparency mask.

property TransColor:TColor read FTransColor write FTransColor;

	Transparent color for all the frames.

property Xpos:Integer read FXpos write SetXpos;

property YPos:Integer read FYpos write SetYpos;

property ZPos:Integer read FZpos write SetZpos;

	These represent the x,

y and z coordinates of the
 character on the map. They are in map coordinates, by default.
To make the characters move more smoothly,
I

would suggest adding a second set o
f screen coordinates, or
coordinates
of
fset from the tile coordinates. This is a bit confusing, and
I’ll try to demonstrate what
I

mean by the next release. If you really want to do it before then, let me know and
I’ll tell you how.

property Map:TOverHeadMap read FMap write FMap;

	The parent map for this character. MUST be set, or you will get nasty errors.

property OnScreen:Boolean read GetOnScreen;

	Just a quick hack to tell routines whether the character is currently onscreen.

property Visible:Boolean read FVisible write SetVisible;

	Whether the character is visible or not. This is used for inactive characters.

property IsClone:Boolean read FIsClone write FIsClone;

	Whether the character is a
“clone
” of another character or not. See
the clone method.

procedure Render; virtual;

	The render method, renders the character to the screen at it
’s current coordinates.

procedure Clone(Source:TMapCharacter); virtual;

	Copies all of the relevant data from the source into itself, setting it
’s own
“clone
” flag. All that really means is that it does
n
’t have it
’s own framestores, it just uses the sources. This is just to save some memory, and file space. Remember, don
’t kill the original character if there are still clones.

procedure SetCharacterCoords(x,y,z:Integer); virtual;

	Allows you to set the character coords in one foul swoop.

property RedrawBackground:Boolean read FRedrawBackground write FRedrawBackground;

	Simply tells the render
character
 routine whether to redraw the backdrop tile after it renders a character.

p
rocedure RenderCharacter(mapcoords:Boolean;cxpos,cypos:Integer;mask,bm:TBitmap); virtual;

	
This routine renders a character to the characters configured TOverheadmap canvas. This code may not be the most efficient, please feel free to optimize it.

Mapcoords: Boolean - Whether the xpos and ypos are specified in map coordinates or screen coordinates. If they’re map coords, the routine redraws the backdrop tile
 if
Redraw
Background
 is set
 (to clear off old sprite images) and draws the character, assuming that it is no bigger than the tile. If mapcoords is false, cxpos and cypos are assumed to be screen coordinates, and no backdrop redraw is done. (This is in case the sprite is bigger than just one tile. It’s your responsibility to do this.)

