The IconEditor Programme © 1995 Jason Maskell
and
Associated Units

Notes:

	This program is pretty simple, like all of the included programs. Feel free to improve it.

Control notes:

	The delete key deletes the currently selected icon. The new button does different things. When no icon set is loaded, it creates a new one. When one is, it creates a new tile, based on the currently selected one.

The Controls, and what they mean:

The “Alternate Icon” combo box.

	This basically specifies an icon that this one should change to in some given situation. It’s not a perfect solution, but it allows a quick and dirty solution to certain problems like determining which icon is the open door, and which the closed. Plus it allows for icons to be destroyed in a logical order. (Without lots of dealing with changing icon numbers, etc..) This functionality can easily be extended to allow as many alternate icon entries as you like.. One for destroyed, one for opened, etc. Please augment it if you find it necessary.

The “Attributes” check-list box.

	This is another quick and dirty (but good) solution to certain problems in map making. It allows you to specify bit attributes of the icon, (up to 31 of them.) I use this for stuff like making the icon impassable, making it a door, making it slippery, whatever. It can be used for a lot of things.

2a. The “Iattrib.txt” file.

	This file contains the names of the attributes used in the attributes check-list box. Use it as a template, try not to delete any. (I don’t guarantee the results if you do.) Just change the names to suit your purposes.
 Results are not guaranteed if you go over 31 entries.
I’ve been
procrastinating on debugging the TCheckListBox to make sure it doesn
’t screw up.

The Block Editor
…

	This i
s a nifty new feature, again stolen from TOME, the product that inspired this idea. (Don
’t ask..)

	Basically what this section allows you to do is to create
“blocks
” of prearranged icons of a maximum size of 320x320. Then you name them, save them, and use them in the map editor.
 They could be bigger than 320x320, quite easily.
I’ve just been too lazy to make it more flexible. It
’s really
kludgey
right now.

	
Uses of this:
 It
’s really obvious if you play with it for a while, but
I’ll spell it out anyway. If you
’re creating a map that for various reasons use small tiles, but has big structures of those tiles.. (Buildings, gazebos,
I

dunno..), then you pre-construct them in the icon editor a
s block definitions, then just put them straight into your map..

Interface:

{ This unit handles all the MapIcon stuff
, and lots of other stuff
.. }

unit OHMStuff;

interface

uses
 Graphics, Classes, Sysutils, WinProcs;
type
 TMapIconList = class(TList)
 protected
 FSig:Longint;
 public
 procedure Clear; virtual;
 constructor Create; virtual;
 destructor Destroy; override;
 procedure CreateMasks(trcolor:TColor); virtual;
 function IconIndex(ID:Longint):Integer; virtual;
 property Signature:Longint read FSig write FSig;
 procedure LoadFromFile(const filename:String); virtual;
 procedure SaveToFile(const filename:String); virtual;
 end;

 TCounter = class(TObject)
 protected
 FHighest:Longint;
 function GetNewId:Longint;
 public
 property NewID:Longint read GetNewID;
 property Highest:Longint read FHighest write FHighest;
 end;

 TBlockDefList = class(TList)
 protected
 FSig:Longint;
 public
 procedure Clear; virtual;
 constructor Create; virtual;
 destructor Destroy; override;
 property Signature:Longint read FSig write FSig;
 procedure LoadFromFile(const filename:String); virtual;
 procedure SaveToFile(const filename:String); virtual;
 end;

 TBlockDefinition = class(TPersistent)
 protected
 FBlockData:array [0..9,0..9] of Integer;
 FXSize,FYSize:Byte;
 FName:String[30];
 procedure SetName(nom:String);
 function GetName:string;
 public
 property Name:string read GetName write SetName;
 property XSize:Byte read FXSize write FXSize;
 property YSize:Byte read FYSize write FYSize;
 function GetIconAt(x,y:Integer):Integer;
 procedure SetIconAt(x,y,tile:Integer);
 procedure WriteData(Writer:TWriter); virtual;
 procedure ReadData (Reader:TReader); virtual;
 end;

 TMapicon = class(TPersistent)
 private
 FIconID:LongInt; {Icon's unique ID number}
 Fmask,Fbm:TBitMap;
 FName:String[30];
 FAttributes:LongInt;
 FAlternate:Longint; {Some other icon's unique ID number.}
 protected
 function GetName: string;
 procedure SetName(name:String);
 procedure ReplaceTransColor(trColor:TColor);
 public
 constructor Create; virtual;
 destructor Destroy; override;
 property Image:TBitMap read Fbm write Fbm;
 property Imagemask:TBitmap read FMask write FMask;
 property Name:String read GetName write SetName;
 property ID:LongInt read FIconId write FIconId;
 property Alternate:Longint read FAlternate write FAlternate;
 property Attributes:Longint read FAttributes write FAttributes;

 procedure CreateMask(trColor:TColor); virtual;
 procedure WriteData(Writer:TWriter); virtual;
 procedure ReadData(Reader:TReader); virtual;
 procedure ReadBitmap(const filename:String); virtual;
 end;

 TOHMap = class(TPersistent)
 private
 FXDim:Integer;
 FYDim:Integer;
 FZDim:Integer;
 FMapData:TMemoryStream;
 procedure SetXDim(xd:Integer);
 procedure SetYDim(yd:Integer);
 procedure SetZDim(zd:Integer);
 public
 constructor Create(x,y,z:Integer); virtual;
 destructor Destroy; override;
 procedure SetDimensions(x,y,z:Integer); virtual;
 procedure NewMapData(nm:TMemoryStream); virtual;

 procedure SavetoFile(const filename:String); virtual;
 procedure LoadFromFile(const filename: String); virtual;
 function IconAt(x,y,z:Integer):Byte; virtual;
 procedure SetIconAt(x,y,z:Integer;icon:Byte); virtual;
 procedure Clear; virtual;

 property XDim:Integer read FXDim write SetXdim;
 property YDim:Integer read FYDim write SetYdim;
 property ZDim:Integer read FZDim write SetZdim;
 end;

TMapIconList:

	This object is not perfect by any stretch of the imagination. It’s kind of a kludge really. It should actually be
 a descendant of a custom Tlist.
I’ve actually tried to do this, and
I

can
’t find a ni
ce way to do it, yet. Hopefully
I

will soon, and we can have a nice elegant solution.
I

promise if
I

change it it
’ll just be a drop in replacement! ;>

Programmer beware,
the
items
property
has to be typec
ast to TMapIcon!

procedure CreateMasks(trcolor:TColor); virtual;
	This procedure goes through it’s list of TMapIcons calling their CreateMask() methods. This is
 now useful, as transparent tiles actually work, though not well.

procedure Clear; virtual;
	Goes through the list, freeing all the objects in it.

procedure LoadFromFile(const filename:String); virtual;
	Loads a TMapIconList from file. This should be the only call you need to make when loading an iconset, (besides the create.)

procedure SaveToFile(const filename:String);virtual;
	Saves a TMapIconList to file. Again, a one shot deal.

function IconIndex(ID:Longint):Integer; virtual;
	Returns the index of the specified tile in the list.

property Signature:Longint read FSig write FSig;

	This is kind of a hack, but one
I

had to do. If you look in the code,
I

had to have some way to identify the different files. In the create method, TMapIconList sets a longint signature. All the list objects that get saved to disk do this.
 If you derive a descendant of any of the lists with a different file format, make sure to change the signature, and/or add version recognition/conversion.

TCounter:
	This object was just implemented to get a db style counter in Delphi. It seems there may be one in the “Cardinal” data type, but I still have found absolutely no documentation on that. (My God the Delphi docs suck.) You really shouldn’t have to use it unless you’re playing with making an Icon editor.

property NewID:Longint read GetNewID;
	This returns a new, unused unique id.

property Highest:Longint read FHighest write FHighest;
	Returns the highest used ID. Not sure why this is here. It’s used somewhere in IconEd.

TMapIcon:

property Image:TBitMap read Fbm write Fbm;
	Simply where the icon graphic is stored.

property Imagemask:TBitmap read FMask write FMask;
	Where the icon mask is stored. (When and if it’s needed.)

property Name:String read GetName write SetName;
	The icon’s name. (Useful in some cases.)

property ID:LongInt read FIconId write FIconId;
	The icons unique ID, assigned by TCounter.

property Alternate:Longint read FAlternate write FAlternate;
	The alternate icon’s ID. The only real way to reference a potentially moving icon. Use TMapIconList.iconindex(ID) to find the index associated with it.

property Attributes:Longint read FAttributes write FAttributes;
	32 bits O attributes flags.

Methods:

procedure CreateMask(trColor:TColor); virtual;
	Creates a transparent mask for the TMapIcon.

procedure WriteData(Writer:TWriter); virtual;
	Writes the data with a Twriter. If you change the TMapIcon object, you’ll need to change this.

procedure ReadData(Reader:TReader); virtual;
	As above, except it reads.

procedure ReadBitmap(const filename:String); virtual;
	Reads a bitmap in from a file into the Image property.

TBlockDefList
:

	All the methods work exactly the same as TMapIconList. The only difference, besides it not having as many methods, is that the signature is different. If you need more indepth information, read the source. The files this loads and saves are only used in
the

map and icon editor, They
’re not used in a finished product.

TBlockDefinition:

	
I’m not real proud of this piece of design. Another hack really. However,
I

needed to implement this functionality, and this was a quick and dirty way to do it. It
’s only used by the icon editor and the map editor. Treat it like a hacked TOHMap object.

TOHMap:

Document
ed in the map editor docs.

