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Overview of fSC-Net



fSC-Net is a hybrid symbolic/connectionist network that utilizes fuzzy logic as its mean to perform uncertainty management.  The main purpose of fSC-Net is to act as a knowledge acquisition tool, which can be used by domain experts in the development of expert systems.  The main learning algorithm is centered around a mechanism that supports the automatic construction of the network topology.  The connectionist network encodes the learned knowledge.  By incorporating symbolic structures into the network itself, it is possible to represent both structured as well as unstructured variables and rules.  Rules can not only be added as domain specific knowledge, but can also be extracted after learning or refined during learning.  Finally, fSC-Net supports the direct incorporation of fuzzy variable membership functions through the user, or by automatically learning the appropriate membership functions for any given input.�


Why Opt for a Hybrid �Representation?





By combining both symbolism and connectionism an attempt is made to harness the virtues of both representations by minimizing their individual shortcomings. Let us next explore those aspects which favor each of the two seemingly dichotomous representations.�


Symbolic Representation





The following exemplifies some of the most important aspects for choosing symbolism to represent knowledge:



Knowledge refinement by means of rule encoding.

Consultation and explanation facilities commonly found in expert systems (rule extraction)



Symbolic structures such as variables, comparators, quantifiers, etc. are more readily understood and accepted by humans than, for example, hyperplanes and weight vectors.�


Connectionist Representation



Three of the most important features common to connectionism are:



Allows for a highly parallel and uniform representation of knowledge.

Possible fault and noise tolerance.

Readily deals with continuous inputs and outputs.�


fSC-Net Networks





Since fSC-Net favors a number of different symbolic structures in its representation of knowledge, its networks tend to be significantly larger than traditional connectionist networks. On the other hand, fSC-Net generated networks are sparsely connected and tend to stretch over several layers. In the next section, an overview of the basic unit activation functions utilized by fSC-Net isprovided.�


Types of Unit �Activation Functions





fSC-Net incorporates five different types of network units, each dedicated to assume a specific purpose.  

Legend:
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Min and Max �Activation Functions





The min and max transfer functions simply calculate the activation of a network unit as the minimum or maximum of the product of incoming activation and connection weight, respectively:

MinActivation:�


Other Activation Functions







The remaining activation functions utilized by fSC-Net are:



Linear Activation (i.e., LT):



Output:



Negation:�


Unit Transfer Function







The final output of every fSC-Net network unit is calculated by passing the newly calculated unit activation through the following transferfunction:�


Incremental Learning







fSC-Net utilizes an incremental learning algorithm to construct the basic knowledge base from a collection of training patterns.  In other words, only a single pass over the training patterns is required.  This allows for rapid prototyping of expert networks.  Adding new knowledge (i.e., training patterns) is as easy as loading an existing expert network and learning the new patterns on top of the already existing network.  As pointed out earlier, fSC-Net learns new patterns by automatically constructing an appropriate network topology based on the training patterns seen over time (i.e., order effects training outcomes).  The incremental training algorithm utilized by fSC-Net is based on the following decisionprocess: �


Recruitment of Units





fSC-Net uses a simple set of tests to decide how a new training pattern is incorporated in the network that is currently under construction:



If the actual and the expected output are similar within some error e no action is taken (the pattern is considered learned).



If the actual and expected output differ by no more than 5e, the bias of earlier created network units is appropriately modified to reflect the change introduced by the new pattern.



If the difference is larger than 5e a new set of hidden units is created to encode the training pattern (the pattern is considered dissimilar  to any previously stored patterns).�


Output Unit Network �Structure







Since fSC-Net supports uncertainty management, the user can assign degrees of uncertainty to individual training inputs.  To guarantee that uncertain information is correctly combined, fSC-Net collects both positive as well as negative evidence.  Consequently, both pieces of evidence need to be combined to create a final composite.  This is achieved by setting aside for every system output a network structure, which consists of 4 hidden network units:





The final output unit.

A positive collector unit (i.e., PC collects positive evidence).

A negative collector unit (i.e., NC collects negative evidence).

The unknown unit (i.e., UK always propagates an activation of 0.5, thereby indicating unknown).

 

Note, an activation of 1.0 indicates complete presence, whereas 0.0 denotes completes absence. The next page displays an example of this output structure.�


Example of Output �Structure







The numbers located within the network units indicate the bias of the unit.�


Types of Variables







fSC-Net supports two basic types of variables: structured and structureless.  Structureless variables are of the simplest form and require the least amount of hidden unit representation.  In general, a structureless variable is a symbolic input that has an uncertainty measure associated with it.  





Example:



X 0.8 



Here, X designates an input with an uncertainty measure of 0.8.

Structured variables on the other hand can come in two flavors:

Fuzzy

Nominal�


Fuzzy Variables







Fuzzy variables allow the user of the system to divide (i.e., partition) the numerical range of a variable into its fuzzy equivalent.  In general, fuzzy variables are described by a set of membership functions, where each such function is associated with a linguistic hedge (i.e., high, small, large, etc.).  The membership functions correlate a given numerical value with a degree of membership indicating the strength of the numerical value being a member of the predefined fuzzy sets. A linguistic hedge within fSC-Net is described by four quantities: 



Linguistic Hedge  = <Lower Bound, Upper Bound, Lower Plateau, Upper Plateau>.



Whenever the value of a given fuzzy variable lies within the range defined by the two quantities Lower Bound and Upper Bound, the membership value of the Linguistic Hedge is defined as 1 (i.e., complete presence).�


Fuzzy Variables Continued







If on the other hand the value of a fuzzy variable falls outside the interval spanned by the two quantities Upper Plateau and Lower Plateau, a membership value of 0 (i.e., complete absence) is assigned.  For all remaining cases, a graded response in membership value is provided in the form of a linear function.  The following figure displays an example of a single membership function (p-shaped membership function).�




Fuzzy Linguistic Hedge �Network







The following represents an example of the type of subnetwork fSC-Net creates for representing a fuzzy linguistic hedge.  In this particular case the fuzzy variable is Age and the linguistic hedge implemented by the network is Middle-Aged.�


Fuzzy Definition Files







Fuzzy variables are defined in fSC-Net within a special definition file (i.e., file extension is *.var).  Below follows an example of a single definition of a fuzzy variable Age and three linguistic hedges (i.e., Child, Teenager, and Old).  A typical fSC-Net variable file can contain a number of these definitions.�






Automatic Generation of Fuzzy �Variable Definition Files





If the user does not supply a fuzzy variable definition file (extension *.var) prior to training a new network, fSC-Net will automatically create this file.  It utilizes a special partitioning algorithm that attempts to anticipate the number of linguistic hedges required for learning some task.  Note, that fSC-Net may generate more linguistic hedges than required during learning.

Once a fuzzy variable definition file has been loaded, and new training patterns have been supplied, fSC-Net will automatically modify the membership arms of the individual linguistic hedges.  The user can of course extract the newly formed membership functions. �


Nominal Variables







Besides allowing fuzzy variables fSC-Net also supports variables with nominal inputs (i.e., inputs that can be assigned a finite number of symbolic values).  At any one time only a single value can be assigned to a variable.  Associated with every value assignment is a belief value indicating how certain it is that the assigned value is the right one.   In fSC-Net it is not necessary to predefine all nominal variables and their possible values.  Creating the appropriate internal neural subnetworks for encoding this symbolic knowledge is automatically handled by the system.  This gives it unprecedented flexibility since the process of variable definition is completely transparent to the user.  The next page contains an example of the type of subnetwork generated by fSC-Net for the variable Color and its three values Red, Blue, and Green.�


Example of Nominal �Variable

�


Pruning Networks







fSC-Net provides a mechanism for pruning connections from created networks.  The pruning procedure can be invoked once learning has completed.  Invoking the pruning mechanism can under certain conditions result in long execution times (i.e., increase in iterations) and should therefore be carefully used.�


Training File Format







The format for training files(extension *.trn) is quite simple.  The first line of every file contains the string NTrainingPatterns and the number of training examples that should be read by the system.  Next, each training pattern is listed.  This pattern consists of two parts: input list and outputs.  Inputs can be preceded by the keywords Fuzzy or Nominal, if they represent structured variables, or no keyword at all (unstructured format).  Next, the inputs  identifier is stated followed by its value and the degree of certainty.  Once all inputs have been listed, the keyword Outputs is used to separate the list of inputs from the list of outputs.  Every output entry consists of the output identifier and the output value.  The output value can either be a degree of certainty (if the data set contains classificatory data) or a scaled continuous value (for all continuous data).  The user needs to scale all values unto the unit interval (i.e., [0,1]).  Note, the user is also required to select prior to training of a new network, whether the training data represents classificatory data (i.e., discreet outputs with an associated uncertainty) or whether the outputs are continuous.  The selection can be made from within the parameter dialog box located under View of the Parameter menu option (.i.e., select Continuous outputs on ).  By default data is considered to be classificatory.  Also note, that the format for test files is the same as for training files.  If a value does  not exist for an output, it is simply not listed.  The next page outlines an example of a training file.�


Example Training File





The following is an example of a training file:



NTrainingPatterns 2



Fuzzy		Age	25.5	0.85

Nominal	Color	Red	0.70

PayRaise	1.0

Outputs

Successful	0.80

End



Fuzzy		Age	39.0	0.96

Nominal	Color	White	0.8

PayRaise	0.65

Outputs

Successful	0.59

End

	�


Incomplete Training Data







In many instances not all training inputs or outputs may be known.  To deal with missing data in fSC-Net is simple. If a parameters value is not available, or it is considered unimportant, do not list it.  fSC-Net applies a policy of out of sight out of mind for dealing with missing or redundant information.  In fact, it is beneficial to cut back on network growth by eliminating as much information as possible.  For example, if you are dealing with mutually exclusive outputs (i.e., only one output can be active at any one time), it is best to only list the output which is considered activated in the output list of the training patterns.  It is indeed wasteful to list the fact that an output is not present!!!�


Rules in fSC-Net







fSC-Net allows users to enter domain knowledge in the form of rules.  The user can then choose, if he/she would like to refine these rules, by learning new information on top of the already existing rule set.  At any point after training, the user can extract rules from the created neural network for inspection.  Rules are represented in operator prefix notation.  The next page provides a simple example of a rule file.�


Example Rule File





The following is an example of a rule file:



Rule 1	if and(Nominal(Color[Red]) = 0.95,

          	           Fuzzy(Age[Young]) = 1.0,

         	           PayRaise = 0.85) then Successful (0.86);



Rule 2	if and(Nominal(Color[White] )= 1.0,

    	          PayRaise = 1.0) then Successful (1.0);



Rule 3	if or(Nominal(Color[White] )= 1.0,

    	         PayRaise = 0.9) then Successful (0.84);



�




Getting Started





The purpose of this section is to give the user a walk through of some of the more important features of fSC-Net.  The example used throughout this section describes the output behavior of a simple DC motor.    

Let’s start off, with creating a network  and then proceed with training it. From the Network menu option select Create.  You need to do this every time you want to create a new network!  Now set the parameter Continuous Outputs On.  You will find it located in the Parameter View Dialog Box.  To select it go to the Parameter menu option and select View.  Next, select File from the Train menu option.  The standard file dialog box will appear.  Go to the directory domains.  Once you have located the directory select the file dc-motor.trn.  When prompted to enter an output file (will contain a log of the training process) simply enter dc-motor.out.  Once you hit the OK button, training will commence.  Once it is completed, a message box will appear informing you, for example, of how long training lasted.  To display the constructed network, select Display from the Network menu option.  �


Getting Started Continued









If you would like to find out more information for each of the displayed network units, simply move the cursor to the desired unit and press the left mouse button.  A message box will appear providing several important pieces of information.  For all units which are not inputs or outputs, you will be asked if you would like to see the units connections and weights.  If you select Yes, a new dialog box will appear, showing you all incoming and outgoing connections and their associated weights.  The connections are identified by a unique unit name.  Note, that this feature is not available for output units, since they always have two inputs originating from their associated Positive (i.e., PC) and Negative (i.e., NC) collector  units.

�


Getting Started Continued









To test how well the network is performing, you simply select File from under the Test menu option.  When asked to enter a file of test patterns select the file dc-motor.trn.  Note, that in fSC-Net train and test files have the same format.  For the output file enter the file dc-motor.tre.  Once you select the OK button, testing will commence.  During this phase, the displayed network units will change their color reflecting the degree of activation.  Recall, that all unit outputs are scaled to the unit interval.  Hence, the closer the value is to 1 the more red the color of a unit appears, whereas a value close to 0 will result in a deep blue color.  A value of 0.5 (i.e., unknown) will result in a deep black color selection.�


Getting Started Continued







Once testing is completed, a message box will appear informing you of how well the network has responded to the tested patterns.  This of course implies that the parameter Accuracy (located within the Parameter View Dialog Box) is selected.  If it is not, no accuracy is calculated.  You would only choose this option, if you intended to use the test facilities of fSC-Net to classify new patterns. One of the error measures employed by fSC-Net is Average Prognostic Error.  It is calculated as follows: �


Getting Started Continued







Once you have tested the network, you can extract rules from it.  Simply select Extract from the Rule menu option and enter the file name dc-motor.rul.  A message box will appear and inform you of how many rules were extracted.  You can view these rules by selecting Edit from the File menu option.  Once the standard file dialog box appears, use the List Files of Type box to select file extension *.rul.  Next, open the the file dc-motor.rul.  The edit box will popup and display the desired file.  Note, this box can hold files of up to 2^15 characters.  You can also use it to make changes to files (maybe edit a set of rules and then reload them).  To exit the edit box, just move the cursor out of the edit box and press the right mouse button.

This completes the getting started section.  �


File Menu Option







Edit Option: Brings up a simple edit box, which can be utilized for displaying and editing small files (max 2^15 characters).  You exit the edit box by moving the cursor outside the edit box and pressing the right mouse button.

Net to Trn Option: Allows the user to translate a file of training patterns from the Net format (extension *.net) to the fSC-Net Trn format (extension *.trn).  Note, it is assumed that all outputs are mutually exclusive and discreet.  The Net format is used by two other applications which are available from Universal Problem Solvers (i.e., Trans-Dimensional Learning and Multi-Pass Instance-Based Learning).

Exit Option: Terminates fSC-Net.�


Network Menu Option







Create Option: Used to create a new network.  Needs to be selected before a new network is trained.

Load Option: Allows the user to load a saved network (extension *.sav).

Save Option: Used to save a created network unto disk.

Display Option: Allows the user to display a created network graphically.  To obtain information on specific network units simply point the cursor arrow at the unit and press the left mouse button.

Resources Option: Provides information with regard to network resources available e.g.., connections and units.�


Variables Menu Option







Create Option: Creates a new network.  This command needs to be executed prior to learning a new data set.

Extract Option: Allows the user to extract all currently loaded fuzzy variables and their linguistic hedges.  The output file will be stored with extension *.var.

View Option: Provides a tool for displaying the membership function of a linguistic hedge.  The user is prompted to enter a fuzzy variable definition file.  Once a file has been selected, a dialog box with two list boxes will popup.  The left box will contain a list of all fuzzy variables.  By double clicking on any given fuzzy variable, its associated linguistic hedges are loaded into the right box.  The user can select any of these hedges and by pressing the Show button graphically display it.�


Train Menu Option





Train Option: Allows the user to enter a file of training patterns using the standard file location dialog box.  Training files have extension *.trn.

Double Bar: Whenever a new data set is loaded and trained, fSC-Net collects statistical information, such as training time.  The user can recall this information by selecting the appropriate file identifier which will be automatically placed beneath the double bar.  Up to 12 such statistics can be collected at any one time.�


Test Menu Option







Test Option: Allows the user to enter a file of  test patterns using the standard file location dialog box.  Test files have the same extension *.trn, as training files.

Double Bar: Whenever a new data set is loaded and tested, fSC-Net collects statistical information, such as training time.  The user can recall this information by selecting the appropriate file identifier which will be automatically placed beneath the double bar.  Up to 12 such statistics can be collected at any one time.�


Rules Menu Option





Extract Option: Once an fSC-Net Network has been created and trained, the user has the option to extract the knowledge contained in the network in the form of standard  rules.  These rules are in operator prefix notation. Note, the definition file for fuzzy variables is not automatically created.  

Load Option: Using this option the user can load in rules.  The format is the same as the one used in the Extract Option.  By utilizing both options in conjunction with the train option, the user can engage in knowledge refinement.�


Parameters Menu Option







View Option: Contains several parameters that the user can modify which influence the types of data sets handled, the degree of abstraction utilized by fSC-Net and several other parameters.

Option Prune: Provides a means for the user to prune excess connections from an fSC-Net network.  The process can be time consuming.  It is most effective for data sets which contain mostly discreet inputs and outputs.�


View Option Parameters









Min Drop Parameters: These parameters allow the user to control the degree of generalization displayed by fSC-Net.  If the Min Drop option is not selected, an fSC-Net network will respond to new patterns much like any other neural network.  If  a new pattern can not be matched (i.e., recognized) none of the outputs will be turned on.  The user can utilize the MinDrop Option to force fSC-Net to generalize in such a case.  When Min Drop is activated fSC-Net simply keeps dropping (i.e., ignores) pieces of evidence which display the highest degree of uncertainty (i.e., have certainty values closest to 0.5, unknown).  Once an outputs’ certainty exceeds a predefined threshold (defined by Upper Threshold parameter) generalization stops.  At most Maximum (parameter that can be set by the user) pieces of evidence can be dropped (i.e., ignored).�


View Option Learning �Parameters





Learning Parameters: These two parameters control how many training patterns fSC-Net remembers (i.e., stores) versus the amount of abstraction it uses.  Of these two parameters Epsilon is the more important.



Epsilon: This parameter is equivalent to the one discussed in a previous section on learning in fSC-Net.



Alpha: Determines how much impact a new pattern has on an already stored pattern (i.e., the bias of the network unit that encodes said pattern).  A high alpha value indicates that a new pattern has less influence on changing the bias of a unit representing a stored pattern.  The range of alpha is [1,MAX], where MAX is the largest representable integer.�


View Option Other �Parameters





Accuracy On: If this parameter is set fSC-Net will calculate the performance accuracy of a network when it is tested against a data set.  The parameter is turned off, if the user wants to perform classification of data patterns.

Cont. Output On: By setting this parameter the user indicates that the training data contains continuous outputs.  If it is not set the data is assumed to contain only discreet outputs with an associated certainty factor.

PSA On: Allows fSC-Net to use a pre-selection scheme of input features before pruning is initiated.

Xclusive Outputs: Indicates that all the outputs of a training set are considered mutually exclusive.

Test Graphics On: If this parameter is set testing will be shown in graphical mode.  �


Help Menu Option







Memory Resources: Indicates how much global memory and stack space are available for the users system.

About fSC-Net: Displays version number of this system.

