�
Managing a System of VFSMs

What is a system of VFSMs?

It is a rather rare case to solve a control problem using only one state machine. If you need many cooperating state machines that control a complex system you need an organisational frame that make the job easier. The VFSM Manager offers you the frame to organize a complex control system.

We prefer a hierarchical system of state machine. Hence, the example that follows illustrates this approach. Of course, you are not limited to a hierarchical structure. If for whatever reason you need a system of free connected vfsm you can do it using the VFSM Manager. Later, you find an example of this kind of systems.

The principal thing by a system of state machines is the way they communicate among themselves. In the VFSM-system the communication is done by exchange of states and commands:

States of a state machine can be used as input in another state machine,

The state machine can sent commands to another state machine.

There is also an additional exchange mechanism using XDA object. This type of communication is very special and it will be presented later as an advanced topic.		

Example

The example presents a control system to control a gas inlet of a vacuum chamber used by semiconductor manufacturers. The system contains a flow control and a pressure control. The flow attenuator supplies a gas to the chamber and it is controlled by the FLOW state machine discussed previously. The chamber is used for some manufacturing process that requires a certain vacuum in the chamber. The low pressure in the chamber is produced by pumps. Effectively, the vacuum in the chamber is determined by the pumps and the gas flow. The pressure is continuously monitored and if it exceeds the required band the process is interrupted and the gas flow must be discontinued.

Thus, the system contains 3 state machines: the FLOW state machine for gas flow control, the PRESS state machine to monitor the vacuum in the chamber and a GAS state machine that is a Master which coordinates the activities of the FLOW and PRESS state machines.

� EINBETTEN Word.Picture.6 ���

The FLOW state machine has been discussed in the previous chapter. The PRESS state machine can be found in the Documentation section. We will present now the design details of the Master state machine GAS. The functioning of the Master state system can be explained in terms of the communication rules among state machines in the VFSM-system.		

Specifying the Master VFSM

The GAS state machine is a Master of two Slaves: FLOW and PRESS. It „sees“ the Slaves through their states and sends them commands. The basic behavior of the state machine is described by the state transition diagram in Fig. ...

The state machine reacts to two commands: 1(Off) and 2 (On). After initializing the state machine is in the state Off. Receiving the command On it changes to the state OnBusy sending to the FLOW state machine the command CmdRegulate.

� EINBETTEN Word.Picture.6 ���

If the FLOW state machine enters the state Regulating the GAS state machine changes to the state On sending the command CmdEnable to the state machine PRESS.

If the state machine PRESS goes to the state PressOK the GAS state machine goes to the state OK. Disturbances into the flow cause the GAS state machine to return to the OnBusy state sending the CmdDisable to the PRESS state machine.

Bad pressure signalled by the PRESS state machine must interrupt the process: the GAS state machine changes to the state OffBusy switching off the pressure monitoring (CmdDisable to the PRESS state machine) and cutting off the gas flow (CmdClose to the FLOW state machine).		

Defining States

The GAS state machine has five states defined by discussing the state transition diagram: Init, GasOff, GasOffBusy, GasOn, GasOnBusy and GasOK.	

Defining I/O Objects

The GAS state machine has five objects: an input command that it receives (therefore CMD-IN), two state objects (FLOW and PRESS states) and two output commands sent to the Slave state machines.		

Defining Input Names

The two command names (CmdGasOff and CmdGasOn) are obvious - they described the input commands of the GAS state machine. The other input names describe conditions that cover certain state situations of Slaves. You may create complex state conditions in the form of AND-OR logical functions observing the following rules:

any number of vfsm states can be linked together with the OR-operator creating a complex state condition,

any number of state conditions for different state machines can be linked together by an AND-operator.

Thus, the name FlowBusy covering two states of the FLOW state machine means that the condition is TRUE if the FLOW state machine is either in the state Busy or in the state FlowNotOK.

The F_StandbyP_Off means that this condition is TRUE if the FLOW state machine is in the state Standby and the state machine PRESS is in the state Off.		

Specifying state conditions

To specify the name Flow_busy you begin with the selection of Flow as I/O Object ID. In the Input Value window you get the list of FLOW states. You choose the state Busy. Clicking on the Insert button you see in the window Name the proposal for the input name: Flow_Busy. If you like it you click again on the Insert button and the entry is copied into the Input Name list. Keeping the Name and I/O Object ID you choose another state in the Input Value window - FlowNotOK and copy the value into the Input Name list by clicking on the Insert button. Now, under the name Flow_Busy you have two values - states Busy and FlowNotOK. These two values (states) are linked with the OR operator and will be interpreted as: if the state machine FLOW is in one of the states - Busy or FlowNotOK the condition Flow_Busy will be TRUE.

To specify the name F_StandbyP_Off you select first the the Name, I/O Object ID and Input Value as in the previous case. Then, keepeing the Name you choose the Press in the I/O Object ID window. In the Input Value window you get the list of PRESS states. You choose the state Off and copy the information into the Input Name list by clicking on the Insert button. Now, under the name Flow_Busy you have one value - state Standby of the state machine FLOW and one value - state Off of the state machine PRESS. This two names are linked with the AND operator and will be interpreted as follows: if the state machine FLOW is in the state Standby and the state machine PRESS is in the state Off the condition F_StandbyP_Off will be TRUE.

Name�
I/O Object ID�
Input Value�
�
xxxx�
Vfsm1�
state1_1�state1_2�
�
�
Vfsm2�
state2_1�
�
�
Vfsm3�
state3_1�state3_2�state3_3�
�
You can define any AND-OR combination od states. For instance, the name xxxx defined as:		

represents the following logical condition:

	xxxx = 	(state1_1 OR state1_2) AND

		state2_1 AND

		(state3_1 OR state3_2 OR state3_3)

and means: the condition xxxx is TRUE if the state machine Vfsm1 is in one of the states: state1_1 or state1_2 and the state machine Vfsm2 is in the state state2_1 and the state machine Vfsm3 is in one of the states: state3_1 or state3_2 or state3_3.		

Defining Output Names

The list of Output Names contains 4 items - they are two names that specify commands: Close and Regulate for the state machine FLOW and two names that specify commands: Disable and Enable for the state machine PRESS. Note, that the Master state machine does not use all commands of the state machine FLOW. 	

Filling state transition Table

We begin the specification with the transition shown in the state transition diagram. Later, we analyze the behavior of the state machine in each state completing the transition as shown in the final state transition table.		

Configuring the system

Also in this example we use the top-down approach creating first the state machines: FLOW, PRESS and GAS by selecting Type and clicking on the New key.

Specifying object properties

For the FLOW state machine we just repeat what we have done in the previous example.

The PRESS state machine represents also no difficulties as it contains only already discussed objects.

The objects for the GAS state machine are: the Slave state machines. They are represented in the object list by the vfsm states (Flow and Press) and commands sent to them (FlowCmd and PressCmd).

Having specified the state machines we have created also all other objects we need for the system. Definition of their properties is a repetition of already shown specification steps.

