�
Specifying VFSM

What will you learn now?

After the introduction we will specify a more complex vfsm. We want to discuss the most often used objects.

Example

The state machine controls a gas flow attenuator (Fig. ...). The attenuator accepts commands (numbers) and an analog signal FLOW_Ao. Three commands determine its operation:

22: close the gas flow by setting the Low value of the digital output FLOW_Do,

21: open the gas flow by setting the High value of the digital output FLOW_Do,

23: set the gas flow to the value determined by the analog input FLOW_Ao.

If the cmd Open has been carried out the state machine should check whether the flow valve has been opened. If the flow valve does not open after a certain time an alarm should be issued.

If the cmd Regulate has been carried out the state machine should check whether the flow has reached the required value. If the flow cannot reach the value in a certain time an alarm should be issued.

The actual flow is measured and its value delivered as an analog input signal FLOW_Ai to the control system. Normally, it is required that the flow value stays within a certain limits. If the flow value exceeds the required band the state machine should after some delay issue an alarm and count this event. If it happens more than a certain number the state machine should issue immediately the alarm if the flow value exceeds the band.		

Defining States

It is very useful to start a design by drawing a state transition diagram. It does not contain all details but it gives a better understanding of the control problem and it is the base of the full specification done by the VFSM-Editor. Fig. ... presents the first state diagram of the FLOW state machine. It contains only the basic transitions that we need to get better understanding of the control problem.

� EINBETTEN Word.Picture.6 ���

Usually, we do not try to draw the full state transition diagram - it is becoming less and less readable if we try to put all transitions and output actions into the drawing. In the state transition diagram we show transitions that explain the basic requirements - the full specification will be done in the state transition table.

We have decided to solve the problem using the following states: Closing, Standby, Opening, Open, Busy, Regulating and Flow NotOK. A detailed description of the states could be found in the documentation of the FLOW state machine.

Note the difference in handling of alarm situation in states: Opening and Busy. In the state Opening the FLOW_Do output is set to High and the state machine checks whether the valve is open by testing the value of the FLOW_Ai. If the flow does not reach a certain value within a given time an alarm is issued and the state machine stays in the state Opening.

In the state Busy the analog input FLOW_Ao is set to a required value and the state machine waits until the value of the analog input FLOW_Ai reaches the required band. If the flow does not reach the band within a certain time the state machine changes to the state FlowNotOK where an alarm is issued.

The two different solutions are justified by different importance of the failures. In the case of the state Opening the failure is less important and it is enough to alart the operator who must take an action and solve the problem. In the state Busy the failure is serious and the system must take some action by itself in addition to alarting the operator. The FLOW state machine by itself cannot do more - an appropriate action depends on the application and will be, normally, realised by another state machine that „controls“ the FLOW state machine. The state FlowNotOK in the state machine FLOW is used to „send“ the information about the flow error to another state machine. We will discuss it by system of VFSMs.		

Defining I/O Objects

We specify I/O objects to define virtual Input and Output Names on object values. The My-Cmd object is created automatically. Based on the description of the control problem we define the following I/O objects:

timers: TimB used in the state Busy and TimO for the state Opening,

alarms: AlaF to signal the flow regulating error and AlaO to signal the flow opening error,

a digital output: Do to open the flow valve

an analog output: Ao to set the flow value

an analog input: Ai as an actual flow value

a switchpoint: SwipF as a required band of the flow value a counter: Cnt to count how many times the flow exceeded the band values.

Defining Input Names

For each I/O object we define names using its value. So, we have defined three command names: CmdClose, CmdOpen and CmdRegulate on 22, 21 and 23 numbers correspondingly.

Similarly, we define names TIMB_OVER and TIMO_OVER for timers using only one value OVER as we truly need only this condition for the specification.

We define input names for all values of the SwipF object: SwipF_HIGH, SwipF_IN, SwipF_LOW and SwipF_OFF.

Eventually, we have defined a name for the Cnt object: Cnt_OVER.		

Defining Output Names

Definitions of Output Names are done similarly as in the previous example: for a given output value we invent a name that describe it. We have defined only name for values that are really needed by the table specification.		

Setting an analog output

The specification of an analog value for the Ao object is the only new point. The available Output Values for the Ao object are: Off and On. Choosing the value Off we determine that the output value will be 0. Choosing the value On we determine that a certain value will be set on the output (object Ao). The value is determined by a parameter that is linked with the Ao object. The parameter and its value will be determined by system configuration.

This technique is the simplest one for specifying an analog output. Later, we will learn two other techniques: using tables and writing a user specific output function.		

Filling state transition table

We begin the state machine specification by entering into the transition table information contained in the state transition diagram. In the next step, we analyze each state and complete the specification with all transitions and actions that are necessary for the correct functioning of the state machine.

Additional information about the states can be found in the comment fields of the state transition table.		

Configuring the system

The configuration of the FLOW state machine contains several new objects that we have not used in the first example ONOFF.

Also in this example we use the top-down approach. So, we begin with the creation of an instance of the state machine FLOW that we name as FLOW. Defining the properties of the state machine (i.e. determining the objects that belong to it) we choose names for all I/O objects in the system from FLOW_My-Cmd through Flow_Cnt.

After that, we start specifying the properties of all I/O objects. The properties of objects: Commands, Timers, Alarms, Digital input and output are specified as discussed in the first example. Now, we describe the properties of the object types that we have not met yet.		

Specifying object properties

NO (Numeric Output) Properties

The properties of NO object type (Ao) include several values:

Format defines a value type: you can choose from a list that contains typical formats, like integer, real, etc.,

Unit is an auxilary information used for display: you can choose from a list of prepared strings like V, mA, etc. or you type any string you like,

Scale Mode decides how the output value will be transformed. At present, there are three modes available: Lin(ear), Exp(otential) and Log(arithmic).

Scale Factor is a coefficient used to multiply the nominal output value as taken from the Out Data.

Offset is a value added to the output value.

Out Data is a name of the Parameter object that supplies the output value.

In the example, the Ao object value is determined by the Parameter FLOW_Value.		

NI (Numeric Input) Properties

Five properties of the NI object type (Ai) are the same as the properties of the NO object type. They differ only in the last property. Instead of the Out Data the NI object type has a property Threshold:

Threshold value is a number: up to this value the input signal is ignored and treated as 0.		

SWIP (Switchpoint) Properties

Switchpoint requires the definition of the Input and two limits:

Switchpoint can be set on Input objects that have numeric values (NI, DATA and PAR).

The Limit Low and Limit High values define the band of of the input values watched by the switchpoint (see Fig. ...). The limits can be defined directly by value or by a parameter (deactivating the By Value switch).

� EINBETTEN Word.Picture.6 ���

For the Switchpoint SwipF we have defined the object FLOW_Ai as the input and two direct values: 200 and 240 as limits.		

CNT (Counter) Properties

An object of a CNT type has only one property: the count Const(ant). Achieving the value of Const the Counter signals it with the OVER value. The counter Const(ant) could be a parameter if you remove the mark By value.

For the FLOW_Cnt we have defined Const = 4.		

Specifying I/O Units

The state machine FLOW contains three object types that are true external objects, namely: DO, NI and NO. So, we have added the I/O Units to the project and defined which input and outputs correspond to the objects Do, Ai and Ao.

