VFSM Monitor

�
Getting started - Specifying VFSM

What is VFSM Editor for?

The VFSM Editor is used to specify virtual finite state machines (VFSM). The VFSM [] is a state machine that describes pure behavior of the control system modelled by the state machine. You achieve it by using names that describe states, input conditions and output actions. All names have a virtual character that is they are just names. You link the names to real signals by creating I/O objects that are later used to build a system configuration by the VFSM Manager.

Openning VFSM document

If you want to specify a single VFSM you start the creation of a new VFSM Specification by

File / New / VFSM Document

� EINBETTEN Word.Picture.6 ���

In the window Configure new VFSM you choose

Generic

and click on the Create.

You are confronted with a state transition table of a VFSM. By saving or exporting you can change the VFSM name. You will be able to specify a VFSM state transition table using active menues and buttons. Before you start VFSM specification you have to define several names that are used for specification.

Example

The descriptions are supported by examples. The first example is a state machine ONOFF:

It is a simple state machine that is a base of many complex state machines. It includes the basic I/O objects: input Command (CMD-IN), Timer (TI), Alarm (AL), Digital Input (DI) and Digital Output (DO).

The behavior of the state machine can be described in the following way: The state machine has two stable „done“ states: Off and On. Normally, nothing is observed in a done state. The state machine enters the done state if the inputs signal that the controlled device reached the required state. By entering the done state no actions are carried out. Hence, the state machine does not wait for a reaction of the controlled device to a defined stimulus. In other words, a done state means that everything is OK.

In most cases, each done state is coupled with a busy state. In the example, the state machine has two busy states: OffBusy and OnBusy. Entering a busy state the state machine performs some actions and expects that the controlled device reacts to them issuing some acknowledgements. Usually, a busy state is guarded by a timer.�If the acknowledgment does not come during a certain time the state machine must react to this situation.�The simplest reaction is to generate an alarm.

The above principles are represented in the example. The state machine stays in a state Off. Receiving the command CmdOn it changes to a state OnBusy. Entering the state OnBusy the state machine switches on the device and starts a timer. If the device acknowledges its ON status by setting the input Di high the state machine goes to a state On. If the timer expires before the acknowledgment comes the state machine generates an alarm. On leaving the state OnBusy the state machine stops the timer as a time-out does not make sense in any state but OnBusy.

The state machine stays in the state On. Receiving the command CmdOff it changes to a state OffBusy. Entering the state OffBusy it switches off the device. If the device acknowledges its OFF status by setting the input Di low the state machine goes to the state Off. The state OffBusy is not guarded by the timer. Thus, if the Di does not change to low the state machine stays in this state and does not signal it.

Two additional transitions are possible: from OnBusy to OffBusy with the command CmdOff and from OffBusy to OnBusy with the command CmdOn.	

Defining States

You are free to invent state names. Try to use names that „describe“ the meaning of the states. „MotorOn“ name carries more information than „State_1“.

� EINBETTEN Word.Picture.6 ���

The description of the required control comprises already suggested state names. We accept them as usually the verbal description contains quite convincing names.

In addition, any state machine contains a state Init. The state Init is created automatically and cannot be removed from the State Name list. It is a convention that each state machine is in a state Init if the system is switched on. This convention allows you to specify the first transition to a state that you consider as a beginning state. As entry actions of the beginning state you can specify some actions that you consider necessary for a save start of the system.

Open the State Name Dictionary:

Dictionary / State

and prepare a list of state names. The list may be expanded and modified at any time. So, do not worry if you are not sure in the beginning what states you need.

You can change the sequence of states in the list at any time. The sequence has no influence on the vfsm specification or its behavior. It is just for your preferences in the documentation.

Defining Virtual Environment

Virtual Environment is an input / output space created by names invented by a designer for describing the behavior of a control system. The designer is free in chosing the names that from his point of view are needed for a control system specification.

The (virtual) input and output names are the only names that can be used to specify the control system. The Input NamesINPUT_N are produced on values of real input control signals. The Output NamesOUTPUT_N are converted into values of real output control signals. The real / virtual conversion on inputs and virtual / real conversion on outputs are mostly done automatically by the real time data bank (RTDB) in the VFSM Execution environment. In some rare cases, if required, the conversion process may be a program (e.g. a C function).

Before you start to define the Input and Output Names you have to decide what I/O objects will be used by the state machine.

Defining I/O Objects

The I/O Object Types identify sources (inputs) and targets (outputs) of control signals. The sources and targets of control signals are the real input and outputs in contrary to (virtual) Input and Output Names that are used to specify the behavior of the finite state machine. The I/O Object Types can be grouped into following categories:

other finite state machine: VFSMVFSM_OBJECT,

external command: CMD (CMD-IN, CMD-OUT)CMD_OBJECT,

internal counting devices:

 timer TITI_OBJECT,

counter CNTCNT_OBJECT,

event counter ECNTECNT_OBJECT,

up-down counter UDCUDC_OBJECT,

external digital signals: DIDI_OBJECT, DODO_OBJECT,

external numeric (analog) signals: NIDI_OBJECT, NODO_OBJECT,

switchpoint: SWIPSWIP_OBJECT,

data: DATDAT_OBJECT, XDAXDA_OBJECT,

parameter PARPAR_OBJECT,

user defined output function: OFUNOFUN_OBJECT.

The I/O Objects are used to define virtual Input and Output Names. The virtual Input and Output Names plus State Names are the only names that can be used in the specification table. Some I/O Objects are pure inputs (e.g. digital input DI), some I/O Objects are pure outputs (e.g. digital output DO) and some I/O Objects are both, inputs and outputs (e.g. timer TI). CMD Objects are either input or output, therefore they appear as CMD-IN and CMD-OUT in the I/O Object list.

� EINBETTEN Word.Picture.6 ���

Open the I/O Object Dictionary:

Dictionary / I/O Object ...

With the Type menu you choose the object type and give a name to the object in the column Id name. The column Description is of no use for the objects considered in this example.

The My-Cmd object is created automatically - this is an object that comprises commands that the state machine will „understand“.

You have to choose and name four other objects: Di, Do, Timer and Alarm. You are free to invent names but we suggest you to use simple names that just describe the object type. The object names will be used by creating virtual names used by a vfsm specification. They will be used also by the project to create physical object names to configure the system. Naming is an important part of the documentation - the VFSM method supports it and gives you a chance to do both: specify the control and document it properly. We suggest you use simple names as in the following table (in the example we use: My-Cmd, Timer, Alarm, Di, Do).

Note: The I/O object you have now specified are real objects but not configured yet. You can use them to make the vfsm specification. You will make them truely real, i.e. decide what Di or Timer is used with the VFSM Manager by preparing a system configuration. Configuring them you will specify also their properties, for instance you will determine the timeout value for the Timer.

Object type�
Suggested name�
Comment�
�
VFSM�
�
defined by Slave vfsm�
�
CMD-IN�
My-Cmd�
default�
�
CMD-OUT�
Xxx-Cmd�
Xxx defined by Slave vfsm�
�
TI�
TimerXxx�
�
�
AL�
AlarmXxx�
�
�
DI�
DiN�
N - sequence number�
�
DO�
DoN�
N - sequence number�
�
NO�
NoN�
N - sequence number�
�
NI�
NiN�
N - sequence number�
�
SWIP�
SwipXxx�
�
�
XDA�
XdaXxx�
�
�
PAR�
Parameter�
�
�
OFUN�
OFunXxx�
�
�
CNT�
CounterXxx�
�
�
DAT�
DataXxx�
�
�
ECNT�
ECounterXxx�
�
�
UDC�
UDCounterXxx�
�
�
TAB�
TableXxx�
�
�

Defining Input Names

(Virtual) Input Names are names invented by the designer to specify the conditions for state transitions and Input ActionsINPUT_A of a VFSM. Only Input Names may be used in a VFSM Specification. A list of all Input Names is called a Virtual Input.

You are free in inventing Input Names. Anyway, also in this case, we will give you some suggestions. Editor helps you also by generating some proposals.

Open the Input Name Dictionary:

Dictionary / Input

� EINBETTEN Word.Picture.6 ���

I/O Objects have different values (can be in different states): Di can be Low or High, Timer can be in a state: Run, Stop, Over, OverStop, etc. For each of these value you can define an input names that describes its control meaning.

If you choose the Object and its Value, and click the Insert-Key the Editor produces automatically a name in the Name field. If you like it you click again the Insert-Key and the name will be inserted into the list of Input Names. The Editor generates the name by combining the Object name with its Value. Hence, in the example, if you choose the Object Timer and the Value OVER the Editor will suggest the Name Timer_OVER.

You should not accept uncritically Editor´s suggestion. In many cases, they might be OK, like for instance the name Timer_OVER. In contrary to this, the names: Di_LOW or Di_HIGH are not very meaningfull names. Therefore, in the example, we have decided that names: DeviceOn and DeviceOff are better names than the neutral ones: Di_LOW or Di_HIGH.

In this example, commands are just numbers. Later, you will see how to replace the numbers with symbolic names.

By setting an Init mark you can decide that a name is active when the state machine starts.

A default name „always“ is automatically added to the Input Name list. It exist always in the virtual input.

DI (Digital Input) Input Names

You can define names on two DI-object values: HIGH and LOW.

In the example we use both values defining two names: DeviceOn and DeviceOff.		

TI (Timer) Input Names

The Timer can have the following status: RESET, STOP, RUN, OVER, OVERSTOP. For each status you can define a name.

In the example we use only one timer status: OVER which means that it has elapsed. So, we have defined a name: Timer_OVER.

Defining Output Names

(Virtual) Output Names are names invented by the designer to specify actions carried out by a VFSM by entering a state (Entry ActionENTRY_A), by leaving a state (Exit ActionEXIT_A) or by receiving a (virtual) input name (Input ActionINPUT_A).

You are free by inventing Output Names. Comments we have done for Input Names apply to Output Names too.

� EINBETTEN Word.Picture.6 ���

Open the Output Name Dictionary:

Dictionary / Output

Also in this case, we have not accepted names Do_Low and Do_High proposed by the Editor. Instead, we have specified names: SwitchOff and SwitchOn that explain better what the control does. Note, that if we have another device that is switched off by a High signal and switched on by a Low signal we just change the output value definition but not the vfsm specification. The vfsm specification specifies the behavior of the state machine - we want to say that the device is to be switched on or off but we do not want to be very specific in this moment.

In other words, for the behavior specification the details of switching on or off (Low or High signal or may be even another type of signal) are negligible, you should avoid them.

DO (Digital Output) Output Names

You can define names on two DO-object values: HIGH and LOW.

In the example we use both values defining two names: SwitchOn and SwitchOff.		

TI (Timer) Output Names

The following actions can be carried out with a Timer: Reset, Stop, Start, ResetStart. You can define a name for each action.

In the example we activate two timer actions: we reset it and start in the same moment and we stop it. So, we have defined two names: Timer_ResetStart and Timer_Stop.

AL (Alarm) Output Names

You can define Alarm names for three Alarm Values: Coming, Going and Staying.

Use Coming and Going values if the erroneous situation can be corrected by itself, for instancea too low temperature value could incrrease later and reach the correct value.

Use Staying value if the erroneous situation is irreversible one, for instance it cannot improve itself without an operator intervention.

In the example we have defined two names: Alarm_Coming and Alarm_Going.

Filling state transition table

Filling the state transition table requires a good knowledge of the FSM execution model used by VFSM.

VFSM is a finite state machine that describes a behavior of a control system using a Virtual EnvironmentVIR_ENV. The VFSM execution model is a combination of Mealy and Moore automata, allowing Entry ActionENTRY_A, Exit ActionEXIT_A and Input ActionINPUT_A.

Figure shows the execution model.

� EINBETTEN Word.Picture.6 ���

You fill the transition table either by writing the State, Input and Output Names or by copying them from the lists. Of course, we suggest the second approach which allows you to specify and modify the table quickly and effectively. The table fields are context sensitive. Having the cursor in a given field you can open a corrresponding Name list by clicking the right mouse key.

Normally, you just open all three lists and keep them open during the specification.

� EINBETTEN Word.Picture.6 ���

Appendix shows the specification of the example ONOFF.		

Exporting vfsm

Export generates file (*.str, *.iod, *.h) that are used by the VFSM Executor:

File / Export

You can test the vfsm using the VFSMLab which is a kind of a simulator that allows you to debug you control logic without the controlled device.

Before you can test your vfsm you have to create a project to configure the system, especially the I/O devices.

System Configuration

Figure ... shows what we have done so far with the example ONOFF. We have specified a behavior of the vfsm using symbolic names taken from three lists: Input, Output and State. A state is an intern variable of the system and does not need any translation into the real world. In contrary to the state, input and output names are just descriptions of some conditions and actions in the controlled device or system resources.

The Input and Output Names describe values of the commands (My-Cmd), the digital input (Di), the digital output (Do), the timer (Timer) and the alarm (Alarm). The command comes from another state machine or is generated by a system, operator, etc. in a form of a number. The digital input comes from the controlled device. The digital output goes to the controlled device. The timer belongs to system resources, normally, is a part of the software. The alarm is usually a part of the software and results in some text on a display and / or switching a buzzer, etc.

The system configuration is prepared by the VFSM Manager. You have to configure the following I/O objects:

the Timer and its timeout value

the Alarm and its text

the Cmd (where it comes from)

the origin of Di

the origin of Do.		

� EINBETTEN Word.Picture.6 ���

Opening the project

If you want to configure the system you have to create a project:

Project / New

The project is represented by two windows. The first window Type with a list of all object types available in the project. This is the object type list we have used by creating the I/O Dictionary. The second project window Object names is in the beginning empty; it will include objects you configure in the system.

� EINBETTEN Word.Picture.6 ���

Defining the system state machines

You define the state machine types that will be used by configuration of the system adding state machine to the project. In our first example you have only one state machine - ONOFF. Add it to the project:

Project / Edit /Add

State machines that are in the project appear in the list of object types. A state machine is an object like any other I/O object.

In this moment you have all object types you are going to use in the system configuration: the standard object types and the state machine.		

Configuring the system

With the key New in the Project Window or a double click on the Type name you can create an object of a given type. There are two ways to configure the system: a top-down or a bottom-up approach.

By the bottom-up design you create first the standard I/O objects and at the end the vfsms. By the top-down design you start with the vfsms. In this moment we suggest the top-down design as this approach explains better the naming convention. Generally, there are no reasons to prefer one of these approaches - you decide what suits you better.

Create first the vfsm ONOFF. In the Object names window, you get the object with a default name ONOFF0. With the key Properties open the ONOFF properties window. The window comprises a list of all I/O objects that you have defined when specifying the vfsm ONOFF.

� EINBETTEN Word.Picture.6 ���

First of all we do not like the name ONOFF0. So, we change it to ONOFF - we have only one state machine in the project and we do not see any reason to introduce another name as the name of the vfsm type.

Now, you have to determine the objects that belong to the state machine. Placing the cursor in a window field of a given object you see a proposal of a name for this object. We suggest to accept the proposal but you are free in choosing names that you prefer. For the example ONOFF you accept Manager’s proposals getting the following I/O names:

ONOFF_My-Cmd

ONOFF_Timer

ONOFF_Alarm

ONOFF_Di

ONOFF_Do

After clicking the key OK you are asked whether the Manager should add the I/O objects to the Dictionary. You have chosen the top-down approach and the system does not have any I/O objects in this moment. If you agree the Manager creates all I/O objects that the vfsm ONOFF needs to function.

Specifying the object properties

In fact, you have specified already the properties of one I/O object, namely the properties of the state machine ONOFF. This specification was fairly obvious - you have just determined the names of the I/O objects that belong to the state machine.

To specify the properties of any I/O object select the object in the Object names list and open the Properties window clicking on the Properties.. key or double clicking on the object name.

� EINBETTEN Word.Picture.6 ���

DI (Digital Input) Properties

The DI object types does not have any specific properties except the Name itself. We have specified the name of the Di object by specification of the properties of the state machine FLOW

DO (Digital Output) Properties

The DO object types does not have any specific properties except the Name itself. We have specified the name of the Do object by specification of the properties of the state machine FLOW.

CMD (Command) Properties

Choose now one of the I/O objects that are used in the project. Choosing Cmd you see in the Object names window the Name of the CMD object that already exists in the system. You have done it indirectly by specifying the ONOFF object.

If you open the Cmd properties window the only missing property is the command Type. If you write there the name of the vfsm - ONOFF the Manager will pass this information to the data file used by the VFSM Executor and it will use the symbolic command names defined (indirectly) during the VFSM specification. If you do not write the type the VFSM Executor will not know the names and will react to command values specified in the Input Name Dictionary.

TI (Timer) Poperties

Choosing the Tim type you see in the Object names window the name ONOFF_Timer that you have accepted by specifying the vfsm ONOFF. Open the TI Properties window. You have to specify timer’s features: time-out Const(ant) (choose for instance 5) and time Type (choose sec). The time-out Const(ant) could be a parameter if you remove the mark By value. You will try it later.

AL (Alarm) Properties

Similarly, open the Al Properties window for ONOFF_Alarm where you specify an alarm Text. Do not bother about the Category in this moment - it could be any integer.		

Introducing I/O Unit

Several objects like: Cmd, Alarm and Timer could be considered as internal system resources created and managed by the software.

Digital inputs and outputs are signals that belong to the controlled device, i.e. they are true outside, real signals. Usually, they could be organized in groups that are managed by I/O drivers. Our software is based on the assumption that I/O signals received and sent from / to controlled devices exist in units. For simulation purposes the VFSMLab software recognizes four standard units types: DI16, DO16, NI4 and NO4 that must be included in projects that are tested by the VFSMLab. In your case you add D16 and DO16 unit types to the project:

Project / Edit / Add

Having the units in the project create a digital input unit with the name DI_Unit1 and a digital output unit with the name DO_Unit3. The properties of the DI_Unit1 are:

Physical Addr = 1�Di = ONOFF_Di.

The properties of the DO_Unit3 are:

Physical Addr = 3�Di = ONOFF_Do.

The names and properties of the units must not be changed if you want to test the system with the VFSMLab.		

Creating the system configuration

If all I/O Units are defined and all their properties are specified you create the system configuration:

Project / Export configuration

The ProjectName.DAT file can be used by the VFSMLab to simulate the system.

Starting the VFSMLab

� EINBETTEN Word.Picture.6 ���

Monitoring vfsm

� EINBETTEN Word.Picture.6 ���

