Chapter Three - Subsystem Overview

A Subsystem Overview

This section will briefly cover the facilities of the CIDLib system. This will give you an idea of where things are and what you are getting as far as functionality. I won’t get down to the level of individual classes here, since they are covered in detail in subsequent chapters for each facility. I just want to give you a broad feel for the content of the frameworks.

The CIDKernel Facility

The kernel facility is the non-GUI abstraction layer for the entire system. Basically the kernel implements a simple, abstract ‘operating system’ upon which the CIDLib system is based. The theory here is that only the kernel has to be rewritten to port the system. This has held true relatively well so far, since the system has already been ported from OS/2 to NT. The trick is to keep the kernel as simple as possible, while still being able to provide the desired level of abstraction. This minimizes the work required during a port. Of course there are always niggling details that drive you crazy, but the porting effort is massively reduced by having this level of abstraction, and having it be tight and minimal.

 This facility is the odd man out in all ways, and the exception to most rules. This is not arbitrary, but more because it must exist ‘below’ all of the standard functionality of the system. Therefore it cannot also take part in all of this standard functionality. To do otherwise would create a lot of order of initialization and bootstrapping issues. So, for instance, it uses raw strings instead of string objects because the string class is a platform independent class defined in the next layer up. It cannot throw the standard exception class, because that class also is platform independent and contains objects of other classes that are only defined in the next layer up.

Another important aspect of CIDKernel is that it is not for general public use, however, it must define many fundamental types and constants and defines that are used publically. Therefore, these types, constants, etc... are made to look like they are part of CIDLib.Dll, the next layer up and lowest level ‘public’ facility. So, in many cases, things in CIDKernel are named as though they are in CIDLib. That makes even more of an odd man out.

For the most part, the kernel contains classes that wrap fundamental system entities such as files, mutexes, semaphores, etc... In general, anything that is represented by an operating system handle is going to have a wrapper class that wraps that handle and abstracts the operations that can be performed on it. There are also classes that don’t wrap a particular operating system entity, but just provide access to some set of APIs. For example, there is a system information abstraction class that provides access to a variety of general purpose system information such as the number of CPUs, the amount of memory available, the operating system version, and so on. And there is a abstraction class for accesing file system operations, such as rename, delete, get/set attributes, etc... Each of these wrapper classes is in turn used by a similarly named, publically visible, class in the next higher level, CIDLib, facility.

The kernel provides all of the fundamental types and constants of the system, so that they can be changed for a different platform. The namespaces are named kCIDLib and tCIDLib, for constants and types respectively. All facility’s provide these types of namespaces for constants and types that they defined. However, since CIDKernel is not generally a publically used facility, the namespaces are named so as to look like they belong to CIDLib, the next layer up. CIDLib programs should use these fundamental types and constants exclusively so as to maintain portability and consistency.

There are also a set of namespaces that encapsulate such standard functionality as raw string manipulation, raw memory buffer manipulation, and core mathematical operations. These are not implemented as classes because they would just be purely static classes anyway. The namespace concept provides a simpler means of dealing with such collections of related APIs. The functionality provided in these namespaces are generally not used outside of the next layer of CIDLib DLLs, i.e. the outside world would seldom require their use, however they are available if required. The raw mathematical operations are the most used in the outside world. If you need to access raw string or buffer services, do so through these kernel APIs to maintain portability and consistency.

This kernel does not contain any GUI functionality. There is a separate kernel abstraction layer for wrapping the GUI and graphics functionality of the host operating system. The reason for this separation is that many people might want to write server based applications that have no need for GUI functionality, or perhaps just detached or TTY style output programs. This strict separation allows someone to only port the core parts of the system to another platform if that is all that they want. And of course it means that a system that uses no GUI functionality pays no overhead for using the CIDLib system. And such layering of a system is good thing in purely technical terms.

The CIDLib Facility

The CIDLib facility is the core public DLL. It is the guts of the system, providing all of the core classes such as strings, files, memory buffers, stacks, queues, deques, arrays, collection cursors, path names, colors, points, areas, threads, streams, directory iteration, basic network connections, and so on. In other words, all of the basic functionality required to write non-GUI applications. Any of the classes of the CIDLib facility that manipulate system entities actually do so by way of their sibling wrapper classes in the CIDKernel facility. This abstracts them from the details of the host OS and makes them relatively immune to differences in those details.

This is the largest of the DLL facilities. It implements a lot of classes, and it also implements all of the standard framework infrastructure that pervades the rest of the system. It implements the basic class from which almost all other classes are derived. It defines the core ‘mix in’ classes, which provide interfaces for fundamental system functionality (see the “Multiple Inheritance” section of the “CIDLib Orthodoxy” chapter for details of mix in classes.) It implements the RTTI (run time type information) and dynamic typing and construction schemes for the whole system. It implements the error logging and exception mechanism that is used throughout the CIDLib system. And it implements the ‘facility class’ which encapsulates the facility concept used so widely in CIDLib. So this facility is at the heart of things and sets the fundamental policies for the entire system, making its mastery the biggest step in understanding the big picture architectural issues.

The CIDWnd Facility

The CIDWnd facility is the windowing and graphics sibling of the CIDKernel facility. CIDWnd.DLL is the windowing and core graphics abstraction layer of the system. It encapsulates the operating system’s windowing capabilities and its graphics device subsystems. This job is much more difficult than that of the non-GUI kernel facility’s, because GUI functionality is often quite unique to the host OS. NT and OS/2, almost kissing cousins as operating systems go, are still frustratingly different in their GUI subsystems. One basically has the options of implementing a very lowest common denominator system, implementing a lot of functionality by hand on one or the other operating system to make them equal in functionality, or implementing your own GUI based upon only the most fundamental system windowing capabilities. CIDLib takes the latter approach, which is often commercial unviable but not a big problem for a non-commercial, more experimental, system.

Wrapping the graphics system is less difficult than the windowing system, but its still no picnic. There are fundamental differences in the capabilities of even very closely related operating systems like OS/2 and NT, such as the origin point of graphical output - NT is a fourth quadrant system and OS/2 is first quadrant. And certainly fonts are a big, ugly issue that can be radically different on various systems. But at least the core graphical capabilities of most operating systems come down to the simple things like drawing lines, arcs, fills, and so on.

The CIDLib system basically takes the approach that the NT graphics system should represent the minimal system that might be available in the future. It does not slavishly emulate the NT graphics system in a very light abstraction, but it assumes a fourth quadrant graphics origin, 24 bit color output, the presence of NT’s graphics primitives, and that a reasonable subset of NT’s font system would be present on any future platform. This would mean that any port of the system would have to provide the required manipulation of incoming and outgoing graphics information to reflect this world view.

This obviously means that the graphical and windowing parts of the CIDLib system are going to be less easily portable than the non-GUI parts. The development of a significantly more portable system would have taken a massive amount of time and effort, and still would have been somewhat least common denominator in nature and have had frustrating platform specific gotchas. I base this statement upon my own experience and from my observation of others attempting to reach this lofty goal. Whereas many to most of the things encapsulated by the non-GUI kernel are passive and quite easily forced into a particular abstraction, GUIs are very active, event driven, and have many styles, attributes, and capabilities that are very specific to that host operating system. By providing our own custom controls, CIDLib avoids some of these issues but it still cannot escape or hide the fundamental differences in the host GUIs.

This facility provides support for basic GUI messaging support, brushes, pens, bitmap manipulation, icon manipulation, graphics devices, graphics device attribute bundles, device information access, window iterators, and printing support. These services are built upon by subsequent higher level GUI facilities to provide services that are more independent of host operating system GUI and graphics support.

The CIDCtrls Facility

The CIDCtrls facility is implements all of the standard GUI widgets and builds upon the basic abstractions in CIDWnd to provide such functionality as the buttons, static windows, list boxes, entry fields, menus, frame windows, client windows, bitmap backed windows, and so forth. Yes, CIDLib implements its own controls. This is both good and bad, as I’m sure you understand. It means that the controls are much more portable since they only depend upon the fundamental services of CIDWnd.Dll. But it means that CIDLib GUI applications have their own look and feel separate of that of the host operating system. Given the need for portability and the massive compromises required to encapsulate native controls, the need for custom implementation seems paramount to me so I’ve taken this approach. Its a lot of work, but worth it in the end.

This facility contains a fairly large amount of code. You really don’t appreciate what the standard controls are doing for you until you have to write them yourself. However, this is mitigated by the fact that pure object oriented controls don’t have to be so overly bottom heavy as the standard controls built into most operating system GUIs. Instead of having reams of styles to turn of or on certain magical functionality, a good object oriented control will create layers of derived classes that provide more and more complex functionality through inheritance. This is both more flexible and less complex for the implementor of these standard controls.

The CIDTracer Facility

The CIDTracer facility implements a very nice, object oriented ray tracer framework. If you are not familiar with ray tracing, then this is not the place to learn about it, as it is a pretty full subject unto itself. Suffice it to say that ray tracing is a way to create extremely photo realistic images by simulating the effects of real light in a scene of mathematically defined object surfaces. By simulating the actual bouncing around of real light, and its reflection and refraction when it intersects the surfaces of objects in the scene, the resulting images can be made to seem almost totally real, far more so than any hand drawn scene and far more so than many other 3D graphics techniques. To be fair though, the overhead of ray tracing and the requirement to mathematically calculate the intersection of a vector with a surface very quickly means that ray traced scenes are often carefully orchestrated to amenable to the tracing algorithm. Ray tracing is not very applicable to very ‘organic’ or ‘natural’ looking scenes. It excels at very futuristic images with lots of marble, glass, plastic, and metal surfaces. When used correctly though the resulting images can be stunning, even if somewhat artificial.

Ray tracing is a very CPU intensive operation, so the bigger your machine the better. CIDTracer can make use of multiple CPUs to very good effect, so smoke’em if you got’em. I’ve found that the CPU boundness of ray tracing allows CIDTracer to get almost a doubling of performance with two CPUs, though it never quite reaches that optimum because of system overhead in multiple CPU machines. A nice four 4 way Pentium Pro system could do some very serious images using CIDTracer. A general purpose operating system and CPU will never achieve the speed of specialized graphics hardware; still, there is the benefit that CIDTracer would be pretty easily portable to many types of hardware because it is not tied to any specialized graphics platform.

Ray tracer scenes may be built ‘programmatically’ by building up objects in memory by way of a program, then tracing the results. Alternatively, it also supports a ‘scene description language’ - or SDL - which is a text description of a scene that it will parse and use to build the scene in memory for you. Both of these schemes have their benefits, and there are demo programs the demonstrate both mechanism. For end user programs of course the SDL interface is much more convenient, and will almost always be used. But, if you are software savy, you can build very complex scenes by way of a program that would be very time consuming to write out by hand. You can also write programs that take very high level descriptions and in turn output SDL text which is then parsed and traced.

Ray tracing is also a classical problem to attack with object oriented technology. A ray tracer ‘scene’ consists of lots of objects, all of which must respond to common stimuli like ‘does this 3D vector intersect your surface’ and ‘if so, at what points in 3D space’. A ray tracer is also rife with collections of objects which are controlled polymorphically via some base class, another great strength of object oriented software. CIDTracer uses these language strengths to the maximum degree, creating a very powerful and extensible framework. It builds upon the 3D vectors and 4x4 matrices, and the collection classes of CIDLib to perform much of its work.

The CIDFractal Facility

The CIDFractal facility implements a very nice, object oriented fractal generation framework. Fractals are a mechanism for visualizing a family of mathematical formulas, most of which are based on the complex number system. The images are decidedly ‘unnatural’ but at the same time can often seem extraodinarily organic in many cases. Fractal formulas live on the edge of chaos, and their chaotic thrashing often creates very beautiful and delicate images. See the “Suggested Reading” section of the opening chapter for more information on fractals.

If you’ve never heard of fractals and want a quick explanation, I will give you a very much simplified example. The most famous of the fractal algorithms is the Mandelbrot set. The Mandelbrot algorithm is a recursive formula that feeds its result back itself and reruns until the result either reachs a particular value or fails to within a certain number of iterations. For each pixel in the image, a unique set of starting conditions is calculated, and the formula is iterated. If the formula’s result reaches a particular value within a given number of iterations, it is said to ‘escape’, hence the name ‘escape time fractal’ that is used to describe the family of fractals that the Mandelbrot set belongs to. The number of iterations it took to escape is used to look up a color in a palette, and that color is used to color that pixel in the image. If the formula fails to escape within the iteration limit, then it is given a special color that is usually settable by the user.

This seemingly simple operation creates an image of almost infinite complexity. It can be zoomed into (theoretically) forever and will continue to evolve and mutate. In reality, continual zooms will eventually make the resulting and intermediate values of the formula too small for the typical floating point unit of a computer to handle, causing underflow errors. Still, many zoom levels can be done, with extremely interesting results. The result is a kind of fractal microscope that never looses any image fidelity as it zooms inprobably deep into the mathematical world of the fractal world.

There are fractal generation programs out there in the public domain already, the most famous of which is the “Stone Soup” group’s FractInt. Programs like FractInt are very much oriented towards the fun side of fractals and the education of the user. CIDLib’s fractal generator is more oriented towards the industrial strength, multi-threaded generation of fractal images. Also, CIDFractal is not a fractal program, it is just an object oriented framework upon which you can build fractal generation programs very easily. It handles all of the details of the fractal generation algorithms and the storing of image data, coordinating multiple threads so as to gain maximum throughput from multiple CPU machines.

CIDFractal is the only part of CIDLib that has any non-trivial amounts of assembly language, which means that it is Intel specific. The formulas are pretty simple and these could be replaced with C code for other platforms; however, the performance is unlikely to ever reach that of the hand tuned asm code I’ve developed. The old software wive’s tale that such optimization is seldom worth it is almost always true, but not in this case. I can get about an order of magnitude performance increase with a hard hewn asm function. The fractal algorithms are generally pretty tight and can be performed almost totally within registers on the floating point unit. C/C++ compilers on Intel machines seldom come even close to making maximum use of the floating point stack - because its not well designed to be honest, but that’s another book. The performance hit for using C code on better floating point architectures, most RISC machines for instance, would probably be less severe.

The CIDCrypto Facility

The CIDCrypto facility implements the CIDLib encryption framework. It provides classes for managing encryption keys and encryption algorithms. This is a new facility so there are not a lot of encryption classes provided, and there will probably never be any provided that are encumbered by licensing issues. However, it is an open ended framework and you can easily implement a class that provides an algorithm that you have rights to.

�

