Chapter Two - The CIDLib Orthodoxy

This chapter will be one of the most meaty and the most controversial. This chapter covers, without a lot of actual code and implementation details, the largest and most important issues that need to be understood in a comprehensive framework. The issues covered are:

The large scale issues that need to be dealt with

The directions I took on each one

Why I took the direction I took

Possible alternative approaches where applicable

There are many compromises between performance, portability, and abstraction, so the decisions I’ve made don’t represent the ‘best’ answer for all occasions. I feel that they represent the best decisions for the vision I am attempting to create, and the best fit within the quilt of decisions that make up my particular frameworks. Some of them you will surely disagree with, and that’s fine. Thinking out your counter arguments to my beliefs will be as powerful a learning tool - if not more powerful, than just understanding the decisions I’ve made. So read with an open mind, but don’t accept without discrimination.

In order to make this chapter more comprehensible, I’ve broken it into a couple of large categories. These are not perfect breakdowns because some large scale issues will cross boundaries. Where there are conflicts I’ve tried to place each issue in the most appropriate section. The categories are as below, in alphabetical order not order of significance necessarily.

Bootstrapping

Error Codes

Error Logging

Exceptions

Facility Concept

Get vs. Query

Headers and Header Inclusion

Hungarian Prefix Notation

Janitors

Layering

Member Access

Multiple Inheritance

Pointer vs. Reference Parameters

Resource Naming

Runtime Typing

Stack Dumps

Template Collections

Types and Constants

UNICode

�
Bootstrapping

Bootstrapping issues are all too often ignored in the design of any large application, class framework, or procedural library. When a significant number of developers are involved, unless there is someone with a firm hand on the helm providing guidance, initialization issues will be totally ignored because they are not part of any of the actual functionality of the system. But, if bootstrapping is not given sufficient attention, the system will have trouble in boundary areas during bootup and during shutdown. These kinds of problems will often manifest themselves when the user has a slightly different environment or an incorrectly set up environment. They will find it extremely frustrating when your system dies during startup with no good indication as to why. And your support personnel will waste valuable time helping them.

Bootstrapping problems can also cause errors that are benign during development but which cause wierd side effects in the production code, where they are very difficult to find. And they can cause errors when slight adjustments are made in the ordering of source or object files in the build process, which is discussed below.

Overview

Any serious C++ framework under NT, OS/2, or Win95 is likely to be packaged as a DLL (a Dynamic Link Library, the details of which are beyond the scope of this book.) Such a packaging scheme allows multiple client applications to share the code pages of the framework in memory. This can make for massive memory savings when a number of simultaneously executing applications all share a common framework. The operating system will keep a reference count for each DLL. When the first application references the DLL, it is loaded and its count set to 1. Subsequent applications are pointed to the copy already in memory and the reference count is bumped up. The operating system will unload the DLL when no more applications are referencing it.

In order to make the DLL as self contained as possible, the host operating system will likely provide a way for the DLL to know when a client application loads and when it dies (or when the application loads or unloads the DLL dynamically, though that’s a very special case and less likely for the kind of DLLs we are discussing here.) Since only the code pages of a DLL are shared, each process will get its own copies of unshared data pages. This means that each process’ copy of the DLL’s data must be initialized and cleaned up. Also, the DLL often wants to do some internal setup such as opening files, creating network connections, creating windows, etc... These initialization and termination calls provide a means for the DLL to create and clean up these types of resources without the client application having to be aware of these goings on.

Each DLL’s initialization/termination function can return a value that indicates success or failure. If any DLL indicates that it failed its initialization, the operating system will cancel the load of the process and usually will pop up a window to indicate this failure.

NT, OS/2, and Win95 provide a relatively similar DLL initialization/termination scheme in which the operating system calls a special function in each DLL, telling it whenever a process loads or unloads the DLL. NT and Win95 also call this entry point for each new thread that is started or stopped. If you want to implement a portable scheme, then you probably should not depend upon the per-thread init/term, and CIDLib does not. The entry point is indicated to the operating system by either giving it a particular name, or indicating its name to the linker.

Things are complicated by the fact that the C/C++ runtime library needs to be initialized for each DLL also. Therefore the compiler vendor will generally provide its own entry point, which they will magically link into your DLLs. The vendor’s entry point will then often turn around and define yet another DLL init/term function for user code, which it will call. This is convenient in many cases, but it does not provide sufficient control for our needs, as will be discussed below. Our needs require us to provide our own entry point and call the C/C++ entry point at the appropriate times.

For the Visual C++ platform that CIDLib is implemented on, the entry point is indicated in the linker statement. Each DLL provides an entry point based upon its DLL name. For instance, here is the entry point for the CIDLib.Dll.

tCIDLib::TCard4 DLLINITAPI

CIDLibInit(tCIDLib::TModHandle hmodThis

 , tCIDLib::EInitTerm eInitTerm

 , tCIDLib::TVoid* pDummy)

{

 if (!bCIDLib_DoModuleInitTerm

 (

 eInitTerm

 , hmodThis

 , __c4InitCount

 , __afnInitTerm

 , kCIDLib_::pszTitle1

 , kCIDLib_::pszTitle2))

 {

 return 0;

 }

 return 1;

}

The operating system passes in a module handle, which is the handle to the DLL itself. It also passed a code that indicates why this function is being called. CIDLib maps this code to the tCIDLib::EInitTerm type. It indicates whether this is a process initialization or process termination call. For historical reasons, the last function is a dummy void pointer and is not used. This function returns 0 if there is an error, else it returns 1 to indicate that is succeeded. Like all CIDLib DLLs, this entry point just turns around and calls the standard init/term function, which is discussed further below.

This one function in each DLL is going to be somewhat platform dependendent. So it might have to be conditionally defined for each platform that CIDLib is ported to. That is unfortunate but not a large burden relative to massive bulk of portability that CIDLib offers otherwise. Of course, if your DLL has no global or static initialization needs it does not have to provide an entry point at all, and the whole issue is avoided. But most significantly sized DLLs will have non-fundamental global data that needs to be set up.

Global Objects

Bootstrapping a DLL based C++ framework is much complicated by the existence of global and class static objects. If your DLL or Exe module defines any global or static objects, these will be constructed before the main() entry point is called. Since there is no really convenient and portable way to control the order of construction of these objects, it is all too easy to have unknown order of initialization problems, where one global object calls code that indirectly makes use of another global object which has not been constructed yet. Even more frightening is that this construction often is just driven by the order that Obj files are linked into the DLL. A seemingly innocent change of order of the files in the link statement can suddenly break code which has worked for years - a situation that is often difficult to debug.

Far and away the best way around this issue is to do away with as many global objects as possible. This is an unmitigated goodness any way you slice it or dice it; however, there are legitmate reasons to have global objects and it is safe to do so within reason, if you really understand your bootstrapping issues.

Here is a short list of ways to deal with global objects:

One way to avoid problems is to have a single global object, with other global objects being members of it. These member objects will construct in the order in which they are declared in the class definition. Since CIDLib has the concept of a ‘facility object’, which will be discussed below, this is often an appropriate approach.

Another approach is to have pointers to objects instead of objects themselves. During DLL initialization, you can dynamically allocate the objects and store the pointers. During termination, you can destruct them. This is the approach often taken by CIDLib itself, particularly when it involves implementation details that CIDLib wants to hide. Be aware though that you can still indirectly (and unknowingly) use code whose global pointers have not been set yet.

For objects used only within a particular source file, lazily create the object by having a local pointer which is statically initialized to 0. Instead of accessing it directly, the code calls a method or function to get it. If the pointer is 0, the function allocates the object and stores it, then returns it. If the pointer is already set, then its returned.

Or alternatively, has a single bIsInitialized flag that is statically initialized to kCIDLib::False. All functions of that class, or in that file, will call a local method that will check the flag and create all of that file’s global’s (or class’ statics) at once and set the flag to indicate that initialization is done.

Note that the last scheme, the lazy evaluation, requires special care in the case of multiple threaded access. Two thread can hit the same function at once. If you only have one local object to create, that can be handled by an atomic compare and swap operation such as that provided by the TRawMem::pCompareAndExchange() or pCompareAndExchangePtr() methods. Or, more simply, you can use the TBaseLock class which is always available to synchronize one shot initialization. So the tools are there, its just a matter of pros and cons. The pros are that you don’t have to have any elaborate DLL initialization and that you don’t create objects that never get used. The cons are that every call in that class or file has to make an internal call to get access to data ever time, even though only once will that call have really been necessary.

Be aware of DLLs which reference each other. Layering, to be discussed later, is a big issue and understanding your layering issues will avoid this problem. If two DLLs reference each other, then there is no way to insure that each of their global and static objects are constructed before the other one needs them. The language and tools are not going to help you here. You must avoid these problems by education of your developers and good understanding of your bootstrapping and dependency issues.

Portability

You need to try to make sure that your bootstrapping scheme is reasonably portable. The developers that use your code will want to create their own DLLs in many, if not most, cases. This means that they will have their own bootstrapping concerns. Designing a portable DLL bootstrapping mechanism and making it available to users will save them time and give them assurances that you understand the issues and encourage them to do the same. It may be difficult to absolutely avoid some small amount of conditionally included - platform specific - code in the main Cpp file of each DLL (where the init/term function is generally located); but, it can be very much minimized.

CIDLib’s Design

CIDLib has a standard mechanism for DLL initialization and termination, that is used by itself and is provided for its clients to use. Here are the basic design points, with a much deeper discussion to come later.

A standard initialization/termination global function is provided in the header CIDLib_ModuleInit_.Hpp. This function is implemented as a template because of the special status of the C/C++ RTL initialization/termination function - which this function calls. The C/C++ function operates on the data of the DLL from which it is called, so the code for CIDLib’s function must be generated directly into the actual DLL that uses it.

The standard initialization/termination function’s prototype is as follows:

template <class T> tCIDLib::TBoolean

bCIDLib_DoModuleInitTerm

(

 const tCIDLib::EInitTerm eInitTerm

 , const tCIDLib::TModHandle hmodThis

 , const tCIDLib::TCard4 c4InitCount

 , const T* afnInitTerm

 , const tCIDLib::Tch* const pszTitle1

 , const tCIDLib::Tch* const pszTitle2

);

The eInitTerm value is passed directly from the DLL entry point parameter, discussed above. It indicates whether this is an initialization call or a termination call. The hmodThis parameter is passed straight from the DLL init entry poijnt also. It is the handle to the DLL being initialized.

The last two parameters, pszTitle1 and pszTitle2, are strings that are used in the popups that occur if any error is reported during any of the initialization and termination processing. They are both titles and the first usually indicates the DLL/Exe name and the second indicates some more wordy description of the DLL/Exe. For instance “FooBar.Dll” and “The FooBar Company’s Core Services”.

Each DLL has one or more init/term functions that it wishes to be called. It sets up an array of function pointers and passes them to the CIDLib init/term function. For inititialization, they are called in the order provided. For termination, they are called in reverse order, so that what was done during initialization can be undone during termination. The afnInitTerm parameter is the list of init/term functions, and c4InitCount indicates how many entries are in the list. 0 can be passed for both of these if the DLL has no init/term needs at the current time.

Here is the array for the CIDLib.Dll itself:

static tCIDLib::TModuleInitTermRec __afnInitTerm[] =

{

 { __InitTermMain , 0 , kCIDMsgs::midInit_Main }

 , { _InitTermLocale , 0 , kCIDMsgs::midInit_Locale }

 , { _InitTermMetrics , 0 , kCIDMsgs::midInit_Metrics }

 , { _InitTermTypeRegistry , 0 , kCIDMsgs::midInit_TypeReg }

 , { _InitTermMod , 0 , kCIDMsgs::midInit_ModuleSupport }

 , { _InitTermSysInfo , 0 , kCIDMsgs::midInit_SystemInfo }

 , { _InitTermProcessRegistry , 0 , kCIDMsgs::midInit_ProcRegistry }

 , { _InitTermThisFac , 0 , kCIDMsgs::midInit_Facility }

 , { _InitTermThread , 0 , kCIDMsgs::midInit_Threading }

 , { _InitTermTextStream , 0 , kCIDMsgs::midInit_TextSteams }

};

static tCIDLib::TCard4 __c4InitCount = c4ArrayElems(__afnInitTerm);

Each entry indicates the function name, a 0 for the text that will be loaded, and a message id for short description of what is done by the Cpp module that it handles initialization and termination services for. This description is loaded and its address put into the empty pointer field, and used by the standard initialization/termination call to indicate what was being done when an error occurs.

The module initialization methods should follow the tCIDLib::TModInitTermFuncPtr prototype:

typedef tCIDLib::TVoid (*TModInitTermFuncPtr)

(

 const tCIDLib::EInitTerm eInitTerm

 , const tCIDLib::EGlobalStates eGlobals

 , const TModule& modInit

 , const tCIDLib::TCard4 c4MaxChars

 , tCIDLib::Tch* const pszFailReason

);

The eInitTerm parameter is discussed above and indicates which is occuring. The eGlobals parameter indicates whether it is init or term before or after globals have been constructed or destructed. This gives you four different phases of module initialization you can use, initialization before global constructor, initialization after globals, termination before global destructors, and termination after global destructors. modInit is a TModule object that represents the DLL facility being initialized. It can be used to load messages or other resources attached to the facility. pszFailReason should be filled in with why the init fails, if it does. c4MaxChars indicates how many characters the pszFailReason buffer can hold.

�
Error Codes

Error codes are a trickier issue than many people might suspect. Many class library designers deal with their own error code requirements but avoid dealing with the issues that arise when third party DLL developers build upon the basic framework to provide their own subsystems. The basic problem that arises is that of error code uniqueness. How do I, the catcher of an exception, recognize that an error value of 10 means “The user passed out at the keyboard”, which is an error from the “UserMonitor.Dll” subsystem?

Possible Solutions

One way, which is covered below under “Exceptions” is to have many different exception classes. Each subsystem can throw exceptions of a different class. For reasons discussed below, I have rejected that scheme.

Another mechanims is a partitioning of the error code space, so that subsystem A gets numbers 0 through 511, subsystem B gets numbers 512 through 1023, etc... That of course is untenable in the face of multiple, independently developed subsystems. Who decides what ranges that they will use? Its not a very easy way to deal with error codes, unless you are are going to force each vendor to register with you and get an assigned range. I would prefer to avoid that kind of political situation altogether.

Another possibility is that error codes are strings instead of numerical values. This provides a much larger error code space, but it also greatly reduces performance (since comparing an error code is now a string compare instead of a single CPU operation) and it still requires partitioning of that space. Each vendor must follow guidelines for avoiding error code clashes, most of which involve making the strings longer with company name prefixes and such. This can make for significantly higher data size relative to a numerical code scheme

The CIDLib Way

The CIDLib error code scheme tries to make for a compromise that keeps the efficiency of numerical codes and avoids an error code space partitioning scheme. Since all errors are thrown from some subsystem, a DLL, or an Exe program, and the message text associated with these errors are attached to that DLL or Exe, it makes sense to take advantage of that natural partitioning scheme. Actually it does not partition the error code space, it expands the error code space so that each subsystem can have the full range of available codes without any worries of clashes.

Each CIDLib DLL or Exe has a ‘facility object’, which is discussed below. That facility object is used to throw errors from within that facility (a facility is a DLL or Exe module) and the facility object is used to load up the error text as well. So, when an error is caught, it can be tested to see whether it is error abc, from facility xyz. This is done conveniently via the TModule class, which is the base class of all facilities. Here is an example of an error being checked:

catch(const TError& errToCatch)

{

 //

 // If its a file write error from the CIDLib facility, do

 // something special.

 //

 if (errToCatch.bCheckError(facCIDLib, kCIDLib::errcFile_Write))

 {

 // Do something

 }

 throw;

}

So the error object that you catch will let you test the error to see if its a particular error code from a particular facility. This might sound like a pain since you have to know where the error came from in order to test for it. And it is a little more of a pain than just checking a single error code, but its safe and its infinitely extensible in the face of third party subsystems. Since all error codes are within namespaces that indicate what facility they belong to, just the name itself will tell you which facility you should check for.

No Resource Based Errors

CIDLib does not use the resource compiler scheme to do error codes and their related text. It provides its own scheme in which you maintain a text file and it compiles that text file into a binary message file and two header files, one for error ids and one for message ids. It allows you to indicate the namespace that you want your error and messages ids to be within. This avoids the massive global namespace polution that resource based schemes use, keeping all error and message codes within namespaces that are related to the facility that defines them.

It also means you can keep your string ids private, while exposing your error ids. VC++ makes this a pain to do with resources since it only directly supports a single header file for resource ids. If you are going to have to maintain files by hand, then why not maintain just a single one and have a smarter, dedicated message file compiler do a lot more work for you?

Here is a sample message text file and the output that it would create:

// This is the Foo.MsgText file

// Foo messages

[M] midQ_Close	1 Close the current file?

[M] midQ_Overwrite	2 The file %(1) already exists, overwrite?

// Foo Errors, which just start at a nice higher number

[M] errcFile_Create	512 The file %(1) could not be created

[E] errcFile_Close	513 file %(1) could not be closed

The MakeMsgs Utility

Here is the invocation of the MakeMsgs program to compile it:

MakeMsgs Foo kFooErrs kFooMsgs \Output\Foo

The input parameters are the name of the facility, Foo in this case for Foo.Dll, the names of the namespaces to use for errors and messages, and the output directory for the binary message file. this should be the same as the output directory for the Dll itself. This is easily done in the VC++ project system by using the $(OutDir) macro, which represents the output directory of the project.

Here are the resulting output headers

// The file Foo_ErrorIds.Hpp

namespace kFooErrs

{

 const tCIDLib::TErrCode errcFile_Create = 512;

 const tCIDLIb::TErrCode errcFile_Close = 513;

}

// The file Foo_MessageIds.Hpp

namespace kFooMsgs

{

 const tCIDLib::TMsgId midQ_Close = 1;

 const tCIDLib::TMsgId midQ_Overwrite = 2;

}

The header file names are generated from the facility name, and are enforced by the compiler for consistency. The output binary message file will be named Foo.CIDMsg. This message file is attached to the DLL/Exe file during the link step, also by the MakeMsgs utility using the /Attach flag.

The errors are given the type tCIDLib::TErrCode and the messages are given the type tCIDLib::TMsgId. These are typedefs which allow for flexibility in the future if required.

�
Error Logging

Error logging is tied in very tightly with the exception mechanism under CIDLib. CIDLib programs do not throw exceptions directly. Instead, they call methods on their facility object to log errors. The TModule class, the base class for all facility classes, has a number of error logging and throwing methods that will handle any situation. These allow you to provide more or less information as the situation indicates, with it providing as much information as possible by default so that it does not have to be done over and over every place an error is logged.

The logging APIs in turn, after providing any missing information that they can, will build a TError object that represents the error or message being logged. CIDLib only has a single exception class, TError, which is somewhat different from other systems you may have encountered. See “Exceptions” below for a discussion of this topic.

This scheme might take a little getting used to but its very powerful, and very flexible. It allows the error object to be changed over time without affecting every place where errors are logged, it allows error statistics to be maintained, it allows the logging system to be very flexible and to do its thing without any help from the code that might eventually catch an error (at which time the stack would already be unwound anyway, so any stack trace would be impossible.)

Severity Levels

Everything is driven off of the severity level of the error. The severity of the error is used to determine if it should be logged, if it should be thrown, if a runtime error and stack dump should be generated, or if the application should be terminated. Every TError object has a severity level that drives these decisions. Here is the severity enum:

enum ESeverities

{

 ESev_Information

 , ESev_Warning

 , ESev_APIFailed

 , ESev_ProcessFatal

 , ESev_SystemFatal

 , ESev_Status

 , ESeverities_Count

 , ESeverities_Min = ESev_Information

 , ESeverities_Max = ESev_Status

};

The process as a whole has a logging severity threshold level, set via the CIDLib.Dll facility object facCIDLib, which controls which errors and messages actually get to the logging mechanism. This allows the process to control what levels of severity are to be logged. This is discussed further in the next section.

Logging Logic

When an error is logged via one of the facility logging methods, the individual parameters that are passed to the logging APIs are used to build a TError object. Then the severity level of the message or error is used to make a series of decisions about what should be done with this error object. The following pseudo code describes the logic of the core logging code.

if (error severity >= error threshold)

	Log Error

if (error severity == status)

	return. Nothing else to do.

if (error severity >= process fatal)

	Generate a runtime error stack dump

if ((error severity >= process fatal) && !test mode)

	exit process with EEXit_RuntimeError

if (error severity >= API Failed)

	throw the object.

The first decision is whether the error severity of the logged error is above the threshold level of the process. If not, its not logged. If so, it is logged. The logging is done via the installed logger (to be discussed below.) The logging threshold can be set low (ESev_Information) to have everything be logged (for debug purposes) or very high (ESev_SystemFatal) so that only the most fatal errors get logged, as the circumstances dictate. The threshold cannot be set higher than ESev_SystemFatal, so that status severity messages are always logged. This is so that status messages can be used to report major program milestones that are always logged. However, status messages are never thrown because they are totally for getting messages into the log.

If the severity is ESev_Status, then basically there is nothing left to do at this point. If it needed to be logged, then it was, else nothing will happen. Next, the severity is checked to see if the error is one of the fatal error levels. if so, then a runtime stack dump is generated. This dumps a lot of information to a file called ErrorInf.CIDLib, that lets you fully debug the problem. This is discussed in this section under “Stack Dumps”.

If the severity is one of the fatal errors and the program is not in test mode, then the process is exited with an exit code of tCIDLib::EExit_RuntimeError. The test mode is set by passing the /TESTMODE parameter on the command line. This is one of the magic command line parms that are pulled out before any user code sees them, so it can be anywhere in the command line without confusing the user program. This allows the program to continue even though a fatal error has been logged. The reason for this is that test program often purposefully generate fatal errors in the course of testing. If not for this test mode, they would stop immediately and would not be able to do their job.

Lastly, if the severity is greater than or equal to the ESev_APIFailed level, then the error is thrown as a TError object. If this thrown error is not caught by any user code or CIDLib code, it will propogate up to the TThread level (where the thread was started) and cause the program to exit.

Logger Objects

Logging of errors and messages is done via an abstract API defined by the TLogger class. Since there are any number of places that errors can be sent, and ways that they can be formatted, CIDLib does not hard code this functionality. Instead it uses a derivative of the TLogger class to do the logging. CIDLib provides a couple of derivatives of the TLogger class for logging to a binary file, or a text file, or to a popup dialog, or to standard out. You can create your own logger objects and install them, via the TFacility::InstallLogger() method. This will cause all logged TError objects to be passed to your logger and you can format them and send there where you wish.

Calls to the logger to log messages are synchronized within the process, so that multiple threads logging simultaneously will not interleave their output. This means that the logger objects can use static data to speed up the logging process, since they will never be called by two threads at once. Calls to the logger should be as fast as possible for this reason, since other threads might be backed up waiting to log something. If the output mechanism is slow, consider queuing up the objects and using a spooling thread to spool the errors as quickly as they can be dumped (perhaps bulking them if more than one is waiting.)

If synchronization is required between processes, the the logger object must provide that itself. The standard loggers that CIDLib provide make use of an optional named mutex to synchronize logging to their targets. They take the name of the mutex via an environment variable, and the file loggers take the name of the file. See the installation and setup appendix for details on how to set up your environment. Your loggers can use these same variables or provide any other mechanism required, as long as all of the processes using your logger agree on the mechanisms to use.

You can check out the logging demo programs, LoggingX.Exe where X is the number of the demo when there is more than one demo on the same topic, for examples of how to use the logging system, the stack dump files, and the log files.

�
Exceptions

In round terms, I can sum up the situation by saying “Exceptions Good”. They are not perfect, and they have a certain amount of overhead associated with them. But, when its all said and done, exception based software is less brittle in the face of catastrophic error, easier to write, and very powerful when teamed up with the natural scope based objects of C++. CIDLib is fully exception based, from the ground up, so you should have a good feeling for what exceptions are all about if you want to get the most out of it. First, lets cover some of the large scale issues regarding exceptions.

When to Throw

The first, and usually most heatedly argued, concern is when to use exceptions. Different people will tell you different things. Some people believe that they are only to be used for catastrophic errors which cannot be recovered from. Others believe that they should replace all uses of error returns. Some people argue for the former in pure design terms, and some believe that the latter is technically better but that the overhead is too great to be practical. I am definitely of the opinion that is should fully replace all error return mechanisms. My criteria for when an exception should be thrown is that the called method or function failed to work, period. If it failed to work, that is an exceptional situation and an exception should be thrown. CIDLib takes this approach without.... ummm... well without exception I guess.

Advantages to Exceptions

That is not to say that no methods in CIDLib have return values, since there are lots of other reasons to return values. Some methods return data, some return statuses, etc... Its just that there is never any return that indicates a failure. This is often very nice since it avoids a common practice in the C world, which is to define a ‘magic’ value that represents an error, with all other values returned being the actual data. Since, for some returns, all values are possibly legitimate this scheme cannot be consistently implemented. And, in the world of objects, constructing some high overhead object to just return as an error code would be unacceptible.

The other issue that exceptions avoid are the ‘passing it up the chain’ problem that return code based systems use. Each level must proactively check for all errors, undo what its working on, and pass that error back up to the previous caller, who must do the same. In an exception based system, with proper use of stack based objects and/or janitor objects, most code never checks for errors. If the error occurs, it is thrown as an exception and unwinds the stack. All of the stack based objects are destructed along the way, providing natural cleanup. In some cases, try/catch blocks are used to do more complex cleanup.

Cleanup vs. Recovery

There are two basic reasons to catch an exception. One is cleanup and the other is recovery, and its important to understand the differences between them. Cleanup means that you just want to undo what you are doing and then let the exception continue up the call chain. Recovery means that you want to catch the exception and do something to recover from it, such as telling the user an error occured or retrying it ect...

Cleanup, if you use stack based objects or janitor objects is automatic and you and have no need for try/catch blocks. You don’t have to do anything. If you have more complex cleanup needs, you use a try/catch and rethrow the exception when you are done with your cleanup. Using stack based objects for automatic cleanup is always prefered, since there is then no chance of forgetting to rethrow an exception. General purpose code code almost always does cleanup only. It does not try to recover from exceptions since it does not have the ‘situational awareness’ that higher level code does. Sometimes a DLL will have higher level code that will do recovery without the knowledge of the host application, but usually general purpose code in DLLs just cleanup after themselves and leave ‘executive decisions’ to the end application code.

An important point about cleanup is that the code does not care what happened for the most part. I.e. it does not have to catch the exception and examine it because it does not matter why the stack is being unwound. It just is and what was in progress needs to be cleaned up, period. So often, even if a try/catch is required, it can just use the generic catch(...) syntax because it doesn’t care what kind of error occured.

Recovery means that the buck stops here, or somewhere. Some code along the way, usually in the end user’s application code, is in a position to either tell the user about an error and get some guidance or to log an error and back off, or to retry periodically, etc... This kind of code requires that the exception be caught by type and examined. In many cases the details of the error must be examined and a determination made about whether it represents a recoverable error or not.

Recovery code is generally more succeptible to errors that are caused by changing conditions in code underneath it. If it does some kind of complex interrogation of the error, any changes to the way that errors are reported in the many layers of code that might lie between the point of exception and catch for recovery might break the catching code. This is something to be avoided of course, but its really impossible over time to track all of the possible interactions of code and the error that they throw. So the moral of the story is to try to, as much as possible, avoid having dependencies upon very complex evaluation of errors. And this is often easier than it sounds. In many cases, the error is just displayed to a user who will make the choice, or the catching code will just log the reasons and back off the operation waiting to be asked again later to retry it.

One vs. Many Exception Classes

There are two basic approaches to designing the classes that are thrown as exceptions. One school says that you make up a base exception class and then derive specific exception classes from it, which represent particular situations. For instance, you might have an exception class called TFileSysErr that represents only file system errors. The other school is that you have a single exception class that everyone throws and which has enough information in it to support general purpose exception reporting.

CIDLib takes the later approach. There is a single TError class which is the only type of exception thrown. Going back to the cleanup vs. recovery issues discussed above, having multiple exception classes does not make as much sense as you might think. Since the cleanup oriented code does not care what the exception was 95% of the time, having the extra specific exceptions does not help. Since the recovery code that does the catching must generally catch all exceptions, it must either do so via the base exception class or have multiple catch clauses. If it uses the base class, then its gaining nothing from multiple exception classes. If it catches them all separately, it will often have to implement very redundant cleanup code in each clause, or just catch within each one and set a flag, letting the flow of control just fall through past each catch clause to some code that sees the error flag and does the recovery just once.

The number of places that specific errors are looked for, and are the only errors that are treated differently, are two few and far between for me to justify the extra effort. Therefore CIDLib just has a single TError class that has a reasonable number of fields for error reporting. If have found this to be the best approach. Also, it means that when error objects are streamed to various places for logging, polymorphic streaming is not required. Since logging error must be efficient, avoiding polymorphic streaming overhead is useful.

�
The Facility Concept

The concept of a loadable module (a DLL or Exe file) is very important in modern PC operating system architectures. As such, they tend to be important in a class framework based upon this type of operating system. CIDLib provides the TModule class to represent the functionality of such loadable modules. However, there are a number of higher level concepts associated with these types of loadable module files. For instance, each one is usually a separate project in the development environment, and also usually represents a coherent set of common services. As such, CIDLib provides a higher level construct, called the ‘facility’, to represent this higher level concept. The TFacility class (which derives from TModule and

CIDLib uses the concept of a ‘facility’. Basically a facility is a DLL or Exe module, though the name is somewhat overloaded in that it really represents two things. One the one hand the facility concept is a set of file, variable, class, etc.. naming conventions that are used within and without each DLL or Exe project. This set of conventions provides consistency at a higher level than the class, which is the highest level entity that the language itself speaks to. CIDLib provides a TModule class which provides access to DLL or Exe module services. But the facility concept, represented by the TFacility class, is higher level so it derives from TModule and

 Each facility also is a ‘project’ in development terms, but that is also an overloaded term. So, for better or worse, CIDLib refers to a DLL or Exe linkable module as a facility.

Each DLL or Exe module will either instantiate a TFacility object or create a derived class and instantiate an object of that type, which it will export to the outside world as its ‘public represent’, though which the outside world can access its resources and global or non-class functionality. The class is called the facility class and the single instance of it is called the facility object.

Modern PCs and Modules

At the PC operating system level, a module will have a handle, via which the module can be manipulated and its attached resources accessed. So, at the most basic level, the CIDLib TFacility class is a wrapper for this module handle. Via the module handle, attached resources can be accessed, such as dialogs, bitmaps, strings, etc... It can also be used to get the path to the DLL or EXE file that is running, and it is required in other system APIs internally within CIDLib’s system interface code. TFacility provides the APIs for accessing these kinds of resources and information.

The DLL’s Representative

At a higher level, each DLL or EXE (DLLs particularly) represents some kind of subsystem. Such subsystems often have available functionality or settings that are subsystem wide and not really part of any class that the subsystem implements. So a facility also ‘represents’ the DLL subsystem as a whole, and provides access to global subsystem services. Many C++ frameworks will force all such functionality into some class as static methods or data, even if its not particularly obvious where it should go. Having this global functionality in a single place is often easier to find and remember.

Its not that CIDLib does not use class static data and methods, because it definitely does. Its just that some stuff just does not fit into a particular class or can just as easily and more centrally be dealt with via the facility.

In Exe projects, it is often necessary or convenient to have data or functionality that is available globally within the Exe module, but once again is not really part of any class. A facility object is a good place to put such stuff. This keeps them out of the global name space, and allows you to control their order of construction (since class members construct in the order or declaration.)

Error Logging

Logging is also do on a per-facility basis. Each facility, being a DLL or Exe, has its own set of error codes and error messages and logs its own errors and messages. So the facility is a convenient mechanism through which error logging can be done. This implicitly indicates from where the error text should be loaded, and allows the subsytsem name to be automatically added to the error information. See the “Exceptions” and “Error Logging” sections above for details of the logging of errors.

Most simple Exe programs will just create a TFacility object, or not have a facility object at all if they don’t have any resources or any errors of their own to log. But most DLLs or complex Exe facilities will create a derived class that contains their own data and functionality. The demo programs that come with CIDLib demonstrate these variations, and you can look at the CIDLib source code itself to see how they have made use of their facility classes.

A more formal description of the facility naming conventions are provided in the style guidelines appendix, so look there for details.

�
Get vs. Query

This one might seem like a nit to some folks but its an important distinction to make, and makes the system much more self documenting.

Getting Things

If you call a method or function to ‘get’ something, that means you are getting back something which you must give back. An example would be getting a handle to a file or a pointer to a shared memory buffer. In this case you really are ‘getting’ something and you have to give it back at some point or clean it up.

Querying Things

If you call a method or function to ‘query’ something, you are just getting a copy of something back and it can just be ‘thrown away’. An example would be querying the current directory. You are just going to get back a string that represents the current directory. You are not getting anything that must be cleaned up or given back.

In an object oriented system, this distinction is often not quite as important since ‘gotten things’ are encapsulated in objects that will insure that they get given back. But, where the issue arises, CIDLib is strict about using the right terminology. This makes the system, hopefully, more self documenting and easier to understand.

�
Header Inclusion

CIDLib uses a header inclusion scheme that is both a product of modern compilers, and their ability to precompile headers, and a scheme to maximize the ease of use to the user of them. Most class libraries use a scheme where every header file includes all the other header files that contain the classes that they use or derive from. The user then includes in his/her headers each underlying class library headers that his/her headers need. This, in my opinion, creates a rat’s nest of dependencies and includes that is difficult to understand and maintain.

The Public Facility Header

Given that most modern C++ compilers support a precompiled headers system, and such systems require that each Cpp file sees the same headers in the same way in the same order, CIDLib uses a single, main header for each DLL. This is called the public facility header. This main header sub-includes all of the other public headers of that DLL facility, in the correct order of dependency. This means that any user of that DLL facility just needs to include the one main header instead of knowing what headers have what classes. Since the compiler precompiles the headers anyway, and wants to see the headers all in the same order, this scheme works out pretty well and is very convenient to the user.

The Private Facility Header

Each DLL facility also has an internal private header that is used to export ‘intra-facility’ stuff within the DLL. This file is known as the private facility header, or sometimes as the intra-facility header. It first includes the facility’s public header, so that all of the facility’s public functionality is available internally, then sub-includes any internal only headers and defines any intra-facility extern declarations or constants, etc... These headers are always named in a special way, using the name of the facility followed by an underscore, so CIDLib’s is CIDLib_.Hpp for instance.

Layering DLLs

When DLL facilities are layered, the main header of the higher level DLL facility also sub includes the main headers of any of the underlying DLL facilities that it requires. So, at any level, you only need to include the highest level facility header you need and it will insure that you have access to anything that it builds upon.

Each DLL facility’s main header protects itself from multiple inclusion using a conditional compilation token. Because of the single header approach this one guard protects all headers of that facility from multiple inclusion. So layering does not cause problems with multiple inclusion if you include two otherwise unrelated higher level facility headers that include common underlying stuff.

Facility Private Headers

Each facility will likely have some headers that are not for use by the outside world. These are called facility private headers and they are usually sub-included into the private facility header for other modules to see. If they are only used by one or two Cpp files, then they can be directly included into those files in order to keep down the header count for the rest of the Cpp files.

Special Cases

There are some special case headers that are so specialized and used only by very specialized clients, that they are not included into the public header. Instead, they are included directly by those clients that need them. These are relatively rare but they do occur. In many cases they provide classes that are not official API but are provided for those who are willing to take on some extra burden for some extra control.

The Style Guidelines appendix covers the formal details of how files are named and arranged in a CIDLib facility. So look there for a formal description. Also see any of the CIDLib facilities (except for the CIDKernel and CIDLib DLLS which are special casees because of their special position at the root of the world) for real world examples of these files and how they are arranged.

�
Hungarian Prefix Notation

Ok, so this one will get me flamed I know, but CIDLib uses hungarian notation. Actually, it uses a variation of hungarian notation that prevents conflagration of prefixes all over the place. Many people violently dislike hungarian prefixing, and particular dislike it within the object oriented world. Here are my arguments for it.

It Makes Code Less Abstract

The argument is that, if you change the type of something you have to go change all of the instances of it to rename it. I hold that this is not an issue. For fundamental (non-class) types, any type, once exposed via the public interface, cannot be changed without breaking client code. So, willy nilly changing of the types in the public interface are serious issues and changing the name of the member access method (since they are named after the member in CIDLib, see “Member Access” below) or the data member is kind of a good thing since the compiler will now show you every use of it and you can check to see if any uses of it are going to blow up now that’s a different type.

If the variable is internal to a class (a member), then its scope is very limited and the readability and self documenting nature of hungarian notation far outweighs the 5 seconds it will take to search and replace the name internally within the Cpp file. This is particularly true considering that such changes should definitely be rare anyway.

Too Many Prefixes To Remember

Many folks argue that the large number of classes in a framework make it impractical to remember the prefixes or even to come up with unique ones while keeping them reasonably short. If you gave every single class a unique prefix, that would be true but CIDLib does not do that.

For class types, CIDLib uses a ‘family prefix’ style in which each base class has a prefix and all of its derivatives use the same prefix. This indicates basically what type of object they are, and hence what type of fundamental functionality they support, without breaking the abstraction of polymophism. For instance, all of the derivatives of the TStream class use the ‘strm’ prefix. All derivatives of the TWindow class use the ‘wnd’ class. So the prefixes are designed to reflect the class hierarchy and its abstractions. This scheme keeps the number of actual prefixes quite reasonable.

Only if a derived class becomes extremely specialized will it get a new prefix. There are only a handful of such examples in CIDLib. For instance the TPathStr class, though its a TString derivative, has the prefix of ‘path’. This is rare but its done when it would actually improve the readability without adding too many prefixes.

That’s What Browsers Are For

This argument says that all compilers now have source browsers with them anyway, so its easier to just ask the browser to ask where the original definition of the variable or method at hand is and look at it. These folks have obviously never worked on really big projects. The extra time it takes to build browser files (at least in VC++), particuarlly just to test some trivial change, would probably add up to a man month every year for this particular project. Its just not worth it.

And, since CIDLib is supposed to be easily portable to other development platforms or even other operating systems, the presense of a browser cannot be assumed. And many people are just going to want to read the code, and hungarian notation, if controlled and implemented consistently, adds to the readability of the code, in my opinion.

So, like it or not, its there. I think that if you give it a chance, at least this implementation of it, you might come to appreciate it. Look through the CIDLib code and see how its used. Its very consistently implemented. The fundamental types are all in the CIDKernel_Type.Hpp file and their prefixes are listed there. Each class’ header file documents its prefix, as does the class and member documentation for them.

�
Janitors

CIDLib makes heavy use of ‘janitor’ objects. Janitors make life much, much easier and safe in an exception based world, and CIDLib is fully exception based. They allow language scope rules to be imposed any number of software ‘phenomena’.

What are Janitors?

If you are not familiar with the concept of janitors, I’ll start with a quick description. When you write a method or function, and that function throws any exceptions (or any calls any other code which you must assume can throw exceptions), it must be sure to clean up anything that it started but did not complete. One way to do this is to use try/catch blocks, and in some cases a try/catch is the only way, but in many cases this is clumsy and adds overhead that can be avoided.

All stack based objects are destroyed when the scope block that they were declared in is exited. But, if you must allocated an object or raw buffer within a function, that will not automatically get cleaned up because its not a stack based object, its a stack based pointer. If you modify the state of some other object, you sometimes have to insure that the changes get undone before you exit the function. If you lock a mutex or enter a critical section, you must insure that you unlock the mutex or exit the critical section, or your whole program can lock up. There are many other examples of changes which must be made within a function or method, and which must be undone regardless of how the function or method is exited.

Janitors provide the solution to this problem. A janitor is just a small class, which is always declared as an automatic (stack based) object. Therefore it always gets cleaned up. The trick is to have it clean up or undo something for you when it gets destroyed. You can give it a pointer to an object, and have it destroy the object when it is destroyed. You can give it a mutex and have it lock it, and unlock it when it gets destroyed, etc... So the janitor is just a way to impose scope rules on something, and to insure that any exit of the scope, by return or exception, does not fail to clean up.

Releasing

Some janitor classes have a way to ‘release’ the thing that they are to operate on. This means that, once the release method is called, then the janitor won’t do anything when it destructs. Why would you want to do that?

Well, in many cases, you have to allocate something and then do some work before you can give this newly allocated object to some other entity which will become responsible for it. If any exception occurs before you get this new object to its eventual resting place, then it will be leaked. So, you can put a janitor on it immediately after create it. Once you get the new object safely stored, then release it from the janitor. But, if something goes awry before then, the new object will be safely cleaned up.

The CIDLib Janitors

CIDLib provides janitors for raw heap buffers (THeapJan), or for any dynamically allocated object (TJanitor), or kernel mutexes (TKrnlMutexLocker), or mutex objects (TLocker), or critical sections (TCritSecJan), or thread priorities (TPrioJanitor.)

These janitor objects make it easy to insure that things get cleaned up or undone. They are utterly simple, and usually all inline so performance is very high. TJanitor, the general object cleanup class, is a template class because it must be used for any type of object. It used to be implemented in terms of TObject (the base CIDLib class from which most classes are derived), but that proved to be too restrictive in some cases. And its more efficient as a template since it avoids the need to polymorphically invoke the destructor.

Lockers

TLocker is a special case. CIDLib defines a mixin class named MLockable, which any class can mix into itself. This class defines the virtual Lock() and Unlock() methods which derived classes implement in a way that makes sense for that type of object. TLocker is implemented in terms of the Mlockable mixin so it can lock anything that implements this interface. For instance, TMutex implements it, as does TCollection (the base collection class) so all collections can be locked.

So make very good use of janitors, because they are your friends and they want to help. They will have better performance than try/catch blocks. There will be situations where you cannot use janitors and you have to make that determination. But use them whenever you can. Look at the CIDLib code or the demo programs and see how the janitor classes are used.

�
Layering

CIDLib is a very strictly layered system. Layering is a thick subject and there are different arguments for or against any scheme you pick. CIDLib opts towards very strict layering, at the expense of a little replicated code and some overhead. This, in my opinion, is a tradeoff that is well worth making.

In a class library system which interfaces with (and hopes to remain relatively abstracted from) host operating systems, layering becomes even more important and bootstrapping issues are very important. See the “Bootstrapping” section above.

The Incestuous Option

Some class libraries avoid the layering issues and use a more incestuous scheme in which the lowest level DLLs have circular dependencies among them. I find this unacceptable for a couple of reasons. For one, it means that there is no guaranteed loading order for the DLLs, since the operating system sees that they have mutual dependencies. Once this situation arises, there is no good way to control bootstrapping of the system, and to insure that things get set up in the order that they are needed.

To avoid this problem, some class libraries will use a ‘lazy evaluation’ scheme to create all global or static objects or data when they are actually needed. But this scheme is harder to maintain and adds overhead because many methods must check whether their class’ statics or globals are initialized yet. It does work, but I find it distasteful and have opted for more control.

The advantage to this scheme is that it leverages as much of the code in as much places as possible, since any code can use any other code at any point in time.

The Kernel Option

CIDLib takes another approach. It provides a lowest level DLL facility that implements a ‘virtual operating system and runtime’ to which the rest of the system is written. In CIDLib, this is the CIDKernel.Dll facility. This facility encapsulates all of the system services and the language runtime, and it provides typedefs for all language and system types. It provides the abstraction layer that shields the rest of the system from host operating system and language runtime differences.

CIDKernel uses very fundamental services, and is very minimalistic. The main reason for this is that it must be implemented (partially, though some of its files would be mostly unchanged) on each platform. It provides very simple classes that encapsulate things like mutexes, shared memory, system information sources, registry, files, etc... Each of these ‘abstraction classes’ is in turn used by a publically visible class in the CIDLib.Dll facility to access their respective system services.

CIDKernel also enapsulates the language runtime. It provides wrapper functions for raw string, raw memory, and math library APIs. These wrappers use standard CIDLib style and are in namespaces to keep them out of the global namespace.

And, last but hardly least, CIDKernel provides all of the fundamental (non-class) types that CIDLib uses. So CIDLib is written totally in terms of these types and has no dependencies on underlying language types or host operating system types.

The Higher Layers

In the higher level DLLs of the CIDLib system, the rule is followed that DLLs are always strictly layered and cannot have mutual dependencies. CIDLib.Dll is layered over CIDKernel.DLL. CIDFractal.DLL, CIDTracer.DLL, and CIDGui.DLL are layered over CIDLib.DLL, and so on. They therefore have a very clearly defined load order and can very cleanly bootstrap themselves. They also will have minimal wierd boundary conditions caused by errors during init that can cause code to be invoked that in turn depends upon code that is not yet initialized. Within CIDLib, particular care still has to be taken during initialization and termination, but its quite clean and safe after that part and higher level DLLs can always know for sure that the DLLs they use are fully ready to rock and roll.

System Headers

The upside of all of this is that no code outside of CIDKernel (and CIDGui, which provides similar services for the GUI code.) has to include any operating system toolkit or C/C++ language runtime headers. This insures that the high level code is totally protected from any system or runtime dependencies and provides a lot of flexibility during a port.

Even more important in some ways is that this high level code can run at a very high level of compilation checking without any vendor extensions requires. Operating system API headers often are not at all C++ compliant and force users to disable strict ANSI compliance checking and other compiler checks in order to avoid hundreds of warning messages.

The Price Paid

The price paid for such a kernel system is that there is some extra overhead and a little inconvenience (at the CIDLib/CIDKernel boundary, not for the end user.) For instance, the kernel cannot use string objects because that class is defined above it. So it uses raw strings. This means that any returned strings must be put into TString objects before being used.

CIDKernel cannot throw TError objects because that class too is defined above it. So it throws TKrnlError objects and CIDLib translates these into TError objects, requiring try/catches around most calls into the kernel. This has not been a noticeable problem so far, and worth it as far as I am concerned in order to have both good layering and an exception based kernel.

Since all system access is via an abstraction object, each CIDLib class that provides access to some system service has to do its work via an abstraction object that is a member object and which provides the real implementation. Some of the CIDLib classes are just inlined passthroughs to their implementation objects. In the optimized build though, these inlined passthroughs are generally just thrown away and turned into a direct call to the implementation object, so the cost is not too bad. But, where the possibility of a kernel exception exists, the code cannot be inlined because it must catch the kernel exception and translate it to a TError objects.

Overall I feel that this scheme is well worth it. One other benefit of such a system is that I can write low level utilities (which are used in the build itself) in terms of the kernel facility. That provides it a pretty good level of portability (though not as much as real CIDLib app) while avoiding any dependence upon the code that it is used to build. The MakeMsg.Exe utility is an example of this kind of program. Instead of having to be written as a raw C++ application, it can be written to the kernel and be more portable and more stylistically consistent with the rest of the system.

�
Member Access

Member access methods allow the outside world to set or query a member of an object. They are also refered to as gets and setters, which is not a good name in a way (See “Get vs. Query” above.) There are a couple of standard styles for these kinds of member access methods. Being very consistent about them across the board can make the system much easier to understand by the developer.

The Get/Set Scheme

One scheme for member access is the Get/Set scheme, where methods that get data out of the object are named GetXXX() and methods that put data into the object are named PutXXX(), where XXX represents the name of the member to put or get.

For instance here is a very simple class with this style of member access methods:

class TFoo

{

	public :

		TFoo() {}

		~TFoo() {}

		tCIDLib::TCard4 GetFooCount() const

		{

		 return __c4FooCount;

		}

		tCIDLib::TVoid SetFooCount(const tCIDLib::TCard4 c4New)

		{

		 __c4FooCount = c4New;

		}

	private :

		tCIDLib::TCard4 __c4FooCount;

}

Personally, I don’t like this scheme. Its more of a stylistic dislike than anything technically wrong with this approach. One obviously problem is that CIDLib uses hungarian prefix notation, so that doesn’t fit well with this scheme. And, in my opinion, the CIDLib scheme is more natural and says as much with less typing.

The As Named Scheme

CIDLib uses an ‘As Named’ scheme where the member access methods are named just like the members they get or set (except for the leading underscores, see “Member Naming” below.) Here is the same trivial class using the CIDLib scheme:

class TFoo

{

	public :

		TFoo() {}

		~TFoo() {}

		tCIDLib::TCard4 c4FooCount() const

		{

		 return __c4FooCount;

		}

		tCIDLib::TCard4 c4FooCount(const tCIDLib::TCard4 c4New)

		{

		 __c4FooCount = c4New;

		 return __c4FooCount;

		}

	private :

		tCIDLib::TCard4 __c4FooCount;

}

The CIDLib scheme names the methods the same as the member, and therefore of course they have the same hungarian prefix. Also, the setting returns the new value, which is often convenient.

Either way, someone will hate it and someone will like it, since this is a purely judgement call. But I like the latter scheme and CIDLib is absolutely consistent in its implementation of this style.

Object Member Access

This section might be somewhat controversial, but I think that it is the correct approach when its all said and done. When the access method is querying a member which is itself an object, there are two possibilities. One is to return a copy of the member, which requires a copy constructor to be run, creating a separate copy of the object for the caller. This is a safe way to operate since it does not give direct access to the member object inside the object whose member access method is being called. However, it also has a high associated overhead and some types of objects specifically do not allow copying becuase of their particular semantics.

For this reason, CIDLib always returns such members by const reference, unless it cannot do so or the object being returned is very trivial and fast and safe to copy. This scheme is slightly more dangerous since it does give back the address of something inside the object itself. Still, it is a const reference, so the caller would have to purposefully cast away the const’ness in order to change the object’s value. CIDLib is not a ‘secure’ system that prevents the programmer from doing something of that nature, nor does it have any desire to be. It assumes that the developer is a ‘friendly’.

The other possible problem is that the caller will retain this reference after the object inside which the member lives has been destructed. This can cause wierd problems. However, here again, I don’t find this to be a terribly serious issue relative to the performance it gains. Developers always, even in the presence of a garbage collection scheme, need to understand who is referencing an object and what its lifetime should be. Basically there are two scenarios that typically occur. These are:

// A TFoo object with a string object member

class TFoo

{

		// Member access

		const TString& strMember() const;

	private :

		// The string member

		TString __strMember;

};

//

// 	Scenario one is that the return is assigned to an object.

//	This invokes the copy constructor and the reference is

//	only around long enough to get it copied.

//

TFoo fooSample;

TSstring strTheMember = fooSample.strMember();

//

//	Scenario two is that the member is passed as a parameter.

// In this case, the parameter must be const and its no

//	different than passing any other object.

//

conOut << “The foo member is: “ << fooSample.strMember();

In both these situations, there is no lack of safety for using this return by const reference scheme. And they are by far the most likely scenarios. Only if the user assigns the return to another reference or takes its address, and keeps it around too long, is it a problem. But that problem exists for all objects, and therefore this is not a good argument against this type of member access.

�
Multiple Inheritance

Many people think that multiple inheritance is the spawn of Satan, and its misuse can be ugly; however, controlled use of multiple inheritance via the ‘mixin’ concept is a powerful tool and CIDLib makes use of this scheme.

Mixin Multiple Inheritance

Multiple inheritance comes in a couple of forms. Mixin multiple inheritance is a very controlled form of multiple inheritance avoids the problems of more straightforward multiple inheritance while gaining almost all of the benefits. When two classes are multiply inherited from by a single class, and those classes both share a common ancestor class, a diamond shaped inheritance graph is created. This causes problems because the common ancestor class either exists twice in the object, or must be a virtual base class with its own set of issues.

But you can also look at a multiple inheritance as a way to ‘tack on’ an interface to another class, or ‘mix in’ an interface to another class. If the mixin class does not derive from any other class, there is never any problem with diamond inheritance graphs. The mixin can provide some functionality, but often it provides nothing but pure virtual methods. The class that ‘mixes in’ this mixin class provides implementations for the virtua methods, i.e. they implement the interface.

This might sound useless but its not. It means that a lot of code can be written purely in terms of the mixin interface, not caring about what the objects really are. Its just like the polymorphism commonly used, in that a lot of derived classes can be manipulated via a base class interface. But, its not really modelling an Is-A relationship so much as ‘Can-Be’ relationship I guess. Its not so much a hierarchy modelling mechanism as it is a way to allow many classes to participate in some kind of activity, not related to the functionality of the class but related to the infrastructure of the object design.

Examples in CIDLib

CIDLib uses a number of mixin interfaces that are fundamental to the magic of the system. One of them is MFormattable, which allows any object to be formatted to a text stream. Any class that wants to be formattable to a text stream can mix in this class and override the _FormatTo() method, using it to format its information. This class consists of just a single, pure virtual method, _FormatTo(), which can be ‘tacked on’ anywhere in the class hierarchy that a class wants to support text formatting. Once mixed in of course, all derivatives of that class must continue to support this functionality, so it works just like any other inhertance mechanism in that sense.

Another example is MLockable which provides two pure virtual methods, Lock() and Unlock(). Any class which can be locked and unlocked can mix in this class and override these two methods. It can implement these methods in terms of its own locking mechanism. The TMutex class mixes in this interface and implements them in terms of the mutex locking mechanism.

The MStreamable mixin class provides the interface for binary streaming of objects to and from binary streams. This is an extremely important interface, and many classes implement this interface. CIDLib then provides two operators, << and >>, which are implemented in terms of the MStreamable interface. This means that any class which implements the streamable interface automatically gets the ability to be inserted or extracted from a binary stream.

The Bottom Line

So, as you can see, multiple inheritance provides a capability just like that of the polymophism provided by the main class inheritance chain. However, it does not require that the virtual methods be defined at some base class level which all other classes derive from. Instead, it can be inserted at various places in the primary class hierarchy. This is why I said its like a ‘Can-Be’ relationship, in that any class that mixes it in ‘can be’ one of those things when necessary, though its not a part of the real data modelling hierarchy.

Keep in mind that mixins do not have to be totally pure virtual. They can have their own data and they can implement non-virtual functionality (usually in terms of the virtual interface.) This gives the mixin multiple inheritance scheme a lot of power that, for instance, Java interfaces cannot match. But they still avoid any of the traditional problems often associated with multiple inheritance.

And, importantly, they impart interfaces onto other classes in a way that is compile time checkable. If you pass something to an interface that takes an MLockable, and that class does not implement the interface, the compiler will complain. So its a very typesafe mechanism, as apposed to some scheme that figures out at runtime whether an interface is supported by a particular object.

�
Pointer vs. Reference Parameters

CIDLib users pointer and reference parameters in a very formal way. In CIDLib a pointer parameter means something and a reference parameter means something different. This makes the code safer and more self documenting. Other class libraries have implemented this convention also, so its pretty well agreed on and not likely to be controversial.

Reference Parameters

A reference parameter indicates that the called method will only use the object during the lifetime of that method call. It will not retain a reference to the object beyond the call. If the parameter is not a const reference, then it might modify the object but it still will not retain any reference or pointer to it.

Pointer Parameters

A pointer parameter indicates one of two things. One is that the method called retains the pointer and continues to use the object. The other is that the method called retains the pointer and continues to use the object, and becomes responsible for its destruction.

The first scenario does not require that the object passed be dynamically allocated because, so long as the passed object stays around as long as the pointer is being referenced. The called method does not try to destroy it or take any responsiblity for it, it just uses the pointed to object.

The second scenario requires that the passed object be dynamically allocated because the called method will keep the pointer and will destroy the object when it decides the object needs to be destroyed. Many people refer to this as ‘adopting’ the object. It implies, in some cases, that the caller should not make any further use of the object (since it might not know when it will be destroyed.) Though in other cases, that is not true. One obvious example of this is a ‘janitor’ object (see “Janitors” above), which does retain a pointer to an object and clean it up. However, that’s all it does. It assumes that the object is still being used up until it gets cleaned up.

In some cases, you might consider this strict interpretation to be a pain. For instance, if you have a type of object that is always dynamically allocated, you might be tempted to write all of the methods that accept them so that they take pointers. This will avoid the requirement to dereference the objects every time that they are passed into something. But don’t fall into that trap. Strictly following the above convention will make the code very much more self documenting, which is very important in this particular area of who is responsible for objects.

�
Resource Naming

Named resources are a portability issue that CIDLib makes an attempt to deal with. In this case, the kind of resources I mean are interprocess shareable resources like mutex, memory, semaphores, etc... Each operating system has a different naming scheme for such things. OS/2 puts them into the file name space, with each type of resource having its own ‘root directory’. NT just supports them as non-hierarchical file names, i.e. they are all in the ‘current directory’ so to speak. And other operating systems have yet still other issues with such names.

In order to deal with this issue CIDLib has a very formalized mechanism for dealing with resource names, embodied in the TResourceName class. Resources can have 3 ‘name parts’ which provide a 3 level naming hierarchy. The name parts are:

Company Name

Subsystem Name

Resource Name

These three name parts are combined by TResourceName in a way that is correct for the platform at hand. Each should be a simple name, without any punctuation or spaces in them. The company name insures that third party subsystems don’t clash. The subsystem name insures that different subsystems within the same DLL or Exe product don’t clash. And of course the resource name provides the actual name of the resource.

Resource Name Spaces

CIDLib insures that each resource type has its own ‘namespace’ so you can have a mutex and a shared memory buffer with the same name. If the host OS does not support this naturally, then CIDLib massages the name to make it happen. Under OS/2 of course, it would use the natural support. Under other platforms it just adds extra verbage to the resource name. Since you, the create and/or user of the resource, only see or test or compare the name via the resource name object, this is all transparent to you.

Process Resources

In order to support process unique resources, TResourceName allows you to provide a process id which it will format into the name also. The reason for wanting to have a process unqiue resource is that you want multiple copies of a program to have its own version of a named resource, instead of sharing a single one. The process id is formatted as a hex value with no leading zeros, and all uppercase.

Extracting The Real Names

You can extract the actual name that was created, but this is not encouraged because it is not portable. To extract the actual name, you must indicate what kind of resource you want the name to represent. This allows a single resource name object to serve for multiple related shared resources, which are often named the same. For instance a shared memory buffer and the shared mutex that controls access to it might use basicaly the same name for convenience. So a single resource name object can be created and asked to create a name for both of the types of resource.

Internally of course CIDLib calls this name extraction method all the time in order to get the name that it must provide to the host operating system.

Kernel Resources

At the CIDKernel.Dll facility level, all of the abstraction classes that encapsulate nameable system services use the raw resource name. So, if you must access a named resource that is provided by some other outside source (i.e. you can’t name it via a resource name object because it does not follow those conventions), you can use a kernel object in order to at least maintain some portability and ease of use.

�
Runtime Typing

CIDLib does not use the C++ RTTI mechanism. Instead it provides its own scheme. This is certain to be controversial, but there is a good reason for it. Since consistency of architecture is an overriding concern in the design of CIDLib, it makes more sense for CIDLib to implement its own RTTI scheme, which uses its own types and throws its own exceptions, etc... If the C++ RTTI mechanism were used, some benefits would be gained, but a lot would be lost.

The TClass Class

The TClass class implements a large part of the RTTI scheme for CIDLib. Each class has a static TClass object that represents its type, and which can (if that class supports it) create a new object of that class upon demand. This static object is created by way of a macro that is used in each class, RTTIMacros(), so there is little effort required to support the RTTI system.

When each TClass object constructs (which it will do during module initialization) it will register its class with the CIDLib class registry. If the class being registered supports dynamic creation the TClass constructor also will pass along a ‘factory function’ to the registration method. This registration of classes is very important and supports a lot of magic functionality, such as polymorphic streaming and dynamic type creation.

Default Constructors

In order to support dynamic creation, the factory function must have access to the default constructor of the class. In many cases, for safety reasons, you may not wish to expose your default constructor by making it public. That is ok though because you can just use the BefriendFactory() macro in you class and it will make the factory method a friend of your class so that it can call your default constructor even though its not public.

Note that this ability to dynamically construct is required if a class is going to support polymorphic streaming, which is a very powerful concept. See the streaming demo programs for some examples of how polymorphic streaming works.

The one thing that the CIDLib RTTI method cannot do is to do a dynamic cast of an object, which is being looked at by one of its mixed in classes, back to its real type. You can get its real type information but the casting mechanism only work along the main (modelling) hierarchy, not along the mixin hierarchy. I personally don’t find this any great loss and have never had any real situations that really required this functionality, i.e. that couldn’t just as easily be done some other way.

See the RTTI1 demo program for an overview of all of the magic supported by the CIDLib RTTI system. Its pretty interesting and powerful.

�
Stack Dumps

Stack dumps are touched on peripherally in the “Error Logging” section above, but are covered more fully here. CIDLib supports the ability to dump two types of errors, system exceptions and runtime errors. System exceptions are handled for you. If a system exception occurs, and you don’t handle it via the host OS exception services, the thread class will catch it and will do a stack dump for you. When you log an error that has sufficient severity, the logging method will generate a runtime error stack dump. And, if you want to for debugging purposes, can generate a runtime error stack dump by calling the TKrnlThread::DumpRuntimeError() static method and passing the needed information.

Stack Dump Information

A stack dump will include general information such as the thread that it occured on (remember that CIDLib threads are named so the name of the thread is dumped) and the program it occured in. For system exceptions it includes all of the register information and exception information that the host OS provides. For runtime errors it includes the facility that logged the error, the file name and line number, the error codes and error text, etc...

After all of that, a stack trace is done. This trace will log out all of the function or method calls that got the current thread to the place where the error occured. This makes diagnosis of the error very easy. When symbolic information is provided, then symbolic names are given for all of the functions/methods making it very easy indeed.

Here is a sample runtime error dump:

Runtime Error:

 Process: TestCIDLib.exe

 Thread: TestCIDLibMainThread

Error Information:

 Facility: CIDLib

 Error: Access string past current len or max size. Index=50 Max=26

 Aux Error Text:

 Error Id: 3203

 Kernel Error Id: 0

 Host Error Id: 0

 File: CIDLib_String.Cpp.1160

Stack Dump:

 Called From: ntdll, NtGetContextThread

 Called From: CIDKernel, TKrnlThread::DumpRuntimeError

 Called From: CIDLib, TFacility::LogErrObj

 Called From: CIDLib, TFacility::LogErr

 Called From: CIDLib, TString::bNextOccurrence

 Called From: TestCIDLib, TFacTestCIDLib::TestStrings

 Called From: TestCIDLib, __eMainThreadFunc

 Called From: CIDLib, __eThreadStart2

 Called From: CIDLib, __eThreadStart

 Called From: MSVCRTD, <no symbolic info>

 Called From: KERNEL32, BaseThreadStart

 Called From: TestCIDLib, <no symbolic info>

As you can see, this provides ample information about the error. It happens in TestCIDLib.Exe, on the thread named TestCIDLibMainThread. Facility CIDLib logged the error, and the text is given, which indicates that an indicate error occured on a string object. The name of the file and line within that file where the error was thrown is also provided. There are three error codes, which are discussed in “Error Codes” above.

Keep in mind that this stack dump information has no runtime cost as it comes from symbolic information, not from any intrusive additions to your code. The only cost is that of loading the symbols, which causes the program to pause slightly. But subsequent dumps use already loaded symbolic information.

Finding Symbolic Information

Under NT, there are a couple of ways to find the symbolic information. In order to keep the finding of symbolics flexible, CIDLib uses the _NT_SYMBOL_PATH= environmental variable. This variable can point to the paths that hold symbolic information. For debug builds this will likely be the .Pdb files that MSVC++ creates. But, for production builds, .Map files seem to also offer some ability to dump symbolic names.

Production Builds

For production builds of course the debug database information is not created, so now quite as much information is generated. It does ok on public methods in DLLs, but not so good on unexported methods or anything in the Exes. Oh well... they are still quite useful for post mortem debugging if anything croaks in the field, and there is more info in there than just the stack dump all of which is very useful.

�
Template Collections

Templates in general seem to me to be both the saviour and bane of developers. For an end user of a class library system, templatized collections can be very, very powerful and convenient to use. They increase compile time type safety signicantly, something not to be underestimated, avoiding lots of dangerous and overhead generating casts. However, for the designer of a class library, the design and implementation of a really logical, efficient, and maintainable set of templatized collection classes can be a major source of depression and high blood pressure. The CIDLib collections have gone through a number of major rewrites since their move to the templatized world. They seem to finally be reaching a point where I feel comfortable with them, though they will certainly improve over time.

By Value vs. By Reference

Collections basically come in two flavors. By value collections hold actual objects, and putting a new object into the collection involves copying the source object into the collection. The source object is not affected or adopted, its just copied. This is exactly the way that an array of fundamental values works. If you create an array of integers and ‘put’ a value of 1 into it, that value of 1 is just copied into the integer value in the array. When you get a value out of it, you don’t pull the actual array entry out, you get a copy of the element at that index.

The CIDLib collections are all by value collections. For the most part this is always desirable because it is very safe and very easy to understand. However, there is often a need for ‘by reference’ collections. These types of collections actually just store pointers to objects. When you ‘put’ an object into these types of collections, you actually just store a pointer to the object in the collection. So, there are two possible situations that arise. In one, the collection becomes responsible for the object and deletes it when necessary. In the other situation, the collection just ‘looks at’ the object but is not responsible for cleaning it up.

There are two reasons that you would want to use a by reference collection. One is when the objects are large or complex and copying them would be unrealistic and perform badly. The other is when you want to have a heterogenous collection, which holds any type of object derived from a particular base class. The later situation in particular is pretty common.

The Best of Both Worlds

In order to avoid having two versions of every collection class (which CIDLib used to do), CIDLib provides some classes that ‘wrap’ a pointer. These classes are useful outside of the collection world, since they provide reference counting on allocated objects and impose ‘by value’ semantics on what would otherwise be complicated pointer manipulations. But, their importance for collections is that they allow a ‘by value’ collection to actually hold pointers. You just instantiate the collection in terms of one of the pointer wrapper classes. Since the pointer wrapper classes are also templates, this does not involve any casting or lack of type safety. The TCntPtr class is the most powerful pointer wrapper class. It provides thread safe reference counting on the pointer, making it very safe to copy around without worrying about dangling pointers or premature deletion.

Thread Safety

Collections can be thread safe or not. This thread safety setting must be set at construction time and cannot be changed. The TCollection base collection class implements the MLockable interfact (see “Janitors” above), and can therefore be locked via a TLocker object. This allows multiple operations to be carried out on the collection atomically. Each collection method will lock the collection while it does its work, insuring that each individual method is atomic (and will not complete until any external lock on the collection has cleared.)

If the collection is not to be thread safe, then the base TCollection class, which implements the MLockable interface methods, will just decline to do anything in response to the method lock and unlock calls. This imposes a little overhead on the collection even when they are not to be thread safe. However, the cleanliness of this scheme and the ability to have one set of collections which can optionally be threadsafe vastly outweight this slight performance penalty in my opinion.

Collection Cursoring

Collections have two sorts of cursors (or iterators as they are sometimes called.) Each collection class has an associated cursor class. When you instantiate a collection class, it will automatically instantiate a nested cursor class, which is named TCursor, that is desired to cursor a collection of that type.

Cursors only provide read only access to the elements of the collection. Multiple threads can all have their own cursors, which they can use to iterate the collection and read the elements simultaneously. The cursor classes iterate through the collection elements in the order that is natural for the collection type they cursor, so if the collection does not imply any particular ordering, the iteration of the elements via the cursor will not either.

For writable access, each collection provides an internal iterator. This iteration is done via the collection itself, so only one thread can use it at once unless they coordinate their access to it (which is easy to do, given the information in the “Thread Safety” section above.) As with cursors, the iteration order of the internal iterator follows the order that the collection stores them. Sorted collections will iterate in sorted order. Unordered collections will iterator in no particular order.

Cursor Invalidation

Each collection has a ‘serial number’ as does each collection cursor. When a cursor object is created, it sets its serial number to that of its collection. When any collection method modifies the collection in such a way that it could possibly invalidate a cursor, it will bump up its serial number. The next time that the cursor is used, it will see that its serial number is out of sync with its cursor and will thrown a kCIDErrs::errcCol_StaleCursor error.

When the cursor is reset, which is done to put the cursor back to the first element of the collection so that iteration can be repeated again, the serial number is updated. So calling reset will resync the cursor to its collection.

Collection Searching

Some types of collections provide their own specialized mechanisms for finding elements inside them. These tend to be collections that used keyed access, where each element is stored under a ‘key’ and that key is used to find them. However, for all collections there is an abstracted mechanism for finding elements with particular values. And, you can search a collection yourself manually, by just creating a cursor and iterating the values, comparing each one with some test value. But, in order to simplify collection searching, specialized classes are provided for this task.

The first player in this scheme is the TObjEq class. This is the base class for a family of ‘comparator’ classes. These templatized classes compare one object to another, and report whether they are equal. Why are these needed when each class can provide its own equality operator? Well, in many cases the concept of equality that the equality operator provides is not appropriate. For instance, when two TString objects are compared, their maximum size and other attributes are compared, along with their text. If you want to search a collection of strings for just a particular text value, the equality operator wouldn’t work.

In general, equality operators are concerned with full object equality, meaning that they compare all fo the object’s members. Only internal implementation details, often mutable members, are left out of this comparison.

So collection searches use comparator objects for all element comparison, making the search mechanism very flexible and open ended. Since full object equality is often a desirable type of comparison, there is a standard derivative of TObjEq, called TStdObjEq, that is implemented in terms of the equality operator.

The next player is the TColSearch class. This class combines the functionality of a collection cursor, iterator, and object comparator. It is given a collection to search, and provides find first/next methods for iterating through the collection and finding elements matching a particular search criteria (via a comparator.)

�
Types and Constants

All constants and non-class types in CIDLib are encapsulated in namespaces. Each facility has its one namespace for public types and one namespace for public constants. The namespaces are named kXXXX and tXXXXX, for constants and types respectively, where XXXX is the facility name. So, for instance, the Foo facility would have a kFoo and tFoo namespace.

Note that namespaces do not have to be contiguous. In other words you can have multiple instances of a namespace in different files and they will all be conglomerated together by the compiler and made to appear as a single entity to the outside world. This is very convenient and powerful.

Private Namespaces

Some facilities which have internal constants and non-class types will also have an internal pair of namespaces. These will be named the same except they have a trailing underscore. So the fictious Foo facility would have namespaces named kFoo_ and tFoo_. These namespaces are generally in the private facility header (see the Style Guidelines appendix for facility file naming conventions.)

Class Private Types

Only when a fundamental type is used only within a particular class or is extremely associated with a particular class will it be defined within the class. I have found that having them all in a namespace specifically for types makes the system easier to understand, and less spread out. This is contrary to many existing systems, so it might take you a while to get used to it. But give it a chance and I think you will like it.

Error and Message Ids

If the facility has error and message text that it loads, see the MakeMsgs utility in the Utility Programs appendix, then it will also have namespaces for its error and message ids. By convention these are named kFooErrs and kFooMsgs, since they hold constants, and are public namespaces in most cases. These files are generated by the message file compiler utility so you never edit these directly.

The other big advantage of namespaces is that they can contain compile time constant values. In the old days, if you wanted to get constants out of the global namespace, you had to put them into a class. But a class could not hold compile time constants, so people would make them enums in order to get around this limitations. Namespaces don’t have this limitation, and CIDLib makes good use of this.

�
UNICode

CIDLib is a totally UNICode based system. UNICode seems to be a standard that it is in the best interests of everyone to embrace, and is a fundamental component of true internationalization of applications. Of course UNICode does take more storage than ASCII since each character is 16 bits, but the overhead pales beside the benefits its bestows on an application, particularly in this increasingly globalized software market.

Multi Language Support

Full support of UNICode is a big issue because it implies full support of all languages (with their different reading directions and orientations and collation orders and such), and CIDLib does not pretend to cover every possible issue. But, being just a class framework, it does not really have to. It only has to provide the potential for these types of applications to be built. From the standpoint of the CIDLib code itself, it only has to provide a fully UNICode oriented string class (as TString is) and to avoid any hard coded text that would be displayed to the user.

In order to avoid hard coded text, CIDLib uses a message file system which is closely related to the error logging system (since the text of errors logged also needs to be message file based) so see the “Error Codes” section above for some of the details. There are some very low level places where this is difficult to achieve, during the bootup process in particular, but all of the CIDLib facilities tend to be fully independent of any hard coded text. By providing a translated version of each facility’s message file, compiling it to a message file, and placing it in the same directory as the facility’s DLL file, the same CIDLib binary code will use the new language file.

The message files can be written in ASCII or UNICode text. For the english versions (or the local version wherever you are), you can just use your regular text editor to create it as long as you compile it locally also. If you want to create versions for other languages, you can use a text editor that supports UNICode. As long as the editor supports the standard UNICode convention of putting a marker character at the beginning of the file, MakeMsgs.Exe will recognize that it is UNICode and interpret it as such.

Text Streams

The one place where ASCII text must be dealt with is when text is read into the program or written out to files. Since the rest of the world isn’t going to catch up any time soon, the ability to read and write ASCII text is important. So the text stream classes have an input and output mode. The input mode tells the stream what format to expect the text to be in and the output mode tells the stream what format to write the text out as.

The stream converts all incoming text to UNICode format for internal use, if that is required, since all strings are UNICode internally.

Demo Programs

Not all of the demo programs are multi-language ready, and just have hard coded text in them. Many of them are so trivial that its not worth the effort at this time. But some of them are good examples of how to use the message file system, and how the TString and facility classes cooperate to help you avoid using hard coded text. See the “Demo Programs” appendix for information on the demo programs.

