Some History of Shuffler

The goal of our Card Game Toolkit(is to bring state-of-the-art card playing strategy software to the non-professional player. The very best possible playing strategy for any card game, whether played for money or for fun (or both). At low cost, and in a completely modular form.

To be reading this, we presume you have downloaded our source code,

1-deck shufflers: shufflea.c, shufflex.asm

n-deck shufflers: shuffleb.c, shuftree.c.

These can be the heart of any computer study you may wish to do on any of the following card games commonly found in public casinos,

7-Card Stud

5-Card Stud

5-Card Stud Low

Omaha Hold’em

Omaha Hold’em High/Low Split

7-Card Stud Low

7-Card Stud High/Low Split

7-Card Stud High/Low Split (8 or better)

Texas Hold’em

No-Limit Texas Hold’em

Blackjack (1 deck to n-deck shoes)

Baccarat

mini-Baccarat

Pai Gow Poker

Asian Stud

Asian Poker

Super Pan 9

and others,

as well as the following card games that are played outside of public casinos,

Bridge

Hearts

Cribbage

Peanuts

and others.

Our goal here is to share some of the history behind these functions.

Cards are always shuffled and dealt.

In order to simulate shuffles and deals on a PC, so that the optimal playing strategies can be found for any card game, there is a need for functions that are both fast and fair.

Fast, because you will typically be asking your PC to play many lifetimes’ worth of hands while you wait for it to finish. Fair, because no matter what strategy you are evaluating you want the hands dealt to mirror what would be your extended experience in real, live card games.

When we began this work several years ago we had the idea that speed was a property of the particular random number generator implemented.

But when we had finished a bookstore, library and network search we found 78 different numeric random number generators. Very few had been benchmarked, and none in the context of sampling without replacement, or for long sequences of a small range of integer values.

To make a very long story short, we benchmarked them all. We also wrote our own binary decision tree approach to this problem, iterative and recursive versions, in C and in assembly language.

�

The fastest numeric random number generator we found was ranqd1()�. If it had been fast enough, we would have paid closer attention to its characterization as a “Quick and Dirty Generator,” however, which implies that it may not be entirely fair. We found in our testbed that this function shuffled and dealt 1.565 million rounds of 10-player Texas Hold’em per hour.

The fourth fastest algorithm, notable because of its unique basis, was ranKNUTH()�. Our implementation of this ran about a third as fast as ranqd1(), at 590 thousand rounds per hour.

We found that when a solution was approached using a binary decision tree, rather than by a classical random number generator, however, the performance improvements were dramatic. By comparison, for example, shufflex.asm ran at an average of 3.19 billion hands per hour. You now have the source code for this function.

Fig. 1. A Binary Decision Tree

These performance gains are due to our ability to use bit shifting and logical masking rather than integer or floating point arithmetic operations. Also, the Pentium allows under limited circumstances for the execution of two single-cycle instructions in a single cycle. This can double the speed of a program, but it requires hand optimization. We did that in shufflex.asm and the documentation shows how the terminal leaves in the shuffle tree are executed in just 3 or 4 cycles.

We call our approach shuffle trees. They pass the classical tests for fairness�, as well as some tests that we designed specifically for card games.

A shuffle tree is a type of binary decision tree.

�

For equally likely outcomes, binary decision trees are optimally efficient. No other decision structure is better.

Figure 1 illustrates a completely balanced binary decision tree which has the special property that, starting from the left, all
