
Qt/Embedded Whitepaper

Trolltech

www.trolltech.com

Abstract

This whitepaper describes the Qt/Embedded C++ toolkit for GUI and application develop-
ment on embedded devices. It runs on any device supported by Linux and a C++ compiler.
Qt/Embedded provides the entire standard Qt API and can compile out unused features to min-
imize its memory footprint. Qt/Embedded provides its own windowing system which is far
more compact than Xlib and the X Window System that it replaces. Qt/Embedded applications
can be developed on familiar desktop systems, e.g.Windows and Unix, and with standard tools.
It is provided with all the Qt tools including Qt Designer for visual form design, and with tools
specifically tailored to the embedded environment.

The Sharp Zaurus PDA using Qt/Embedded

ii

Qt/Embedded Whitepaper

Trolltech

www.trolltech.com

Contents

1. Introduction . 3
2. System Requirements . 4
3. Architecture . 5

3.1. Windowing System . 6
3.2. Fonts . 6
3.3. Input Devices . 7
3.4. Input Methods . 7
3.5. Screen Acceleration . 7

4. Development Environment . 8
4.1. Qt’s Supporting Tools . 8

5. Signals and Slots . 8
5.1. A Signals and Slots Example . 10
5.2. Meta Object Compiler . 11

6. Widgets . 11
6.1. A ‘Hello’ Example . 12
6.2. Common Widgets . 12
6.3. Canvas . 14
6.4. Custom Widgets . 14
6.5. Main Windows . 17
6.6. Menus . 17
6.7. Toolbars . 17
6.8. Balloon Help . 18
6.9. Actions . 18

7. Dialogs . 19
7.1. Layouts . 19
7.2. Qt Designer . 22
7.3. Built-in Dialogs . 23

8. Look and Feel . 24
8.1. Widget Style . 24
8.2. Window Decorations . 25

9. Internationalization . 25
9.1. Unicode . 25

9.2. Translating Applications . 26
9.3. Qt Linguist . 27

10. Non-Graphical Classes . 28
10.1. Collection Classes . 28
10.2. Input/Output . 28
10.3. Networking . 29
10.4. Database . 29
10.5. Multi-Threading . 29

11. Qt/Embedded in the Wider World . 30

Index . 32

2

1. Introduction

Qt/Embedded is a C++ toolkit for GUI and application development for embedded devices. It
runsonavariety of processors,usually with Embedded Linux. Qt/Embedded applicationswrite
directly to the frame-buffer, eliminating the need for the X Window System. In addition to the
class library, Qt/Embedded includes several tools to speed and ease development. Applications
can be developed with familiar programming environments on Windows and Unix, using the
standard Qt API.

Qt/Embedded is a port of the Qt C++ API for embedded devices. It provides the same API and
tools as the Qt/X11, Qt/Windows and Qt/Mac versions. Qt/Embedded also includes classes
and tools to specifically support embedded development.

The Qt C++ toolkit upon which Qt/Embedded is built has been at the heart of commercial
applications since 1995. Qt is used by enterprises as diverse as AT&T, IBM, NASA, Sharp and
Xerox, and by numerous smaller companies and organizations. Qt 3.0 retains the power and
ease of use of earlier versions and introduces many new classes. Qt’s classes are fully featured
to reduce developer workload, and provide consistent interfaces to speed learning. Qt is, and
always has been, fully object-oriented.

Qt provides a type-safe alternative to old fashioned callbacks, called signals and slots [p. 8],
that facilitates true component programming. Qt supplies a wide range of versatile widgets
[p. 11] that can easily be subclassed to create custom components, or combined to create custom
dialogs [p. 19]. Pre-defined dialogs for common tasks such as message boxes and wizards are
also provided.

Qt/Embedded has much smaller system requirements [p. 4], i.e. lower storage (Flash) and
memory (RAM) footprints, than embedded solutions based on the X Window System. It can
run on hardware that runs Linux, has a linearly addressable framebuffer, and supports a C++
compiler. And Qt/Embedded can be recompiled to exclude unused features to reduce its
memory footprint even further.

The architecture [p. 5] of Qt/Embedded includes its own windowing system [p. 6]. A variety of
input devices [p. 7] are supported.

Developers write code using their familiar development environments [p. 8]. Qt Designer [p. 22]
can be used to visually design user interfaces using Qt’s layout [p. 19] system, which automat-
ically adapts to the available screen space. Developers can choose one of the pre-defined look
and feel [p. 24] styles or create their own unique styles. Unix users can run and test their appli-
cations on a pixel-perfect virtual frame-buffer.

Qt/Embedded also provides many non-graphical components [p. 28] for specialized tasks,
such as internationalization [p. 25], networking and database interaction.

Qt/Embedded is a mature, solid C++ toolkit, widely used all over the world [p. 30]. In addition
to Qt/Embedded’s many other commercial uses, it is the foundation of the Qtopia application
environment for small devices. Qt/Embedded makes application development a pleasure,
with its simple build system, visual form design and elegant API.

3

2. System Requirements

Qt/Embedded saves memory because it does not need an X server or Xlib; instead it writes
directly to the frame-buffer. Memory consumption can be fine-tuned by compiling out features
that are not used. It is also possible to compile all the applications into a single statically linked
executable, to save even more memory.

Qt/Embedded is available for all processors supported by Linux that have a C++ compiler,
including Intel x86, MIPS, ARM, StrongARM, Motorola 68000 and PowerPC. Trolltech is
also exploring the possibility of creating a cross platform toolkit for the embedded market.
Qt/Embedded implementations for QNX and for WinCE are both being trialed. Trolltech also
provides porting services to other operating systems.

Qt/Embedded applications write directly to the kernel frame-buffer. Linear frame-buffers with
1, 4, 8, 15, 16, 24 and 32 bit depths and VGA16 are supported. Any graphic card supported by
the kernel will work, and Qt/Embedded can be customized to benefit from screen acceleration
hardware, as described in “Architecture” [p. 5]. There is no arbitrary limit on screen size, and
many advanced features such as anti-aliased fonts, alpha-blended pixmaps and screen rotation
are provided.

Qt/Embedded’s principal strength is that is doesn’t rely on an X server. This leads to sig-
nificant memory savings compared with other solutions, such as Qt/X11. A single library, the
Qt/Embedded library, is all that is necessary to replace the X server, the Xlib library and the
widget toolkit of other ‘embedded’ solutions.

x

R
A

M
(K

B
)

X Server + Phone Client + Mail Client+ Message Center
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Qt/X11

Qt/Embedded

2640 KB

5130 KB

6880 KB

8170 KB

0 KB

1640 KB

3230 KB

4250 KB

Cumulative RAM consumption

Figure 1. Memory comparison between Qt/X11 and Qt/Embedded for Ericsson’s screen phone

4

The graph illustrates that the X server grabs a lot of RAM on startup, and also requires more
memory as each new application is launched. For example, starting the Phone Client requires
2490 KB with Qt/X11, but only 1640 KB with Qt/Embedded.

The footprint of the Qt/Embedded library can be reduced by compiling out unused fea-
tures. For example, the QListView widget can be compiled out by defining the pre-processor
symbol QT_NO_LISTVIEW, and support for internationalization is compiled out by defining
QT_NO_I18N. Qt/Embedded provides over 200 configurable features, resulting in libraries vary-
ing in size between 700 KB and 5000 KB (Intel x86). Most customers use configurations between
1500 KB and 4000 KB.

Qt/Embedded also benefits from memory-saving techniques such as implicit sharing (copy
on write) and caching. Over 20 classes in Qt, including QBitmap, QMap, QPalette, QPicture,
QPixmap and QString, use implicit sharing to avoid unnecessary copying and minimize
memory usage. Implicit sharing occurs automatically and makes programming much simpler,
avoiding the risks related to hand optimization and pointers.

Many Qt components can be compiled into the library or made available as plugins. Custom
look and feel components [p. 24], database drivers, font format readers, image format convert-
ers, text codecs and widgets can be compiled as plugins, reducing the size of the core library
and providing more flexibility. Alternatively, if the applications and components are known in
advance, they can be compiled and statically linked with the Qt/Embedded library into a single
executable, saving ROM, RAM and CPU.

3. Architecture

Qt/Embedded provides the standard Qt API for embedded devices with a lightweight window-
ing system. Qt/Embedded’s object-oriented design makes it straightforward to support addi-
tional devices, from peripherals like keyboards and mice to accelerated graphics boards.

With Qt/Embedded, developers benefit from exactly the same API that Qt/X11, Qt/Windows
and Qt/Mac provide.

Application Source Code

Qt API

Qt/X11

Xlib

Qt/Embedded

X Window Server

Frame-buffer

Linux Kernel

Figure 2. Qt/Embedded versus Qt/X11 on Embedded Linux

Using a single API across a variety of platforms offers many benefits. Companies that produce
applications for both embedded devices and desktop computers can train their developers in
a single toolkit. This makes it easier to share experience and knowledge, and gives managers
more flexibility when allocating developers to projects. Furthermore, applications and

5

components developed for a particular platform can be sold for any of the other Qt platforms,
expanding the products’ market for a very low marginal cost.

3.1. Windowing System

A Qt/Embedded windowing system consists of one or more processes, one of which acts
as a server. The server allocates regions to be displayed by clients, and generates mouse and
keyboard events. The server process can also provide input methods and a user interface to
launch client applications. The server process behaves like a client but has some additional
privileges. Any program can be run as the server using the -qws command-line option.

Clients communicate with the server using shared memory. Communication is kept to a
minimum; clients perform all drawing operations directly to the frame-buffer, without passing
through the server, and are responsible for drawing their own title bars and other decorations.
This is all handled transparently by the Qt/Embedded library.

Clients can exchange messages using QCOP channels. The server simply broadcasts QCOP
messages to all applications listening to a given channel. Applications can respond in a slot
connected to a received() signal. Messages can be accompanied by binary data, typically
serialized using the QDataStream class, described in “Non-Graphical Classes” [p. 28].

The QProcess class provides another asynchronous inter-process communication mechanism.
It is used to start external programs and to communicate with them by writing to their standard
input and by reading their standard output and standard error.

3.2. Fonts

Qt/Embedded supports four different font formats: TrueType Fonts (TTF), PostScript Type1
Fonts, Bitmap Distribution Format (BDF) and Qt Pre-rendered Fonts (QPF). Support for other
font formats can be added by subclassing QFontFactory, and can be made available as a plugin.
Anti-aliased fonts are supported.

Each TTF or Type1 glyph is rendered at a given point size when it is first used in a drawing
or metrics operation, and the result is cached. Memory and CPU time can often be saved by
pre-rendering a TTF or a Type1 file at the required sizes (for example, 10 and 12 points) and
saving the result in QPF format. QPF files that contain the necessary fonts can be obtained by
using the makeqpf tool, or by running applications with the -savefonts option. If all the fonts
are in QPF format, Qt/Embedded can be reconfigured to compile out support for TTF and
Type1fonts, which will cut down the size of the Qt/Embedded library, and considerably reduce
the amount of memory used to store fonts. For example, a 10-point Times QPF font for ASCII
uses about 1300 bytes, and is directly mapped into memory from physical storage.

Qt/Embedded fonts usually contain a small subset of Unicode, typically ASCII or Latin-1. A
complete 16-point Unicode font uses over 1MB of memory. It is possible to save custom subsets
of a font, for example one that contains all the glyphs necessary to spell the name of your
product in 24-point Cappuccino Bold.

6

3.3. Input Devices

Qt/Embedded 3.0 supports several mouse protocols out of the box: BusMouse, IntelliMouse,
Microsoft and MouseMan. Qt/Embedded also supports the NEC Vr41XX touch-panel and
the iPAQ touch-panel. Developers can support custom pointer devices by subclassing
QWSMouseHandler or QCalibratedMouseHandler.

Qt/Embedded supports the standard 101-key keyboard and Vr41XX buttons. Custom key-
boards and other non-pointer devices can be supportedby subclassing QWSKeyboardHandler.

3.4. Input Methods

Input methods for non-Latin scripts (for example, Arabic, Chinese, Hebrew and Japanese) can
be written to filter and convert keyboard input. Input method writers have the entire Qt API at
their disposal.

On devices without a keyboard, input methods constitute the only means of entering char-
acters. Qtopia provides four input methods: a handwriting recognizer, a graphical QWERTY
keyboard, a Unicode keyboard and a dictionary-based pickboard.

Pickboard

Handwriting

Keyboard

Unicode

Figure 3. The standard input methods available on Qtopia

3.5. Screen Acceleration

Screen operations can benefit from hardware acceleration by subclassing QScreen and
QGfxRaster. Trolltech provides example accelerated drivers for Mach64 and Voodoo3 cards,
and can be contracted to write custom drivers.

7

4. Development Environment

Qt/Embedded development can take place using familiar Unix and Windows tools. Several
multi-platform tools are provided to make development easier and faster, notably Qt Designer.
Unix users additionally benefit from a virtual frame-buffer that duplicates, pixel for pixel, the
screen of a device.

Applications for an embedded device can be compiled on any platform equipped with a
cross-development tool chain. The most common option is to build a cross-platform GNU C++
compiler (g++) with libc and the binary utilities on a Unix system.

An alternative approach involves using a desktop version of Qt, such as Qt/X11 or
Qt/Windows, for most of the development phase. This allows developers to use a familiar en-
vironment, for example, Microsoft Visual C++ or Borland C++. On Unix, many environments
are available, such as KDevelop, which supports cross-development.

If the Qt/Embedded application is developed on Unix, it can be compiled to run on the
development machine in a separate console or in the virtual frame-buffer, an X11 application
that simulates a frame-buffer. By specifying the device’s width, height and color depth, the
simulated frame-buffer will match the physical device, pixel for pixel. This saves developers
from continuously re-flashing the device, and accelerates the compile, link and run cycle. It
also allows developers to use standard debuggers and profilers on the development machine. If
desired, Qt/Embedded applications can act as VNC (Virtual Network Computing) servers and
be run over a network.

4.1. Qt’s Supporting Tools

Qt includes many tools to support embedded systems development, some of which are
mentioned elsewhere in this document. The two most substantial tools (apart from the virtual
frame-buffer mentioned above) are qmake and Qt Designer.

The qmake tool is a Makefile generator for the Qt/Embedded library and for applications. It
generates Makefiles for multiple platforms from a project file (.pro). qmake supports cross-de-
velopment and shadow builds, and makes it easy to switch between different configurations.

Developers can use Qt Designer to design dialogs visually instead of writing code. It uses Qt’s
layout managers to produce dialogs that resize smoothly, and is fully integrated with qmake.
Qt Designer is covered in “Dialogs” [p. 19].

5. Signals and Slots

The signals and slots mechanism provides inter-object communication. It is easy to understand
and use and it is fully supported by Qt Designer.

GUI applications respond to user actions. For example, when a user clicks a menu item or tool-
bar button, the application executes some code. More generally, we want objects of any kind to
communicate with each other. The programmer must relate events to the relevant code. Older
toolkits use mechanisms that are crash-prone, inflexible, and not object-oriented. Trolltech has

8

invented a solution called ’signals and slots’. Signals and slots is a powerful inter-object com-
munication mechanism that can be used to completely replace the crude callbacks and message
maps used by legacy toolkits. Signals and slots are fast, type-safe, flexible, fully object-oriented
and implemented in C++.

To associate some code with a button using the old callback mechanism, it is necessary to pass
a pointer to a function to the button. When the button is clicked, the function is then called.
Old toolkits do not ensure that arguments of the right type are given to the function when it is
called, which makes crashes more likely. Another problem with the callback approach is that
it tightly binds the GUI element to the functionality, making it difficult to develop classes inde-
pendently.

Qt’s signals and slots mechanism is different. Qt widgets emit signals when events occur. For
example, a button will emit a ‘clicked’ signal when it is clicked. The programmer can choose

connect(Object3, signal1, Object4, slot3)

connect(Object1, signal1, Object2, slot1)
connect(Object1, signal1, Object2, slot2)

connect(Object1, signal2, Object4, slot1)

Object3

signal1

slot1

Object4

slot1
slot2
slot3

Object1

signal1
signal2 Object2

signal1

slot1
slot2

Figure 4. An abstract view of some signals and slots connections

to connect to a signal by creating a function (called a slot) and calling the connect() function
to relate the signal to the slot. Qt’s signals and slots mechanism does not require classes to
have knowledge of each other, which makes it much easier to develop highly reusable classes.
Signals and slots are type-safe, with type errors being reported by warnings rather than by
crashes.

For example, if a Quit button’s clicked() signal is connected to the application’s quit() slot, a
user’s click on Quit makes the application terminate. In code, this is written as

connect(button, SIGNAL(clicked()), qApp, SLOT(quit()));

Connections can be added or removed at any time during the execution of a Qt application.

The signals and slots implementation smoothly extends C++’s syntax and takes full advantage
of C++’s object-oriented features. Signals and slots can be overloaded or reimplemented and
may appear in the public, protected or private sections of a class.

9

connect(fontSizeSpinBox, valueChanged(int),
textEdit, setPointSize(int))

connect(textEdit, modificationChanged(bool),
customStatusBar, modificationStatus(bool))

connect(fontFamilyComboBox, activated(QString),
textEdit, setFamily(QString))

Figure 5. An example of signals and slots connections

5.1. A Signals and Slots Example

To benefit from signals and slots, a class must inherit from QObject or one of its subclasses
and include the Q_OBJECT macro in the class’s definition. Signals are declared in the signals
section of the class, while slots are declared in thepublic slots, protected slots or private
slots sections.

Here’s an example QObject subclass:

class BankAccount : public QObject

{

Q_OBJECT

public:

BankAccount() { curBalance = 0; }

int balance() const { return curBalance; }

public slots:

void setBalance(int newBalance);

signals:

void balanceChanged(int newBalance);

private:

int curBalance;

};

In the style of most C++ classes, the class BankAccount has a constructor, a get function
balance(), and a set function setBalance().

The class also has a signal balanceChanged(), which announces that the balance in the account
has changed. Signals are not implemented; when a signal is emitted, the slots it is connected to
are executed.

The set function is declared in the public slots section, so it is a slot. Slots are standard
member functions with an implementation that can be called like any other function, and which
can also be connected to signals.

Here’s the implementation of the slot setBalance():

void BankAccount::setBalance(int newBalance)

{

10

if (newBalance != curBalance) {

curBalance = newBalance;

emit balanceChanged(curBalance);

}

}

The statement

emit balanceChanged(curBalance);

causes the balanceChanged() signal to be emitted with the new current balance as its argument.
The keywordemit, like signals and slots, is provided by Qt and is transformed into standard
C++ by the C++ pre-processor.

One object’s signal can be connected to many different slots, and many signals can be connected
to one slot in a particular object. Connections are made between signals and slots whose
parameters have the same types. A slot can have fewer parameters than the signal and ignore
the extra parameters.

5.2. Meta Object Compiler

The signals and slots mechanism is implemented in pure standard C++. The implementation
uses the C++ pre-processor and the Meta Object Compiler (moc) included with the Qt toolkit.

The moc reads the application’s header files and generates the necessary code to support
signals and slots. Developers never edit or even need to look at the generated code. Makefiles
generated by qmake include rules to run moc transparently, when required.

In addition to handling signals and slots, moc supports Qt’s translation mechanism, its property
system and run-time type information.

6. Widgets

Qt has a rich set of widgets (buttons, scroll bars, etc.) that cater for most situations. Qt’s
widgets are flexible and easy to subclass for special requirements.

Widgets are instances of QWidget or one of its subclasses, and custom widgets are created by
subclassing.

QTimer

QObject

QWidget

QDialog

QLabel

QFrame

QLineEdit

QSpinBox

Figure 6. An extract from the QWidget class hierarchy

11

A widget may contain any number of child widgets. Child widgets are shown within the parent
widget’s area. A widget with no parent is a top-level widget (a ‘window’), and is decorated
with a configurable frame and title bar. Qt imposes no arbitrary limitations on widgets. Any
widget can be a top-level widget; any widget can be a child of any other widget. The position
of child widgets within the parent’s area can be set automatically using layout managers [p. 19],
or manually if preferred. When a parent widget is disabled, hidden or deleted, the same action
is applied to all its child widgets recursively.

Labels, message boxes, tooltips, etc., are not confined to using a single color, font and language.
Qt’s text-rendering widgets can display multi-language rich text using a HTML subset.

6.1. A ‘Hello’ Example

The complete source code for a program that displays “Hello Qt/Embedded!” follows:

Figure 7. Hello Qt/Embedded!

#include <qapplication.h>

#include <qlabel.h>

int main(int argc, char **argv)

{

QApplication app(argc, argv);

QLabel *hello = new QLabel("Hello"

" <i>Qt/Embedded!</i>", 0);

app.setMainWidget(hello);

hello->show();

return app.exec();

}

6.2. Common Widgets

The screenshots below present the main Qt widgets, shown using the Windows style.

Figure 8. A QLabel and a QPushButton laid out with a QHBox

Figure 9. Two QRadioButtons and two QCheckBoxes laid out with a QButtonGroup

12

Figure 10. A QDateTimeEdit, a QLineEdit, a QTextEdit and a QComboBox laid out with a QGroupBox

Figure 11. A QDial, a QProgressBar, a QSpinBox, a QScrollBar, a QLCDNumber and a QSlider laid out with
a QGrid

Figure 12. A QIconView, a QListView, a QListBox and a QTable laid out with a QGrid

QComboBox, QLineEdit and QSpinBox’s input can be constrained or validated using a
QValidator subclass. Regular expressions can be used for validation.

QTable, QListView, QTextEdit and other widgets that can display large amounts of data
inherit QScrollView and automatically provide scroll bars.

Many of Qt’s built-in widgets can display images, for example, buttons, labels, menu items, etc.
The QImage class supports the input, output and manipulation of images in several formats,
including BMP, GIF★, JPEG, MNG, PNG, PNM, XBM and XPM.

13

6.3. Canvas

The QCanvas class provides a high-level interface to 2D graphics. It can handle a very large
number of ‘canvas items’ that represent lines, rectangles, ellipses, texts, pixmaps, animated
sprites, etc. Canvas items can easily be made interactive (e.g. user movable).

Figure 13. The Qtopia Asteroids game written with QCanvas

Canvas items are instances of QCanvasItem subclasses. They are more lightweight than
widgets, and they can be quickly moved, hidden and shown. QCanvas has efficient support
for collision detection, and can list all the canvas items in a given area. QCanvasItem can be
subclassed to provide custom item types and to extend the functionality of existing types.

QCanvas objects are rendered by the QCanvasView class. Many QCanvasView objects can
show the same QCanvas, but with different translations, scales, rotations and shears.

QCanvas is ideal for data visualization. It has been used by customers for drawing road maps
and for presenting network topologies. It is also suitable for fast 2D games with lots of sprites.

6.4. Custom Widgets

Developers can create their own widgets and dialogs by subclassing QWidget or one of its
subclasses. To illustrate subclassing, the complete code for an analog clock widget is presented.
The AnalogClock widget displays the current time and updates itself automatically.

Figure 14. Analog clock widget

In analogclock.h, AnalogClock is defined like this:

★If you are in a country that recognizes software patents and where Unisys holds a patent on LZW decompression,
Unisys may require you to license the technology to use GIF.

14

#include <qwidget.h>

class AnalogClock : public QWidget

{

public:

AnalogClock(QWidget *parent = 0, const char *name = 0);

protected:

virtual void timerEvent(QTimerEvent *event);

virtual void paintEvent(QPaintEvent *event);

};

AnalogClock inherits QWidget. It has a constructor typical of widget classes, with op-
tional parent and name parameters. (Testing and debugging are easier if name is set.) The
timerEvent() function is inherited from QObject (a base class of QWidget) and is called at reg-
ular intervals by the system. The paintEvent() function is inherited from QWidget and is called
automatically whenever the widget needs to be redrawn.

The timerEvent() and paintEvent() functions are two examples of ‘event handlers’. Application
objects receive system messages as Qt events (QEvent objects). There are over fifty types of
event, of which the most commonly used are MouseButtonPress, MouseButtonRelease,
KeyPress, KeyRelease, Paint, Resize and Close. Objects can respond to events sent to them,
and filter events destined for other objects.

In analogclock.cpp, the functions declared in analogclock.h are implemented:

#include <qdatetime.h>

#include <qpainter.h>

#include "analogclock.h"

AnalogClock::AnalogClock(QWidget *parent, const char *name)

: QWidget(parent, name)

{

startTimer(12000);

resize(100, 100);

}

void AnalogClock::timerEvent(QTimerEvent *)

{

update();

}

void AnalogClock::paintEvent(QPaintEvent *)

{

QCOORD hourHand[8] = { 2, 0, 0, 2, -2, 0, 0, -25 };

QCOORD minuteHand[8] = { 1, 0, 0, 1, -1, 0, 0, -40 };

QTime time = QTime::currentTime();

QPainter painter(this);

15

painter.setWindow(-50, -50, 100, 100);

painter.setBrush(black);

for (int i = 0; i < 12; i++) {

painter.drawLine(44, 0, 46, 0);

painter.rotate(30);

}

painter.save();

painter.rotate(30 * (time.hour() % 12) + time.minute() / 2);

painter.drawConvexPolygon(QPointArray(4, hourHand));

painter.restore();

painter.save();

painter.rotate(6 * time.minute());

painter.drawConvexPolygon(QPointArray(4, minuteHand));

painter.restore();

}

The constructor tells the system to call timerEvent() every twelve seconds to refresh the clock,
and sets the widget’s default size to 100 x 100.

In timerEvent(), the QWidget function update() is called to tell Qt that the widget needs to be
repainted. Subsequently, Qt will generate a paint event and call paintEvent().

In paintEvent(), a QPainter object is used to draw the twelve notches and the time and minute
hands on the widget. The QPainter class provides an API for painting widgets, pixmaps, vector
images and PostScript in a uniform way. It provides functions to draw points, lines, polygons,
ellipses, arcs, Bezier curves, etc. The coordinate system of a QPainter can be translated, scaled,
rotated and sheared; the objects drawn can be clipped according to a ’window’, and positioned
on the widget using a ’viewport’. Clipping can be used to reduce flicker when repainting. An
area of the frame-buffer can be locked and accessed directly using the QDirectPainter subclass
of QPainter.

The files analogclock.h and analogclock.cpp completely define and implement the
AnalogClock custom widget. This widget can be used immediately:

#include <qapplication.h>

#include "analogclock.h"

int main(int argc, char **argv)

{

QApplication app(argc, argv);

AnalogClock *clock = new AnalogClock;

app.setMainWidget(clock);

clock->show();

return app.exec();

}

16

6.5. Main Windows

The QMainWindow class lays out a set of related widgets to provide a framework for typical
application main windows.

A main window contains a set of standard widgets. The top of the main window contains a
menu bar, beneath which toolbars are laid out. The toolbars can be moved to any dock area;
main windows have dock areas at the top, left, right and bottom. Toolbars can also be dragged
out of a dock area and floated as independent tool palettes. The bottom of the main window,
below the bottom dock area, is occupied by a status bar. The central area contains any widget.
Tooltips and “What’s this?” help provide balloon help for the user-interface elements.

For small screen devices, it can be preferable to define a standard QWidget template in
Qt Designer and use that, rather than QMainWindow. The template typically has a menu bar
and a toolbar side by side, and may not have a status bar at all. (Where necessary, status may
be shown in the task bar or the title bar, for example.)

6.6. Menus

The QPopupMenu widget presents menu items to the user in a vertical list. Popup menus can
be standalone (e.g. a context menu), can appear in a menu bar, or can be a sub-menu of another
popup menu.

Each menu item can have an icon, a checkbox and an accelerator. Menu items usually
correspond to actions (e.g. Save). Separator items are displayed as a line and are used to visually
group related actions.

Here’s an example that creates a File menu with New, Open and Exit menu items:

QPopupMenu *fileMenu = new QPopupMenu(this);

fileMenu->insertItem("&New", this, SLOT(newFile()), CTRL+Key_N);

fileMenu->insertItem("&Open...", this, SLOT(open()), CTRL+Key_O);

fileMenu->insertSeparator();

fileMenu->insertItem("E&xit", qApp, SLOT(quit()), CTRL+Key_Q);

When a menu item is chosen, the corresponding slot is executed. As accelerators are rarely
used on devices with no keyboard, Qt/Embedded is typically configured without accelerator
support. This means that whereas “&New” would be rendered as New on a desktop machine,
it will appear as New on an embedded device.

The QMenuBar class implements a menu bar. It automatically sets its geometry to the top of
its parent widget. It splits its contents across multiple lines if the parent window is not wide
enough. Qt’s built-in layout managers automatically take the menu bar into consideration.

Qt’s menu system is very flexible. Menu items can be enabled, disabled, added or removed
dynamically. Menu items with customized appearance and behavior can be created by
subclassing QCustomMenuItem.

6.7. Toolbars

The QToolButton class implements a toolbar button with an icon, a 3D frame and an optional la-
bel. Toggle toolbar buttons turn features on and off. Other toolbar buttons execute a command.
Different icons can be provided for the active, disabled and enabled modes, and for the on and
off states. If only one icon is provided,Qt automatically distinguishesthe state using visual cues,

17

for example, graying out disabled buttons. Pressing a toolbar button can also be used to trigger
a popup menu.

QToolButtons usually appear side-by-side within a QToolBar. An application can have any
number of toolbars, and the user is free to move them around. Toolbars can contain widgets of
almost any type, for example QComboBoxes and QSpinBoxes.

6.8. Balloon Help

Modern applications use balloon help to briefly explain the purpose of user-interface elements.
Qt provides two mechanisms for balloon help: tooltips and “What’s this?” help.

Tooltips are small, usually yellow, rectangles that appear automatically when the mouse pointer
hovers over a widget. Tooltips are often used to explain a toolbar button, since toolbar buttons
are rarely displayed with text labels. Here’s how to set the tooltip of a ‘Save’ toolbar button:

QToolTip::add(saveButton, "Save");

It is also possible to set a longer piece of text to be displayed in the status bar when the tooltip
is shown.

Devices that do not use a mouse (for example, those that use a stylus), may not have a means of
hovering the mouse pointer over a widget, which is the normal mechanism for raising a tooltip.
Such devices may not support tooltips at all (relying on “What’s this?” help instead), or may
use a gesture, for example, press and hold, to signify hovering.

“What’s this?” help is similar to tooltips, except that the user must request it. On a small
screen device, “What’s this?” help may be invoked by pressing a ? help button that appears
next to the application’s X close button, and then pressing the relevant widget. “What’s this?”
help is typically longer than a tooltip. Here’s how to set the “What’s this?” text for a ‘Save’
toolbar button:

QWhatsThis::add(saveButton, "Saves the current file.");

The QToolTip and QWhatsThis classes provide virtual functions that can be reimplemented
for more specialized behavior.

Qtopia doesn’t use either of these mechanisms to provide help. Instead it provides a ? help
button in each application’s title bar, which launches the HTML help browser with the help
contents page for the relevant application. It uses the press and hold gesture to invoke context
(right click) menus and property dialogs.

6.9. Actions

Applications usually provide the user with several different ways to perform a particular action.
For example, most applications provide a ’Save’ action available from the menu (File|Save),
from the toolbar (the ’floppy disk’ toolbar button) and as an accelerator (Ctrl+S). The QAction
class encapsulates this concept. It allows programmers to define an action in one place and
then add that action to a menu or toolbar. Actions that only make sense as menu options can be
added to menus directly.

The following code implements a ‘Save’ menu item and a ‘Save’ toolbar button. Balloon help
and an accelerator could easily be added, but are not included because they are rarely used for
small devices.

18

QAction *saveAct = new QAction(this);

saveAct->setText("Save");

saveAct->setIconSet(QPixmap("save.png"));

connect(saveAct, SIGNAL(activated()), this, SLOT(save()));

saveAct->addTo(fileMenu);

saveAct->addTo(toolbar);

In addition to avoiding duplication, using a QAction ensures that the state of menu items
stays in sync with the state of toolbar buttons, and that tooltips are displayed when necessary.
Disabling an action will disable any corresponding menu items and toolbar buttons. Similarly,
if the user clicks a toggle toolbar button, the corresponding menu item will be checked or
unchecked accordingly.

7. Dialogs

Developers can build their own dialogs using the Qt Designer visual design tool. Qt uses
‘layouts’ to automatically size and position widgets in relation to one another. This ensures
that dialogs make the best use of the available screen space. The use of layouts also means that
buttons and labels automatically resize to show their text in full regardless of language.

7.1. Layouts

Qt provides layout managers for organizing child widgets within the parent widget’s area.
They feature automatic positioning and resizing of child widgets, sensible minimum and
default sizes for top-level widgets, and automatic repositioning when the contents or the font
changes.

Using layouts, developers can write applications independently of the screen size or orientation,
without wasting space or duplicating code. For internationalized applications, layouts ensure
that buttons and labels take as little space as possible without cutting off the text, regardless of
the language.

Layouts also make it easy to accommodate certain user-interface components such as input
methods and task bars. For example, when Qtopia users are entering text, the input method
takes up screen space, and the application should adapt accordingly.

Figure 15. Layout management on Qtopia

19

Qt provides three built-in layout managers: QHBoxLayout, QVBoxLayout and QGridLayout.

Figure 16. QHBoxLayout, QVBoxLayout and QGridLayout

QHBoxLayout organizes the managed widgets in a single horizontal row from left to right.
QVBoxLayout organizes the managed widgets in a single vertical column, from top to bottom.
QGridLayout organizes the managed widgets in a grid of cells; widgets may span multiple
cells.

In most cases, Qt’s layout managers pick optimal sizes for managed widgets so that windows
look good and resize smoothly. Developers can refine the layout using the following mech-
anisms:

1. Setting a minimum size, a maximum size or a fixed size for some child widgets.

2. Adding stretch items or spacer items. Stretch or spacer items fill empty space in a layout.

3. Changing the size policies of the child widgets. Programmers can fine tune the resize behavior
of a child widget. Child widgets can be set to expand, contract, keep the same size, etc.

4. Changing the child widgets’ size hints. QWidget::sizeHint() and QWidget::minimumSize-
Hint() return a widget’s preferred size and preferred minimum size based on the contents.
Built-in widgets provide appropriate reimplementations.

5. Setting stretch factors. Stretch factors allow relative growth of child widgets, e.g. two
thirds of any extra space made available should be allocated to widget A and one third to
widget B.

Layouts can also run right-to-left and bottom-to-top. Right-to-left layouts are convenient for
internationalized applications supporting right-to-left languages such as Arabic and Hebrew.

Layouts can be nested to arbitrary levels. Here’s an example of a dialog box, shown at two
different sizes:

20

Figure 17. Small dialog and large dialog

The dialog uses three layouts: a QVBoxLayout that groups the push buttons, a QHBoxLayout
that groups the country listbox with the push buttons and a QVBoxLayout that groups the
“Now please select a country” label with the rest of the widget. A stretch item maintains the
gap between the < Prev and Help buttons.

The dialog’s widgets and layouts are created with the following code:

QVBoxLayout * buttonBox = new QVBoxLayout(6);

buttonBox->addWidget(new QPushButton("Next >", this));

buttonBox->addWidget(new QPushButton("< Prev", this));

buttonBox->addStretch(1);

buttonBox->addWidget(new QPushButton("Help", this));

QListBox * countryList = new QListBox(this);

countryList->insertItem("Canada");

/* … */

countryList->insertItem("United States of America");

QHBoxLayout * middleBox = new QHBoxLayout(11);

middleBox->addWidget(countryList);

middleBox->addLayout(buttonBox);

QVBoxLayout * topLevelBox = new QVBoxLayout(this, 6, 11);

topLevelBox->addWidget(new QLabel("Now please select a country", this)

);

topLevelBox->addLayout(middleBox);

Alternatively, the dialog can be designed using Qt Designer with just 17 mouse clicks.

Figure 18. Laying out a form in Qt Designer

21

7.2. Qt Designer

Qt Designer is a visual user-interface design tool. Qt applications can be written entirely in
source code, or using Qt Designer to speed up development. Designing a form with Qt Designer

Figure 19. Qt Designer

is a simple process. Developers click a toolbar button representing the widget they want, then
click on a form to place the widget. The widget’s properties can then be changed using the
property editor. The precise positions and sizes of the widgets do not matter. Developers select
widgets and apply layouts to them. For example, some button widgets could be selected and
laid out side-by-side by choosing the ‘lay out horizontally’ option. This approach makes design
very fast, and the finished forms will scale properly to fit whatever window size is available.

Qt Designer eliminates the time-consuming compile, link and run cycle for user interface design.
This makes it easy to correct or change designs. Qt Designer’s preview options let developers see
their forms in any style, including custom styles. Qt Designer provides live preview and editing
of database data through its tight integration with Qt’s database classes.

Developerscan createboth ‘dialog’styleapplicationsand ‘main window’styleapplicationswith
menus, toolbars, balloon help, etc. Several form templates are supplied, and developers can
create their own templates to ensure consistency across an application or family of applications.
Qt Designer uses wizards to make creating toolbars, menus and database applications as fast and

22

easy as possible. Programmerscan create their own custom widgets that can easily be integrated
with Qt Designer.

Form designs are stored in human-readable .ui files, and converted into C++ header and
source files by the uic (User Interface Compiler). The qmake build tool automatically includes
build rules for uic in the Makefiles it generates, so developers do not need to invoke uic

themselves.

Alternatively, .ui files can be loaded at run-time by applications, and converted into fully func-
tional forms. This allows customers to modify the look of an application without recompiling,
and can also be used to reduce the size of applications.

7.3. Built-in Dialogs

Qt includes ready-made dialog classes with static convenience functions for the most common
tasks. Screenshots of some of Qt’s standard dialogs are presented below.

QMessageBox is used to provide the user with information or to present the user with simple
choices (e.g. ‘Yes’ or ‘No’).

Figure 20. A QMessageBox

QProgressDialog displays a progress bar and a ‘Cancel’ button.

Figure 21. A QProgressDialog

QWizard provides a framework for wizard dialogs.

Figure 22. A QWizard

23

Qt also includes QColorDialog, QFileDialog, QFontDialog and QPrintDialog. These classes
are more suitable for desktop applications and are usually compiled out of Qt/Embedded.

8. Look and Feel

Qt desktop applications adopt the style, or look and feel, of their execution environment,
e.g. Windows XP, Mac OS X, Linux. Qt/Embedded applications can use any of these styles, or
can use custom styles, statically or as plugins. Developers can customize both the widget style
and the window decorations.

8.1. Widget Style

A style is a QStyle subclass that implements the look and feel of Qt’s widgets. Qt/Embedded
programmers are free to use and modify existing styles or implement their own styles using
Qt’s style engine. The built-in styles available on Qt/Embeddedare Windows, Motif, MotifPlus,
CDE, Platinum and SGI. The style can be set dynamically on a per-application basis, and even
on a per-widget basis.

Figure 23. Comboboxes in the different built-in styles

A family of applications can be given a distinctive look by writing a custom style. Custom styles
can be defined by subclassing QStyle, QCommonStyle or any descendent of QCommonStyle.
It is easy to make small modifications to existing styles by reimplementing one or two virtual
functions from the appropriate base class.

A style can be compiled as a plugin. With plugins, developers can preview a form in their
device’s custom style in Qt Designer. Style plugins also give users the opportunity to change the
look of the device without recompiling.

QStyle

QMotifStyle

QCDEStyle QMotifPlusStyle QSGIStyle

QCommonStyle

QWindowsStyle

QPlatinumStyle

Figure 24. The QStyle class hierarchy

Qt’s built-in widgets are style-aware and will automatically repaint themselves when the style
changes. Custom widgets and dialogs are almost always combinations of built-in widgets and
layouts, and are automatically style-aware. On the rare occasions that it is necessary to write
a custom widget from scratch, developers can use QStyle to draw primitive user-interface
elements rather than drawing raw rectangles directly.

24

8.2. Window Decorations

Top-level windows are decorated by a title bar and a frame. Qt/Embedded includes these
window manager styles: BeOS, Hydro, KDE and Windows.

Figure 25. Windows with different window decorations

Decorations can be configured on a per-window basis, if required. Custom styles are created
by subclassing QWSDecoration, and distributed as plugins. For more control over the window
manager’s behavior, developers can subclass QWSManager.

9. Internationalization

Qt/Embedded fully supports Unicode, the international standard character set. Developers can
freely mix Arabic, English, Hebrew, Japanese, Russian, and every other language supported
by Unicode, in their applications. Qt/Embedded also includes tools to support application
translation to help companies reach international markets.

9.1. Unicode

Qt uses the QString class to store Unicode strings. QString replaces the crude const char *;
constructors and operators are provided to handle conversion between QString and const

char *. Programmers can copy QStrings by value without penalty, since QString uses implicit
sharing (copy on write) to reduce memory use. Qt also provides QCString to efficiently store
ASCII strings.

Qt provides a powerful Unicode text rendering engine for all text that is displayed on screen,
from the simplest label to the most sophisticated rich-text editor. The engine supports advanced
features such as special line breaking behavior, bidirectional writing and diacritical marks.
It renders most of the world’s writing systems, including Arabic, Chinese, Cyrillic, English,
Greek, Hebrew, Japanese, Korean, Latin and Vietnamese. The engine is optimized for the
common case: a single line of plain text with an optional accelerator (e.g. File).

Conversion to and from different encodings and charsets is handled by QTextCodec subclasses.
Qt 3.0 supports 37 different encodings, including Big5 and GBK for Chinese, EUC-JP, JIS and

25

Shift-JIS for Japanese, KOI8-R for Russian and the ISO 8859 series. They can be compiled as part
of the library or as plugins, or compiled out using the ‘feature’ mechanism.

9.2. Translating Applications

Qt provides tools and functions to help developers provide applications in their customers’
native languages.

To make a string translatable, simply wrap it in a call to tr() (read ‘translate’):

saveButton->setText(tr("Save"));

tr() attempts to replace a string literal (e.g. “Save”) with a translation if one is available; other-
wise it uses the original text. For example, English could be used as the source language and
Chinese as the translated language, or vice versa. The argument to tr() is converted to Unicode
from the application’s default encoding.

tr()’s general syntax is

Context::tr("source text", "comment")

The ‘context’ is the name of a QObject subclass. It is usually omitted, in which case the class
containing the tr() call is used as the context. The ‘source text’ is the text to translate. The
‘comment’ is optional; along with the context, it provides additional information for human
translators.

Translations are stored in QTranslator objects, which use memory-mapped .qm files (Qt
Message files). Each .qm file contains the translations for a particular language. The language
can be changed at run-time; any dialog created using Qt Designer can retranslate itself on the fly
with no special provisions.

Qt provides three tools for preparing .qm files: lupdate, Qt Linguist and lrelease.

1. lupdate extracts all the (context, source text, comment) triples from the source code,
including Qt Designer .ui files, and generates a .ts file (Translation Source file). The .ts
files are human-readable.

2. Translators use Qt Linguist to provide translations for the source texts in the .ts files.

3. Highly compressed .qm files are generated by running lrelease on the .ts files. The .qm
files are used on the embedded device.

These steps are repeated as often as necessary during the lifetime of an application. It is perfect-
ly safe to run lupdate frequently, as it reuses existing translations and marks translations for
obsolete source texts without eliminating them.

26

9.3. Qt Linguist

Qt Linguist is a Qt application that helps translators translate Qt applications. Translators
can edit .ts files by hand, or more conveniently using Qt Linguist. The .ts file’s contexts are

Figure 26. Qt Linguist

listed in the left-hand side of the application’s window. The list of source texts for the current
context is displayed in the top-right area, along with translations. By selecting a source text, the
translator can enter a translation, mark it done or unfinished and proceed to the next unfinished
translation. Keyboard shortcuts are provided for all the common navigation options: Done &
Next, Next Unfinished, etc. The user interface’s dockable windows can be reorganized to suit
the translators’ preferences.

Applications often use the same phrases many times in different source texts. Qt Linguist au-
tomatically displays intelligent guesses based on previously translated strings and predefined
translations at the bottom of the window. Guesses often serve as a good starting point that helps
translators translate similar texts consistently. Qt Linguist can optionally validate translations to
ensure that acceleratorsand ending punctuation are translated correctly. Qt Linguist also detects
slight changes in source texts and automatically suggests appropriate translations. These trans-
lations are marked as unfinished so that a translator can easily find them and check them.

27

10. Non-Graphical Classes

Qt/Embedded provides a full range of non-graphical classes that provide data containers
(collection classes), input/output, networking, database interaction and threading.

10.1. Collection Classes

Collection classes are used to store groups of items in memory. Qt/Embedded provides two
sets of collection classes: pointer-based collections and value-based collections.

The pointer-based collection classes are QDict<Key,T>, QPtrList<T>, QPtrQueue<T>, QP-
trStack<T>, QPtrVector<T> and QCache<T>. These classes are often used for storing point-
ers to QWidgets and QObjects, and Qt/Embedded’s internals make heavy use of them. The
pointer-based collection classes can optionally take ownership of the objects they contain and
automatically delete them when the collection is destroyed, simplifying memory management.

The value-based collection classes are QMap<Key,T>, QValueList<T>, QValueStack<T>,
QValueVector<T> and QStringList. They have an interface very similar to the STL containers.
Qt/Embedded also provides the low-level QMemArray<T> class with its subclasses QBitAr-
ray, QByteArray and QPointArray. These classes are very efficient for handling basic ‘plain old
data’ types.

To avoid the problem of code bloat associated with templates, Qt/Embedded uses private
non-template classes to implement the functionality of template classes. The template classes
are only a thin layer that converts special types to generic pointers, and results in very little
binary code. Another technique, implicit sharing, is used in the value-based containers to
avoid needless duplication of data. These optimizations make Qt’s collection classes suitable
to embedded development.

10.2. Input/Output

Qt provides QTextStream and QDataStream to read and write text and binary data in a file, a
buffer, a socket or a custom device. QDataStream can be used to serialize basic C++ types and
many Qt types.

Directories are manipulated using QDir. The QFileInfo class provides more detailed informa-
tion about a file, such as its size, permissions, creation time and last modification time.

Transparent access to remote files is provided by QUrlOperator. In addition to local file system
access, Qt supports the the FTP and HTTP protocols and can be extended to support other
protocols. For example, files can be downloaded using FTP like this:

QUrlOperator op;

op.copy(QString("ftp://ftp.trolltech.com/qt/INSTALL"),

QString("file:/tmp"));

URLs can easily be parsed and recomposed using QUrl.

Image files are usually read by creating a QImage with the file name as argument. Printing text
and images is handled by QPainter. These classes are described in “Widgets” [p. 11].

User settings and other application settings can easily be stored on disk
using the QSettings class. Settings are stored in text files under hierarchical keys,

28

e.g. /Tools/Zoomer/RecentFiles. Booleans, numbers, Unicode strings and lists of Unicode
strings are supported.

Qt’s XML module provides a SAX parser and a DOM parser, both of which read well-formed
XML and are non-validating. The SAX (Simple API for XML) implementation follows the de-
sign of the SAX2 Java implementation, and is especially suitable for simple parsing require-
ments and for very large files. The DOM (Document Object Model) Level 2 implementation
follows the W3C recommendation and includes namespace support.

10.3. Networking

Qt provides an interface for writing TCP/IP clients and servers. The QSocket class provides
an asynchronous buffered TCP connection. Functions such as QSocket::connectToHost() and
QSocket::writeBlock()can be called at any time without freezing the application’s user interface.
Sockets emit the readyRead() signal when there is data available to read.

The QSocketDevice provides an abstraction for the underlying functionality for QSocket and
QServerSocket, and can be used for UDP.

10.4. Database

The Qt SQL module provides a uniform interface for accessing SQL databases. Qt includes
native drivers for Oracle, Microsoft SQL Server, Sybase Adaptive Server, PostgreSQL, MySQL
and ODBC. Programs can access multiple databases using multiple drivers simultaneously.

Programmers can easily execute any SQL statements. Qt also provides a high-level C++
interface that programmers can use to generate the appropriate SQL statements automatically.

Any Qt widget, including custom widgets, can be made data-aware. Qt also includes some
database-specific convenience widgets, to simplify the creation of dialogs and windows that
present records as forms or in tables. Data-aware widgets automatically support browsing,
updating and deleting records. Most database designs require that new records have a unique
key that cannot be guessed by Qt, so insertion usually needs a small amount of code to be
written. The programmer can easily force the user to confirm actions, e.g. deletions.

Using the facilities that the Qt SQL module provides, it is straightforward to create database
applications that use foreign key lookups, present master-detail relationships, and support
drill-down.

Qt’s SQL module is fully integrated with Qt Designer. Qt Designer can preview database forms
and tables using live data if desired, allowing developers to browse, delete and update records.
Qt Designer has templates and wizards to make creating database forms fast and simple.

10.5. Multi-Threading

GUI applications often use multiple threads: one thread to keep the user interface responsive,
and one or many other threads to perform time-consuming activities such as reading large
files and performing complex calculations. Qt/Embedded can be configured to support
multi-threading, and provides four threading classes: QThread, QMutex, QSemaphore and
QWaitCondition.

29

11. Qt/Embedded in the Wider World

Qt/Embedded makes Linux a viable platform for embedded GUI applications. It is an
implementation of a mature, consistent, object-oriented toolkit that includes many tools to ease
and speed development. Qt/Embedded is already used by major companies and is attracting
software developers from both the commercial sector and from the open source community.

Qt/Embedded became commercially available for the first time in September 2000. It is a port
of the Qt toolkit which has been powering both commercial and open source applications since
1995. Qt/Embedded is already used by enterprises and individuals across the world.

Organizations that wish to make use of a ready-made software environment for specialized
devices such as PDAs and WebTVs, can license Qtopia, an environment created by Trolltech
that is built with Qt/Embedded. Qtopia is used in the Sharp Zaurus device (shown on the
cover-page) and includes a PIM (Personal Information Management) application suite. Qtopia
is also available in open source form at http://qpe.sourceforge.net. Qtopia is described in the
Qtopia Whitepaper.

Insigna Solutions offers a Java Virtual Machine for Qt/Embedded. The Qt API is used to
implement the Java AWT, resulting in a look and feel that is consistent with C++ applications.

IBM and OTI (Object Technology International) also provide a Java solution for Qt/Embedded.
Their Simple Widget Toolkit is implemented using the Qt API.

Qt has an active and helpful user community who communicate using the qt-interest

mailing list. See http://qt-interest.trolltech.com to subscribe or to browse the archive.

Qt’s extensive documentation is available on-line at http://doc.trolltech.com.

Developers can evaluate Qt/Embedded, with support, for 30 days. See
http://www.trolltech.com/products/qt/evaluate.html for details.

For further information, email info@trolltech.com.

A small sample of the applications that have been developed with Qt/Embedded are shown
below.

Opera Software has developed a fast Qt/Embedded web-browser that supports HTML 4.0,
CSS1, JavaScript 1.3 and cookies.

30

http://qpe.sourceforge.net
http://qt-interest.trolltech.com
http://doc.trolltech.com
http://www.trolltech.com/products/qt/evaluate.html
mailto:info@trolltech.com

Figure 27. Konqueror/Embedded by the KDE team · Port of NetHack by Warwick Allison

Figure 28. Port of KDE’s Sokoban game by Steve Dunham · A SID player by Markus Gritsch

31

Index

About box, 23
Acceleration hard-

ware, 7
Accelerator, 18, 27
Action, 18
Alpha-blended

pixmap, 4
Analog clock, 14
Animation, 14
Anti-aliased font,

4, 6
Aqua, 25
Arabic, 7 20, 25
ARM, 4
Array, 28
Assistant, 23
Asynchronous

I/O, 6
Auto-deletion, 28
Automatic layout,

19
AWT, 30
Balloon help, 18
BDF, 6
BeOS, 25
Bezier curve, 16
Bidirectional writ-

ing, 25
Big5, 26
Binary serializa-

tion, 28
Bit depth, 4
Bitmap, 5, 13
Bloat problem, 28
BMP, 13
Borland C++, 8
Box layout, 12, 20
Browser, 30
BusMouse, 7
Button, 12
Cache, 28
Caching, 5
Callback, 9
Canvas, 14
CDE, 24
Central area, 17
char, 25
Charmap, 26

Charset, 26
Checkbox, 12
Child widget, 12,

19
Chinese, 7, 25
clicked(), 9
Client, 6, 29
Clipping, 16
Clock, 14
Code bloat prob-

lem, 28
Codec, 26
Collection class, 28
Collision testing,

14
Color, 24
Combobox, 13
Comment, 26
Communication, 6,

9
Compiler, 4, 8
Compiler features,

11
Component, 9
Configuration, 5,

29
connect(), 9
Connection, 9, 18
Container, 28
Context, 26
Context menu, 17
Control, 11
Copy on write, 5
Cross-develop-

ment, 8
CSS1, 30
Custom canvas

item, 14
Custom style, 24
Custom widget, 23,

29
Cyrillic, 25
Data visualization,

14
Database, 22, 29
Date, 13
Debugger, 8
Decorations, 6, 25

Default widget
size, 19

Defaults, 29
Delete, 28
Designer, 8, 21 26,

29
Desktop, 6 8, 24
Device, 5
Diacritical mark,

25
Dial, 13
Dialog, 23
Dictionary, 28
Directory, 28
DOM, 29
Drawing, 24
Drill-down, 29
Driver, 5, 7
Druid, 23
Dynamic dialog,

23
Editor, 13
Embedded Linux,

4, 5
Emitting a signal,

11
Encoding, 26
English, 25
Ericsson, 4
Error, 23
EUC-JP, 26
Event, 9, 15
exec(), 12
Fatal error, 23
Features, 5
File, 28
Flash, 5, 8
Flicker, 16
Font, 19, 25
Foreign key, 29
Form, 21
Frame, 12, 25
Frame-buffer, 4, 5

8, 16
FTP, 28
g++, 8
Game, 14
GBK, 26

GCC, 8
Geometry, 12, 19
GIF, 13
Graph, 14
Graphic card, 4
Graphics, 7, 13
Greek, 25
Grid layout, 20
GUI application,

17
Handwriting, 7
Hebrew, 7 20, 25
Hierarchical tree

view, 13
Hover help, 18
HTML, 12, 30
HTTP, 28
Icon, 13 17, 18
Icon view, 13
Image, 13, 28
Implicit sharing, 5

25, 28
Inheriting, 10 14,

17
Input method, 7,

19
Input/output, 28
Input validation,

13
Insigna Solutions,

30
Intel x86, 4
IntelliMouse, 7
Internationaliza-

tion, 19, 25
Introspection, 11
IP, 29
iPAQ, 7
IPC, 6
ISO 8859, 26
Japanese, 7 25, 27
Java, 29
Java Virtual Ma-

chine, 30
JavaScript, 30
JIS, 26
JPEG, 13
KDE, 25

32

KDevelop, 8
Key, 29
Keyboard, 5 7, 7
KOI8-R, 26
Korean, 25
Label, 12
Language, 19, 25
Latin, 25
Layout, 12, 19
LCD, 13
libc, 8
Library, 5 6, 6
Line breaking, 25
Line editor, 13
Linguist, 26
Linker, 8
Linking, 5
Linux, 4, 5
List, 28, 28
List box, 13
List view, 13
Localization, 25
Look and feel, 24
lrelease, 26
lupdate, 26
Mach64, 7
Macintosh, 5
Magic, 11
Main window, 17
Makefile, 8, 11
Makefiles, 23
Map, 28
Master-detail, 29
Maximum size, 20
Memory array, 28
Menu bar, 17, 19
Message box, 23
Message map, 9
Messaging, 15
Meta Object Com-

piler, 11
MFC, 9
Microsoft mouse, 7
Microsoft SQL

Server, 29
Microsoft Visual

C++, 8
Microsoft Win-

dows, 5 24, 25
Minimum size, 20
MIPS, 4

MNG, 13
moc, 11
Motif, 9, 24
Motorola 68000, 4
Mouse, 5
MouseMan, 7
Multi-line editor,

13
Multi-threading,

29
MySQL, 29
NEC Vr41XX, 7
Networking, 28, 29
Notebook, 23
Object-oriented

programming,
9

OCI, 29
ODBC, 29
Opera Software, 30
Operating system,

4
Oracle, 29
Ownership, 28
Painting, 15 16, 24
Parent widget, 12,

19
Peripheral, 5
Pickboard, 7
Picture, 13
Pixmap, 16
Plain old data, 28
Platforms, 6
Platinum, 24
Plugin, 5, 6 24 25,

26
PNG, 13
PNM, 13
Pointer-based col-

lection, 28
Pointer device, 7
Popup menu, 17
Positioning, 19
PostgreSQL, 29
PostScript, 16
PostScript font, 6
PowerPC, 4
Pre-processor, 5, 11
Preferences, 24, 29
Preferred size, 20
Primary key, 29

Printer, 16
Private class, 28
.pro, 8
Process, 6, 6
Profiler, 8
Progress bar, 13, 23
Property, 11
Property box, 23
Push button, 12
QAction, 18
QApplication, 12
QBitArray, 28
QBitmap, 5
QButtonGroup, 12
QByteArray, 28
QCache, 28
QCalibrat-

edMouseHan-
dler, 7

QCanvas, 14
QCanvasItem, 14
QCanvasView, 14
QCDEStyle, 24
QCheckBox, 12
QColorDialog, 24
QComboBox, 13,

13
QCommonStyle,

24, 24
QCOP, 6
QCString, 25
QCustomMenu-

Item, 17
QDataStream, 6,

28
QDateEdit, 13
QDateTimeEdit, 13
QDial, 13
QDialog, 11
QDict, 28
QDir, 28
QDirectPainter, 16
QEvent, 15
QFileDialog, 24
QFileInfo, 28
QFontDialog, 24
QFontFactory, 6
QFrame, 11
QGfxRaster, 7
QGridLayout, 13

13, 20

QGroupBox, 13
QHBoxLayout, 12,

20
QIconView, 13
QImage, 13, 28
QLabel, 11, 12
QLCDNumber, 13
QLineEdit, 11 13,

13
QListBox, 13
QListView, 13, 13
.qm, 26
QMainWindow,

17
qmake, 8 11, 23
QMap, 5, 28
QMemArray, 28
QMenuBar, 17
QMessageBox, 23
QMotifPlusStyle,

24
QMotifStyle, 24
QMutex, 29
QNX, 4
QObject, 9, 10 11 26,

28
QPainter, 16, 28
QPalette, 5
QPF, 6
QPicture, 5
QPixmap, 5
QPlatinumStyle,

24
QPointArray, 28
QPopupMenu, 17
QPrintDialog, 24
QProcess, 6
QProgressBar, 13
QProgressDialog,

23
QPtrList, 28
QPtrQueue, 28
QPtrStack, 28
QPtrVector, 28
QPushButton, 12
QRadioButton, 12
QRegExp, 13
QScreen, 7
QScrollBar, 13
QScrollView, 13
QSemaphore, 29

33

QServerSocket, 29
QSettings, 29
QSGIStyle, 24
QSlider, 13
QSocket, 29
QSocketDevice, 29
QSpinBox, 11 13,

13
QStatusBar, 17
QString, 5 25, 28
QStringList, 28
QStyle, 24
Qt Designer, 8, 21

26, 29
Qt Linguist, 26
QTabDialog, 23
QTable, 13, 13
QTextCodec, 26, 28
QTextEdit, 13, 13
QTextStream, 28
QThread, 29
QTimeEdit, 13
QTimer, 11
QTL, 28
QToolBar, 18
QToolButton, 18
QToolTip, 18
Qtopia, 7 14, 19
QTranslator, 26
Queue, 28
quit(), 9
QUrl, 28
QUrlOperator, 28
QValidator, 13
QValueList, 28
QValueStack, 28
QValueVector, 28
QVBoxLayout, 20
QWaitCondition,

29
QWERTY, 7
QWhatsThis, 18
QWidget, 11, 28
QWindowsStyle,

24
QWizard, 23
QWSDecoration,

25
QWSKeyboard-

Handler, 7
QWSManager, 25

QWSMouseHan-
dler, 7

Radio button, 12
RAM, 4
Reference count-

ing, 5
Registry, 29
Regular expres-

sion, 13
Relative growth,

20
Repositioning, 19
Resizing, 19
Reusability, 9
Rich text, 12
Right-to-left lan-

guages, 20, 25
ROM, 5
Rotation, 14, 16
RTTI, 11
Run-time type in-

formation, 11
SAX, 29
Scale, 14, 16
Screen, 8
Screen rotation, 4
Screen size, 4 17,

19
Screens, 7
Scroll bar, 13, 13
Scroll view, 13, 13
Separator item, 17
Serialization, 28
Server, 4 6, 29
Settings, 29
SGI, 24
Shadow build, 8
Shared library, 5
Shared memory, 6
Sharing, 5 25, 28
Shear, 14, 16
Shift-JIS, 26
Signal, 9
Size, 19
Size policy, 20
Slider, 13
Slot, 9
Socket, 29
Source text, 26
Spacer item, 20
Spin box, 13

Spreadsheet, 13
Sprite, 14
SQL, 29
Stack, 28, 28
Static linking, 5
Status bar, 17
STL, 28
Storage, 5 26, 29
Stream, 28
Stretch, 20
Stretch factor, 20
String, 25
StrongARM, 4
Style, 24
Stylus, 7, 18
Sub-menu, 17
Subclassing, 10 14,

17
Sybase, 29
T9, 7
Tab widget, 23
Table, 13
TCP, 29
TDS, 29
Template, 28
Text editor, 13
Text rendering, 25
Text translation, 26
Theme, 24
Thread, 29
Time, 13
Timer, 15
Title bar, 12, 25
Toggle button, 18
Tool chain, 8
Toolbar, 17 18, 19
Tooltip, 18
Touch-panel, 7, 18
tr(), 26
Transformation, 14,

16
Translation, 11, 26
Tree view, 13
TrueType font, 6
.ts, 26
Type safety, 9
Type1 font, 6
UDP, 29
.ui, 23, 26
Unicode, 6, 7 25 28,

29

Unisys, 13
Unix, 4, 8
URL, 28
User input, 13
User settings, 29
Validation, 13
Value-based collec-

tion, 28
Vector, 28, 28
Vector image, 16
VGA16, 4
Vietnamese, 25
Viewport, 16
Virtual frame-

buffer, 8
Visualization, 14
VNC, 8
Voodoo3, 7
Vr41XX, 7
W3C, 29
Warning, 23
Web-browser, 30
What’s this?, 18
Widget, 11
Widget style, 24
Window, 23
Window manager,

25
Windowing sys-

tem, 5
Windows, 5, 8 24,

25
Wizard, 23, 29
Writing system, 25
X11, 4 5, 8
XBM, 13
XML, 29
XPM, 13

34

