Widgets with Qt

Ot 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark of
Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple Com-
puter Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are trademarks

of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt

documentation format.

Contents

QButton Class Reference i i i it i e e e e e e e e e e 5
QButtonGroup Class Reference e e e e 15
QCheckBox Class Reference i i i i i it e e e e e e e e e e e e e e e e e e 20
QCheckListltem Class Reference i i i it it e e e e e e e e e e e 27
QCheckTableltem Class Reference i i i i i i it e e e e e e e e e e 31
QComboBox Class Reference i i i i e e e e e e e e e e e 33
QComboTableltem Class Reference i it e e e e e e e e e e e 45
QDateEdit Class Reference i e e e e e e e e e e 48
QDateTimeEdit Class Reference v i i i i i i i e et e e e e e e e e e e e e e e 54
QDial Class Reference i i i it e e e e e e e e e e e e e e e e e e e 57
QFilePreview Class Reference 0 i i i i it it e et e e e e e e e e e e 65
QFrame Class Reference 0 i i i i i i e e e e e e e e e e e e e e 67
QGridView Class Reference i i i i i i e e e e e e e e e e e e e e e e 76
QGroupBox Class Reference i i e e e e e e e e e 81
QHButtonGroup Class Reference i ittt e e e e 87
QHGroupBox Class Reference e e e e e e e 89
IconView Module L e e e e e e 91
QIconView Class Reference i i i i it i e e e e e e e 92
QIconViewltem Class Reference i i i i i i e e e e e e e 113
QLabel Class Reference i i i i e e e e e e e e e e e e e 125
QLCDNumber Class Reference i i i i it e e e e e e e e e e e e e e e e e e e 134
QLineEdit Class Reference i i i i e e e e e e e e e e e e 141
QListBox Class Reference o v i i i i i i et e e e e e e e e e e e e e e 156
QListBoxItem Class Reference i i i i i it i e e e e e e e e e e e e 180
QListBoxPixmap Class Reference e e 184
QListBoxText Class Reference i i i i i i i et e e e e e e e e e e e e 187
QListView Class Reference i i i i it e e e e e e e e e e e e e e e e e 189

Contents 3

QListViewltem Class Reference i i i i i it it e e e e e e e e e e e e 212
QListViewItemlterator Class Reference i i i i it et e e e e 228
QMultiLineEdit Class Reference (obsolete) i i i i e e e e e 232
QProgressBar Class Reference i i i e e e e e e e e e e e 240
QPushButton Class Reference i i it et e e e e e e e e e e 245
QRadioButton Class Reference i i i i i e e e e e e e e 255
QRangeControl Class Reference i e e e e 261
QScrollBar Class Reference i i i i it e e e e e e e e e e e e e e 267
QScrollView Class Reference i i i i it e e e e e e e e e e e e e e e e e 275
QSizeGrip Class Reference i i i i e e e e e e e 295
QSizePolicy Class Reference i i i e e e e e e e e 297
QSlider Class Reference i i i i i it e et e e e e e e e e e e e e e e e e e 302
QSpacerltem Class Reference i i i it it i e e e e e e e e 310
QSpinBox Class Reference i e e e e e e e e e 312
QSplitter Class Reference i i i i e e e e e e e e e e e 324
QStatusBar Class Reference i i i i i i i i i e e e e e e e e e e e e 329
QTab Class Reference i i e e e e e e e e e e e 333
QTabBar Class Reference i i i i i i e e e e e e e e e e e e e e e 336
Table Module e e e e e e e e e e 343
QTable Class Reference i i e e e e e e e e e e e 344
QTableltem Class Reference i i i it et e e e e e e e e e e e e e e e 372
QTabWidget Class Reference i e e e e e e 380
QTextBrowser Class Reference i i i i i i i e e e e e e e e e 389
QTextEdit Class Reference i i i i i it e i e e et e e e e e e e e e e 393
QTimeEdit Class Reference. i i e e e e e e e e e 422
QVBox Class Reference i e e e e e e e 427
QVButtonGroup Class Reference i ittt e e 428
QVGroupBox Class Reference i e e e e e e 430
QWhatsThis Class Reference i i i i it e et e e e e e e e e e e 432
QWidget Class Reference i i i ittt e e e e e e e e e e e e 436
QWidgetFactory Class Reference i i e e 501
QWidgetltem Class Reference i i i i ittt e e e e e e e e e e e e 504
QWidgetStack Class Reference i i i i it it e e e e e e e e e e e e e e 506
Qt Xt/Motif Support EXtension i e e e e e e e e e e e 509

QXtApplication Class Reference i i i i i i e e e e e e e e 510
PP

Contents

QButton Class Reference

The QButton class is the abstract base class of button widgets, providing functionality common to buttons.
#i ncl ude <gbutton. h>
Inherits QWidget [p. 436].

Inherited by QCheckBox [p. 20], QPushButton [p. 245], QRadioButton [p. 255] and QToolButton [Dialogs and
Windows with Qt].

Public Members

m QButton (QWidget * parent = 0, const char * name = 0, WFlags f = 0)
m ~QButton ()

m QString text () const

m virtual void setText (const QString &)

m const QPixmap * pixmap () const

m virtual void setPixmap (const QPixmap &)

m QKeySequence accel () const

virtual void setAccel (const QKeySequence &)
bool isToggleButton () const

enum ToggleType { SingleShot, Toggle, Tristate }
ToggleType toggleType () const

m virtual void setDown (bool)

= bool isDown () const

= bool isOn () const

» enum ToggleState { Off, NoChange, On }
ToggleState state () const

bool autoResize () const (obsolete)

void setAutoResize (bool) (obsolete)

bool autoRepeat () const

virtual void setAutoRepeat (bool)

e bool isExclusiveToggle () const

e QButtonGroup * group () const

QButton Class Reference

Public Slots

= void animateClick ()
m void toggle ()

Signals

void pressed ()

void released ()

void clicked ()

void toggled (bool on)

void stateChanged (int state)

Properties

m QKeySequence accel — the accelerator associated with the button

m bool autoRepeat — whether autoRepeat is enabled

m bool autoResize — whether autoResize is enabled (obsolete)

m bool down — whether the button is pressed

m bool exclusiveToggle — whether the button is an exclusive toggle (read only)
m bool on — whether the button is toggled (read only)

m QPixmap pixmap — the pixmap shown on the button

m QString text — the text shown on the button

m bool toggleButton — whether the button is a toggle button (read only)
m ToggleState toggleState — whether the button is toggled (read only)

m ToggleType toggleType — the type of toggle on the button (read only)

Protected Members

void setToggleButton (bool b)

virtual void setToggleType (ToggleType type)
void setOn (bool on)

virtual void setState (ToggleState s)

virtual bool hitButton (const QPoint & pos) const
m virtual void drawButton (QPainter *)

m virtual void drawButtonLabel (QPainter *)

m virtual void paintEvent (QPaintEvent *)

QButton Class Reference 7

Detailed Description

The QButton class is the abstract base class of button widgets, providing functionality common to buttons.
If you want to create a button use QPushButton.

The QButton class implements an abstract button, and lets subclasses specify how to reply to user actions and how to
draw the button.

QButton provides both push and toggle buttons. The QRadioButton and QCheckBox classes provide only toggle but-
tons; QPushButton and QToolButton provide both toggle and push buttons.

Any button can have either a text or pixmap label. setText() sets the button to be a text button and setPixmap() sets
it to be a pixmap button. The text/pixmap is manipulated as necessary to create the "disabled" appearance when the
button is disabled.

QButton provides most of the states used for buttons:

isDown() determines whether the button is pressed down.

isOn() determines whether the button is on. Only toggle buttons can be switched on and off (see below).

isEnabled() determines whether the button can be pressed by the user.

setAutoRepeat() determines whether the button will auto-repeat if the user holds it down.

e setToggleButton() determines whether the button is a toggle button or not.

The difference between isDown() and isOn() is as follows: When the user clicks a toggle button to toggle it on, the
button is first pressed and then released into on state. When the user clicks it again (to toggle it off), the button moves
first to the pressed state, then to the off state (isOn() and isDown() are both FALSE).

Default buttons (as used in many dialogs) are provided by QPushButton::setDefault() and QPushBut-
ton::setAutoDefault().

QButton provides five signals:

1. pressed() is emitted when the left mouse button is pressed while the mouse cursor is inside the button.
2. released() is emitted when the left mouse button is released.

3. clicked() is emitted when the button is first pressed and then released when the accelerator key is typed, or when
animateClick() is called.

4. toggled(bool) is emitted when the state of a toggle button changes.

921

. stateChanged(int) is emitted when the state of a tristate toggle button changes.

If the button is a text button with "&" in its text, QButton creates an automatic accelerator key. This code creates a push
button labelled "Rock & Roll" (where the c is underscored). The button gets an automatic accelerator key, Alt+C:

QPushButton *p = new QPushButton("Ro&ck &% Roll", this);

In this example, when the user presses Alt+C the button will call animateClick().

You can also set a custom accelerator using the setAccel() function. This is useful mostly for pixmap buttons because
they have no automatic accelerator.

QPushButton *p;
p->set Pi xmap(QPi xmap("print.png"));
p->set Accel (ALT+Key_F7);

QButton Class Reference 8

All of the buttons provided by Qt (QPushButton, QToolButton, QCheckBox and QRadioButton) can display both text
and pixmaps.

To subclass QButton, you have to reimplement at least drawButton() (to draw the button’s outline) and drawBut-
tonLabel() (to draw its text or pixmap). It is generally advisable to reimplement sizeHint() as well, and sometimes
hitButton() (to determine whether a button press is within the button).

To reduce flickering, QButton::paintEvent() sets up a pixmap that the drawButton() function draws in. You should not
reimplement paintEvent() for a subclass of QButton unless you want to take over all drawing.

See also QButtonGroup [p. 15] and Abstract Widget Classes.

Member Type Documentation

QButton::ToggleState
This enum defines the state of a toggle button at any moment. The possible values are as follows:

e (Button:: O f - the button is in the "off" state
e (Button:: NoChange - the button is in the default/unchanged state
e (Button::On - the button is in the "on" state

QButton::ToggleType
This enum type defines what a button can do in response to a mouse/keyboard press:

e (Button:: SingleShot - pressing the button causes an action, then the button returns to the unpressed state.
e (Button::Toggl e - pressing the button toggles it between an On and and Off state.
e (Button::Tristate - pressing the button cycles between the three states On, Off and NoChange

Member Function Documentation

QButton::QButton (QWidget * parent = 0, const char * name = 0, WFlags f = 0)
Constructs a standard button with the parent parent and the name name using the widget flags f.

If parent is a QButtonGroup, this constructor calls QButtonGroup::insert().

QButton::~QButton ()

Destroys the button.

QKeySequence QButton::accel () const

Returns the accelerator associated with the button. See the "accel" [p. 13] property for details.

QButton Class Reference 9

void QButton::animateClick () [slot]

Performs an animated click: the button is pressed and released a short while later.
The pressed(), released(), clicked(), toggled(), and stateChanged() signals are emitted as appropriate.
This function does nothing if the button is disabled.

See also accel [p. 13].

bool QButton::autoRepeat () const

Returns TRUE if autoRepeat is enabled; otherwise returns FALSE. See the "autoRepeat" [p. 13] property for details.

bool QButton::autoResize () const

Returns TRUE if autoResize is enabled; otherwise returns FALSE. See the "autoResize" [p. 13] property for details.

void QButton::clicked () [signal]

This signal is emitted when the button is activated (i.e. first pressed down and then released when the mouse cursor is
inside the button), when the accelerator key is typed or when animateClick() is called.

The QButtonGroup::clicked() signal does the same job, if you want to connect several buttons to the same slot.

See also pressed() [p. 10], released() [p. 11] and toggled() [p. 12].

Examples: fonts/simple-qfont-demo/viewer.cpp, listbox/listbox.cpp, network/clientserver/client/client.cpp,
network/ftpclient/ftpmainwindow.cpp, richtext/richtext.cpp, t2/main.cpp and t4/main.cpp.

void QButton::drawButton (QPainter *) [virtual protected]

Draws the button. The default implementation does nothing.

This virtual function is reimplemented by subclasses to draw real buttons. At some point in time, these reimplementa-
tions are supposed to call drawButtonLabel().

See also drawButtonLabel() [p. 9] and paintEvent() [p. 10].

void QButton::drawButtonLabel (QPainter *) [virtual protected]

Draws the button text or pixmap.
This virtual function is reimplemented by subclasses to draw real buttons. It’s invoked by drawButton().
See also drawButton() [p. 9] and paintEvent() [p. 10].

Example: tictac/tictac.cpp.

QButtonGroup * QButton::group () const

Returns a pointer to the group of which this button is a member.

QButton Class Reference 10

If the button is not a member of any QButtonGroup, this function returns O.

See also QButtonGroup [p. 15].

bool QButton::hitButton (const QPoint & pos) const [virtual protected]
Returns TRUE if pos is inside the clickable button rectangle, or FALSE if it is outside.

By default, the clickable area is the entire widget. Subclasses may reimplement it, though.
bool QButton::isDown () const

Returns TRUE if the button is pressed; otherwise returns FALSE. See the "down" [p. 13] property for details.

bool QButton::isExclusiveToggle () const

Returns TRUE if the button is an exclusive toggle; otherwise returns FALSE. See the "exclusiveToggle" [p. 13] property
for details.

bool QButton::isOn () const

Returns TRUE if the button is toggled; otherwise returns FALSE. See the "on" [p. 13] property for details.

bool QButton::isToggleButton () const

Returns TRUE if the button is a toggle button; otherwise returns FALSE. See the "toggleButton" [p. 14] property for
details.

void QButton::paintEvent (QPaintEvent *) [virtual protected]

Handles paint events for buttons. Small and typically complex buttons are painted double-buffered to reduce flicker.
The actually drawing is done in the virtual functions drawButton() and drawButtonLabel().

See also drawButton() [p. 9] and drawButtonLabel() [p. 9].
Reimplemented from QWidget [p. 466].

const QPixmap * QButton::pixmap () const

Returns the pixmap shown on the button. See the "pixmap" [p. 14] property for details.

void QButton::pressed () [signal]

This signal is emitted when the button is pressed down.

See also released() [p. 11] and clicked() [p. 91.

QButton Class Reference 11

Examples: network/httpd/httpd.cpp and popup/popup.cpp.

void QButton::released () [signal]

This signal is emitted when the button is released.

See also pressed() [p. 10], clicked() [p. 9] and toggled() [p. 12].

void QButton::setAccel (const QKeySequence &) [virtual]

Sets the accelerator associated with the button. See the "accel" [p. 13] property for details.

void QButton::setAutoRepeat (bool) [virtual]

Sets whether autoRepeat is enabled. See the "autoRepeat" [p. 13] property for details.

void QButton::setAutoResize (bool)

Sets whether autoResize is enabled. See the "autoResize" [p. 13] property for details.

void QButton::setDown (bool) [virtual]

Sets whether the button is pressed. See the "down" [p. 13] property for details.

void QButton::setOn (bool on) [protected]

Sets the state of this button to On when on is TRUE, otherwise to Off.,

See also toggleState [p. 14].

void QButton::setPixmap (const QPixmap &) [virtual]

Sets the pixmap shown on the button. See the "pixmap" [p. 14] property for details.

void QButton::setState (ToggleState s) [virtual protected]

Sets the toggle state of the button to s. s can be Off, NoChange or On.

void QButton::setText (const QString &) [virtual]

Sets the text shown on the button. See the "text" [p. 14] property for details.

QButton Class Reference 12

void QButton::setToggleButton (bool b) [protected]

Makes this button a toggle button when b is TRUE, otherwise it becomes a normal button.

See also toggleButton [p. 14].

void QButton::setToggleType (ToggleType type) [virtual protected]

Sets the toggle type of the button to type.
type can be set to SingleShot, Toggle and Tri St at e.

ToggleState QButton::state () const

Returns TRUE if the button is toggled; otherwise returns FALSE. See the "toggleState" [p. 14] property for details.

void QButton::stateChanged (int state) [signal]

This signal is emitted whenever a toggle button changes status. state is 2 if the button is on, 1 if it is in the "no change"
state or O if the button is off.

This may be the result of a user action, toggle() slot activation, setState(), or because setOn() was called.

See also clicked() [p. 91.

QString QButton::text () const

Returns the text shown on the button. See the "text" [p. 14] property for details.

void QButton::toggle () [slot]

Toggles the state of a toggle button.

See also on [p. 13], setOn() [p. 111, toggled() [p. 12] and toggleButton [p. 14].

ToggleType QButton::toggleType () const

Returns the type of toggle on the button. See the "toggleType" [p. 14] property for details.

void QButton::toggled (bool on) [signal]

This signal is emitted whenever a toggle button changes status. on is TRUE if the button is on, or FALSE if the button
is off.
This may be the result of a user action, toggle() slot activation, or because setOn() was called.

See also clicked() [p. 91.
Example: listbox/listbox.cpp.

QButton Class Reference 13

Property Documentation

QKeySequence accel

This property holds the accelerator associated with the button.
This property is O if there is no accelerator set. If you set this property to 0 then any current accelerator is removed.

Set this property’s value with setAccel() and get this property’s value with accel().

bool autoRepeat

This property holds whether autoRepeat is enabled.

If autoRepeat is enabled then the clicked() signal is emitted at regular intervals if the button is down. This property
has no effect on toggle buttons. autoRepeat is off by default.

Set this property’s value with setAutoRepeat() and get this property’s value with autoRepeat().

bool autoResize

This property holds whether autoResize is enabled.
This property is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
If autoResize is enabled then the button will resize itself whenever the contents are changed.

Set this property’s value with setAutoResize() and get this property’s value with autoResize().

bool down

This property holds whether the button is pressed.

If this property is TRUE, the button is set to be pressed down. The signals pressed() and clicked() are not emitted if
you set this property to TRUE. The default is FALSE.

Set this property’s value with setDown() and get this property’s value with isDown().

bool exclusiveToggle

This property holds whether the button is an exclusive toggle.

If this property is TRUE and the button is in a QButtonGroup, the button can only be toggled off by another one being
toggled on. The default is FALSE.

Get this property’s value with isExclusiveToggle().
bool on

This property holds whether the button is toggled.

This property should only be set for toggle buttons.

QButton Class Reference 14

Get this property’s value with isOn().

QPixmap pixmap

This property holds the pixmap shown on the button.

If the pixmap is monochrome (i.e., it is a QBitmap or its depth is 1) and it does not have a mask, this property will
set the pixmap to be its own mask. The purpose of this is to draw transparent bitmaps which are important for toggle
buttons, for example.

pixmap() returns O if no pixmap was set.

Set this property’s value with setPixmap() and get this property’s value with pixmap().

QString text

This property holds the text shown on the button.

This property will return a null string if the button has no text. If the text has an ampersand ('&’) in it, then an
accelerator is automatically created for it using the character after the '&’ as the accelerator key.

There is no default text.

Set this property’s value with setText() and get this property’s value with text().

bool toggleButton

This property holds whether the button is a toggle button.
The default value is FALSE.

Get this property’s value with isToggleButton().

ToggleState toggleState

This property holds whether the button is toggled.
If this is property is changed then it does not cause the button to be repainted.

Get this property’s value with state().

ToggleType toggleType

This property holds the type of toggle on the button.
The default toggle type is SingleShot.
Get this property’s value with toggleType().

QButtonGroup Class Reference

The QButtonGroup widget organizes QButton widgets in a group.
#i ncl ude <gbuttongroup. h>

Inherits QGroupBox [p. 81].

Inherited by QHButtonGroup [p. 87] and QVButtonGroup [p. 428].

Public Members

» QButtonGroup (QWidget * parent = 0, const char * name = 0)

m QButtonGroup (const QString & title, QWidget * parent = 0, const char * name = 0)

» QButtonGroup (int strips, Orientation orientation, QWidget * parent = 0, const char * name = 0)

m QButtonGroup (int strips, Orientation orientation, const QString & title, QWidget * parent = 0,
const char * name = 0)

= bool isExclusive () const

= bool isRadioButtonExclusive () const

m virtual void setExclusive (bool)

m virtual void setRadioButtonExclusive (bool)

int insert (QButton * button, int id = -1)

void remove (QButton * button)

QButton * find (int id) const

int id (QButton * button) const

int count () const

virtual void setButton (int id)

virtual void moveFocus (int key)
QButton * selected () const

Signals
m void pressed (int id)

m void released (int id)
m void clicked (int id)

15

QButtonGroup Class Reference 16

Properties

m bool exclusive — whether the button group is exclusive
m bool radioButtonExclusive — whether the radiobuttons in the group are exclusive

Detailed Description

The QButtonGroup widget organizes QButton widgets in a group.

A button group widget makes it easier to deal with groups of buttons. Each button in a button group has a unique
identifier. The button group emits a clicked() signal with this identifier when the button is clicked. This makes a button
group particularly useful when you have several similar buttons and want to connect all their clicked() signals to one
slot.

An exclusive button group switches off all toggle buttons except the one that was clicked. A button group is by default
non-exclusive. By default, all radio buttons that are inserted will be mutually exclusive even if the button group is
non-exclusive. (See setRadioButtonExclusive().)

There are two ways of using a button group:

e The button group is a parent widget of a number of buttons, i.e., the button group is the parent argument
in the button constructor. The buttons are assigned identifiers 0, 1, 2, etc. in the order they are created. A
QButtonGroup can display a frame and a title because it inherits QGroupBox.

e The button group is an invisible widget and the contained buttons have some other parent widget. A button must
then be manually inserted using the insert() function with an identifier.

A button can be removed from the group with remove(). A pointer to a button with a given id can be obtained using
find(). The id of a button is available using id(). A button can be set on with setButton(). The number of buttons in
the group is returned by count().

Button group Button group

4 First @ First
~ Second " Second

~ Third Third

See also QButton [p. 5], QPushButton [p. 245], QCheckBox [p. 20], QRadioButton [p. 255], Widget Appearance and
Style, Layout Management and Organizers.

Member Function Documentation

QButtonGroup::QButtonGroup (QWidget * parent = 0, const char * name = 0)

Constructs a button group with no title.

The parent and name arguments are passed to the QWidget constructor.

QButtonGroup::QButtonGroup (const QString & title, QWidget * parent = 0,
const char * name = 0)

Constructs a button group with the title title.

QButtonGroup Class Reference 17
The parent and name arguments are passed to the QWidget constructor.

QButtonGroup::QButtonGroup (int strips, Orientation orientation, QWidget * parent = 0,
const char * name = 0)

Constructs a button group with no title. Child widgets will be arranged in strips rows or columns (depending on
orientation).

The parent and name arguments are passed to the QWidget constructor.

QButtonGroup::QButtonGroup (int strips, Orientation orientation, const QString & title,
QWidget * parent = 0, const char * name = 0)

Constructs a button group with title title. Child widgets will be arranged in strips rows or columns (depending on
orientation).

The parent and name arguments are passed to the QWidget constructor.

void QButtonGroup::clicked (int id) [signal]

This signal is emitted when a button in the group is clicked. The id argument is the button’s identifier.
See also QButton::clicked() [p. 9] and insert() [p. 17].

Examples: drawdemo/drawdemo.cpp and xform/xform.cpp.

int QButtonGroup::count () const

Returns the number of buttons in the group.

QButton * QButtonGroup::find (int id) const

Finds and returns a pointer to the button with the specified identifier id.

Returns null if the button was not found.

int QButtonGroup::id (QButton * button) const

Returns the id of button, or -1 if button is not a member of this group.

int QButtonGroup::insert (QButton * button, int id = -1)

Inserts the button with the identifier id into the button group. Returns the button identifier.

Buttons are normally inserted into a button group automatically by giving the button group as the parent when the
button is constructed. So it is not necessary to manually insert buttons that have this button group as their parent
widget. An exception is when you want custom identifiers instead of the default 0, 1, 2, etc.

QButtonGroup Class Reference 18

The button is assigned the identifier id or an automatically generated identifier. It works as follows: If id >= 0, this
identifier is assigned. If id == -1 (default), the identifier is equal to the number of buttons in the group. If id is any
other negative integer, for instance -2, a unique identifier (negative integer <= -2) is generated. No button has an id
of -1.

See also find() [p. 171, remove() [p. 18] and exclusive [p. 19].
Examples: listbox/listbox.cpp and xform/xform.cpp.
bool QButtonGroup::isExclusive () const

Returns TRUE if the button group is exclusive; otherwise returns FALSE. See the "exclusive" [p. 19] property for details.

bool QButtonGroup::isRadioButtonExclusive () const

Returns TRUE if the radiobuttons in the group are exclusive; otherwise returns FALSE. See the "radioButtonExclusive"
[p. 19] property for details.

void QButtonGroup::moveFocus (int key) [virtual]

Moves the keyboard focus according to key, and if appropriate checks the new focus item.

This function does nothing unless the keyboard focus points to one of the button group members and key is one of
Key Up, Key Down, Key Left and Key Right.

void QButtonGroup::pressed (int id) [signal]

This signal is emitted when a button in the group is pressed. The id argument is the button’s identifier.

void QButtonGroup::released (int id) [signal]

This signal is emitted when a button in the group is released. The id argument is the button’s identifier.

void QButtonGroup::remove (QButton * button)

Removes the button from the button group.

See also insert() [p. 171.

QButton * QButtonGroup::selected () const

Returns a pointer to the selected toggle button if exactly one is selected; returns 0 otherwise.

void QButtonGroup::setButton (int id) [virtual]

Sets the button with id id to be on; if this is an exclusive group, all other buttons in the group will be set to off.

QButtonGroup Class Reference 19

void QButtonGroup::setExclusive (bool) [virtual]

Sets whether the button group is exclusive. See the "exclusive" [p. 19] property for details.

void QButtonGroup::setRadioButtonExclusive (bool) [virtual]

Sets whether the radiobuttons in the group are exclusive. See the "radioButtonExclusive" [p. 19] property for details.

Property Documentation

bool exclusive

This property holds whether the button group is exclusive.

If this property is TRUE, then the buttons in the group are toggled, and to untoggle a button you must click on another
button in the group. The default value is FALSE.

Set this property’s value with setExclusive() and get this property’s value with isExclusive().

bool radioButtonExclusive

This property holds whether the radiobuttons in the group are exclusive.
If this property is TRUE (the default), the radiobuttons in the group are treated exclusively.

Set this property’s value with setRadioButtonExclusive() and get this property’s value with isRadioButtonExclusive().

QCheckBox Class Reference

The QCheckBox widget provides a checkbox with a text label.
#i ncl ude <qcheckbox. h>

Inherits QButton [p. 5].

Public Members

m QCheckBox (QWidget * parent, const char * name = 0)

m QCheckBox (const QString & text, QWidget * parent, const char * name = 0)
= bool isChecked () const

m void setNoChange ()

m void setTristate (bool y = TRUE)

m bool isTristate () const

Public Slots

m void setChecked (bool check)

Important Inherited Members

QString text () const

m virtual void setText (const QString &)

m const QPixmap * pixmap () const

virtual void setPixmap (const QPixmap &)
QKeySequence accel () const

virtual void setAccel (const QKeySequence &)
bool isToggleButton () const

virtual void setDown (bool)

bool isDown () const
bool isOn () const

m ToggleState state () const
m bool autoRepeat () const
m virtual void setAutoRepeat (bool)

20

QCheckBox Class Reference 21

m bool isExclusiveToggle () const
m QButtonGroup * group () const
m void toggle ()

void pressed ()

void released ()

void clicked ()

void toggled (bool on)

void stateChanged (int state)

Properties

m bool autoMask — whether the checkbox is automatically masked (read only)
= bool checked — whether the checkbox is checked
= bool tristate — whether the checkbox is a tri-state checkbox

Detailed Description

The QCheckBox widget provides a checkbox with a text label.

QCheckBox and QRadioButton are both option buttons. That is, they can be switched on (checked) or off (unchecked).
The classes differ in how the choices for the user are restricted. Radio buttons define a "one of many" choice, whereas
checkboxes provide "many of many" choices.

Although it is technically possible to implement radio behavior with checkboxes and vice versa, we strongly recom-
mended sticking with the well-known semantics.

A QButtonGroup can be used to group check buttons visually.

Whenever a checkbox is checked or cleared it emits the signal toggled(). Connect to this signal if you want to trigger an
action each time the checkbox changes state. You can use isChecked() to query whether or not a checkbox is checked.

In addition to the usual checked and unchecked states, QCheckBox optionally provides a third state to indicate "no
change". This is useful whenever you need to give the user the option of neither checking nor unchecking a checkbox.
If you need this third state, enable it with setTristate() and use state() to query the current toggle state. When a tristate
checkbox changes state, it emits the stateChanged() signal.

Just like QPushButton, a checkbox can display text or a pixmap. The text can be set in the constructor or with setText();
the pixmap is set with setPixmap().

W First M First
_| Second ™ Second
_| Third I~ Third

See also QButton [p. 5], QRadioButton [p. 255], Fowler: Check Box and Basic Widgets.

Member Function Documentation

QCheckBox::QCheckBox (QWidget * parent, const char * name = 0)

Constructs a checkbox with no text.

QCheckBox Class Reference 22

The parent and name arguments are sent to the QWidget constructor.

QCheckBox::QCheckBox (const QString & text, QWidget * parent, const char * name = 0)

Constructs a checkbox with text text.

The parent and name arguments are sent to the QWidget constructor.

QKeySequence QButton::accel () const

Returns the accelerator associated with the button. See the "accel" [p. 13] property for details.

bool QButton::autoRepeat () const

Returns TRUE if autoRepeat is enabled; otherwise returns FALSE. See the "autoRepeat" [p. 13] property for details.

void QButton::clicked () [signal]

This signal is emitted when the button is activated (i.e. first pressed down and then released when the mouse cursor is
inside the button), when the accelerator key is typed or when animateClick() is called.

The QButtonGroup::clicked() signal does the same job, if you want to connect several buttons to the same slot.
See also pressed() [p. 10], released() [p. 11] and toggled() [p. 12].

Examples: fonts/simple-qfont-demo/viewer.cpp, listbox/listbox.cpp, network/clientserver/client/client.cpp,
network/ftpclient/ftpmainwindow.cpp, richtext/richtext.cpp, t2/main.cpp and t4/main.cpp.

QButtonGroup * QButton::group () const

Returns a pointer to the group of which this button is a member.
If the button is not a member of any QButtonGroup, this function returns O.

See also QButtonGroup [p. 15].

bool QCheckBox::isChecked () const

Returns TRUE if the checkbox is checked; otherwise returns FALSE. See the "checked" [p. 25] property for details.

bool QButton::isDown () const

Returns TRUE if the button is pressed; otherwise returns FALSE. See the "down" [p. 13] property for details.

QCheckBox Class Reference 23

bool QButton::isExclusiveToggle () const

Returns TRUE if the button is an exclusive toggle; otherwise returns FALSE. See the "exclusiveToggle" [p. 13] property
for details.

bool QButton::isOn () const

Returns TRUE if the button is toggled; otherwise returns FALSE. See the "on" [p. 13] property for details.

bool QButton::isToggleButton () const

Returns TRUE if the button is a toggle button; otherwise returns FALSE. See the "toggleButton" [p. 14] property for
details.

bool QCheckBox::isTristate () const

Returns TRUE if the checkbox is a tri-state checkbox; otherwise returns FALSE. See the "tristate" [p. 26] property for
details.

const QPixmap * QButton::pixmap () const

Returns the pixmap shown on the button. See the "pixmap" [p. 14] property for details.

void QButton::pressed () [signal]

This signal is emitted when the button is pressed down.
See also released() [p. 11] and clicked() [p. 91.
Examples: network/httpd/httpd.cpp and popup/popup.cpp.

void QButton::released () [signal]

This signal is emitted when the button is released.

See also pressed() [p. 10], clicked() [p. 9] and toggled() [p. 12].

void QButton::setAccel (const QKeySequence &) [virtual]

Sets the accelerator associated with the button. See the "accel” [p. 13] property for details.

void QButton::setAutoRepeat (bool) [virtual]

Sets whether autoRepeat is enabled. See the "autoRepeat" [p. 13] property for details.

QCheckBox Class Reference 24

void QCheckBox::setChecked (bool check) [slot]

Sets whether the checkbox is checked to check. See the "checked" [p. 25] property for details.

void QButton::setDown (bool) [virtual]

Sets whether the button is pressed. See the "down" [p. 13] property for details.

void QCheckBox::setNoChange ()

Sets the checkbox to the "no change" state.

See also tristate [p. 26].

void QButton::setPixmap (const QPixmap &) [virtual]

Sets the pixmap shown on the button. See the "pixmap" [p. 14] property for details.

void QButton::setText (const QString &) [virtual]

Sets the text shown on the button. See the "text" [p. 14] property for details.

void QCheckBox::setTristate (bool y = TRUE)

Sets whether the checkbox is a tri-state checkbox to y. See the "tristate" [p. 26] property for details.

ToggleState QButton::state () const

Returns TRUE if the button is toggled; otherwise returns FALSE. See the "toggleState" [p. 14] property for details.

void QButton::stateChanged (int state) [signal]

This signal is emitted whenever a toggle button changes status. state is 2 if the button is on, 1 if it is in the "no change'
state or 0 if the button is off.

This may be the result of a user action, toggle() slot activation, setState(), or because setOn() was called.

See also clicked() [p. 91.

QString QButton::text () const

Returns the text shown on the button. See the "text" [p. 14] property for details.

QCheckBox Class Reference 25

void QButton::toggle () [slot]

Toggles the state of a toggle button.

See also on [p. 13], setOn() [p. 111, toggled() [p. 12] and toggleButton [p. 14].

void QButton::toggled (bool on) [signal]

This signal is emitted whenever a toggle button changes status. on is TRUE if the button is on, or FALSE if the button
is off.

This may be the result of a user action, toggle() slot activation, or because setOn() was called.
See also clicked() [p. 91.

Example: listbox/listbox.cpp.

Property Documentation

QKeySequence accel

This property holds the accelerator associated with the button.
This property is 0 if there is no accelerator set. If you set this property to O then any current accelerator is removed.

Set this property’s value with setAccel() and get this property’s value with accel().

bool autoMask

This property holds whether the checkbox is automatically masked.
See also QWidget::autoMask [p. 485].

bool autoRepeat

This property holds whether autoRepeat is enabled.

If autoRepeat is enabled then the clicked() signal is emitted at regular intervals if the button is down. This property
has no effect on toggle buttons. autoRepeat is off by default.

Set this property’s value with setAutoRepeat() and get this property’s value with autoRepeat().

bool checked

This property holds whether the checkbox is checked.
The default is unchecked, i.e. FALSE.

Set this property’s value with setChecked() and get this property’s value with isChecked().

QCheckBox Class Reference 26

QPixmap pixmap

This property holds the pixmap shown on the button.

If the pixmap is monochrome (i.e., it is a QBitmap or its depth is 1) and it does not have a mask, this property will
set the pixmap to be its own mask. The purpose of this is to draw transparent bitmaps which are important for toggle
buttons, for example.

pixmap() returns O if no pixmap was set.

Set this property’s value with setPixmap() and get this property’s value with pixmap().

QString text

This property holds the text shown on the button.

This property will return a null string if the button has no text. If the text has an ampersand ('&’) in it, then an
accelerator is automatically created for it using the character after the '&’ as the accelerator key.

There is no default text.

Set this property’s value with setText() and get this property’s value with text().

bool tristate

This property holds whether the checkbox is a tri-state checkbox.
The default is two-state, i.e. tri-state is FALSE.

Set this property’s value with setTristate() and get this property’s value with isTristate().

QCheckListItem Class Reference

The QCheckListItem class provides checkable list view items.
#include <qglistview h>

Inherits QListViewItem [p. 212].

Public Members

enum Type { RadioButton, CheckBox, Controller }

QCheckListItem (QCheckListItem * parent, const QString & text, Type tt = Controller)
QCheckListItem (QListViewltem * parent, const QString & text, Type tt = Controller)
QCheckListItem (QListView * parent, const QString & text, Type tt = Controller)
QCheckListItem (QListViewItem * parent, const QString & text, const QPixmap & p)
QCheckListItem (QListView * parent, const QString & text, const QPixmap & p)
~QCheckListIltem ()

virtual void paintCell (QPainter * p, const QColorGroup & cg, int column, int width, int align)
virtual void paintFocus (QPainter * p, const QColorGroup & cg, const QRect &)
virtual void setOn (bool b)

bool isOn () const

Type type () const

QString text () const

virtual int rtti () const

Protected Members
m virtual void activate ()

m void turnOffChild ()
m virtual void stateChange (bool)

Detailed Description

The QCheckListItem class provides checkable list view items.
There are three types of check list items: checkboxes, radio buttons and controllers.

Checkboxes may be inserted at the top level in the list view. A radio button must be the child of a controller.

27

QCheckListItem Class Reference 28

The item can be checked or unchecked with setOn(). Its type can be retrieved with type() and its text retrieved with
text().

See also Advanced Widgets.

Member Type Documentation

QCheckListIitem::Type
This enum type specifies a QCheckListItem’s type:

e (CheckLi st!tem : RadioButton
e (CheckLi st1tem : CheckBox
e (CheckListltem: Controller

Member Function Documentation

QCheckListItem::QCheckListItem (QCheckListitem * parent, const QString & text, Type tt =
Controller)

Constructs a checkable item with parent parent, text text and type tt. Note that a RadioButton must be the child of a
Controller, otherwise it will not toggle.

QCheckListItem::QCheckListItem (QListViewItem * parent, const QString & text, Type tt =
Controller)

Constructs a checkable item with parent parent, text text and type tt. Note that this item must not be a RadioButton.
Radio buttons must be children of a Controller.

QCheckListIitem::QCheckListItem (QListView * parent, const QString & text, Type tt =
Controller)

Constructs a checkable item with parent parent, text text and type tt. Note that tt must not be RadioButton. Radio
buttons must be children of a Controller.

QCheckListItem::QCheckListItem (QListViewItem * parent, const QString & text,
const QPixmap & p)

Constructs a Controller item with parent parent, text text and pixmap p.

QCheckListItem::QCheckListItem (QListView * parent, const QString & text,
const QPixmap & p)

Constructs a Controller item with parent parent, text text and pixmap p.

QCheckListItem Class Reference 29

QCheckListItem::~QCheckListItem ()

Destroys the item, deleting all its children, freeing up all allocated resources.

void QCheckListIltem::activate () [virtual protected]

Toggle check box or set radio button to on.

Reimplemented from QListViewlItem [p. 217].

bool QCheckListItem::isOn () const

Returns TRUE if the item is toggled on; otherwise returns FALSE.

void QCheckListItem::paintCell (QPainter * p, const QColorGroup & cg, int column,
int width, int align) [virtual]

Paints the item using the painter p and the color group cg. The item is in column column, has width width and is aligned
align. (See Qt::AlignmentFlags for valid alignments.)

Reimplemented from QListViewlItem [p. 222].

void QCheckListItem::paintFocus (QPainter * p, const QColorGroup & cg,
const QRect & r) [virtual]

Draws the focus rectangle r using the color group cg on the painter p.
Reimplemented from QListViewlItem [p. 222].
int QCheckListItem::rtti () const [virtual]

Returns 1.

Make your derived classes return their own values for rtti(), and you can distinguish between listview items. You
should use values greater than 1000 preferably a large random number, to allow for extensions to this class.

Reimplemented from QListViewlItem [p. 223].

void QCheckListItem::setOn (bool b) [virtual]

Sets the button on if b is TRUE, otherwise sets it off. Maintains radio button exclusivity.

void QCheckListItem::stateChange (bool) [virtual protected]

This virtual function is called when the item changes its on/off state.

QCheckListItem Class Reference

QString QCheckListItem::text () const

Returns the text of the item.

void QCheckListItem::turnOffChild () [protected]

If this is a Controller that has RadioButton children, turn off the child that is on.

Type QCheckListIltem::type () const

Returns the type of this item.

30

QCheckTableItem Class Reference

The QCheckTableltem class provides checkboxes in QTables.
This class is part of the table module.
#include <qgtable. h>

Inherits QTableltem [p. 372].

Public Members

m QCheckTableltem (QTable * table, const QString & txt)
m virtual void setChecked (bool b)

= bool isChecked () const

m virtual int rtti () const

Detailed Description

The QCheckTableltem class provides checkboxes in QTables.

A QCheckTableltem is a table item which looks and behaves like a checkbox. The advantage of using QCheckTableltems
rather than real checkboxes is that a QCheckTableltem uses far less resources than a real checkbox. When the cell has
the focus it displays a real checkbox which the user can interact with. When the cell does not have the focus the cell
looks like a checkbox. Pixmaps may not be used in QCheckTableltems.

QCheckTableltem items have the edit type WhenCurrent (see EditType).

To change the checkbox’s label use setText(). The checkbox can be checked and unchecked with setChecked() and its
state retrieved using isChecked().

To populate a table cell with a QCheckTableltem use QTable::setltem().

QCheckTableltems can be distinguished from QTableltems and QComboTableltems using their Run Time Type Identifi-
cation (rtti) value.

See also rtti() [p. 32], EditType [p. 374] and Advanced Widgets.

31

QCheckTableltem Class Reference 32

Member Function Documentation

QCheckTableltem::QCheckTableltem (QTable * table, const QString & txt)

Creates a QCheckTableItem with an EditType of WhenCurrent as a child of table. The checkbox is initially unchecked
and its label is set to the string txt.

bool QCheckTableltem::isChecked () const

Returns TRUE if the checkbox table item is checked; otherwise returns FALSE.

See also setChecked() [p. 32].

int QCheckTableltem::rtti () const [virtual]

Returns 2.

Make your derived classes return their own values for rtti()to distinguish between different table item subclasses. You
should use values greater than 1000, preferably a large random number, to allow for extensions to this class.

See also QTableltem::rtti() [p. 3771.
Reimplemented from QTableltem [p. 377].

void QCheckTableItem::setChecked (bool b) [virtual]

If b is TRUE the checkbox is checked; if b is FALSE the checkbox is unchecked.
See also isChecked() [p. 32].

QComboBox Class Reference

The QComboBox widget is a combined button and popup list.
#i ncl ude <gcombobox. h>

Inherits QWidget [p. 436].

Public Members

m QComboBox (QWidget * parent = 0, const char * name = 0)

QComboBox (bool rw, QWidget * parent = 0, const char * name = 0)

= ~QComboBox ()

int count () const

void insertStringList (const QStringList & list, int index = -1)

void insertStrList (const QStrList & list, int index = -1)

void insertStrList (const QStrList * list, int index = -1)

void insertStrList (const char ** strings, int numStrings = -1, int index = -1)

void insertItem (const QString & t, int index = -1)

m void insertItem (const QPixmap & pixmap, int index = -1)

m void insertltem (const QPixmap & pixmap, const QString & text, int index = -1)
void removeltem (int index)

int currentItem () const

virtual void setCurrentItem (int index)

QString currentText () const

virtual void setCurrentText (const QString &)
QString text (int index) const

const QPixmap * pixmap (int index) const

m void changeltem (const QString & t, int index)

m void changeltem (const QPixmap & im, int index)
void changeltem (const QPixmap & im, const QString & t, int index)
bool autoResize () const (obsolete)

virtual void setAutoResize (bool) (obsolete)
virtual void setPalette (const QPalette & palette)
virtual void setFont (const QFont & font)

virtual void setSizeLimit (int)

m int sizeLimit () const
m virtual void setMaxCount (int)

33

QComboBox Class Reference

int maxCount () const

enum Policy { Nolnsertion, AtTop, AtCurrent, AtBottom, AfterCurrent, BeforeCurrent }
virtual void setInsertionPolicy (Policy policy)
Policy insertionPolicy () const

virtual void setValidator (const QValidator * v)
const QValidator * validator () const

virtual void setListBox (QListBox * newListBox)
QListBox * listBox () const

virtual void setLineEdit (QLineEdit * edit)
QLineEdit * lineEdit () const

virtual void setAutoCompletion (bool)

bool autoCompletion () const

void setDuplicatesEnabled (bool enable)

bool duplicatesEnabled () const

bool editable () const

void setEditable (bool)

virtual void popup ()

Public Slots

void clear ()

void clearValidator ()

void clearEdit ()

virtual void setEditText (const QString & newText)

Signals

m void activated (int index)

» void highlighted (int index)

m void activated (const QString & string)

» void highlighted (const QString & string)
m void textChanged (const QString & string)

Properties

m bool autoCompletion — whether auto-completion is enabled

m bool autoMask — whether the combobox is automatically masked (read only)
m bool autoResize — whether auto resize is enabled (obsolete)

m int count — the number of items in the combobox (read only)

m int currentItem — the index of the current item in the combobox

m QString currentText — the text of the combobox’s current item

m bool duplicatesEnabled — whether duplicates are allowed

= bool editable — whether the combobox is editable

Policy insertionPolicy — the position of the items inserted by the user

int maxCount — the maximum number of items allowed in the combobox
int sizeLimit — the maximum on-screen size of the combobox

34

QComboBox Class Reference 35

Detailed Description

The QComboBox widget is a combined button and popup list.

A combobox is a selection widget which displays the current item and can pop up a list of items. A combobox may be
editable in which case the user can enter arbitrary strings.

Since comboboxes occupy little screen space and always display the current item, they are well suited to displaying
items that the user will want to see, such as font family or size. Using a combobox the user can always see which item
they’ve selected with the minimum amount of screen space being used.

QComboBox supports three different display styles: Aqua/Motif 1.x, Motif 2.0 and Windows 95. In Motif 1.x, a com-
bobox was called XmOptionMenu. In Motif 2.0, OSF introduced an improved combobox and named that XmComboBox.
QComboBox provides both.

QComboBox provides two different constructors. The simplest constructor creates an old-style combobox in Motif (or
Aqua) style:

QConboBox *c¢ = new QComboBox(this, "read-only conbobox");

The other constructor creates a new-style combobox in Motif style, and can create both read-only and read-write
comboboxes:

QConboBox *cl
QConboBox *c2

new QConmboBox(FALSE, this, "read-only conbobox");
new QConmboBox(TRUE, this, "read-wite conbobox");

New-style comboboxes use a list box in both Motif and Windows styles, and both the content size and the on-screen
size of the list box can be limited with sizeLimit() and setMaxCount() respectively. Old-style comboboxes use a popup
in Aqua and Motif style, and that popup will happily grow larger than the desktop if you put enough data into it.

The two constructors create identical-looking comboboxes in Windows style.

Comboboxes can contain pixmaps as well as strings; the insertltem() and changeltem() functions are suitably over-
loaded. For read-write comboboxes, the function clearEdit() is provided, to clear the displayed string without changing
the combobox’s contents.

A combobox emits two signals, activated() and highlighted(), when a new item has been activated (selected) or
highlighted (made current). Both signals exist in two versions, one with a QString argument and one with an i nt
argument. If the user highlights or activates a pixmap, only the i nt signals are emitted. Whenever the text of an
editable combobox is changed the textChanged() signal is emitted.

When the user enters a new string in a read-write combobox, the widget may or may not insert it, and it can insert it
in several locations. The default policy is is AtBottom but you can change this using setInsertionPolicy().

It is possible to constrain the input to an editable combobox using QValidator; see setValidator(). By default, all input
is accepted.

If the combo box is not editable then it has a default focusPolicy() of TabFocus, i.e. it will not grab focus if clicked. This
differs from both Windows and Motif. If the combo box is editable then it has a default focusPolicy() of StrongFocus,
i.e. it will grab focus if clicked.

A combobox can be populated using the insert functions, insertStringList() and insertItem() for example. Items can be
changed with changeltem(). An item can be removed with removeltem() and all items can be removed with clear().
The text of the current item is returned by currentText(), and the text of a numbered item is returned with text(). The
current item can be set with setCurrentIltem() or setCurrentText(). The number of items in the combobox is returned
by count(); the maximum number of items can be set with setMaxCount(). You can allow editing using setEditable().
For editable comboboxes you can set auto-completion using setAutoCompletion() and whether or not the user can add
duplicates is set with setDuplicatesEnabled().

QComboBox Class Reference 36

oice =i oice /| oice /]
—oreet O (poie 1 oot [ogie 2, et B vorif 2

, read-only)

, read-only) read-write)

Choice 1

(Windows style)

See also QLineEdit [p. 141], QListBox [p. 156], QSpinBox [p. 312], QRadioButton [p. 255], QButtonGroup [p. 15],
GUI Design Handbook: Combo Box, GUI Design Handbook: Drop-Down List Box and Basic Widgets.

Member Type Documentation

QComboBox::Policy

This enum specifies what the QComboBox should do when a new string is entered by the user. The following policies
are defined:

e (ConboBox: : Nol nsertion - the string will not be inserted into the combobox.

e (ConboBox: : At Top - insert the string as the first item in the combobox.

e (ConboBox: : At Current - replace the previously selected item with the string the user has entered.
e (ConboBox: : At Bott om- insert the string as the last item in the combobox.

e (ConboBox: : After Current - insert the string after the previously selected item.

e (ConboBox: : Bef oreCurrent - insert the string before the previously selected item.

activated() is always emitted when the string is entered.

If inserting the new string would cause the combobox to breach its content size limit, the item at the other end of the
list is deleted. The definition of "other end" is implementation-dependent.

Member Function Documentation

QComboBox::QComboBox (QWidget * parent = 0, const char * name = 0)

Constructs a combobox widget with parent parent and name name.

This constructor creates a popup list if the program uses Motif (or Aqua) look and feel; this is compatible with Motif
1.x and Aqua.

QComboBox::QComboBox (bool rw, QWidget * parent = 0, const char * name = 0)

Constructs a combobox with a maximum size and either Motif 2.0 or Windows look and feel.
The input field can be edited if rw is TRUE, otherwise the user may only choose one of the items in the combobox.

The parent and name arguments are passed on to the QWidget constructor.

QComboBox::~QComboBox ()

Destroys the combobox.

QComboBox Class Reference 37

void QComboBox::activated (int index) [signal]

This signal is emitted when a new item has been activated (selected). The index is the position of the item in the
combobox.

Examples: fileiconview/mainwindow.cpp, helpviewer/helpwindow.cpp, lineedits/lineedits.cpp,
listboxcombo/listboxcombo.cpp, network/ftpclient/ftpmainwindow.cpp and qmag/qmag.cpp.

void QComboBox::activated (const QString & string) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This signal is emitted when a new item has been activated (selected). string is the selected string.

You can also use the activated(int) signal, but be aware that its argument is meaningful only for selected strings, not
for user entered strings.

bool QComboBox::autoCompletion () const

Returns TRUE if auto-completion is enabled; otherwise returns FALSE. See the "autoCompletion" [p. 43] property for
details.

bool QComboBox::autoResize () const

Returns TRUE if auto resize is enabled; otherwise returns FALSE. See the "autoResize" [p. 43] property for details.

void QComboBox::changeltem (const QString & t, int index)

Replaces the item at position index with the text t.

void QComboBox::changeltem (const QPixmap & im, int index)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Replaces the item at position index with the pixmap im, unless the combobox is editable.

See also insertItem() [p. 39].

void QComboBox::changeltem (const QPixmap & im, const QString & t, int index)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Replaces the item at position index with the pixmap im and the text t.

See also insertltem() [p. 39].

void QComboBox::clear () [slot]

Removes all combobox items.

QComboBox Class Reference 38

void QComboBox::clearEdit () [slot]

Clears the line edit without changing the combobox’s contents. Does nothing if the combobox isn’t editable.

This is particularly handy when using a combobox as a line edit with history. For example you can connect the
combobox’s activated() signal to clearEdit() in order to present the user with a new, empty line as soon as Return is
pressed.

See also setEditText() [p. 41].

void QComboBox::clearValidator () [slot]

This slot is equivalent to setValidator(0).

int QComboBox::count () const

Returns the number of items in the combobox. See the "count" [p. 43] property for details.

int QComboBox::currentltem () const

Returns the index of the current item in the combobox. See the "currentItem" [p. 43] property for details.

QString QComboBox::currentText () const

Returns the text of the combobox’s current item. See the "currentText" [p. 43] property for details.

bool QComboBox::duplicatesEnabled () const

Returns TRUE if duplicates are allowed; otherwise returns FALSE. See the "duplicatesEnabled" [p. 44] property for
details.

bool QComboBox::editable () const

Returns TRUE if the combobox is editable; otherwise returns FALSE. See the "editable" [p. 44] property for details.

void QComboBox::highlighted (int index) [signal]

This signal is emitted when a new item has been set to current. The index is the position of the item in the combobox.

void QComboBox::highlighted (const QString & string) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This signal is emitted when a new item has been highlighted. string is the highlighted string.

You can also use highlighted(int) signal.

QComboBox Class Reference 39

void QComboBox::insertIltem (const QString & t, int index = -1)

Inserts a text item with text t, at position index. The item will be appended if index is negative.

Examples: fileiconview/mainwindow.cpp, helpviewer/helpwindow.cpp, lineedits/lineedits.cpp,
listboxcombo/listboxcombo.cpp, network/ftpclient/ftpmainwindow.cpp and tictac/tictac.cpp.

void QComboBox::insertItem (const QPixmap & pixmap, int index = -1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Inserts a pixmap item at position index. The item will be appended if index is negative.

void QComboBox::insertIltem (const QPixmap & pixmap, const QString & text, int index =
-1)
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Inserts a pixmap item with additional text text at position index. The item will be appended if index is negative.

void QComboBox::insertStrList (const char ** strings, int numStrings = -1, int index = -1)

Inserts the array of char * strings at position index in the combobox.

The numStrings argument is the number of strings. If numStrings is -1 (default), the strings array must be terminated
with 0.

Example:

n

static const char* itens[] = {
conmbo->insertStrList(itens)

red", "green", "blue", 0 };

Example: gqmag/qmag.cpp.

void QComboBox::insertStrList (const QStrList & list, int index = -1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts the list of strings at position index in the combobox.

This is only for compatibility, as it does not support Unicode strings. See insertStringList().

void QComboBox::insertStrList (const QStrList * list, int index = -1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts the list of strings at position index in the combobox.

This is only for compatibility, as it does not support Unicode strings. See insertStringList().

QComboBox Class Reference 40

void QComboBox::insertStringList (const QStringList & list, int index = -1)

Inserts the list of strings at position index in the combobox.

Policy QComboBox::insertionPolicy () const

Returns the position of the items inserted by the user. See the "insertionPolicy" [p. 44] property for details.

QLineEdit * QComboBox::lineEdit () const
Returns the line editor, or O if there is no line editor.

Only editable listboxes have a line editor.

QListBox * QComboBox::listBox () const

Returns the current list box, or 0 if there is no list box. (QComboBox can use QPopupMenu instead of QListBox.)
Provided to match setListBox().

See also setListBox() [p. 42].

Example: listboxcombo/listboxcombo.cpp.

int QComboBox::maxCount () const

Returns the maximum number of items allowed in the combobox. See the "maxCount" [p. 44] property for details.

const QPixmap * QComboBox::pixmap (int index) const

Returns the pixmap item at position index, or 0 if the item is not a pixmap.

void QComboBox::popup () [virtual]

Pops up the combobox popup list.

If the list is empty, no items appear.

void QComboBox::removeltem (int index)

Removes the item at position index.

void QComboBox::setAutoCompletion (bool) [virtual]

Sets whether auto-completion is enabled. See the "autoCompletion” [p. 43] property for details.

QComboBox Class Reference 41

void QComboBox::setAutoResize (bool) [virtual]

Sets whether auto resize is enabled. See the "autoResize" [p. 43] property for details.

void QComboBox::setCurrentltem (int index) [virtual]

Sets the index of the current item in the combobox to index. See the "currentItem" [p. 43] property for details.

void QComboBox::setCurrentText (const QString &) [virtual]

Sets the text of the combobox’s current item. See the "currentText" [p. 43] property for details.

void QComboBox::setDuplicatesEnabled (bool enable)

Sets whether duplicates are allowed to enable. See the "duplicatesEnabled" [p. 44] property for details.

void QComboBox::setEditText (const QString & newText) [virtual slot]

Sets the text in the line edit to newText without changing the combobox’s contents. Does nothing if the combobox isn’t
editable.

This is useful e.g. for providing a good starting point for the user’s editing and entering the change in the combobox
only when the user presses Enter.

See also clearEdit() [p. 38] and insertltem() [p. 39].

Example: network/ftpclient/ftpmainwindow.cpp.

void QComboBox::setEditable (bool)

Sets whether the combobox is editable. See the "editable" [p. 44] property for details.

void QComboBox::setFont (const QFont & font) [virtual]

Reimplements QWidget::setFont().
Sets the font for both the combobox button and the combobox popup list to font.

Reimplemented from QWidget [p. 475].

void QComboBox::setInsertionPolicy (Policy policy) [virtual]

Sets the position of the items inserted by the user to policy. See the "insertionPolicy" [p. 44] property for details.

void QComboBox::setLineEdit (QLineEdit * edit) [virtual]

Sets the lineedit to use edit instead of the current lineedit.

QComboBox Class Reference 42

void QComboBox::setListBox (QListBox * newListBox) [virtual]

Sets the combobox to use newListBox instead of the current list box or popup. As a side effect, it clears the combobox
of its current contents.

Warning: QComboBox assumes that newListBox->text(n) returns non-null for 0 <= n < newlListbox->count(). This
assumption is necessary because of the line edit in QComboBox.

void QComboBox::setMaxCount (int) [virtual]

Sets the maximum number of items allowed in the combobox. See the "maxCount" [p. 44] property for details.

void QComboBox::setPalette (const QPalette & palette) [virtual]

Reimplements QWidget::setPalette().
Sets the palette for both the combobox button and the combobox popup list to palette.

Reimplemented from QWidget [p. 4771.

void QComboBox::setSizeLimit (int) [virtual]

Sets the maximum on-screen size of the combobox. See the "sizeLimit" [p. 44] property for details.

void QComboBox::setValidator (const QValidator * v) [virtual]

Applies the validator v to the combobox so that only text which is valid according to v is accepted.
This function does nothing if the combo is not editable.

See also validator() [p. 431, clearValidator() [p. 38] and QValidator [Additional Functionality with Qt].

int QComboBox::sizeLimit () const

Returns the maximum on-screen size of the combobox. See the "sizeLimit" [p. 44] property for details.

QString QComboBox::text (int index) const

Returns the text item at position index, or null string if the item is not a string.
See also currentText [p. 43].

Examples: fileiconview/mainwindow.cpp and helpviewer/helpwindow.cpp.

void QComboBox::textChanged (const QString & string) [signal]

This signal is used for editable comboboxes. It is emitted whenever the contents of the text entry field changes. string
contains the new text.

QComboBox Class Reference 43

const QValidator * QComboBox::validator () const

Returns the validator which constrains editing for this combobox if there is one, otherwise returns 0.

See also setValidator() [p. 421, clearValidator() [p. 38] and QValidator [Additional Functionality with Qt].

Property Documentation

bool autoCompletion

This property holds whether auto-completion is enabled.

This property can only be set for editable comboboxes, for non-editable comboboxes it has no effect. It is FALSE by
default.

Set this property’s value with setAutoCompletion() and get this property’s value with autoCompletion().

bool autoMask

This property holds whether the combobox is automatically masked.

See also QWidget::autoMask [p. 485].

bool autoResize

This property holds whether auto resize is enabled.
This property is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
If this property is set to TRUE then the combobox will resize itself whenever its contents change. The default is FALSE.

Set this property’s value with setAutoResize() and get this property’s value with autoResize().
int count

This property holds the number of items in the combobox.

Get this property’s value with count().

int currentItem

This property holds the index of the current item in the combobox.

Set this property’s value with setCurrentltem() and get this property’s value with currentItem().

QString currentText

This property holds the text of the combobox’s current item.

Set this property’s value with setCurrentText() and get this property’s value with currentText().

QComboBox Class Reference 44

bool duplicatesEnabled

This property holds whether duplicates are allowed.
If the combobox is editable and the user enters some text in the lineedit of the combobox and presses Enter (and the
insertionPolicy() is different from Nolnsertion), then what happens is as follows:

o If the text is not already in the list, the text is inserted.
o If the text is in the list and this property is TRUE (the default), the text is inserted.

o If the text is in the list and this property is FALSE, the text is not inserted; instead the item which has matching
text becomes the current item.

This property only affects user-interaction. You can use insertItem() to insert duplicates if you wish regardless of this
setting.

Set this property’s value with setDuplicatesEnabled() and get this property’s value with duplicatesEnabled().

bool editable

This property holds whether the combobox is editable.
This property’s default is FALSE.

Set this property’s value with setEditable() and get this property’s value with editable().

Policy insertionPolicy

This property holds the position of the items inserted by the user.
The default insertion policy is AtBottom.

Set this property’s value with setInsertionPolicy() and get this property’s value with insertionPolicy().

int maxCount

This property holds the maximum number of items allowed in the combobox.

Set this property’s value with setMaxCount() and get this property’s value with maxCount().

int sizeLimit
This property holds the maximum on-screen size of the combobox.

This is disregarded in Motif 1.x style. The default limit is ten lines. If the number of items in the combobox is or grows
larger than lines, a scrollbar is added.

Set this property’s value with setSizeLimit() and get this property’s value with sizeLimit().

QComboTableltem Class Reference

The QComboTableltem class provides a means of using comboboxes in QTables.
This class is part of the table module.
#include <qgtable. h>

Inherits QTableltem [p. 372].

Public Members

QComboTableltem (QTable * table, const QStringList & list, bool editable = FALSE)
virtual void setCurrentItem (int i)

virtual void setCurrentItem (const QString & s)
int currentItem () const

QString currentText () const

int count () const

QString text (int i) const

virtual void setEditable (bool b)

bool isEditable () const

virtual void setStringList (const QStringList & 1)
virtual int rtti () const

Detailed Description

The QComboTableltem class provides a means of using comboboxes in QTables.

A QComboTableltem is a table item which looks and behaves like a combobox. The advantage of using QComboTablelt-
ems rather than real comboboxes is that a QComboTableltem uses far less resources than a real combobox. When the
cell has the focus it displays a real combobox which the user can interact with. When the cell does not have the focus
the cell looks like a combobox. Only text items (i.e. no pixmaps) may be used in QComboTableltems.

QComboTableltem items have the edit type WhenCurrent (see EditType). The QComboTableltem’s list of items is
provided by a QStringList passed to the constructor.

The list of items may be changed using setStringList(). The current item can be set with setCurrentItem() and retrieved
with currentltem(). The text of the current item can be obtained with currentText(), and the text of a particular item
can be retrieved with text().

If isEditable() is TRUE the QComboTableltem will permit the user to either choose an existing list item, or create a new
list item by entering their own text; otherwise the user may only choose one of the existing list items.

45

QComboTableltem Class Reference 46

To populate a table cell with a QComboTableItem use QTable::setltem().
QComboTableltems may be deleted with QTable::clearCell().

QComboTableltems can be distinguished from QTableltems and QCheckTableltems using their Run Time Type Identifi-
cation number (see rtti()).

See also Advanced Widgets.

Member Function Documentation

QComboTableltem::QComboTableltem (QTable * table, const QStringList & list,
bool editable = FALSE)

Creates a combo table item for the table table. The combobox’s list of items is passed in the list argument. If editable is
TRUE the user may type in new list items; if editable is FALSE the user may only select from the list of items provided.

By default QComboTableltems cannot be replaced by other table items since isReplaceable() returns FALSE by default.
See also QTable::clearCell() [p. 352] and EditType [p. 3741].

int QComboTableltem::count () const

Returns the total number of list items in the combo table item.

int QComboTableltem::currentitem () const

Returns the index of the combo table item’s current list item.

See also setCurrentltem() [p. 47].

QString QComboTableltem::currentText () const

Returns the text of the combo table item’s current list item.

See also currentltem() [p. 46] and text() [p. 471.

bool QComboTableltem::isEditable () const

Returns whether the user may add their own list items to the combo’s list of items.
See also setEditable() [p. 471.

int QComboTableltem::rtti () const [virtual]

For QComboTableltems this function returns a Run Time Identification value of 1.
See also QTableltem::rtti() [p. 3771.
Reimplemented from QTableltem [p. 377].

QComboTableltem Class Reference 47

void QComboTableltem::setCurrentltem (int i) [virtual]

Sets the list item i to be the combo table item’s current list item.

See also currentltem() [p. 46].

void QComboTableltem::setCurrentItem (const QString & s) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the list item whose text is s to be the combo table item’s current list item. Does nothing if no list item has the text
s.

See also currentltem() [p. 46].

void QComboTableltem::setEditable (bool b) [virtual]

If b is TRUE the combo table item can be edited, i.e. the user may enter a new text item themselves. If b is FALSE the
user may may only choose one of the existing items.

See also isEditable() [p. 46].

void QComboTableltem::setStringList (const QStringList & 1) [virtual]

Sets the list items of this QComboTableltem to the strings in the string list L.

QString QComboTableltem::text (int i) const

Returns the text of the combo’s list item at index i.

See also currentText() [p. 46].

QDateEdit Class Reference

The QDateEdit class provides a date editor.

#incl ude <gdatetinmeedit.h>

Public Members

m QDateEdit (QWidget * parent = 0, const char * name = 0)
QDateEdit (const QDate & date, QWidget * parent = 0, const char * name = 0)
~QDateEdit ()

enum Order { DMY, MDY, YMD, YDM }

virtual void setDate (const QDate & date)

QDate date () const

virtual void setOrder (Order order)

Order order () const

virtual void setAutoAdvance (bool advance)

bool autoAdvance () const

virtual void setMinValue (const QDate & d)

QDate minValue () const

virtual void setMaxValue (const QDate & d)

QDate maxValue () const

virtual void setRange (const QDate & min, const QDate & max)
QString separator () const

virtual void setSeparator (const QString & s)

Signals

m void valueChanged (const QDate & date)

Properties

m bool autoAdvance — whether the editor automatically advances to the next section
m QDate date — the date value of the editor

m QDate maxValue — the maximum editor value

= QDate minValue — the minimum editor value

m Order order — the order in which the year, month and day appear

48

QDateEdit Class Reference 49

Protected Members

m virtual QString sectionFormattedText (int sec)
m virtual void setYear (int year)

m virtual void setMonth (int month)

m virtual void setDay (int day)

m virtual void fix ()

Protected Slots

m void updateButtons ()

Detailed Description

The QDateEdit class provides a date editor.

QDateEdit allows the user to edit dates by using the keyboard or the arrow keys to increase/decrease date values. The
arrow keys can be used to move from section to section within the QDateEdit box. Dates appear according the local
date/time settings or in year, month, day order if the system doesn’t provide this information. It is recommended that
the QDateEdit be initialised with a date, e.g.

ateEdit *dateEdit = new QDateEdit(QDate::currentDate(), this);

dat eEdi t - >set Range(QDate:: currentDate().addDays(-365),
Qate::currentDate().addDays(365));

dat eEdit - >set Order (QDateEdit:: MDY);

dat eEdi t - >set Aut oAdvance(TRUE);

Here we've created a new QDateEdit object initialised with today’s date and restricted the valid date range to today
plus or minus 365 days. We've set the order to month, day, year. If the auto advance property is TRUE (as we've set it
here) when the user completes a section of the date, e.g. enters two digits for the month, they are automatically taken
to the next section.

The maximum and minimum values for a date value in the date editor default to the maximum and minimum values
for a QDate. You can change this by calling setMinValue(), setMaxValue() or setRange().

Terminology: A QDateEdit widget comprises three ’sections’, one each for the year, month and day. You can change the
separator character using QDateTimeEditor::setSeparator(), by default the separator will be taken from the systems
settings. If that is impossible, it defaults to "-".

See also QDate [Additional Functionality with Qt], QTimeEdit [p. 422], QDateTimeEdit [p. 54], Advanced Widgets
and Time and Date.

Member Type Documentation

QDateEdit::Order

This enum defines the order in which the sections that comprise a date appear.

QDateEdit Class Reference 50

e (Dat eEdi t: : MDY - month-day-year

e (Dat eEdi t: : DMY - day-month-year

e (Dat eEdi t:: YMD - year-month-day (the default)

e (Dat eEdi t:: YDM- year-day-month (a very bad idea)

Member Function Documentation

QDateEdit::QDateEdit (QWidget * parent = 0, const char * name = 0)

Constructs an empty date editor which is a child of parent and the name name.

QDateEdit::QDateEdit (const QDate & date, QWidget * parent = 0, const char * name = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Constructs a date editor with the initial value date, parent parent and name name.

The date editor is initialized with date.

QDateEdit::~QDateEdit ()

Destroys the object and frees any allocated resources.

bool QDateEdit::autoAdvance () const

Returns TRUE if the editor automatically advances to the next section; otherwise returns FALSE. See the "autoAdvance"
[p. 52] property for details.

QDate QDateEdit::date () const

Returns the date value of the editor. See the "date" [p. 53] property for details.

void QDateEdit::fix () [virtual protected]

Attempts to fix any invalid date entries.

The rules applied are as follows:

o If the year has four digits it is left unchanged.

o If the year has two digits in the range 70..99, the previous century, i.e. 1900, will be added giving a year in the
range 1970..1999.

o If the year has two digits in the range 0..69, the current century, i.e. 2000, will be added giving a year in the
range 2000..2069.

o If the year is in the range 100..999, the current century, i.e. 2000, will be added giving a year in the range
2100..2999.

QDateEdit Class Reference 51

QDate QDateEdit::maxValue () const

Returns the maximum editor value. See the "maxValue" [p. 53] property for details.

QDate QDateEdit::minValue () const

Returns the minimum editor value. See the "minValue" [p. 53] property for details.

Order QDateEdit::order () const

Returns the order in which the year, month and day appear. See the "order" [p. 53] property for details.

QString QDateEdit::sectionFormattedText (int sec) [virtual protected]

Returns the formatted number for section sec. This will correspond to either the year, month or day section, depending
on the current display order.

See also order [p. 53].

QString QDateEdit::separator () const

Returns the separator for the editor.

void QDateEdit::setAutoAdvance (bool advance) [virtual]

Sets whether the editor automatically advances to the next section to advance. See the "autoAdvance" [p. 52] property
for details.

void QDateEdit::setDate (const QDate & date) [virtual]

Sets the date value of the editor to date. See the "date" [p. 53] property for details.

void QDateEdit::setDay (int day) [virtual protected]

Sets the day to day, which must be a valid day. The function will ensure that the day set is valid for the month and
year.

void QDateEdit::setMaxValue (const QDate & d) [virtual]

Sets the maximum editor value to d. See the "maxValue" [p. 53] property for details.

void QDateEdit::setMinValue (const QDate & d) [virtual]

Sets the minimum editor value to d. See the "minValue" [p. 53] property for details.

QDateEdit Class Reference 52

void QDateEdit::setMonth (int month) [virtual protected]

Sets the month to month, which must be a valid month, i.e. between 1 and 12.

void QDateEdit::setOrder (Order order) [virtual]

Sets the order in which the year, month and day appear to order. See the "order" [p. 53] property for details.

void QDateEdit::setRange (const QDate & min, const QDate & max) [virtual]

Sets the valid input range for the editor to be from min to max inclusive. If min is invalid no minimum date will be set.
Similarly, if max is invalid no maximum date will be set.

void QDateEdit::setSeparator (const QString & s) [virtual]

Sets the separator to s. Note that currently only the first character of s is used.

void QDateEdit::setYear (int year) [virtual protected]

Sets the year to year, which must be a valid year. The range currently supported is from 1752 to 8000.
See also QDate [Additional Functionality with Qt].

void QDateEdit::updateButtons () [protected slot]

Enables/disables the push buttons according to the min/max date for this widget.

void QDateEdit::valueChanged (const QDate & date) [signal]

This signal is emitted whenever the editor’s value changes. The date parameter is the new value.

Property Documentation

bool autoAdvance

This property holds whether the editor automatically advances to the next section.

If autoAdvance is TRUE, the editor will automatically advance focus to the next date section if a user has completed a
section. The default is FALSE.

Set this property’s value with setAutoAdvance() and get this property’s value with autoAdvance().

QDateEdit Class Reference 53

QDate date

This property holds the date value of the editor.

If the date property is not valid, the editor displays all zeroes and QDateEdit::date() will return an invalid date. It is
strongly recommended that the editor be given a default date value. That way, attempts to set the date property to an
invalid date will fail.

When changing the date property, if the date is less than minValue(), or is greater than maxValue(), nothing happens.

Set this property’s value with setDate() and get this property’s value with date().

QDate maxValue

This property holds the maximum editor value.

Setting the maximum date value for the editor is equivalent to calling QDateEdit::setRange(minValue(), d), where d
is the maximum date. Teh default maximum date is 8000-12-31.

Set this property’s value with setMaxValue() and get this property’s value with maxValue().

QDate minValue

This property holds the minimum editor value.

Setting the minimum date value is equivalent to calling QDateEdit::setRange(d, maxValue()), where d is the minimum
date. The default minimum date is 1752-09-14.

Set this property’s value with setMinValue() and get this property’s value with minValue().

Order order

This property holds the order in which the year, month and day appear.
The default order is locale dependent.
See also Order [p. 49].

Set this property’s value with setOrder() and get this property’s value with order().

QDateTimeEdit Class Reference

The QDateTimeEdit class combines a QDateEdit and QTimeEdit widget into a single widget for editing datetimes.
#incl ude <gdatetinmeedit.h>

Inherits QWidget [p. 436].

Public Members

m QDateTimeEdit (QWidget * parent = 0, const char * name = 0)

m QDateTimeEdit (const QDateTime & datetime, QWidget * parent = 0, const char * name = 0)
m ~QDateTimeEdit ()

m virtual void setDateTime (const QDateTime & dt)

m QDateTime dateTime () const

m QDateEdit * dateEdit ()

m QTimeEdit * timeEdit ()

m virtual void setAutoAdvance (bool advance)

= bool autoAdvance () const

Signals

m void valueChanged (const QDateTime & datetime)

Properties

m QDateTime dateTime — the datetime value of the editor

Detailed Description

The QDateTimeEdit class combines a QDateEdit and QTimeEdit widget into a single widget for editing datetimes.

QDateTimeEdit consists of a QDateEdit and QTimeEdit widget placed side by side and offers the functionality of both.
The user can edit the date and time by using the keyboard or the arrow keys to increase/decrease date or time values.
The Tab key can be used to move from section to section within the QDateTimeEdit widget, and the user can be moved
automatically when they complete a section using setAutoAdvance(). The datetime can be set with setDateTime().

54

QDateTimeEdit Class Reference

The dateformat is read from the system’s locale settings. It is set to year, month, day order if that is not possible.
QDateEdit::setOrder() to change this. Times appear in the order hours, minutes, seconds using the 24 hour clock.

It is recommended that the QDateTimeEdit is initialised with a datetime, e.g.

QDat eTi neEdit *dateTineEdit = new QDat eTi meEdit(QDateTine::currentDateTime(), this);
dat eTi meEdi t - >dat eEdi t () - >set Range(QDat eTi me:: currentDate(),
QateTime: : current Date().addDays(7));

55

see

Here we’ve created a new QDateTimeEdit set to the current date and time, and set the date to have a minimum date

of now and a maximum date of a week from now.

Terminology: A QDateEdit widget consists of three ’sections’, one each for the year, month and day. Similarly a
QTimekEdit consists of three sections, one each for the hour, minute and second. The character that separates each date

section is specified with setDateSeparator(); similarly setTimeSeparator() is used for the time sections.

See also QDateEdit [p. 48], QTimeEdit [p. 422], Advanced Widgets and Time and Date.

Member Function Documentation

QDateTimeEdit::QDateTimeEdit (QWidget * parent = 0, const char * name = 0)

Constructs an empty datetime edit with parent parent and name name.

QDateTimeEdit::QDateTimeEdit (const QDateTime & datetime, QWidget * parent = 0,
const char * name = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Constructs a datetime edit with the initial value datetime, parent parent and name name.

QDateTimeEdit:: ~QDateTimeEdit ()

Destroys the object and frees any allocated resources.

bool QDateTimeEdit::autoAdvance () const

Returns TRUE if auto-advance is enabled, otherwise returns FALSE.

See also setAutoAdvance() [p. 56].

QDateEdit * QDateTimeEdit::dateEdit ()

Returns the internal widget used for editing the date part of the datetime.

QDateTime QDateTimeEdit::dateTime () const

Returns the datetime value of the editor. See the "dateTime" [p. 56] property for details.

QDateTimeEdit Class Reference 56

void QDateTimeEdit::setAutoAdvance (bool advance) [virtual]

Sets the auto advance property of the editor to advance. If set to TRUE, the editor will automatically advance focus to
the next date or time section if the user has completed a section.

void QDateTimeEdit::setDateTime (const QDateTime & dt) [virtual]

Sets the datetime value of the editor to dt. See the "dateTime" [p. 56] property for details.

QTimeEdit * QDateTimeEdit::timeEdit ()

Returns the internal widget used for editing the time part of the datetime.

void QDateTimeEdit::valueChanged (const QDateTime & datetime) [signal]

This signal is emitted every time the date or time changes. The datetime argument is the new datetime.

Property Documentation

QDateTime dateTime

This property holds the datetime value of the editor.
The datetime edit’s datetime which may be an invalid datetime.

Set this property’s value with setDateTime() and get this property’s value with dateTime().

QDial Class Reference

The QDial class provides a rounded range control (like a speedometer or potentiometer).
#include <qdial . h>

Inherits QWidget [p. 436] and QRangeControl [p. 261].

Public Members

m QDial (QWidget * parent = 0, const char * name = 0, WFlags f = 0)
m QDial (int minValue, int maxValue, int pageStep, int value, QWidget * parent = 0, const char * name = 0)
s ~QDial ()

bool tracking () const

bool wrapping () const

int notchSize () const

virtual void setNotchTarget (double)

double notchTarget () const

bool notchesVisible () const

int minValue () const

int maxValue () const

void setMinValue (int)

void setMaxValue (int)

int lineStep () const

int pageStep () const

void setLineStep (int)

void setPageStep (int)

int value () const

Public Slots

virtual void setValue (int)

void addLine ()

void subtractLine ()

void addPage ()

void subtractPage ()

virtual void setNotchesVisible (bool b)
virtual void setWrapping (bool on)
virtual void setTracking (bool enable)

57

QDial Class Reference 58

Signals

m void valueChanged (int value)
m void dialPressed ()

m void dialMoved (int value)

m void dialReleased ()

Properties

m int lineStep — the current line step

m int maxValue — the current maximum value

m int minValue — the current minimum value

m int notchSize — the current notch size (read only)

» double notchTarget — the target number of pixels between notches
m bool notchesVisible — whether the notches are shown

m int pageStep — the current page step

m bool tracking — whether tracking is enabled

m int value — the current dial value

m bool wrapping — whether wrapping is enabled

Protected Members

m virtual void valueChange ()
m virtual void rangeChange ()
m virtual void repaintScreen (const QRect * cr = 0)

Detailed Description

The QDial class provides a rounded range control (like a speedometer or potentiometer).

QDial is used when the user needs to control a value within a program-definable range, and the range either wraps
around (typically, 0..359 degrees) or the dialog layout needs a square widget.

Both API- and Ul-wise, the dial is very similar to a slider. Indeed, when wrapping() is FALSE (the default) there is no
real difference between a slider and a dial. They have the same signals, slots and member functions, all of which do
the same things. Which one you use depends only on your taste and on the application.

The dial initially emits valueChanged() signals continuously while the slider is being moved; you can make it emit the
signal less often by calling setTracking(FALSE). dialMoved() is emitted continuously even when tracking() is FALSE.

The slider also emits dialPressed() and dialReleased() signals when the mouse button is pressed and released. But note
that the dial’s value can change without these signals being emitted; the keyboard and wheel can be used to change
the value.

Unlike the slider, QDial attempts to draw a "nice" number of notches rather than one per lineStep(). If possible, the
number of notches drawn is one per lineStep(), but if there aren’t enough pixels to draw every one, QDial will draw
every second, third etc., notch. notchSize() returns the number of units per notch, hopefully a multiple of lineStep();
setNotchTarget() sets the target distance between neighbouring notches in pixels. The default is 3.75 pixels.

QDial Class Reference 59

Like the slider, the dial makes the QRangeControl functions setValue(), addLine(), subtractLine(), addPage() and
subtractPage() available as slots.

The dial’s keyboard interface is fairly simple: The left/up and right/down arrow keys move by lineStep(), page up and
page down by pageStep() and Home and End to minValue() and maxValue().

See also QScrollBar [p. 2671, QSpinBox [p. 312], GUI Design Handbook: Slider and Basic Widgets.

Member Function Documentation

QDial::QDial (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a dial called name with parent parent. f is propagated to the QWidget constructor. It has the default range
of a QRangeControl.

QDial::QDial (int minValue, int maxValue, int pageStep, int value, QWidget * parent = 0,
const char * name = 0)

Constructs a dial called name with parent parent. The dial’s value can never be smaller than minValue or greater than
maxValue. Its page step size is pageStep, and its initial value is value.

value is forced to be within the legal range.

QDial::~QDial ()

Destroys the dial.

void QDial::addLine () [slot]

Increments the dial’s value() by one lineStep().

void QDial::addPage () [slot]

Increments the dial’s value() by one pageStep() of steps.

void QDial::dialMoved (int value) [signal]

This signal is emitted whenever the dial value changes. The frequency of this signal is not influenced by setTracking().

See also valueChanged() [p. 62].

QDial Class Reference 60

void QDial::dialPressed () [signal]

This signal is emitted when the use begins mouse interaction with the dial.

See also dialReleased() [p. 60].

void QDial::dialReleased () [signal]

This signal is emitted when the use ends mouse interaction with the dial.
See also dialPressed() [p. 60].
int QDial::lineStep () const

Returns the current line step. See the "lineStep" [p. 62] property for details.

int QDial::maxValue () const

Returns the current maximum value. See the "maxValue" [p. 62] property for details.

int QDial::minValue () const

Returns the current minimum value. See the "minValue" [p. 63] property for details.

int QDial::notchSize () const

Returns the current notch size. See the "notchSize" [p. 63] property for details.

double QDial::notchTarget () const

Returns the target number of pixels between notches. See the "notchTarget" [p. 63] property for details.

bool QDial::notchesVisible () const

Returns TRUE if the notches are shown; otherwise returns FALSE. See the "notchesVisible" [p. 63] property for details.

int QDial::pageStep () const

Returns the current page step. See the "pageStep" [p. 63] property for details.

void QDial::rangeChange () [virtual protected]

Reimplemented to ensure tick-marks are consistent with the new range.

Reimplemented from QRangeControl [p. 264].

QDial Class Reference 61

void QDial::repaintScreen (const QRect * cr = 0) [virtual protected]

Paints the dial using clip region cr.

void QDial::setLineStep (int)

Sets the current line step. See the "lineStep" [p. 62] property for details.

void QDial::setMaxValue (int)

Sets the current maximum value. See the "maxValue" [p. 62] property for details.

void QDial::setMinValue (int)

Sets the current minimum value. See the "minValue" [p. 63] property for details.

void QDial::setNotchTarget (double) [virtual]

Sets the target number of pixels between notches. See the "notchTarget" [p. 63] property for details.

void QDial::setNotchesVisible (bool b) [virtual slot]

Sets whether the notches are shown to b. See the "notchesVisible" [p. 63] property for details.

void QDial::setPageStep (int)

Sets the current page step. See the "pageStep" [p. 63] property for details.

void QDial::setTracking (bool enable) [virtual slot]

Sets whether tracking is enabled to enable. See the "tracking" [p. 64] property for details.

void QDial::setValue (int) [virtual slot]

Sets the current dial value. See the "value" [p. 64] property for details.

void QDial::setWrapping (bool on) [virtual slot]

Sets whether wrapping is enabled to on. See the "wrapping" [p. 64] property for details.

QDial Class Reference 62

void QDial::subtractLine () [slot]

Decrements the dial’s value() by one lineStep().

void QDial::subtractPage () [slot]

Decrements the dial’s value() by one pageStep() of steps.

bool QDial::tracking () const

Returns TRUE if tracking is enabled; otherwise returns FALSE. See the "tracking" [p. 64] property for details.

int QDial::value () const

Returns the current dial value. See the "value" [p. 64] property for details.

void QDial::valueChange () [virtual protected]

Reimplemented to ensure the display is correct and to emit the valueChanged(int) signal when appropriate.
Reimplemented from QRangeControl [p. 266].

void QDial::valueChanged (int value) [signal]

This signal is emitted whenever the dial’s value changes. The frequency of this signal is influenced by setTracking().

bool QDial::wrapping () const

Returns TRUE if wrapping is enabled; otherwise returns FALSE. See the "wrapping" [p. 64] property for details.

Property Documentation

int lineStep

This property holds the current line step.
setLineStep() calls the virtual stepChange() function if the new line step is different from the previous setting.
See also QRangeControl::setSteps() [p. 265], pageStep [p. 63] and setRange() [p. 265].

Set this property’s value with setLineStep() and get this property’s value with lineStep().

int maxValue

This property holds the current maximum value.

QDial Class Reference 63

When setting this property, the QDial::minValue is adjusted so that the range remains valid if necessary.
See also setRange() [p. 265].

Set this property’s value with setMaxValue() and get this property’s value with maxValue().

int minValue

This property holds the current minimum value.
When setting this property, the QDial::maxValue is adjusted so that the range remains valid if necessary.
See also setRange() [p. 265].

Set this property’s value with setMinValue() and get this property’s value with minValue().

int notchSize

This property holds the current notch size.

The notch size is in range control units, not pixels, and if possible it is a multiple of lineStep() that results in an
on-screen notch size near notchTarget().

See also notchTarget [p. 63] and lineStep [p. 62].

Get this property’s value with notchSize().

double notchTarget

This property holds the target number of pixels between notches.
The notch target is the number of pixels QDial attempts to put between each notch.
The actual size may differ from the target size.

Set this property’s value with setNotchTarget() and get this property’s value with notchTarget().

bool notchesVisible

This property holds whether the notches are shown.
If TRUE, the notches are shown. If FALSE (the default) notches are not shown.

Set this property’s value with setNotchesVisible() and get this property’s value with notchesVisible().

int pageStep

This property holds the current page step.
setPageStep() calls the virtual stepChange() function if the new page step is different from the previous setting.
See also stepChange() [p. 265].

Set this property’s value with setPageStep() and get this property’s value with pageStep().

QDial Class Reference 64

bool tracking

This property holds whether tracking is enabled.

If TRUE (the default), tracking is enabled. This means that the arrow can be moved using the mouse; otherwise the
arrow cannot be moved with the mouse.

Set this property’s value with setTracking() and get this property’s value with tracking().

int value

This property holds the current dial value.
This is guaranteed to be within the range QDial::minValue..QDial::maxValue.
See also minValue [p. 63] and maxValue [p. 62].

Set this property’s value with setValue() and get this property’s value with value().

bool wrapping

This property holds whether wrapping is enabled.

If TRUE, wrapping is enabled. This means that the arrow can be turned around 360f. Otherwise there is some space
at the bottom of the dial which is skipped by the arrow.

This property’s default is FALSE.

Set this property’s value with setWrapping() and get this property’s value with wrapping().

QFilePreview Class Reference

The QFilePreview class provides file previewing in QFileDialog.

#include <qgfiledial og. h>

Public Members

m QFilePreview ()
m virtual void previewUrl (const QUrl & url)

Detailed Description

The QFilePreview class provides file previewing in QFileDialog.

This class is an abstract base class which is used to implement widgets that can display a preview of a file in a QFileDi-
alog.

You must derive your preview widget from both QWidget and from this class. Then you must reimplement the pre-
viewUrl() function of this class, which is called by the file dialog if the preview of a URL should be shown.

See also QFileDialog::setPreviewMode() [Dialogs and Windows with Qt], QFileDialog::setContentsPreview() [Dialogs
and Windows with Qt], QFileDialog::setInfoPreview() [Dialogs and Windows with Qt],
QFileDialog::setInfoPreviewEnabled() [Dialogs and Windows with Qt], QFileDialog::setContentsPreviewEnabled ()
[Dialogs and Windows with Qt].

For an example of a preview widget see qt/examples/qdir/qdir.cpp.

See also Miscellaneous Classes.

Member Function Documentation

QFilePreview::QFilePreview ()

Constructs the QFilePreview.

65

QFilePreview Class Reference 66

void QFilePreview::previewUrl (const QUrl & url) [virtual]

This function is called by QFileDialog if a preview for the url should be shown. Reimplement this function to perform
file/URL previews.

QFrame Class Reference

The QFrame class is the base class of widgets that can have a frame.
#include <qgfrane. h>
Inherits QWidget [p. 436].

Inherited by QGroupBox [p. 81], QScrollView [p. 275], QDockWindow [Dialogs and Windows with Qt], QGrid
[Events, Actions, Layouts and Styles with Qt], QHBox [Events, Actions, Layouts and Styles with Qt], QLabel [p. 125],
QLCDNumber [p. 134], QLineEdit [p. 141], QMenuBar [Dialogs and Windows with Qt], QPopupMenu [Dialogs and
Windows with Qt], QProgressBar [p. 240], QSplitter [p. 324], QtTableView and QWidgetStack [p. 506].

Public Members

m QFrame (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

m int frameStyle () const

virtual void setFrameStyle (int style)

int frameWidth () const

QRect contentsRect () const

enum Shape { NoFrame = 0, Box = 0x0001, Panel = 0x0002, WinPanel = 0x0003, HLine = 0x0004, VLine =
0x0005, StyledPanel = 0x0006, PopupPanel = 0x0007, MenuBarPanel = 0x0008, ToolBarPanel = 0x0009,
MShape = 0x000f }

= enum Shadow { Plain = 0x0010, Raised = 0x0020, Sunken = 0x0030, MShadow = 0x00f0 }
m Shape frameShape () const

m void setFrameShape (Shape)

m Shadow frameShadow () const

m void setFrameShadow (Shadow)

m int lineWidth () const

virtual void setLineWidth (int)

int margin () const

virtual void setMargin (int)

int midLineWidth () const

virtual void setMidLineWidth (int)

QRect frameRect () const

virtual void setFrameRect (const QRect &)

67

Frame Class Reference 68
Q

Properties

= QRect contentsRect — the rectangle inside the frame (read only)

m QRect frameRect — the frame rectangle

m Shadow frameShadow — the frame shadow value from the frame style
m Shape frameShape — the frame shape value from the frame style

m int frameWidth — the width of the frame that is drawn (read only)

m int lineWidth — the line width

m int margin — the width of the margin

» int midLineWidth — the width of the mid-line

Protected Members

m virtual void paintEvent (QPaintEvent * event)
m virtual void resizeEvent (QResizeEvent * e)

m virtual void drawFrame (QPainter * p)

m virtual void drawContents (QPainter *)

m virtual void frameChanged ()

Detailed Description

The QFrame class is the base class of widgets that can have a frame.

It draws a frame and calls a virtual function, drawContents(), to fill in the frame. This function is reimplemented by
subclasses. There are also two other less useful functions: drawFrame() and frameChanged().

QPopupMenu uses this to "raise” the menu above the surrounding screen. QProgressBar has a "sunken" look. QLabel
has a flat look. The frames of widgets such as these can be changed.

Q.abel label(...);
| abel . set FrameStyl e(QFrane:: Panel | QFrane::Raised);
| abel . setLineWdth(2);

QProgressBar pbar(...);
| abel . set FrameStyl e(QFrane:: NoFrane);

The QFrame class can also be used directly for creating simple frames without any contents, although usually you
would use a QHBox or QVBox because they automatically lay out the widgets you put inside the frame.

A frame widget has four attributes: frameStyle(), lineWidth(), midLineWidth(), and margin().

The frame style is specified by a frame shape and a shadow style. The frame shapes are NoFrame, Box, Panel, Styled-
Panel, PopupPanel, WinPanel, ToolBarPanel, MenuBarPanel, HLine and VLine; the shadow styles are Plain, Raised and
Sunken.

The line width is the width of the frame border.

The mid-line width specifies the width of an extra line in the middle of the frame, which uses a third color to obtain a
special 3D effect. Notice that a mid-line is only drawn for Box, HLine and VLine frames that are raised or sunken.

The margin is the gap between the frame and the contents of the frame.

QFrame Class Reference 69

This table shows the most useful combinations of styles and widths (and some rather useless ones):

1 2 3 4 lineWidth()
2 3 0 1 & 3 0 1 & 3 0 1 2 3 midlineWidth

DDDDDDDDDDDDDDDDBD’“ Flain
DJJJDJJ_ID_I_I_IH_ILI F Box + Raised
150 5 I [[[T A IV) R e - s
OO OO00000000000ere - pen
o e + s
[0 5 (5 [O T I et « sk
DDDDDDDDDDDDWiHP&HEI + Plain
_I_I_I_I_IJJJ_I_I_I_l_IJJJWmPanEI + Raised
I_I_I_I_I_I_I_I_I_I_I_I_I_WmPanel + Sunken

———————————————— HLine + Plain
——————————— B me s e e HLine + Raized
= P HLine + Sunken
| [T wiine - Piain
| viire - Raised

1
FLEE]
r r r rVLine+SunKen

See also Abstract Widget Classes.

Member Type Documentation

QFrame::Shadow
This enum type defines the 3D effect used for QFrame’s frame. The currently defined effects are:

e QFrane:: Pl ain - the frame and contents appear level with the surroundings
e (Frane:: Rai sed - the frame and contents appear raised

e (QFrame: : Sunken - the frame and contents appear sunken

e QFrane: : Mshadow - internal; mask for the shadow

Shadow interacts with QFrame::Shape, the lineWidth() and the midLineWidth(). The picture of the frames in the class
documentation may illustrate this better than words.

See also QFrame::Shape [p. 69], lineWidth [p. 74] and midLineWidth [p. 75].
QFrame::Shape

This enum type defines the shapes of a QFrame’s frame. The currently defined shapes are:

e NoFrame - QFrame draws nothing

e Box - QFrame draws a box around its contents

Panel - QFrame draws a panel such that the contents appear raised or sunken

WinPanel - like Panel, but QFrame draws the 3D effects the way Microsoft Windows 95 (etc.) does
ToolBarPanel - QFrame calls QStyle::drawToolBarPanel()
MenuBarPanel - QFrame calls QStyle::drawMenuBarPanel()

HLine - QFrame draws a horizontal line that frames nothing (useful as separator)

QFrame Class Reference 70

e VLine - QFrame draws a vertical line that frames nothing (useful as separator)
e StyledPanel - QFrame calls QStyle::drawPanel()
e PopupPanel - QFrame calls QStyle::drawPopupPanel()

When it does not call QStyle, Shape interacts with QFrame::Shadow, the lineWidth() and the midLineWidth() to create
the total result. The picture of the frames in the class documentation may illustrate this better than words.

See also QFrame::Shadow [p. 69], QFrame::style() [p. 481] and QStyle::drawPrimitive() [Events, Actions, Layouts
and Styles with Qt].

Member Function Documentation

QFrame::QFrame (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a frame widget with frame style NoFrame and a 1-pixel frame width.

The parent, name and f arguments are passed to the QWidget constructor.

QRect QFrame::contentsRect () const

Returns the rectangle inside the frame. See the "contentsRect" [p. 73] property for details.

void QFrame::drawContents (QPainter *) [virtual protected]

Virtual function that draws the contents of the frame.

The QPainter is already open when you get it, and you must leave it open. Painter transformations are switched off on
entry. If you transform the painter, remember to take the frame into account and reset transformation before returning.

This function is reimplemented by subclasses that draw something inside the frame. It should draw only inside con-
tentsRect(). The default function does nothing.

See also contentsRect [p. 73] and QPainter::setClipRect() [Graphics with Qt].
Reimplemented in QLabel, QLCDNumber, QMenuBar and QPopupMenu.

void QFrame::drawFrame (QPainter * p) [virtual protected]

Draws the frame using the painter p and the current frame attributes and color group. The rectangle inside the frame
is not affected.

This function is virtual, but in general you do not need to reimplement it. If you do, note that the QPainter is already
open and must remain open.

See also frameRect [p. 74], contentsRect [p. 73], drawContents() [p. 70], frameStyle() [p. 71] and palette [p. 495].

void QFrame::frameChanged () [virtual protected]

Virtual function that is called when the frame style, line width or mid-line width changes.

QFrame Class Reference 71

This function can be reimplemented by subclasses that need to know when the frame attributes change.

The default implementation calls update().

QRect QFrame::frameRect () const

Returns the frame rectangle. See the "frameRect" [p. 74] property for details.

Shadow QFrame::frameShadow () const

Returns the frame shadow value from the frame style. See the "frameShadow" [p. 74] property for details.

Shape QFrame::frameShape () const

Returns the frame shape value from the frame style. See the "frameShape" [p. 74] property for details.

int QFrame::frameStyle () const

Returns the frame style.

The default value is QFrame::NoFrame.

See also setFrameStyle() [p. 721, frameShape [p. 74] and frameShadow [p. 74].
Example: scrollview/scrollview.cpp.

int QFrame::frameWidth () const

Returns the width of the frame that is drawn. See the "frameWidth" [p. 74] property for details.

int QFrame::lineWidth () const

Returns the line width. See the "lineWidth" [p. 74] property for details.

int QFrame::margin () const

Returns the width of the margin. See the "margin" [p. 75] property for details.

int QFrame::midLineWidth () const

Returns the width of the mid-line. See the "midLineWidth" [p. 75] property for details.

QFrame Class Reference 72

void QFrame::paintEvent (QPaintEvent * event) [virtual protected]

Processes the paint event event.

Paints the frame and the contents.

Opens the painter on the frame and calls drawFrame(), then drawContents().
Examples: life/life.cpp and qfd/fontdisplayer.cpp.

Reimplemented from QWidget [p. 466].

Reimplemented in QtTableView.

void QFrame::resizeEvent (QResizeEvent * e) [virtual protected]

Processes the resize event e.

Adjusts the frame rectangle for the resized widget. The frame rectangle is elastic, and the surrounding area is static.
The resulting frame rectangle may be null or invalid. You can use setMinimumSize() to avoid that possibility.
Nothing is done if the frame rectangle is a null rectangle already.

Example: life/life.cpp.

Reimplemented from QWidget [p. 471].

void QFrame::setFrameRect (const QRect &) [virtual]

Sets the frame rectangle. See the "frameRect" [p. 74] property for details.

void QFrame::setFrameShadow (Shadow)

Sets the frame shadow value from the frame style. See the "frameShadow" [p. 74] property for details.

void QFrame::setFrameShape (Shape)

Sets the frame shape value from the frame style. See the "frameShape" [p. 74] property for details.

void QFrame::setFrameStyle (int style) [virtual]

Sets the frame style to style.

The style is the bitwise OR between a frame shape and a frame shadow style. See the illustration in the class documen-
tation.

The frame shapes are:

e NoFrame draws nothing. Naturally, you should not specify a shadow style if you use this.

e Box draws a rectangular box. The contents appear to be level with the surrounding screen, but the border itself
may be raised or sunken.

QFrame Class Reference 73

e Panel draws a rectangular panel that can be raised or sunken.

e StyledPanel draws a rectangular panel with a look that depends on the current GUI style. It can be raised or
sunken.

e PopupPanel is used to draw a frame suitable for popup windows. Its look also depends on the current GUI style,
usually the same as StyledPanel.

e ToolBarPanel is used to draw a frame suitable for tool bars. The look depends upon the current GUI style.
e MenuBarPanel is used to draw a frame suitable for menu bars. The look depends upon the current GUI style.

e WinPanel draws a rectangular panel that can be raised or sunken like those in Windows 95. Specifying this shape
sets the line width to 2 pixels. WinPanel is provided for compatibility. For GUI style independence we recommend
using StyledPanel instead.

e HLine draws a horizontal line (vertically centered).
e VLine draws a vertical line (horizontally centered).

The shadow styles are:

e Plain draws using the palette foreground color (without any 3D effect).
e Raised draws a 3D raised line using the light and dark colors of the current color group.
e Sunken draws a 3D sunken line using the light and dark colors of the current color group.

If a mid-line width greater than O is specified, an additional line is drawn for Raised or Sunken Box, HLine, and VLine
frames. The mid-color of the current color group is used for drawing middle lines.

See also Illustration [p. 68], frameStyle() [p. 711, colorGroup [p. 487] and QColorGroup [Graphics with Qt].

Examples: cursor/cursor.cpp, layout/layout.cpp, listboxcombo/listboxcombo.cpp, rangecontrols/rangecontrols.cpp,
scrollview/scrollview.cpp, tabdialog/tabdialog.cpp and tictac/tictac.cpp.

void QFrame::setLineWidth (int) [virtual]

Sets the line width. See the "lineWidth" [p. 74] property for details.

void QFrame::setMargin (int) [virtual]

Sets the width of the margin. See the "margin" [p. 75] property for details.

void QFrame::setMidLineWidth (int) [virtual]

Sets the width of the mid-line. See the "midLineWidth" [p. 75] property for details.

Property Documentation

QRect contentsRect

This property holds the rectangle inside the frame.
Get this property’s value with contentsRect().

See also frameRect [p. 74] and drawContents() [p. 70].

QFrame Class Reference 74

QRect frameRect

This property holds the frame rectangle.

The frame rectangle is the rectangle the frame is drawn in. By default, this is the entire widget. Setting this property
does not cause a widget update.

If this property is set to a null rectangle (for example QRect (0, 0, 0, 0)), then the frame rectangle is equivalent to
the widget rectangle.

See also contentsRect [p. 73].

Set this property’s value with setFrameRect() and get this property’s value with frameRect().

Shadow frameShadow

This property holds the frame shadow value from the frame style.
Set this property’s value with setFrameShadow() and get this property’s value with frameShadow().

See also frameStyle() [p. 711 and frameShape [p. 74].

Shape frameShape

This property holds the frame shape value from the frame style.
Set this property’s value with setFrameShape() and get this property’s value with frameShape().

See also frameStyle() [p. 71] and frameShadow [p. 74].

int frameWidth

This property holds the width of the frame that is drawn.

Note that the frame width depends on the frame style, not only the line width and the mid-line width. For example,
the style NoFrame always has a frame width 0, whereas the style Panel has a frame width equivalent to the line width.
The frame width also includes the margin.

See also lineWidth [p. 74], midLineWidth [p. 75], frameStyle() [p. 71] and margin [p. 75].
Get this property’s value with frameWidth().

int lineWidth

This property holds the line width.

Note that the total line width for HLine and VLine is given by frameWidth(), not lineWidth().
The default value is 1.

See also midLineWidth [p. 75] and frameWidth [p. 74].

Set this property’s value with setLineWidth() and get this property’s value with lineWidth().

QFrame Class Reference 75

int margin

This property holds the width of the margin.

The margin is the distance between the innermost pixel of the frame and he outermost pixel of contentsRect(). It is
included in frameWidth().

The margin is filled according to backgroundMode().
The default value is 0.
See also margin [p. 751, lineWidth [p. 74] and frameWidth [p. 74].

Set this property’s value with setMargin() and get this property’s value with margin().

int midLineWidth

This property holds the width of the mid-line.
The default value is 0.
See also lineWidth [p. 74] and frameWidth [p. 74].

Set this property’s value with setMidLineWidth() and get this property’s value with midLineWidth().

QGridView Class Reference

The QGridView class provides an abstract base for fixed-size grids.
#incl ude <qgridvi ew. h>

Inherits QScrollView [p. 275].

Public Members

m QGridView (QWidget * parent = 0, const char * name = 0, WFlags f = 0)
m ~QGridView ()

= int numRows () const

virtual void setNumRows (int)

int numCols () const

virtual void setNumCols (int)

int cellWidth () const

virtual void setCellWidth (int)

int cellHeight () const

m virtual void setCellHeight (int)

= QRect cellRect () const

QRect cellGeometry (int row, int column)
QSize gridSize () const

int rowAt (int y) const

int columnAt (int x) const

void repaintCell (int row, int column, bool erase = TRUE)
void updateCell (int row, int column)
void ensureCellVisible (int row, int column)

Properties

int cellHeight — the height of a grid row
int cellWidth — the width of a grid column
int numCols — the number of columns in the grid

int numRows — the number of rows in the grid

76

QGridView Class Reference 77

Protected Members

m virtual void paintCell (QPainter * p, int row, int col)
m virtual void paintEmptyArea (QPainter * p, int cx, int cy, int cw, int ch)
m virtual void dimensionChange (int oldNumRows, int oldNumCols)

Detailed Description

The QGridView class provides an abstract base for fixed-size grids.

A grid view consists of a number of abstract cells organized in rows and columns. The cells have a fixed size and are
identified with a row index and a column index. The top-left cell is in row 0, column 0. The bottom-right cell is in row
numRows()-1, column numCols()-1.

You can define numRows, numCols, cellWidth and cellHeight. Reimplement the pure virtual function paintCell() to
draw the content of a cell.

With ensureCellVisible(), you can ensure a certain cell is visible. With rowAt() and columnAt() you can find a cell
based on the given x- and y-coordinates.

If you need to monitor changes to the grid’s dimensions (i.e. when numRows or numCols is changed), reimplement
the dimensionChange() change handler.

Note: the row, column indices are always given in the order, row (vertical offset) then column (horizontal offset). This
order is the opposite of all pixel operations, which are given in the order x (horizontal offset), y (vertical offset).

QGridView is a very simple abstract class based on QScrollView. It is designed to simplify the task of drawing many
cells of the same size in a potentially scrollable canvas. If you need rows and columns in different sizes, use a QTable
instead. If you need a simple list of items, use a QListBox. If you need to present hierachical data use a QListView, and
if you need random objects at random positions, consider using either a QIconView or a QCanvas.

See also Abstract Widget Classes.

Member Function Documentation

QGridView::QGridView (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a grid view.

The parent, name and widget flag, f, arguments are passed to the QScrollView constructor.

QGridView::~QGridView ()

Destroys the grid view.

QRect QGridView::cellGeometry (int row, int column)

Returns the geometry of cell (row, column) in the content coordinate system.

See also cellRect() [p. 78].

QGridView Class Reference 78

int QGridView::cellHeight () const

Returns the height of a grid row. See the "cellHeight" [p. 80] property for details.

QRect QGridView::cellRect () const

Returns the geometry of a cell in a cell’s coordinate system. This is a convenience function useful in paintCell(). It is
equivalent to QRect(0, 0, cellWidth(), cellHeight()).

See also cellGeometry() [p. 771].

int QGridView::cellWidth () const

Returns the width of a grid column. See the "cellWidth" [p. 80] property for details.

int QGridView::columnAt (int x) const

Returns the number of the column at position x. x must be given in content coordinates.

See also rowAt() [p. 791.

void QGridView::dimensionChange (int oldNumRows, int oldNumCols) [virtual protected]

This change handler is called whenever any of the grid’s dimensions changes. oldNumRows and oldNumCols contain
the old dimensions, numRows() and numCols() contain the new dimensions.

void QGridView::ensureCellVisible (int row, int column)

Ensure cell (row, column) is visible, scrolling the grid view if necessary.

QSize QGridView::gridSize () const

Returns the size of the grid in pixels.

int QGridView::numCols () const

Returns the number of columns in the grid. See the "numCols" [p. 80] property for details.

int QGridView::numRows () const

Returns the number of rows in the grid. See the "numRows" [p. 80] property for details.

QGridView Class Reference 79

void QGridView::paintCell (QPainter * p, int row, int col) [virtual protected]

This pure virtual function is called to paint the single cell at (row, col) using painter p. The painter must be open when
paintCell() is called and must remain open.

The coordinate system is translated so that the origin is at the top-left corner of the cell to be painted, i.e. cell
coordinates. Do not scale or shear the coordinate system (or if you do, restore the transformation matrix before you
return).

The painter is not clipped by default in order to get maximum efficiency. If you want clipping, use

p->setClipRect(cellRect(), QPainter::dipPainter);
[]... your draw ng code
p->set O i pping(FALSE);

void QGridView::paintEmptyArea (QPainter * p, int cx, int cy, int cw,
int ch) [virtual protected]

This function fills the cw pixels wide and ch pixels high rectangle starting at position (cx, cy) with the background color
using the painter p.

paintEmptyArea() is invoked by drawContents() to erase or fill unused areas.

void QGridView::repaintCell (int row, int column, bool erase = TRUE)

Repaints cell (row, column).

If erase is TRUE, Qt erases the area of the cell before the paintCell() call; otherwise no erasing takes place.
See also QWidget::repaint() [p. 469].

int QGridView::rowAt (int y) const

Returns the number of the row at position y. y must be given in content coordinates.

See also columnAt() [p. 78].

void QGridView::setCellHeight (int) [virtual]

Sets the height of a grid row. See the "cellHeight" [p. 80] property for details.

void QGridView::setCellWidth (int) [virtual]

Sets the width of a grid column. See the "cellWidth" [p. 80] property for details.

void QGridView::setNumCols (int) [virtual]

Sets the number of columns in the grid. See the "numCols" [p. 80] property for details.

QGridView Class Reference

void QGridView::setNumRows (int) [virtual]

Sets the number of rows in the grid. See the "numRows" [p. 80] property for details.

void QGridView::updateCell (int row, int column)

Updates cell (row, column).

See also QWidget::update() [p. 483].

Property Documentation

int cellHeight

This property holds the height of a grid row.
All rows in a grid view have the same height.

See also cellwWidth [p. 80].

Set this property’s value with setCellHeight() and get this property’s value with cellHeight().

int cellWidth

This property holds the width of a grid column.

All columns in a grid view have the same width.

See also cellHeight [p. 80].

Set this property’s value with setCellWidth() and get this property’s value with cellWidth().

int numcCols

This property holds the number of columns in the grid.
Set this property’s value with setNumCols() and get this property’s value with numCols().

See also numRows [p. 80].

int numRows

This property holds the number of rows in the grid.
Set this property’s value with setNumRows() and get this property’s value with numRows().

See also numCols [p. 80].

80

QGroupBox Class Reference

The QGroupBox widget provides a group box frame with a title.

#i ncl ude <qgroupbox. h>

Inherits QFrame [p. 67].

Inherited by QButtonGroup [p. 15], QHGroupBox [p. 89] and QVGroupBox [p. 430].

Public Members

m QGroupBox (QWidget * parent = 0, const char * name = 0)

m QGroupBox (const QString & title, QWidget * parent = 0, const char * name = 0)

m QGroupBox (int strips, Orientation orientation, QWidget * parent = 0, const char * name = 0)

m QGroupBox (int strips, Orientation orientation, const QString & title, QWidget * parent = 0, const char * name
=0)

m virtual void setColumnLayout (int strips, Orientation direction)

m QString title () const

virtual void setTitle (const QString &)

int alignment () const

virtual void setAlignment (int)

int columns () const

void setColumns (int)
Orientation orientation () const
void setOrientation (Orientation)
int insideMargin () const

int insideSpacing () const

void setInsideMargin (int m)
void setInsideSpacing (int s)
void addSpace (int size)

Properties

m Alignment alignment — the alignment of the group box title

m int columns — the number of columns or rows (depending on \I orientation) in the group box
m Orientation orientation — the current orientation of the group box

m QString title — the group box title text

81

QGroupBox Class Reference 82

Detailed Description

The QGroupBox widget provides a group box frame with a title.

A group box provides a frame, a title and a keyboard shortcut, and displays various other widgets inside itself. The title
is on top, the keyboard shortcut moves keyboard focus to one of the group box’s child widgets, and the child widgets
are arranged in an array inside the frame.

The simplest way to use it is to create a group box with the desired number of columns (or rows) and orientation, and
then just create widgets with the group box as parent.

Howevey, it is also possible to change the orientation() and number of columns() after construction, or to ignore all the
automatic layout support and manage all that yourself. You can add ’empty’ spaces to the group box with addSpace().

QGroupBox also lets you set the title() (normally set in the constructor) and the title’s alignment().

You can change the spacing used by the group box with setInsideMargin() and setInsideSpacing().

Group box

See also QButtonGroup [p. 15], Widget Appearance and Style, Layout Management and Organizers.

Member Function Documentation

QGroupBox::QGroupBox (QWidget * parent = 0, const char * name = 0)

Constructs a group box widget with no title.
The parent and name arguments are passed to the QWidget constructor.

This constructor does not do automatic layout.

QGroupBox::QGroupBox (const QString & title, QWidget * parent = 0, const char * name =
0)

Constructs a group box with the title title.

The parent and name arguments are passed to the QWidget constructor.

This constructor does not do automatic layout.

QGroupBox::QGroupBox (int strips, Orientation orientation, QWidget * parent = 0,
const char * name = 0)

Constructs a group box with no title. Child widgets will be arranged in strips rows or columns (depending on orienta-
tion).

The parent and name arguments are passed to the QWidget constructor.

QGroupBox Class Reference 83

QGroupBox::QGroupBox (int strips, Orientation orientation, const QString & title,
QWidget * parent = 0, const char * name = 0)

Constructs a group box titled title. Child widgets will be arranged in strips rows or columns (depending on orientation).

The parent and name arguments are passed to the QWidget constructor.

void QGroupBox::addSpace (int size)

Adds an empty cell at the next free position. If size is greater than 0, the empty cell has a fixed height or width. If the
group box is oriented horizontally, the empty cell has a fixed height; if oriented vertically, it has a fixed width.

Use this method to separate the widgets in the group box or to skip the next free cell. For performance reasons,
call this method after calling setColumnLayout() or by changing the QGroupBox::columns or QGroupBox::orientation
properties. It is generally a good idea to call these methods first (if needed at all), and insert the widgets and spaces
afterwards.

int QGroupBox::alignment () const

Returns the alignment of the group box title. See the "alignment" [p. 85] property for details.

int QGroupBox::columns () const

Returns the number of columns or rows (depending on orientation) in the group box. See the "columns" [p. 85]
property for details.

int QGroupBox::insideMargin () const

Returns the width of the blank spacing between the items in the group and the frame of the group.
Only applies if the group box has a defined orientation.
The default is about 11.

See also setInsideMargin() [p. 84] and orientation [p. 85].

int QGroupBox::insideSpacing () const

Returns the width of the blank spacing between each of the items in the group.
Only applies if the group box has a defined orientation.
The default is about 5.

See also setInsideSpacing() [p. 84] and orientation [p. 85].

Orientation QGroupBox::orientation () const

Returns the current orientation of the group box. See the "orientation" [p. 85] property for details.

QGroupBox Class Reference 84

void QGroupBox::setAlignment (int) [virtual]

Sets the alignment of the group box title. See the "alignment" [p. 85] property for details.

void QGroupBox::setColumnLayout (int strips, Orientation direction) [virtual]

Changes the layout of the group box. This function is useful only in combination with the default constructor that
does not take any layout information. This function will put all existing children in the new layout. It is not good Qt
programming style to call this function after children have been inserted. Sets the number of columns or rows to be
strips, depending on direction.

See also orientation [p. 85] and columns [p. 85].
void QGroupBox::setColumns (int)

Sets the number of columns or rows (depending on orientation) in the group box. See the "columns" [p. 85] property
for details.

void QGroupBox::setInsideMargin (int m)

Sets the the width of the blank spacing between each of the items in the group to m pixels.
See also insideSpacing() [p. 831.

void QGroupBox::setInsideSpacing (int s)

Sets the width of the blank spacing between each of the items in the group to s pixels.

void QGroupBox::setOrientation (Orientation)

Sets the current orientation of the group box. See the "orientation" [p. 85] property for details.

void QGroupBox::setTitle (const QString &) [virtual]

Sets the group box title text. See the "title" [p. 85] property for details.

QString QGroupBox::title () const

Returns the group box title text. See the "title" [p. 85] property for details.

QGroupBox Class Reference 85

Property Documentation

Alignment alignment

This property holds the alignment of the group box title.

The title is always placed on the upper frame line; however, the horizontal alignment can be specified by the alignment
parameter.

The alignment is one of the following flags:

e AlignAuto aligns the title accroding to the language, usually left.
e AlignLeft aligns the title text to the left.
e AlignRight aligns the title text to the right.

e AlignHCenter aligns the title text centered.

The default alignment is AlignAuto.
See also Qt::AlignmentFlags [Additional Functionality with Qt].

Set this property’s value with setAlignment() and get this property’s value with alignment().

int columns

This property holds the number of columns or rows (depending on orientation) in the group box.

Usually it is not a good idea to set this property because it is slow (it does a complete layout). It is better to set the
number of columns directly in the constructor.

Set this property’s value with setColumns() and get this property’s value with columns().

Orientation orientation

This property holds the current orientation of the group box.

A horizontal group box arranges it’s children in columns, while a vertical group box arranges them in rows. Thus, a
horizontal group box with only one column will arrange the children vertically in that column.

Usually it is not a good idea to set this property because it is slow (it does a complete layout). It is better to set the
orientation directly in the constructor.

Set this property’s value with setOrientation() and get this property’s value with orientation().

QString title

This property holds the group box title text.

The group box title text will have a focus-change keyboard accelerator if the title contains &, followed by a letter.
g->setTitle("&User information");

This produces "User information" with the U underlined; Alt+U moves the keyboard focus to the group box.

QGroupBox Class Reference

There is no default title text.

Set this property’s value with setTitle() and get this property’s value with title().

86

QHButtonGroup Class Reference

The QHButtonGroup widget organizes QButton widgets in a group with one horizontal row.
#i ncl ude <ghbuttongroup. h>
Inherits QButtonGroup [p. 15].

Public Members

» QHButtonGroup (QWidget * parent = 0, const char * name = 0)
» QHButtonGroup (const QString & title, QWidget * parent = 0, const char * name = 0)
» ~QHButtonGroup ()

Detailed Description

The QHButtonGroup widget organizes QButton widgets in a group with one horizontal row.

QHButtonGroup is a convenience class that offers a thin layer on top of QButtonGroup. Think of it as a QHBox that
offers a frame with a title and is specifically designed for buttons.

See also Widget Appearance and Style, Layout Management and Organizers.

Member Function Documentation

QHButtonGroup::QHButtonGroup (QWidget * parent = 0, const char * name = 0)

Constructs a horizontal button group with no title.

The parent and name arguments are passed to the QWidget constructor.

QHButtonGroup::QHButtonGroup (const QString & title, QWidget * parent = 0,
const char * name = 0)

Constructs a horizontal button group with the title title.

The parent and name arguments are passed to the QWidget constructor.

87

QHButtonGroup Class Reference

QHButtonGroup::~QHButtonGroup ()

Destroys the horizontal button group, deleting its child widgets.

88

QHGroupBox Class Reference

The QHGroupBox widget organizes widgets in a group with one horizontal row.
#i ncl ude <ghgroupbox. h>
Inherits QGroupBox [p. 81].

Public Members

» QHGroupBox (QWidget * parent = 0, const char * name = 0)
» QHGroupBox (const QString & title, QWidget * parent = 0, const char * name = 0)
» ~QHGroupBox ()

Detailed Description

The QHGroupBox widget organizes widgets in a group with one horizontal row.

QHGroupBox is a convenience class that offers a thin layer on top of QGroupBox. Think of it as a QHBox that offers a
frame with a title.

See also Widget Appearance and Style, Layout Management and Organizers.

Member Function Documentation

QHGroupBox::QHGroupBox (QWidget * parent = 0, const char * name = 0)

Constructs a horizontal group box with no title.

The parent and name arguments are passed to the QWidget constructor.

QHGroupBox::QHGroupBox (const QString & title, QWidget * parent = 0, const char * name
= O)

Constructs a horizontal group box with the title title.

The parent and name arguments are passed to the QWidget constructor.

89

QHGroupBox Class Reference

QHGroupBox::~QHGroupBox ()

Destroys the horizontal group box, deleting its child widgets.

90

IconView Module

The icon view module provides a powerful visualization widget dubbed QIconView. API and feature-wise it is similar
to QListView and QListBox. It contains optionally labelled pixmap items that the user can select, drag around, rename,
delete and more.

Item 7 ftem &

Please see the class documentation for details.

91

QIconView Class Reference

The QIconView class provides an area with movable labelled icons.

This class is part of the iconview module.

#i ncl ude <qi convi ew. h>

Inherits QScrollView [p. 275].

Public Members

enum SelectionMode { Single = 0, Multi, Extended, NoSelection }

enum Arrangement { LeftToRight = 0, TopToBottom }

enum ResizeMode { Fixed = 0, Adjust }

enum ItemTextPos { Bottom = 0, Right }

QIconView (QWidget * parent = 0, const char * name = 0, WFlags f = 0)
virtual ~QIconView ()

virtual void insertItem (QIlconViewltem * item, QIconViewItem * after = OL)
virtual void takeltem (QIconViewltem * item)

int index (const QIconViewltem * item) const

QIconViewlItem * firstitem () const

QIconViewlItem * lastIltem () const

QlIconViewItem * currentItem () const

virtual void setCurrentItem (QIconViewItem * item)

virtual void setSelected (QlconViewItem * item, bool s, bool cb = FALSE)
uint count () const

virtual void setSelectionMode (SelectionMode m)

SelectionMode selectionMode () const

QlconViewltem * findItem (const QPoint & pos) const

QlIconViewltem * findItem (const QString & text, ComparisonFlags compare = BeginsWith) const
virtual void selectAll (bool select)

virtual void clearSelection ()

virtual void invertSelection ()

virtual void repaintItem (QIconViewlItem * item)

void ensureltemVisible (QlconViewItem * item)

QIconViewlItem * findFirstVisibleItem (const QRect & r) const
QIconViewlItem * findLastVisibleItem (const QRect & r) const

virtual void clear ()

92

QIconView Class Reference

virtual void setGridX (int rx)

virtual void setGridY (int ry)

int gridX () const

int gridY () const

virtual void setSpacing (int sp)

int spacing () const

m virtual void setltemTextPos (ItemTextPos pos)

m ItemTextPos itemTextPos () const

virtual void setItemTextBackground (const QBrush & b)
QBrush itemTextBackground () const

virtual void setArrangement (Arrangement am)
Arrangement arrangement () const

virtual void setResizeMode (ResizeMode am)
ResizeMode resizeMode () const

m virtual void setMaxItemWidth (int w)

m int maxItemWidth () const

m virtual void setMaxItemTextLength (int w)

int maxItemTextLength () const

virtual void setAutoArrange (bool b)

bool autoArrange () const

virtual void setShowToolTips (bool b)

bool showToolTips () const

void setSorting (bool sort, bool ascending = TRUE)
= bool sorting () const

= bool sortDirection () const

m virtual void setItemsMovable (bool b)

= bool itemsMovable () const

e virtual void setWordWraplIconText (bool b)
e bool wordWraplIconText () const

e virtual void sort (bool ascending = TRUE)
e bool isRenaming () const

Public Slots

m virtual void arrangeltemsInGrid (const QSize & grid, bool update = TRUE)
m virtual void arrangeltemsInGrid (bool update = TRUE)

Signals

m void selectionChanged ()

void selectionChanged (QlconViewltem * item)

void currentChanged (QIconViewltem * item)

void clicked (QIconViewItem * item)

void clicked (QIconViewItem * item, const QPoint & pos)

93

QIconView Class Reference 94

void pressed (QIconViewltem * item)

void pressed (QIconViewItem * item, const QPoint & pos)

void doubleClicked (QIconViewltem * item)

void returnPressed (QlconViewltem * item)

void rightButtonClicked (QIconViewItem * item, const QPoint & pos)

void rightButtonPressed (QIconViewlItem * item, const QPoint & pos)

void mouseButtonPressed (int button, QIconViewItem * item, const QPoint & pos)
void mouseButtonClicked (int button, QIconViewltem * item, const QPoint & pos)
void contextMenuRequested (QlconViewltem * item, const QPoint & pos)

void dropped (QDropEvent * e, const QValueList<QIconDragltem> & lst)

void moved ()

void onltem (QIconViewlItem * item)

void onViewport ()

void itemRenamed (QIconViewltem * item, const QString & name)

void itemRenamed (QIconViewItem * item)

Properties

Arrangement arrangement — the arrangement mode of the icon view

bool autoArrange — whether the icon view rearranges its items when a new item is inserted
uint count — the number of items in the icon view (read only)

int gridX — the horizontal grid of the icon view

int gridY — the vertical grid of the icon view

QBrush itemTextBackground — the brush that should be used when drawing the background of an item’s text
ItemTextPos itemTextPos — the position where the text of each item is drawn

bool itemsMovable — whether the user is allowed to move items around in the icon view
int maxItemTextLength — the maximum length (in characters) that an item’s text may have
int maxItemWidth — the maximum width that an item may have

ResizeMode resizeMode — the resize mode of the icon view

SelectionMode selectionMode — the selection mode of the icon view

bool showToolTips — whether the icon view will display a tool tip with the complete text for any truncated
item text

bool sortDirection — whether the sort direction for inserting new items is ascending; (read only)
bool sorting — whether the icon view sorts on insertion (read only)

int spacing — the space in pixels between icon view items

bool wordWraplconText — whether the item text will be word-wrapped if it is too long

Protected Members

virtual void drawRubber (QPainter * p)

virtual QDragObject * dragObject ()

virtual void startDrag ()

virtual void insertInGrid (QlconViewltem * item)

virtual void drawBackground (QPainter * p, const QRect &)

void emitSelectionChanged (QIconViewItem *i = 0)

QlIconViewltem * makeRowLayout (QlconViewItem * begin, int & y, bool & changed)

QIconView Class Reference 95

Protected Slots

m virtual void doAutoScroll ()
m virtual void adjustItems ()
m virtual void slotUpdate ()

Detailed Description

The QIconView class provides an area with movable labelled icons.

The QIconView can display and manage a grid or other 2D layout of labelled icons. Each labelled icon is a QIcon-
Viewltem. Items (QIconViewltems) can be added or deleted at any time; items can be moved within the QIconView.
Single or multiple items can be selected. Items can be renamed in-place. QIconView also supports drag and drop.

Each item contains a label string, a pixmap or picture (the icon itself) and optionally an index key. The index key is
used for sorting the items and defaults to the label string. The label string can be displayed below or to the right of the
icon (see ItemTextPos).

The simplest way to create a QIlconView is to create a QIconView object and create some QIconViewItems with the
QIconView as their parent, set the icon view’s geometry and show it. Below is an example of how such code might
look:

QconView *iv = new QconView this);
Q@ir dir(path, "*.xpnt);
for (‘uint i =0; i <dir.count(); i++) {
(void) new QconViewmten(iv, dir[i], QPixmap(path + dir[i]));
}

iv->resize(600, 400);
i v->show();

The QIconViewltem call passes a pointer to the QIconView we wish to populate followed by the label text and a
QPixmap.

When an item is inserted the QIconView allocates a position for it. The default arrangement is LeftToRight — QIcon-
View fills up the left-most column from top to bottom, then moves one column right and fills that from top to bottom
and so on. The arrangement can be modified with any of the following approaches:

e Call setArrangement(), e.g. with TopToBottom which will fill the top-most row from left to right, then moves one
row down and fills that row from left to right and so on.

e Construct each QlconViewltem using a constructor which allows you to specify which item the new one is to
follow.

e Call setSorting() or sort() to sort the items.

Items which are selectable may be selected depending on the SelectionMode (default is Single). Because QIconView
offers multiple selection it has to display keyboard focus and selection state separately. Therefore there are functions to
set the selection state of an item (setSelected()) and to select which item displays keyboard focus (setCurrentltem()).
When multiple items may be selected the icon view provides a rubberband, too.

When in-place renaming is enabled (it is disabled by default), the user may change the item’s label. They do this by
selecting the item (single clicking it or navigating to it with the arrow keys), then single clicking it (or pressing F2),
and entering their text. If no key has been set with QIconViewItem::setKey() the new text will also serve as the key.
(See QIconViewltem::setRenameEnabled().)

QIconView Class Reference 96

QIconView offers functions similar to QListView and QListBox, such as takeltem(), clearSelection(), setSelected(),
setCurrentltem(), currentltem() and many more.

Because the internal structure used to store the icon view items is linear (a double-linked list), no iterator class is
needed to iterate over all the items. Instead we iterate by getting the first item from the icon view and then each
subsequent (QIconViewItem::nextItem()) from each item in turn:

for (QconViewtem*item=iv->firstiten(); item item=item>nextltem))
do_sonething(item);

QIconView supports the drag and drop of items within the QIconView itself. It also supports the drag and drop of
items out of or into the QIconView and drag and drop onto items themselves. The drag and drop of items outside the
QIconView can be achieved in a simple way with basic functionality, or in a more sophisticated way which provides
more power and control.

The simple approach to dragging items out of the icon view is to subclass QIconView and reimplement QIcon-
View::dragObject().

Q@ragnj ect *Myl conVi ew. : dragQbject ()
{

}

return new QlextDrag(currentltem)->text(), this);

In this example we create a QTextDrag object, (derived from QDragObject), containing the item’s label and return it as
the drag object. We could just as easily have created a QImageDrag from the item’s pixmap and returned that instead.

QIconViews and their QIconViewItems can also be the targets of drag and drops. To make the QIconView itself able to
accept drops connect to the dropped() signal. When a drop occurs this signal will be emitted with a QDragEvent and a
QValuelist of QIconDragltems. To make a QIconViewlItem into a drop target subclass QIconViewlItem and reimplement
QIconViewlItem::acceptDrop() and QlconViewlItem::dropped().

bool MlconView tem :acceptDrop(const QM meSource *minme) const

{
if (mme->provides("text/plain"))
return TRUE;
return FALSE,
}
void MylconView tem :dropped(QDropEvent *evt, const Qval uelisté&)
{
QString |abel;
if (QlextDrag::decode(evt, label))
set Text (| abel);
}

See iconview/simple dd/main.h and iconview/simple dd/main.cpp for a simple drag and drop example which demon-
strates drag and drop between a QIconView and a QListBox.

If you want to use extended drag-and-drop or have drag shapes drawn you have to take a more sophisticated approach.

The first part is starting drags — you should use a QIconDrag (or a class derived from it) for the drag object. In
dragObject() create the drag object, populate it with QIconDragltems and return it. Normally such a drag should
offer each selected item’s data. So in dragObject() you should iterate over all the items, and create a QIconDragltem
for each selected item, and append these items with QIconDrag::append() to the QIconDrag object. You can use

QIconView Class Reference 97

QIconDragltem::setData() to set the data of each item that should be dragged. If you want to offer the data in
additional mime-types, it’s best to use a class derived from QIconDrag, which implements additional encoding and
decoding functions.

When a drag enters the icon view, there is little to do. Simply connect to the dropped() signal and reimplement
QIconViewlItem::acceptDrop() and QIconViewltem::dropped(). If you've used a QIlconDrag (or a subclass of it) the
second argument to the dropped signal contains a QValueList of QIconDragltems — you can access their data by
calling QIconDragltem::data.

For an example implementation of complex drag-and-drop look at the (fileiconview example
(qt/examples/qfileiconview).

See also QIconViewltem::setDragEnabled() [p. 121], QlconViewItem::setDropEnabled() [p. 121],
QIconViewlItem::acceptDrop() [p. 116], QlconViewltem::dropped() [p. 118] and Advanced Widgets.

& & x = = o

Item 1 Item 2 Item 3 ftem 4 ltem 3 Item & Item

H & &

Item 7 ftem & ltem 7 Item &

ftem 3 Item 4 Item 3 Item &

Member Type Documentation

QIconView::Arrangement

This enum type determines in which direction the items flow when the view runs out of space.

e QconView : Left ToRi ght - Items which don’t fit onto the view go further down (you get a vertical scrollbar)
e Q conVi ew. : TopToBot t om - Items which don’t fit onto the view go further right (you get a horizontal scrollbar)
QIconView::ItemTextPos

This enum type specifies the position of the item text in relation to the icon.

e Q conView : Bott om- The text is drawn below the icon.
e QconView : Right - The text is drawn to the right of the icon.
QIconView::ResizeMode

This enum type is used to tell QIconView how it should treat the positions of its icons when the widget is resized. The
currently defined modes are:

e Q conVi ew : Fi xed - The icons’ positions are not changed.
e Q conView : Adj ust - The icons’ positions are adjusted to be within the new geometry, if possible.

QIconView::SelectionMode

This enumerated type is used by QIconView to indicate how it reacts to selection by the user. It has four values:

QIconView Class Reference 98

e Q conView : Si ngl e - When the user selects an item, any already-selected item becomes unselected and the user
cannot unselect the selected item. This means that the user can never clear the selection. (The application
programmer can, using QIconView::clearSelection().)

e QconView :Milti - When the user selects an item, e.g. by navigating to it with the keyboard arrow keys or by
clicking it, the selection status of that item is toggled and the other items are left alone.

e Q conView : Ext ended - When the user selects an item the selection is cleared and the new item selected. How-
ever, if the user presses the Ctrl key when clicking on an item, the clicked item gets toggled and all other items
are left untouched. If the user presses the Shift key while clicking on an item, all items between the current item
and the clicked item get selected or unselected, depending on the state of the clicked item. Also, multiple items
can be selected by dragging the mouse while the left mouse button stays pressed.

e QconView : NoSel ection - Items cannot be selected.

To summarise: Single is a real single-selection icon view; Multi a real multi-selection icon view; Extended is an icon
view in which users can select multiple items but usually want to select either just one or a range of contiguous items;
and NoSelection mode is for an icon view where the user can look but not touch.

Member Function Documentation

QIconView::QIconView (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs an empty icon view with the parent parent and the name name, using the widget flags f.

QIconView::~QIconView () [virtual]

Destroys the icon view and deletes all items.

void QIconView::adjustItems () [virtual protected slot]

Adjusts the positions of the items to the geometry of the icon view.

void QIconView::arrangeltemsInGrid (const QSize & grid, bool update =
TRUE) [virtual slot]

This variant uses grid instead of (gridX(), gridY()). If grid is invalid (see QSize::isValid()), arrangeltemsInGrid()
calculates a valid grid itself and uses that.
If update is TRUE (the default) the viewport is repainted.

Example: fileiconview/qfileiconview.h.

void QIconView::arrangeltemsInGrid (bool update = TRUE) [virtual slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Arranges all the items in the grid given by gridX() and gridY().

QIconView Class Reference 99

Even if sorting() is enabled, the items are not sorted by this function. If you want to sort or rearrange all items, use
iconview->sort(iconview->sortDirection()).

If update is TRUE (the default), the viewport is repainted as well.
See also QlconView::gridX [p. 110], QlconView::gridY [p. 110] and QIconView::sort() [p. 108].

Arrangement QIconView::arrangement () const

Returns the arrangement mode of the icon view. See the "arrangement" [p. 109] property for details.

bool QIconView::autoArrange () const

Returns TRUE if the icon view rearranges its items when a new item is inserted; otherwise returns FALSE. See the
"autoArrange" [p. 109] property for details.

void QIconView::clear () [virtual]

Clears the icon view. All items are deleted.

void QIconView::clearSelection () [virtual]

Unselects all items.

void QIconView::clicked (QIconViewltem * item) [signal]
This signal is emitted when the user clicks any mouse button. If item is non-null, the cursor is on item. If item is null,

the mouse cursor isn’t on any item.

See also mouseButtonClicked() [p. 1041, rightButtonClicked() [p. 105] and pressed() [p. 104].

void QIconView::clicked (QIconViewItem * item, const QPoint & pos) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted when the user clicks any mouse button. item is a pointer to the item that has been clicked. If you
click on the iconview, but not on an item, then the signal is not emitted.

pos is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()). (If the click’s press
and release differ by a pixel or two, pos is the position at release time.)

See also mouseButtonClicked() [p. 1041, rightButtonClicked() [p. 105] and pressed() [p. 104].
void QIconView::contextMenuRequested (QlconViewItem * item,
const QPoint & pos) [signal]

This signal is emitted when the user invokes a context menu with the right mouse button or with special system keys,
with item being the item under the mouse cursor or the current item, respectively.

QIconView Class Reference 100
pos is the position for the context menu in the global coordinate system.

uint QIconView::count () const

Returns the number of items in the icon view. See the "count" [p. 110] property for details.

void QIconView::currentChanged (QIconViewltem * item) [signal]

This signal is emitted when a new item becomes current. item is the new current item (or O if no item is current now).

See also currentItem() [p. 100].

QIconViewltem * QIconView::currentItem () const

Returns a pointer to the current item of the icon view, or 0 if no item is current.

void QIconView::doAutoScroll () [virtual protected slot]

Performs autoscrolling when selecting multiple icons with the rubber band.

void QIconView::doubleClicked (QIconViewlItem * item) [signal]

This signal is emitted when the user double-clicks on item.

QDragObject * QIconView::dragObject () [virtual protected]

Returns the QDragObject that should be used for drag-and-drop. This function is called by the icon view when starting
a drag to get the dragobject which should be used for the drag. Subclasses may reimplement this.
See also QIconDrag [Events, Actions, Layouts and Styles with Qt].

Example: fileiconview/qfileiconview.cpp.

void QIconView::drawBackground (QPainter * p, const QRect & r) [virtual protected]

This function is called to draw the rectangle r of the background using the painter p.

The default implementation fills r with the viewport’s backgroundBrush(). Subclasses may reimplement this to draw
custom backgrounds.

See also contentsX [p. 293], contentsY [p. 293] and drawContents() [p. 286].

void QIconView::drawRubber (QPainter * p) [virtual protected]

Draws the rubber band using the painter p.

QIconView Class Reference 101

void QIconView::dropped (QDropEvent * e,
const QValueList<QIconDragltem> & Ist) [signal]

This signal is emitted when a drop event occurs in the viewport (but not on any icon) which the icon view itself can’t
handle.

e provides all the information about the drop. If the drag object of the drop was a QIconDrag, Ist contains the list of
the dropped items. You can get the data using QIconDragltem::data() on each item. If the Ist is empty, i.e. the drag
was not a QIconDrag, you have to decode the data in e and work with that.

Note QIconViewltems may be drop targets; if a drop event occurs on an item the item handles the drop.

Example: iconview/main.cpp.

void QIconView::emitSelectionChanged (QlconViewltem * i = 0) [protected]

Emits a signal to indicate selection changes. i is the QIconViewItem that was selected or de-selected.

You should never need to call this.

void QIconView::ensureltemVisible (QIconViewItem * item)

Makes sure that item is entirely visible. If necessary, ensureltemVisible() scrolls the icon view.

See also ensureVisible() [p. 287].

QlIconViewItem * QIconView::findFirstVisibleItem (const QRect & r) const
Finds the first item whose bounding rectangle overlaps r and returns a pointer to that item. r is given in content
coordinates.

If you want to find all items that touch r, you will need to use this function and nextltem() in a loop ending at
findLastVisibleItem() and test QItem::rect() for each of these items.

See also findLastVisibleItem() [p. 102] and QIconViewlItem::rect() [p. 120].

QIconViewItem * QIconView::findItem (const QPoint & pos) const

Returns a pointer to the item that contains pos, which is given in contents coordinates.

QlIconViewltem * QIconView::findItem (const QString & text, ComparisonFlags compare =
BeginsWith) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a pointer to the first item whose text begins with text, or 0 if no such item could be found. Use the compare
flag to control the comparison behaviour. (See Qt::StringComparisonMode.)

QIconView Class Reference 102

QlIconViewItem * QIconView::findLastVisibleItem (const QRect & r) const

Finds the last item whose bounding rectangle overlaps r and returns a pointer to that item. r is given in content
coordinates.

See also findFirstVisibleItem() [p. 101].

QIconViewltem * QIconView::firstltem () const

Returns a pointer to the first item of the icon view, or 0 if there are no items in the icon view.

int QIconView::gridX () const

Returns the horizontal grid of the icon view. See the "gridX" [p. 110] property for details.

int QIconView::gridY () const

Returns the vertical grid of the icon view. See the "gridY" [p. 110] property for details.

int QIconView::index (const QIconViewltem * item) const

Returns the index of item, or -1 if item doesn’t exist in this icon view.

void QIconView::insertInGrid (QIconViewlItem * item) [virtual protected]

Inserts the QIconViewltem itemn in the icon view’s grid. You should never need to call this manually. Insert QIcon-
ViewlItems by creating them with a pointer to the QIconView that they are to be inserted into as a parameter.

void QIconView::insertIltem (QlconViewItem * item, QIconViewltem * after = OL) [virtual]

Inserts the icon view item item after after. If after is 0, item is appended after the last item.

You should never need to call this function. Instead create QIconViewItem'’s and associate them with your icon view like
this:

(void) new QconViewten{ nylconview, "The text of the iten, aPixmap);

void QIconView::invertSelection () [virtual]

Inverts the selection. Works only in Multi and Extended selection mode.

bool QIconView::isRenaming () const

Returns TRUE if an iconview item is being renamed; otherwise returns FALSE.

QIconView Class Reference 103

void QIconView::itemRenamed (QIconViewlItem * item, const QString & name) [signal]

This signal is emitted when item has been renamed to name, usually by in-place renaming.

See also QlconViewltem::setRenameEnabled() [p. 122] and QIconViewItem::rename() [p. 120].

void QIconView::itemRenamed (QIconViewItem * item) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This signal is emitted when item has been renamed, usually by in-place renaming.

See also QlconViewltem::setRenameEnabled() [p. 122] and QIconViewltem::rename() [p. 120].

QBrush QIconView::itemTextBackground () const

Returns the brush that should be used when drawing the background of an item’s text. See the "itemTextBackground"
[p. 110] property for details.

ItemTextPos QIconView::itemTextPos () const

Returns the position where the text of each item is drawn. See the "itemTextPos" [p. 110] property for details.

bool QIconView::itemsMovable () const

Returns TRUE if the user is allowed to move items around in the icon view; otherwise returns FALSE. See the "itemsMov-
able" [p. 110] property for details.

QIconViewItem * QIconView::lastItem () const
Returns a pointer to the last item of the icon view, or O if there are no items in the icon view.
QIconViewltem * QIconView::makeRowLayout (QIconViewlItem * begin, int &y,
bool & changed) [protected]
Lays out a row of icons (if Arrangement == TopToBottom this is a column). Starts laying out with the item begin. y

is the starting coordinate. Returns the last item of the row (column) and sets the new starting coordinate to y. The
changed parameter is used internally.

This function may be made private in a future version of Qt. We do not recommend calling it.

int QIconView::maxItemTextLength () const

Returns the maximum length (in characters) that an item’s text may have. See the "maxItemTextLength" [p. 111]
property for details.

QIconView Class Reference 104

int QIconView::maxItemWidth () const

Returns the maximum width that an item may have. See the "maxItemWidth" [p. 111] property for details.

void QIconView::mouseButtonClicked (int button, QIconViewlItem * item,
const QPoint & pos) [signal]

This signal is emitted when the user clicks mouse button button. If item is non-null, the cursor is on item. If item is
null, the mouse cursor isn’t on any item.

pos is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()). (If the click’s press
and release differ by a pixel or two, pos is the position at release time.)

See also mouseButtonPressed() [p. 1041, rightButtonClicked() [p. 105] and clicked() [p. 991.

void QIconView::mouseButtonPressed (int button, QIconViewItem * item,
const QPoint & pos) [signal]

This signal is emitted when the user presses mouse button button. If item is non-null, the cursor is on item. If item is
null, the mouse cursor isn’t on any item.

pos is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()).

See also rightButtonClicked() [p. 105] and pressed() [p. 104].

void QIconView::moved () [signal]

This signal is emitted after successfully dropping one (or more) items of the icon view. If the items should be removed,
it’s best to do so in a slot connected to this signal.

Example: iconview/main.cpp.

void QIconView::onltem (QlconViewItem * item) [signal]

This signal is emitted when the user moves the mouse cursor onto an item, similar to the QWidget::enterEvent()
function.

void QIconView::onViewport () [signal]

This signal is emitted when the user moves the mouse cursor from an item to an empty part of the icon view.

See also onltem() [p. 104].

void QIconView::pressed (QlconViewlItem * item) [signal]

This signal is emitted when the user presses any mouse button. If item is non-null, the cursor is on item. If item is null,
the mouse cursor isn’t on any item.

See also mouseButtonPressed() [p. 104], rightButtonPressed() [p. 105] and clicked() [p. 991.

QIconView Class Reference 105

void QIconView::pressed (QIlconViewlItem * item, const QPoint & pos) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted when the user presses any mouse button. If item is non-null, the cursor is on item. If item is null,
the mouse cursor isn’t on any item.

pos is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()). (If the click’s press
and release differ by a pixel or two, pos is the position at release time.)

See also mouseButtonPressed() [p. 104], rightButtonPressed() [p. 105] and clicked() [p. 991.

void QIconView::repaintitem (QIconViewlItem * item) [virtual]

Repaints the item.

ResizeMode QIconView::resizeMode () const

Returns the resize mode of the icon view. See the "resizeMode" [p. 111] property for details.

void QIconView::returnPressed (QIconViewltem * item) [signal]

This signal is emitted if the user presses the Return or Enter key. item is the currentltem() at the time of the keypress.

void QIconView::rightButtonClicked (QIconViewItem * item, const QPoint & pos) [signal]
This signal is emitted when the user clicks the right mouse button. If item is non-null, the cursor is on item. If item is
null, the mouse cursor isn’t on any item.

pos is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()). (If the click’s press
and release differ by a pixel or two, pos is the position at release time.)

See also rightButtonPressed() [p. 105], mouseButtonClicked() [p. 104] and clicked() [p. 99].

void QIconView::rightButtonPressed (QIconViewltem * item, const QPoint & pos) [signal]

This signal is emitted when the user presses the right mouse button. If item is non-null, the cursor is on item. If item is
null, the mouse cursor isn’t on any item.

pos is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()).

void QIconView::selectAll (bool select) [virtual]

In Multi and Extended modes, this function sets all items to be selected if select is TRUE, and to be unselected if select
is FALSE.

In Single and NoSelection modes, this function only changes the selection status of currentItem().

QIconView Class Reference 106

void QIconView::selectionChanged () [signal]

This signal is emitted when the selection has been changed. It’s emitted in each selection mode.

void QIconView::selectionChanged (QIconViewlItem * item) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted when the selection changes. item is the newly selected item. This signal is emitted only in single
selection mode.

SelectionMode QIconView::selectionMode () const

Returns the selection mode of the icon view. See the "selectionMode" [p. 111] property for details.

void QIconView::setArrangement (Arrangement am) [virtual]

Sets the arrangement mode of the icon view to am. See the "arrangement” [p. 109] property for details.

void QIconView::setAutoArrange (bool b) [virtual]

Sets whether the icon view rearranges its items when a new item is inserted to b. See the "autoArrange" [p. 109]
property for details.

void QIconView::setCurrentItem (QIconViewltem * item) [virtual]

Makes item the new current item of the icon view.

void QIconView::setGridX (int rx) [virtual]

Sets the horizontal grid of the icon view to rx. See the "gridX" [p. 110] property for details.

void QIconView::setGridY (int ry) [virtual]

Sets the vertical grid of the icon view to ry. See the "gridY" [p. 110] property for details.

void QIconView::setltemTextBackground (const QBrush & b) [virtual]

Sets the brush that should be used when drawing the background of an item’s text to b. See the "itemTextBackground"
[p. 110] property for details.

void QIconView::setltemTextPos (ItemTextPos pos) [virtual]

Sets the position where the text of each item is drawn to pos. See the "itemTextPos" [p. 110] property for details.

QIconView Class Reference 107

void QIconView::setitemsMovable (bool b) [virtual]

Sets whether the user is allowed to move items around in the icon view to b. See the "itemsMovable" [p. 110] property
for details.

void QIconView::setMaxItemTextLength (int w) [virtual]

Sets the maximum length (in characters) that an item’s text may have to w. See the "maxItemTextLength" [p. 111]
property for details.

void QIconView::setMaxItemWidth (int w) [virtual]

Sets the maximum width that an item may have to w. See the "maxItemWidth" [p. 111] property for details.

void QIconView::setResizeMode (ResizeMode am) [virtual]

Sets the resize mode of the icon view to am. See the "resizeMode" [p. 111] property for details.

void QIconView::setSelected (QIconViewlItem * item, bool s, bool cb = FALSE) [virtual]
Selects or unselects item depending on s, and may also unselect other items, depending on QIconView::selectionMode()
and cb.

If s is FALSE, item is unselected.

If s is TRUE and QIconView::selectionMode() is Single, item is selected, and the item which was selected is unselected.

If s is TRUE and QIconView::selectionMode() is Extended, item is selected. If cb is TRUE, the selection state of the icon
view’s other items is left unchanged. If cb is FALSE (the default) all other items are unselected.

If s is TRUE and QIconView::selectionMode() is Multi itemn is selected.
Note that cb is used only if QIconView::selectionMode() is Extended. cb defaults to FALSE.

All items whose selection status is changed repaint themselves.

void QIconView::setSelectionMode (SelectionMode m) [virtual]

Sets the selection mode of the icon view to m. See the "selectionMode" [p. 111] property for details.

void QIconView::setShowToolTips (bool b) [virtual]

Sets whether the icon view will display a tool tip with the complete text for any truncated item text to b. See the
"showToolTips" [p. 111] property for details.

QIconView Class Reference 108

void QIconView::setSorting (bool sort, bool ascending = TRUE)

If sort is TRUE, this function sets the icon view to sort items when a new item is inserted. If sort is FALSE, the icon view
will not be sorted.

Note that autoArrange() has to be TRUE for sorting to take place.

If ascending is TRUE, items are sorted in ascending order. If ascending is FALSE, items are sorted in descending order.

QlIconViewlItem::compare() is used to compare pairs of items. The sorting is based on the item’s keys; these default to
the item’s text unless specifically set to something else.

See also QlconView::autoArrange [p. 109], QIconView::autoArrange [p. 109], sortDirection [p. 111], sort() [p. 108]
and QlconViewltem::setKey() [p. 121].

void QIconView::setSpacing (int sp) [virtual]

Sets the space in pixels between icon view items to sp. See the "spacing" [p. 112] property for details.

void QIconView::setWordWraplconText (bool b) [virtual]

Sets whether the item text will be word-wrapped if it is too long to b. See the "wordWraplconText" [p. 112] property
for details.

bool QIconView::showToolTips () const

Returns TRUE if the icon view will display a tool tip with the complete text for any truncated item text; otherwise
returns FALSE. See the "showToolTips" [p. 111] property for details.

void QIconView::slotUpdate () [virtual protected slot]

This slot is used for a slightly-delayed update.

The icon view is not redrawn immediately after inserting a new item but after a very small delay using a QTimer. This
means that when many items are inserted in a loop the icon view is probably redrawn only once at the end of the loop.
This makes the insertions both flicker-free and faster.

void QIconView::sort (bool ascending = TRUE) [virtual]
Sorts and rearranges all items in the icon view. If ascending is TRUE, the items are sorted in increasing order, otherwise
they are sorted in decreasing order.

QIconViewlItem::compare() is used to compare pairs of items. The sorting is based on the item’s keys; these default to
the item’s text unless specifically set to something else.

Note that this function sets the sort order to ascending.

See also QlconViewltem::key() [p. 118], QIconViewltem::setKey() [p. 121], QIconViewlItem::compare() [p. 1171,
QIconView::setSorting() [p. 108] and QIconView::sortDirection [p. 111].

QIconView Class Reference 109

bool QIconView::sortDirection () const

Returns TRUE if the sort direction for inserting new items is ascending;; otherwise returns FALSE. See the "sortDirec-
tion" [p. 111] property for details.

bool QIconView::sorting () const

Returns TRUE if the icon view sorts on insertion; otherwise returns FALSE. See the "sorting" [p. 112] property for
details.

int QIconView::spacing () const

Returns the space in pixels between icon view items. See the "spacing” [p. 112] property for details.

void QIconView::startDrag () [virtual protected]

Starts a drag.

void QIconView::takeltem (QIconViewItem * item) [virtual]

Takes the icon view item item out of the icon view and causes an update of the screen display. The item is not deleted.
You should normally not need to call this function because QIconViewltem::~QIconViewItem() calls it. The normal
way to delete an item is to delete it.

bool QIconView::wordWraplIconText () const
Returns TRUE if the item text will be word-wrapped if it is too long; otherwise returns FALSE. See the "wordWrapIcon-

Text" [p. 112] property for details.

Property Documentation

Arrangement arrangement

This property holds the arrangement mode of the icon view.
This can be LeftToRight or TopToBottom. The default is LeftToRight.

Set this property’s value with setArrangement() and get this property’s value with arrangement().

bool autoArrange

This property holds whether the icon view rearranges its items when a new item is inserted.

The default is set to TRUE.

QIconView Class Reference 110

Note that if the icon view is not visible at the time of insertion, QIconView defers all position-related work until it’s
shown and then calls arrangeltemsInGrid().

Set this property’s value with setAutoArrange() and get this property’s value with autoArrange().

uint count

This property holds the number of items in the icon view.

Get this property’s value with count().

int gridX

This property holds the horizontal grid of the icon view.
If the value is -1, (the default), QIconView computes suitable column widths based on the icon view’s contents.
Note that setting a grid width overrides setMaxItemWidth ().

Set this property’s value with setGridX() and get this property’s value with gridX().

int gridY

This property holds the vertical grid of the icon view.
If the value is -1, (the default), QlconView computes suitable column heights based on the icon view’s contents.

Set this property’s value with setGridY() and get this property’s value with gridY().

QBrush itemTextBackground

This property holds the brush that should be used when drawing the background of an item’s text.
By default this brush is set to NoBrush, meaning that only the normal icon view background is used.

Set this property’s value with setltemTextBackground() and get this property’s value with itemTextBackground().

ItemTextPos itemTextPos

This property holds the position where the text of each item is drawn.
Valid values are Bottom or Right. The default is Bottom.

Set this property’s value with setltemTextPos() and get this property’s value with itemTextPos().

bool itemsMovable

This property holds whether the user is allowed to move items around in the icon view.
The default is TRUE.

Set this property’s value with setitemsMovable() and get this property’s value with itemsMovable().

QIconView Class Reference 111

int maxItemTextLength

This property holds the maximum length (in characters) that an item’s text may have.
The default is 255 characters.

Set this property’s value with setMaxItemTextLength() and get this property’s value with maxItemTextLength().

int maxItemWidth

This property holds the maximum width that an item may have.
The default is 100 pixels.
Note that if the gridX() value is set QlconView will ignore this property.

Set this property’s value with setMaxItemWidth() and get this property’s value with maxItemWidth().

ResizeMode resizeMode

This property holds the resize mode of the icon view.
This can be Fixed or Adjust. The default is Fixed.

Set this property’s value with setResizeMode() and get this property’s value with resizeMode().

SelectionMode selectionMode

This property holds the selection mode of the icon view.
This can be Single (the default), Extended, Multi or NoSelection.

Set this property’s value with setSelectionMode() and get this property’s value with selectionMode().

bool showToolTips

This property holds whether the icon view will display a tool tip with the complete text for any truncated item text.
The default is TRUE. Note that this has no effect if setWordWrapIconText() is TRUE, as it is by default.

Set this property’s value with setShowToolTips() and get this property’s value with showToolTips().

bool sortDirection

This property holds whether the sort direction for inserting new items is ascending;.

The default is TRUE (i.e. ascending). This sort direction only has meaning if sorting() and autoArrange() are both
TRUE.

To set the sort direction, use setSorting()

Get this property’s value with sortDirection().

QIconView Class Reference 112

bool sorting

This property holds whether the icon view sorts on insertion.
The default is FALSE, i.e. no sorting on insertion.
To set the soring, use setSorting().

Get this property’s value with sorting().

int spacing

This property holds the space in pixels between icon view items.
The default is 5 pixels.
Negative values for spacing are illegal.

Set this property’s value with setSpacing() and get this property’s value with spacing().

bool wordWrapIconText

This property holds whether the item text will be word-wrapped if it is too long.
The default is TRUE.

If this property is FALSE, icon text that is too long is truncated, and an ellipsis (...) appended to indicate that truncation
has occurred.

Set this property’s value with setWordWrapIconText() and get this property’s value with wordWrapIconText().

QIconViewItem Class Reference

The QIconViewltem class provides a single item in a QIconView.
This class is part of the iconview module.
#i ncl ude <qi convi ew. h>

Inherits Qt [Additional Functionality with Qt].

Public Members

m QIconViewlItem (QIconView * parent)

m QIconViewltem (QIconView * parent, QlconViewlItem * after)

m QIconViewlItem (QIconView * parent, const QString & text)

m QIconViewltem (QIconView * parent, QlconViewltem * after, const QString & text)

m QIconViewltem (QIconView * parent, const QString & text, const QPixmap & icon)

m QIconViewltem (QIconView * parent, QlconViewlItem * after, const QString & text, const QPixmap & icon)
m QIconViewltem (QIconView * parent, const QString & text, const QPicture & picture)
m QIconViewltem (QIconView * parent, QlconViewlItem * after, const QString & text, const QPicture & picture)
m virtual ~QIconViewlItem ()

m virtual void setRenameEnabled (bool allow)

m virtual void setDragEnabled (bool allow)

m virtual void setDropEnabled (bool allow)

m virtual QString text () const

m virtual QPixmap * pixmap () const

m virtual QPicture * picture () const

m virtual QString key () const

m bool renameEnabled () const

m bool dragEnabled () const

m bool dropEnabled () const

= QIconView * iconView () const

m QlconViewltem * previtem () const

= QIconViewltem * nextItem () const

m int index () const

m virtual void setSelected (bool s, bool cb)

m virtual void setSelected (bool s)

m virtual void setSelectable (bool enable)

m bool isSelected () const

113

QIconViewlItem Class Reference

bool isSelectable () const

virtual void repaint ()

virtual bool move (int x, int y)

virtual void moveBy (int dx, int dy)

virtual bool move (const QPoint & pnt)

virtual void moveBy (const QPoint & pnt)

QRect rect () const

int x () const

int y () const

int width () const

int height () const

QSize size () const

QPoint pos () const

QRect textRect (bool relative = TRUE) const

QRect pixmapRect (bool relative = TRUE) const

bool contains (const QPoint & pnt) const

bool intersects (const QRect & r) const

virtual bool acceptDrop (const QMimeSource * mime) const
void rename ()

virtual int compare (QlconViewltem * i) const

virtual void setText (const QString & text)

virtual void setPixmap (const QPixmap & icon)

virtual void setPicture (const QPicture & icon)

virtual void setText (const QString & text, bool recalc, bool redraw = TRUE)
virtual void setPixmap (const QPixmap & icon, bool recalc, bool redraw = TRUE)
virtual void setKey (const QString & k)

virtual int rtti () const

Protected Members

virtual void removeRenameBox ()

virtual void calcRect (const QString & text = QString::null)

virtual void paintItem (QPainter * p, const QColorGroup & cg)

virtual void paintFocus (QPainter * p, const QColorGroup & cg)

virtual void dropped (QDropEvent * e, const QValueList<QIconDragltem> & Ist)
virtual void dragEntered ()

virtual void dragLeft ()

void setltemRect (const QRect & r)

void setTextRect (const QRect & r)

void setPixmapRect (const QRect & 1)

114

QIconViewlItem Class Reference 115

Detailed Description

The QlconViewlItem class provides a single item in a QlconView.
A QIconViewlItem contains an icon, a string and optionally a sort key, and can display itself in a QIconView.

The simplest way to create a QlconViewltem and insert it into a QIconView is to construct the item passing the con-
structor a pointer to the icon view, a string and an icon:

(void) new Q conView ten(
iconView, // A pointer to a QconView
“This is the text of the itent,
aPi xmap);

By default the text of an icon view item may not be edited by the user but calling setRenameEnabled (TRUE) will allow
the user to perform in-place editing of the item’s text.

When the icon view is deleted all items in it are deleted automatically.

The QIconView::firstitem() and QIconViewItem::nextItem() functions provide a means of iterating over all the items
in a QIconView:

QconViemtem*item
for (item=iconView>firstiten{); item item= item>nextlten())
do_sonething with(item);

To remove an item from an icon view, just delete the item. The QIconViewItem destructor removes it cleanly from its
icon view.

Because the icon view is designed to use drag-and-drop, the icon view item also has functions for drag-and-drop which
may be reimplemented.

The class is designed to be very similar to QListView and QListBox in use, both via instantiation and subclassing.

See also Advanced Widgets.

Member Function Documentation

QIconViewlItem::QIconViewlItem (QIconView * parent)

Constructs a QIconViewltem and inserts it into icon view parent with no text and a default icon.

QIconViewItem::QIconViewItem (QIconView * parent, QlconViewItem * after)

Constructs a QIconViewItem and inserts it into the icon view parent with no text and a default icon, after the icon view
item after.

QIconViewlItem::QIconViewlItem (QIconView * parent, const QString & text)

Constructs an icon view item and inserts it into the icon view parent using text as the text and a default icon.

QIconViewlItem Class Reference 116

QIconViewlItem::QIconViewlItem (QIconView * parent, QlconViewItem * after,
const QString & text)

Constructs an icon view item and inserts it into the icon view parent using text as the text and a default icon, after the
icon view item after.

QIconViewlItem::QIconViewltem (QIconView * parent, const QString & text,
const QPixmap & icon)

Constructs an icon view item and inserts it into the icon view parent using text as the text and icon as the icon.

QIconViewItem::QIconViewItem (QIconView * parent, QlconViewltem * after,
const QString & text, const QPixmap & icon)

Constructs an icon view item and inserts it into the icon view parent using text as the text and icon as the icon, after
the icon view item after.

QIconViewlItem::QIconViewltem (QIconView * parent, const QString & text,
const QPicture & picture)

Constructs an icon view item and inserts it into the icon view parent using text as the text and a picture as the icon.

QIconViewItem::QIconViewItem (QIconView * parent, QlconViewltem * after,
const QString & text, const QPicture & picture)

Constructs an icon view item and inserts it into the icon view parent using text as the text and picture as the icon, after
the icon view item after.

QlIconViewlItem::~QIconViewItem () [virtual]

Destroys the icon view item and tells the parent icon view that the item has been destroyed.

bool QIconViewItem::acceptDrop (const QMimeSource * mime) const [virtual]

Returns TRUE if you can drop things with a QMimeSource of mime onto this item, and FALSE if you cannot.

The default implementation always returns FALSE. You must subclass QIconViewltem and reimplement acceptDrop()
to accept drops.

Example: fileiconview/qfileiconview.cpp.

void QIconViewItem::calcRect (const QString & text = QString::null) [virtual protected]

This virtual function is responsible for calculating the rectangles returned by rect(), textRect() and pixmapRect().
setRect(), setTextRect() and setPixmapRect() are provided mainly for reimplementations of this function.

QIconViewlItem Class Reference 117

text is an internal parameter which defaults to QString::null.

int QIconViewlItem::compare (QIconViewItem * i) const [virtual]
Compares this icon view item to i. Returns -1 if this item is less than i, O if they are equal, and 1 if this icon view item
is greater than i.

The default implementation compares the item keys (key()) using QString::localeAwareCompare(). A reimplementa-
tion may use different values and a different comparison function. Here is a reimplementation that uses plain Unicode
comparison:

int MlconViemMtem:conpare(QconViemtem*i) const

{
}

return key().conpare(i->key());

See also key() [p. 118], QString::localeAwareCompare() [Datastructures and String Handling with Qt] and
QString::compare() [Datastructures and String Handling with Qt].

bool QIconViewItem::contains (const QPoint & pnt) const

Returns TRUE if the item contains the point pnt (in contents coordinates), and FALSE if it does not.

bool QIconViewItem::dragEnabled () const

Returns TRUE if the user is allowed to drag the icon view item, otherwise returns FALSE.

See also setDragEnabled() [p. 121].

void QIconViewItem::dragEntered () [virtual protected]

This function is called when a drag enters the item’s bounding rectangle.
The default implementation does nothing; subclasses may reimplement this function.

Example: fileiconview/qfileiconview.cpp.

void QIconViewItem::dragLeft () [virtual protected]

This function is called when a drag leaves the item’s bounding rectangle.
The default implementation does nothing; subclasses may reimplement this function.

Example: fileiconview/qfileiconview.cpp.

bool QIconViewltem::dropEnabled () const

Returns TRUE if the user is allowed to drop something onto the item, otherwise returns FALSE.

See also setDropEnabled() [p. 121].

QIconViewlItem Class Reference 118

void QIconViewItem::dropped (QDropEvent * e,
const QValueList<QIconDragltem> & Ist) [virtual protected]

This function is called when something is dropped on the item. e provides all the information about the drop. If
the drag object of the drop was a QIconDrag, Ist contains the list of the dropped items. You can get the data using
QIconDragltem::data() on each item. If the Ist is empty, i.e. the drag was not a QIconDrag, you have to decode the
data in e and work with that.

The default implementation does nothing; subclasses may reimplement this function.

Example: fileiconview/qfileiconview.cpp.

int QIconViewlItem::height () const

Returns the height of the item.

QIconView * QIconViewltem::iconView () const

Returns a pointer to this item’s icon view parent.

int QIconViewltem::index () const

Returns the index of this item in the icon view, or -1 if an error occurred.

bool QIconViewlItem::intersects (const QRect & r) const

Returns TRUE if the item intersects the rectangle r (in contents coordinates), and FALSE if it does not.

bool QIconViewItem::isSelectable () const

Returns TRUE if the item is selectable, otherwise returns FALSE.

See also setSelectable() [p. 122].

bool QIconViewItem::isSelected () const

Returns TRUE if the item is selected, otherwise returns FALSE.
See also setSelected() [p. 122].

Example: fileiconview/qfileiconview.cpp.

QString QIconViewltem::key () const [virtual]

Returns the key of the icon view item or the text if no key has been explicitly set.

See also setKey() [p. 121] and compare() [p. 117].

QIconViewlItem Class Reference 119

bool QIconViewlItem::move (int x, int y) [virtual]

Moves the item to x and y in the icon view (these are contents coordinates).

bool QIconViewlItem::move (const QPoint & pnt) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Moves the item to the point pnt.

void QIconViewltem::moveBy (int dx, int dy) [virtual]

Moves the item dx pixels in the x-direction and dy pixels in the y-direction.

void QIconViewItem::moveBy (const QPoint & pnt) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Moves the item by the x, y values in point pnt.

QlIconViewltem * QIconViewlItem::nextltem () const

Returns a pointer to the next item, or O if this is the last item in the icon view.
To find the first item use QIconView::firstIltem().

Example: fileiconview/qfileiconview.cpp.

void QIconViewlItem::paintFocus (QPainter * p, const QColorGroup & cg) [virtual protected]

Paints the focus rectangle of the item using the painter p and the color group cg.

void QIconViewlItem::paintltem (QPainter * p, const QColorGroup & cg) [virtual protected]

Paints the item using the painter p and the color group cg. If you want the item to be drawn with a different font
or color, reimplement this function, change the values of the color group or the painter’s font, and then call the
QIconViewlItem::paintltem() with the changed values.

Example: fileiconview/qfileiconview.cpp.

QPicture * QIconViewltem::picture () const [virtual]

Returns the icon of the icon view item if it is a picture, or O if it is a pixmap. In the latter case use pixmap() instead.
Normally will set the picture of the item with setPicture(), but sometimes it’s inconvenient to call setPicture() for each
item. So you can subclass QIconViewItem, reimplement this function and return a pointer to the item’s picture. If you
do this, you must call calcRect() manually each time the size of this picture changes.

See also setPicture() [p. 121].

QIconViewlItem Class Reference 120

QPixmap * QIconViewlItem::pixmap () const [virtual]

Returns the icon of the icon view item if it is a pixmap, or O if it is a picture. In the latter case use picture() instead.
Normally you set the pixmap of the item with setPixmap(), but sometimes it’s inconvenient to call setPixmap() for each
item. So you can subclass QIconViewltem, reimplement this function and return a pointer to the item’s pixmap. If you
do this, you must call calcRect() manually each time the size of this pixmap changes.

See also setPixmap() [p. 122].

Example: fileiconview/qfileiconview.cpp.

QRect QIconViewltem::pixmapRect (bool relative = TRUE) const

Returns the bounding rectangle of the item’s icon.

If relative is TRUE, (the default), the rectangle is relative to the origin of the item’s rectangle. If relative is FALSE, the
returned rectangle is relative to the origin of the icon view’s contents coordinate system.

Example: fileiconview/qfileiconview.cpp.

QPoint QIconViewltem::pos () const

Returns the position of the item (in contents coordinates).

QIconViewltem * QIconViewItem::previtem () const

Returns a pointer to the previous item, or O if this is the first item in the icon view.

To iterate the items in an icon view

QRect QIconViewItem::rect () const

Returns the bounding rectangle of the item (in contents coordinates).

void QIconViewItem::removeRenameBox () [virtual protected]

Removes the editbox that is used for in-place renaming.

void QIconViewItem::rename ()

Starts in-place renaming of an icon, if allowed.

This function sets up the icon view so that the user can edit the item text, and then returns. When the user is done,
setText() will be called and QIconView::itemRenamed () will be emitted (unless the user cancelled, e.g. by pressing the
Escape key).

See also setRenameEnabled() [p. 122].

Example: fileiconview/qfileiconview.cpp.

QIconViewlItem Class Reference 121

bool QIconViewlItem::renameEnabled () const

Returns TRUE if the item can be renamed by the user with in-place renaming, or else FALSE.
See also setRenameEnabled() [p. 122].

Example: fileiconview/qfileiconview.cpp.

void QIconViewItem::repaint () [virtual]

Repaints the item.

int QIconViewltem::rtti () const [virtual]

Returns 0.

Make your derived classes return their own values for rtti(), so that you can distinguish between iconview item types.
You should use values greater than 1000, preferably a large random number, to allow for extensions to this class.

void QIconViewlItem::setDragEnabled (bool allow) [virtual]

If allow is TRUE, the icon view permits the user to drag the icon view item either to another position within the icon
view or to somewhere outside of it. If allow is FALSE, the item cannot be dragged.

void QIconViewlItem::setDropEnabled (bool allow) [virtual]

If allow is TRUE, the icon view lets the user drop something on this icon view item.

void QIconViewItem::setltemRect (const QRect & r) [protected]

Sets the bounding rectangle of the whole item to r. This function is provided for subclasses which reimplement
calcRect(), so that they can set the calculated rectangle. Other use is discouraged.

See also calcRect() [p. 116], textRect() [p. 124], setTextRect() [p. 123], pixmapRect() [p. 120] and setPixmapRect()
[p. 122].

void QIconViewlItem::setKey (const QString & k) [virtual]

Sets k as the sort key of the icon view item. By default the text itself is used for sorting.
See also compare() [p- 117].

Example: fileiconview/qfileiconview.cpp.

void QIconViewItem::setPicture (const QPicture & icon) [virtual]

Sets icon as the item’s icon in the icon view. This function might be a no-op if you reimplement picture().

See also picture() [p. 119].

QIconViewlItem Class Reference 122

void QIconViewItem::setPixmap (const QPixmap & icon) [virtual]

Sets icon as the item’s icon in the icon view. This function might be a no-op if you reimplement pixmap().

See also pixmap() [p. 120].

void QIconViewlItem::setPixmap (const QPixmap & icon, bool recalc, bool redraw =
TRUE) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets icon as the item’s icon in the icon view. If recalc is TRUE, the icon view’s layout is recalculated. If redraw is TRUE
(the default), the icon view is repainted.

See also pixmap() [p. 120].

void QIconViewItem::setPixmapRect (const QRect & r) [protected]
Sets the bounding rectangle of the item’s icon to r. This function is provided for subclasses which reimplement cal-
cRect(), so that they can set the calculated rectangle. Other use is discouraged.

See also calcRect() [p. 116], pixmapRect() [p. 120], setltemRect() [p. 121] and setTextRect() [p. 123].

void QIconViewltem::setRenameEnabled (bool allow) [virtual]
If allow is TRUE, the user can rename the icon view item by clicking on the text (or pressing F2) while the item is
selected (in-place renaming). If allow is FALSE, in-place renaming is not possible.

Examples: fileiconview/qfileiconview.cpp and iconview/main.cpp.

void QIconViewItem::setSelectable (bool enable) [virtual]

Sets this item to be selectable if enable is TRUE (the default) or unselectable if enable is FALSE.

The user is unable to select a non-selectable item using either the keyboard or the mouse. (The application programmer
can select an item in code regardless of this setting.)

See also isSelectable() [p. 118].

void QIconViewltem::setSelected (bool s, bool c¢b) [virtual]

Selects or unselects the item, depending on s; it may also unselect other items, depending on QIcon-
View::selectionMode() and cb.

If s is FALSE, the item is unselected.

If s is TRUE and QIconView::selectionMode() is Si ngl e, the item is selected and the item previously selected is unse-
lected.

If s is TRUE and QIconView::selectionMode() is Ext ended, the item is selected. If cb is TRUE, the selection state of the
other items is left unchanged. If cb is FALSE (the default) all other items are unselected.

QIconViewlItem Class Reference 123

If s is TRUE and QIconView::selectionMode() is Mil ti, the item is selected.
Note that cb is used only if QIconView::selectionMode() is Ext ended; cb defaults to FALSE.
All items whose selection status changes repaint themselves.

Example: fileiconview/qfileiconview.cpp.

void QIconViewItem::setSelected (bool s) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This variant is equivalent to calling the other variant with cb set to FALSE.

void QIconViewlItem::setText (const QString & text) [virtual]

Sets text as the text of the icon view item. This function might be a no-op if you reimplement text().
See also text() [p. 123].

Example: fileiconview/qfileiconview.cpp.

void QIconViewlItem::setText (const QString & text, bool recalc, bool redraw =
TRUE) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets text as the text of the icon view item. If recalc is TRUE, the icon view’s layout is recalculated. If redraw is TRUE
(the default), the icon view is repainted.

See also text() [p. 123].

void QIconViewItem::setTextRect (const QRect & r) [protected]

Sets the bounding rectangle of the item’s text to r. This function is provided for subclasses which reimplement cal-
cRect(), so that they can set the calculated rectangle. Other use is discouraged.

See also calcRect() [p. 116], textRect() [p. 124], setltemRect() [p. 121] and setPixmapRect() [p. 122].

QSize QIconViewltem::size () const

Returns the size of the item.

QString QIconViewltem::text () const [virtual]

Returns the text of the icon view item. Normally you set the text of the item with setText(), but sometimes it’s
inconvenient to call setText() for each item; so you can subclass QlconViewltem, reimplement this function, and return
the text of the item. If you do this, you have to call calcRect() manually each time the text (and therefore its size)
changes.

See also setText() [p. 123].

QIconViewlItem Class Reference 124

Example: fileiconview/qfileiconview.cpp.

QRect QIconViewItem::textRect (bool relative = TRUE) const

Returns the bounding rectangle of the item’s text.

If relative is TRUE, (the default), the returned rectangle is relative to the origin of the item’s rectangle. If relative is
FALSE, the returned rectangle is relative to the origin of the icon view’s contents coordinate system.

Example: fileiconview/qfileiconview.cpp.

int QIconViewlItem::width () const

Returns the width of the item.

int QIconViewlItem::x () const

Returns the x-coordinate of the item (in contents coordinates).

int QIconViewlItem::y () const

Returns the y-coordinate of the item (in contents coordinates).

QLabel Class Reference

The QLabel widget provides a text or image display.
#include <ql abel . h>

Inherits QFrame [p. 67].

Public Members

m QLabel (QWidget * parent, const char * name = 0, WFlags f = 0)

m QLabel (const QString & text, QWidget * parent, const char * name = 0, WFlags f = 0)

= QLabel (QWidget * buddy, const QString & text, QWidget * parent, const char * name = 0, WFlags f = 0)
= ~QLabel)

QString text () const

QPixmap * pixmap () const

QPicture * picture () const

QMovie * movie () const

TextFormat textFormat () const

m void setTextFormat (TextFormat)

m int alignment () const

virtual void setAlignment (int)

int indent () const

void setIndent (int)

bool autoResize () const (obsolete)

virtual void setAutoResize (bool enable) (obsolete)
bool hasScaledContents () const

void setScaledContents (bool)

m virtual void setBuddy (QWidget * buddy)
m QWidget * buddy () const

o virtual void setFont (const QFont & f)

Public Slots

m virtual void setText (const QString &)
m virtual void setPixmap (const QPixmap &)
m virtual void setPicture (const QPicture & picture)

125

QLabel Class Reference 126

m virtual void setMovie (const QMovie & movie)
m virtual void setNum (int num)

m virtual void setNum (double num)

m void clear ()

Properties

m Alignment alignment — the alignment of the label’s contents

m int indent — the label’s indent in pixels

» QPixmap pixmap — the label’s pixmap

m bool scaledContents — whether the label will scale its contents to fill all available space
m QString text — the label text

m TextFormat textFormat — the label’s text format

Protected Members

= virtual void drawContents (QPainter * p)

Detailed Description

The QLabel widget provides a text or image display.

QLabel is used for displaying information in the form of text or an image. No user interaction functionality is pro-
vided. The visual appearance of the label can be configured in various ways, and it can be used for specifying a focus
accelerator key for another widget.

A QLabel can contain any of the following content types:

e Plain text: set by passing a QString to setText().

Rich text: set by passing a QString that contains rich text to setText().

e A pixmap: set by passing a QPixmap to setPixmap().

e A movie: set by passing a QMovie to setMovie().

e A number: set by passing an int or a double to setNum(), which converts the number to plain text.

e Nothing: the same as an empty plain text. This is the default. Set by clear().

When the content is changed using any of these functions, any previous content is cleared.

The look of a QLabel can be tuned in several ways. All the settings of QFrame are available for specifying a widget
frame. The positioning of the content within the QLabel widget area can be tuned with setAlignment() and setIndent().
For example, this code sets up a sunken panel with a two-line text in the bottom right corner (both lines being flush
with the right side of the label):

QLabel *label = new QLabel ;

| abel - >set FraneStyl e(QFrane::Panel | QFrame:: Sunken);
| abel - >set Text("first line\nsecond |ine");

| abel - >set Alignment (AlignBottom| AlignRi ght);

QLabel Class Reference 127

A QLabel is often used as a label for an interactive widget. For this use QLabel provides a useful mechanism for adding
an accelerator key (see QAccel) that will set the keyboard focus to the other widget (called the QLabel’s "buddy").
Example:

Qi neEdit* phoneEdit = new QLineEdit(this, "phoneEdit");
Q.abel * phoneLabel = new QLabel (phoneEdit, "&Phone:", this, "phoneLabel");

In this example, keyboard focus is transferred to the label’s buddy (the QLineEdit) when the user presses Al t - P. You
can also use the setBuddy() function to accomplish the same thing.

This is a Lakel This is a Label
it spans it spans
multiple lines multiple lines

See also QLineEdit [p. 141], QTextView, QPixmap [Graphics with Qt], QMovie [Graphics with Qt], GUI Design
Handbook: Label, Basic Widgets and Text Related Classes.

Member Function Documentation

QLabel::QLabel (QWidget * parent, const char * name = 0, WFlags f = 0)

Constructs an empty label.
The parent, name and widget flag f, arguments are passed to the QFrame constructor.

See also alignment [p. 131], setFrameStyle() [p. 72] and indent [p. 132].

QLabel::QLabel (const QString & text, QWidget * parent, const char * name = 0, WFlags f =
0)

Constructs a label that displays the text, text.

The parent, name and widget flag f, arguments are passed to the QFrame constructor.

See also text [p. 132], alignment [p. 131], setFrameStyle() [p. 72] and indent [p. 132].

QLabel::QLabel (QWidget * buddy, const QString & text, QWidget * parent,
const char * name = 0, WFlags f = 0)
Constructs a label that displays the text text. The label has a buddy widget, buddy.

If the text contains an underlined letter (a letter preceded by an ampersand, &), and the text is in plain text format,
when the user presses Alt+ the underlined letter, focus is passed to the buddy widget.

The parent, name and widget flag, f, arguments are passed to the QFrame constructor.

See also text [p. 132], setBuddy() [p. 129], alignment [p. 131], setFrameStyle() [p. 72] and indent [p. 132].

QLabel::~QLabel ()

Destroys the label.

QLabel Class Reference 128

int QLabel::alignment () const

Returns the alignment of the label’s contents. See the "alignment" [p. 131] property for details.

bool QLabel::autoResize () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Returns TRUE if auto-resizing is enabled, or FALSE if auto-resizing is disabled.

Auto-resizing is disabled by default.

See also setAutoResize() [p. 129].

QWidget * QLabel::buddy () const

Returns the buddy of this label, or 0 if no buddy is currently set.
See also setBuddy() [p- 129].

void QLabel::clear () [slot]

Clears any label contents. Equivalent to setText(").

void QLabel::drawContents (QPainter * p) [virtual protected]
Draws the label contents using the painter p.

Reimplemented from QFrame [p. 70].

bool QLabel::hasScaledContents () const

Returns TRUE if the label will scale its contents to fill all available space; otherwise returns FALSE. See the "scaledCon-
tents" [p. 132] property for details.

int QLabel::indent () const

Returns the label’s indent in pixels. See the "indent" [p. 132] property for details.

QMovie * QLabel::movie () const

If the label contains a movie, returns a pointer to it. Otherwise, returns 0.

See also setMovie() [p. 130].

QLabel Class Reference 129

QPicture * QLabel::picture () const

Returns the label’s picture or 0 if the label doesn’t have a picture.

QPixmap * QLabel::pixmap () const

Returns the label’s pixmap. See the "pixmap" [p. 132] property for details.

void QLabel::setAlignment (int) [virtual]

Sets the alignment of the label’s contents. See the "alignment" [p. 131] property for details.

void QLabel::setAutoResize (bool enable) [virtual]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Enables auto-resizing if enable is TRUE, or disables it if enable is FALSE.

When auto-resizing is enabled the label will resize itself to fit the contents whenever the contents change. The top-left
corner is not moved. This is useful for QLabel widgets that are not managed by a QLayout (e.g., top-level widgets).

Auto-resizing is disabled by default.
See also autoResize() [p. 128], adjustSize() [p. 447] and sizeHint [p. 4971.

void QLabel::setBuddy (QWidget * buddy) [virtual]

Sets the buddy of this label to buddy.

When the user presses the accelerator key indicated by this label, the keyboard focus is transferred to the label’s buddy
widget.

The buddy mechanism is available only for QLabels that contain plain text in which one letter is prefixed with an
ampersand, &. This letter is set as the accelerator key. The letter is displayed underlined, and the ’&’ is not displayed
(i.e. the ShowPrefix alignment flag is turned on; see setAlignment()).

In a dialog, you might create two data entry widgets and a label for each, and set up the geometry layout so each label
is just to the left of its data entry widget (its "buddy"), perhaps like this:

Q.ineEdit *naneEd = new QineEdit(this);

Q.abel *nameLb = new QLabel ("&Nane:", this);
namelLb- >set Buddy(namekd);

Qi neEdit *phoneEd = new QineEdit(this);

Q.abel *phoneLb = new QLabel ("&Phone:", this);
phonelLb- >set Buddy(phoneEd);

/1 (layout setup not shown)

With the code above, the focus jumps to the Name field when the user presses Alt-N, and to the Phone field when the
user presses Alt-P

To unset a previously set buddy, call this function with buddy set to 0.

QLabel Class Reference 130

See also buddy() [p. 128], text [p. 132], QAccel [Events, Actions, Layouts and Styles with Qt] and alignment [p. 131].

Example: addressbook/centralwidget.cpp.

void QLabel::setFont (const QFont & f) [virtual]

Sets the font used on the QLabel to font f.

Reimplemented from QWidget [p. 475].

void QLabel::setIndent (int)

Sets the label’s indent in pixels. See the "indent" [p. 132] property for details.

void QLabel::setMovie (const QMovie & movie) [virtual slot]

Sets the label contents to movie. Any previous content is cleared.
The buddy accelerator, if any, is disabled.
The label resizes itself if auto-resizing is enabled.

See also movie() [p. 128] and setBuddy() [p. 129].

void QLabel::setNum (int num) [virtual slot]

Sets the label contents to plain text containing the printed representation of integer num. Any previous content is
cleared. Does nothing if the integer’s string representation is the same as the current contents of the label.

The buddy accelerator, if any, is disabled.

The label resizes itself if auto-resizing is enabled.

See also text [p. 132], QString::setNum() [Datastructures and String Handling with Qt] and setBuddy() [p. 129].

void QLabel::setNum (double num) [virtual slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the label contents to plain text containing the printed representation of double num. Any previous content is
cleared. Does nothing if the double’s string representation is the same as the current contents of the label.

The buddy accelerator, if any, is disabled.
The label resizes itself if auto-resizing is enabled.

See also text [p. 132], QString::setNum() [Datastructures and String Handling with Qt] and setBuddy() [p. 129].

void QLabel::setPicture (const QPicture & picture) [virtual slot]

Sets the label contents to picture. Any previous content is cleared.

QLabel Class Reference 131

The buddy accelerator, if any, is disabled.
See also picture() [p. 129] and setBuddy() [p. 129].

void QLabel::setPixmap (const QPixmap &) [virtual slot]

Sets the label’s pixmap. See the "pixmap" [p. 132] property for details.

void QLabel::setScaledContents (bool)

Sets whether the label will scale its contents to fill all available space. See the "scaledContents" [p. 132] property for
details.

void QLabel::setText (const QString &) [virtual slot]

Sets the label text. See the "text" [p. 132] property for details.

void QLabel::setTextFormat (TextFormat)

Sets the label’s text format. See the "textFormat" [p. 133] property for details.

QString QLabel::text () const

Returns the label text. See the "text" [p. 132] property for details.

TextFormat QLabel::textFormat () const

Returns the label’s text format. See the "textFormat" [p. 133] property for details.

Property Documentation

Alignment alignment

This property holds the alignment of the label’s contents.

The alignment is a bitwise OR of Qt::AlignmentFlags and Qt::TextFlags values. The ExpandTabs, SingleLine and
ShowPrefix flags apply only if the label contains plain text; otherwise they are ignored. The DontClip flag is always
ignored. WordBreak applies to both rich text and plain text labels.

If the label has a buddy, the ShowPrefix flag is forced to TRUE.

The default alignment is Al i gnAuto | AlignVCenter | ExpandTabs if the label doesn’t have a buddy and Al i gnAut o
| AlignVCenter | ExpandTabs | ShowPrefix if the label has a buddy. If the label contains rich text, additionally
WordBreak is turned on.

See also Qt::AlignmentFlags [Additional Functionality with Qt], alignment [p. 131], setBuddy() [p. 129] and text
[p. 132].

QLabel Class Reference 132

Set this property’s value with setAlignment() and get this property’s value with alignment().

int indent

This property holds the label’s indent in pixels.

The indent applies to the left edge if alignment() is AlignLeft, to the right edge if alignment() is AlignRight, to the top
edge if alignment() is AlignTop, and to to the bottom edge if alignment() is AlignBottom.

If the indent is negative, or if no indent has been set, the label computes the effective indent as follows: if frameWidth()
is 0, the effective indent becomes 0. If frameWidth() is greater than 0, the effective indent becomes half the width of
the "x" character of the widget’s current font().

See also alignment [p. 131], frameWidth [p. 74] and font [p. 489].

Set this property’s value with setindent() and get this property’s value with indent().

QPixmap pixmap

This property holds the label’s pixmap.
If no pixmap has been set this will return an invalid pixmap.

Setting the pixmap clears any previous content, and resizes the label if QLabel::autoResize() is TRUE. The buddy
accelerator, if any, is disabled.

Set this property’s value with setPixmap() and get this property’s value with pixmap().

bool scaledContents

This property holds whether the label will scale its contents to fill all available space.

When enabled and the label shows a pixmap, it will scale the pixmap to fill the available space.
This property’s default is FALSE.

See also scaledContents [p. 132].

Set this property’s value with setScaledContents() and get this property’s value with hasScaledContents().

QString text

This property holds the label text.

If no text has been set this will return an empty string. Setting the text clears any previous content, unless they are the
same.

The text will be interpreted either as a plain text or as a rich text, depending on the text format setting; see setTextFor-
mat(). The default setting is AutoText, i.e. QLabel will try to auto-detect the format of the text set.

If the text is interpreted as a plain text and a buddy has been set, the buddy accelerator key is updated from the new
text.

The label resizes itself if auto-resizing is enabled.

QLabel Class Reference 133

Note that Qlabel is well-suited to display small rich text documents only. For large documents, use QTextView instead.
QTextView will flicker less on resize and can also provide a scrollbar, when necessary.

See also text [p. 132], textFormat [p. 133], setBuddy() [p. 129] and alignment [p. 131].

Set this property’s value with setText() and get this property’s value with text().

TextFormat textFormat

This property holds the label’s text format.

See the Qt::TextFormat enum for an explanation of the possible options.
The default format is AutoText.

See also text [p. 132].

Set this property’s value with setTextFormat() and get this property’s value with textFormat().

QLCDNumber Class Reference

The QLCDNumber widget displays a number with LCD-like digits.

#incl ude <qgl cdnunber. h>

Inherits QFrame [p. 67].

Public Members

m QLCDNumber (QWidget * parent = 0, const char * name = 0)
QLCDNumber (uint numDigits, QWidget * parent = 0, const char * name = 0)

~QLCDNumber ()

enum Mode { Hex, Dec, Oct, Bin, HEX = Hex, DEC = Dec, OCT = Oct, BIN = Bin }

enum SegmentStyle { Outline, Filled, Flat }
bool smallDecimalPoint () const

int numDigits () const

virtual void setNumDigits (int nDigits)
bool checkOverflow (double num) const
bool checkOverflow (int num) const

Mode mode () const

virtual void setMode (Mode)

SegmentStyle segmentStyle () const

virtual void setSegmentStyle (SegmentStyle)
double value () const

int intValue () const

Public Slots

void display (const QString & s)

void display (int num)

void display (double num)

virtual void setHexMode ()

virtual void setDecMode ()

virtual void setOctMode ()

virtual void setBinMode ()

virtual void setSmallDecimalPoint (bool)

134

QLCDNumber Class Reference

Signals

m void overflow ()

Properties

Protected Members

m virtual void drawContents (QPainter * p)

Detailed Description

The QLCDNumber widget displays a number with LCD-like digits.

int intValue — the displayed value rounded to the nearest integer
Mode mode — the current display mode (number base)

int numDigits — the current number of digits displayed
SegmentStyle segmentStyle — the style of the LCDNumber

bool smallDecimalPoint — the style of the decimal point

double value — the displayed value

135

It can display a number in just about any size. It can display decimal, hexadecimal, octal or binary numbers. It is easy

to connect to data sources using the display() slot, which is overloaded to take any of five argument types.

There are also slots to change the base with setMode() and the decimal point with setSmallDecimalPoint().

QLCDNumber emits the overflow() signal when it is asked to display something beyond its range. The range is set by

setNumDigits(), but setSmallDecimalPoint() also influences it.

These digits and other symbols can be shown: 0/0, 1, 2, 3, 4, 5/S, 6, 7, 8, 9/g, minus, decimal point, A, B, C, D, E,
Eh,H L, o0, B, u, U,Y, colon, degree sign (which is specified as single quote in the string) and space. QLCDNumber

substitutes spaces for illegal characters.

It is not possible to retrieve the contents of a QLCDNumber object, although you can retrieve the numeric value with
value(). If you really need the text, we recommend that you connect the signals that feed the display() slot to another

slot as well and store the value there.

Incidentally, QLCDNumber is the very oldest part of Qt, tracing back to a BASIC program on the Sinclair Spectrum.

=

=

See also QLabel [p. 125], QFrame [p. 67] and Basic Widgets.

Member Type Documentation

QLCDNumber::Mode

This type determines how numbers are shown. The possible values are:

QLCDNumber Class Reference 136

e QLCDNunber : : Hex - Hexadecimal
e QLCDNunber : : Dec - Decimal

e QLCDNunber: : Cct - Octal

e QLCDNunber:: Bi n - Binary

QLCDNumber::SegmentStyle

This type determines the visual appearance of the QLCDNumber widget. The possible values are:

e QLCDNunber:: Qutline - gives raised segments filled with the background brush.
e QLCDNunber:: Fill ed - gives raised segments filled with the foreground brush.
e QLCDNunber:: Fl at - gives flat segments filled with the foreground brush.

Member Function Documentation

QLCDNumber::QLCDNumber (QWidget * parent = 0, const char * name = 0)

Constructs an LCD number, sets the number of digits to 5, the base to decimal, the decimal point mode to ’small’ and
the frame style to a raised box. The segmentStyle() is set to Outline.
The parent and name arguments are passed to the QFrame constructor.

See also numbDigits [p. 139] and smallDecimalPoint [p. 140].

QLCDNumber::QLCDNumber (uint numDigits, QWidget * parent = 0, const char * name =
0)

Constructs an LCD number, sets the number of digits to numDigits, the base to decimal, the decimal point mode to
’small’ and the frame style to a raised box. The segmentStyle() is set to Outline.

The parent and name arguments are passed to the QFrame constructor.
See also numbDigits [p. 139] and smallDecimalPoint [p. 140].

QLCDNumber::~QLCDNumber ()

Destroys the LCD number.

bool QLCDNumber::checkOverflow (double num) const

Returns TRUE if num is too big to be displayed in its entirety; otherwise returns FALSE.

See also intValue [p. 139], numDigits [p. 139] and smallDecimalPoint [p. 140].

QLCDNumber Class Reference 137

bool QLCDNumber::checkOverflow (int num) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns TRUE if num is too big to be displayed in its entirety; otherwise returns FALSE.

See also intValue [p. 139], numDigits [p. 139] and smallDecimalPoint [p. 140].

void QLCDNumber::display (int num) [slot]

Sets the displayed value rounded to the nearest integer to num. See the "intValue" [p. 139] property for details.

void QLCDNumber::display (const QString & s) [slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Displays the number represented by the string s.
This version of the function disregards mode() and smallDecimalPoint().

These digits and other symbols can be shown: 0/0, 1, 2, 3, 4, 5/S, 6, 7, 8, 9/g, minus, decimal point, A, B, C, D, E,
Eh,H,L,o0,B1,u U,Y, colon, degree sign (which is specified as single quote in the string) and space. QLCDNumber
substitutes spaces for illegal characters.

void QLCDNumber::display (double num) [slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Displays the number num.

void QLCDNumber::drawContents (QPainter * p) [virtual protected]

Draws the LCD number using painter p. This function is called from QFrame::paintEvent().

Reimplemented from QFrame [p. 70].

int QLCDNumber::intValue () const

Returns the displayed value rounded to the nearest integer. See the "intValue" [p. 139] property for details.

Mode QLCDNumber::mode () const

Returns the current display mode (number base). See the "mode" [p. 139] property for details.

int QLCDNumber::numDigits () const

Returns the current number of digits displayed. See the "numDigits" [p. 139] property for details.

QLCDNumber Class Reference 138

void QLCDNumber::overflow () [signal]

This signal is emitted whenever the QLCDNumber is asked to display a too-large number or a too-long string.

It is never emitted by setNumDigits().

SegmentStyle QLCDNumber::segmentStyle () const

Returns the style of the LCDNumber. See the "segmentStyle" [p. 139] property for details.

void QLCDNumber::setBinMode () [virtual slot]

Calls setMode(BIN). Provided for convenience (e.g. for connecting buttons to it).

See also mode [p. 139], setHexMode() [p. 138], setDecMode() [p. 138], setOctMode() [p. 138] and mode [p. 139].

void QLCDNumber::setDecMode () [virtual slot]

Calls setMode(DEC). Provided for convenience (e.g. for connecting buttons to it).

See also mode [p. 139], setHexMode() [p. 138], setOctMode() [p. 138], setBinMode() [p. 138] and mode [p. 139].

void QLCDNumber::setHexMode () [virtual slot]

Calls setMode(HEX). Provided for convenience (e.g. for connecting buttons to it).

See also mode [p. 139], setDecMode() [p. 138], setOctMode() [p. 138], setBinMode() [p. 138] and mode [p. 139].

void QLCDNumber::setMode (Mode) [virtual]

Sets the current display mode (number base). See the "mode" [p. 139] property for details.

void QLCDNumber::setNumDigits (int nDigits) [virtual]

Sets the current number of digits displayed to nDigits. See the "numDigits" [p. 139] property for details.

void QLCDNumber::setOctMode () [virtual slot]

Calls setMode(OCT). Provided for convenience (e.g. for connecting buttons to it).

See also mode [p. 139], setHexMode() [p. 138], setDecMode() [p. 138], setBinMode() [p. 138] and mode [p. 139].

void QLCDNumber::setSegmentStyle (SegmentStyle) [virtual]

Sets the style of the LCDNumber. See the "segmentStyle" [p. 139] property for details.

QLCDNumber Class Reference 139

void QLCDNumber::setSmallDecimalPoint (bool) [virtual slot]

Sets the style of the decimal point. See the "smallDecimalPoint" [p. 140] property for details.

bool QLCDNumber::smallDecimalPoint () const

Returns the style of the decimal point. See the "smallDecimalPoint" [p. 140] property for details.

double QLCDNumber::value () const

Returns the displayed value. See the "value" [p. 140] property for details.

Property Documentation

int intValue

This property holds the displayed value rounded to the nearest integer.
This property corresponds to the nearest integer to the current value displayed by the LCDNumber.
If the displayed value is not a number, the property has a value of 0.

Set this property’s value with display() and get this property’s value with intValue().

Mode mode

This property holds the current display mode (number base).

Corresponds to the current display mode, which is one of BIN, OCT, DEC (the default) and HEX. All four modes can
display both integers, floating-point numbers and strings (subject to character set limitations).

See also smallDecimalPoint [p. 140], setHexMode() [p. 138], setDecMode() [p. 138], setOctMode() [p. 138] and
setBinMode() [p. 138].

Set this property’s value with setMode() and get this property’s value with mode().

int numDigits

This property holds the current number of digits displayed.

Corresponds to the current number of digits. If QLCDNumber::smallDecimalPoint is FALSE, the decimal point occupies
one digit position.

See also numDigits [p. 139] and smallDecimalPoint [p. 140].

Set this property’s value with setNumDigits() and get this property’s value with numDigits().

SegmentStyle segmentStyle

This property holds the style of the LCDNumber.

QLCDNumber Class Reference 140

The style of the QLCDNumber is one of:

e QOutline gives raised segments filled with the background color (this is the default).
e Filled gives raised segments filled with the foreground color.

e Flat gives flat segments filled with the foreground color.

Outline and Filled will additionally use QColorGroup::light() and QColorGroup::dark() for shadow effects.

Set this property’s value with setSegmentStyle() and get this property’s value with segmentStyle().

bool smallDecimalPoint

This property holds the style of the decimal point.

If TRUE the decimal point is drawn between two digit positions. Otherwise it occupies a digit position of its own, i.e.
is drawn in a digit position. The default is FALSE.

The inter-digit space is made slightly wider when the decimal point is drawn between the digits.
See also mode [p. 139].

Set this property’s value with setSmallDecimalPoint() and get this property’s value with smallDecimalPoint().

double value

This property holds the displayed value.
This property corresponds to the current value displayed by the LCDNumber.
If the displayed value is not a number, the property has a value of 0.

Set this property’s value with display() and get this property’s value with value().

QLineEdit Class Reference

The QLineEdit widget is a one-line text editor.
#include <qglineedit.h>

Inherits QFrame [p. 67].

Public Members

m QLineEdit (QWidget * parent, const char * name = 0)

» QLineEdit (const QString & contents, QWidget * parent, const char * name = 0)
m ~QLineEdit ()

m QString text () const

QString displayText () const

int maxLength () const

bool frame () const

enum EchoMode { Normal, NoEcho, Password }

EchoMode echoMode () const

m bool isReadOnly () const

m const QValidator * validator () const

virtual QSize sizeHint () const

virtual QSize minimumSizeHint () const

int cursorPosition () const

bool validateAndSet (const QString & newText, int newPos, int newMarkAnchor, int newMarkDrag)

int alignment () const

void cursorLeft (bool mark, int steps = 1) (obsolete)

void cursorRight (bool mark, int steps = 1) (obsolete)
m void cursorForward (bool mark, int steps = 1)
m void cursorBackward (bool mark, int steps = 1)
void cursorWordForward (bool mark)

void cursorWordBackward (bool mark)

void backspace ()

void del O

void home (bool mark)

void end (bool mark)

m void setEdited (bool)

= bool edited () const

141

QLineEdit Class Reference 142

m bool hasSelectedText () const

m QString selectedText () const

m bool getSelection (int * start, int * end)

m bool isUndoAvailable () const

m bool isRedoAvailable () const

= bool hasMarkedText () const (obsolete)
QString markedText () const (obsolete)

bool dragEnabled () const

e int characterAt (int xpos, QChar * chr) const

Public Slots

m virtual void setText (const QString &)

m virtual void selectAll ()

m virtual void deselect ()

m virtual void clearValidator ()

m virtual void insert (const QString & newText)
m virtual void clear ()

m virtual void undo ()

m virtual void redo ()

m virtual void setMaxLength (int)

m virtual void setFrame (bool)

m virtual void setEchoMode (EchoMode)

m virtual void setReadOnly (bool)

m virtual void setValidator (const QValidator * v)
m virtual void setSelection (int start, int length)
m virtual void setCursorPosition (int)

m virtual void setAlignment (int flag)

m virtual void cut ()

m virtual void copy () const

m virtual void paste ()

e virtual void setDragEnabled (bool b)

Signals

m void textChanged (const QString &)
m void returnPressed ()
m void selectionChanged ()

QLineEdit Class Reference 143

Properties

m Alignment alignment — the alignment of the line edit
» int cursorPosition — the current cursor position for this line edit
m QString displayText — the text that is displayed (read only)

m bool dragEnabled — whether the lineedit starts a drag if the user presses and moves the mouse on some
selected text

m EchoMode echoMode — the echo mode of the line edit
m bool edited — the edited flag of the line edit
m bool frame — whether the line edit draws itself with a frame

m bool hasMarkedText — whether part of the text has been selected by the user (e.g. by clicking and dragging)
(read only) (obsolete)

m bool hasSelectedText — whether there is any text selected (read only)

m QString markedText — the text selected by the user (e.g. by clicking and dragging), or QString::null if no text is
selected (read only) (obsolete)

» int maxLength — the maximum permitted length of the text in the editor

m bool readOnly — whether the line edit is read only

m bool redoAvailable — whether redo is available (read only)

m QString selectedText — any text selected by the user or QString::null (read only)
m QString text — the text in the line

e bool undoAvailable — whether undo is available (read only)

Protected Members

m virtual void keyPressEvent (QKeyEvent * e)
m void repaintArea (int from, int to) (obsolete)
m virtual QPopupMenu * createPopupMenu ()

Detailed Description

The QLineEdit widget is a one-line text editor.

A line edit allows the user to enter and edit a single line of plain text with a useful collection of editing functions,
including undo and redo, cut and paste, and drag and drop.

By changing the echoMode() of a line edit, it can also be used as a "write-only" field, for inputs such as passwords.

The length of the field can be constrained to maxLength(), or the value can be arbitrarily constrained by setting a
validator().

A closely related class is QTextEdit which allows multi-line, rich-text editing.

You can change the text with setText() or insert(). The text is retrieved with text(); the displayed text (which may be
different, see EchoMode) is retrieved with displayText(). Text can be selected with setSelection() or selectAll(), and
the selection can be cut(), copy()ied and paste()d. The text can be aligned with setAlignment().

When the text changes the textChanged () signal is emitted; when the Return or Enter key is pressed the returnPressed ()
signal is emitted.

QLineEdit Class Reference 144

The default QLineEdit object has its own frame as specified by the Windows/Motif style guides; you can turn off the
frame by calling setFrame(FALSE).

The default key bindings are described below. A right-mouse-button menu presents some of the editing commands to
the user.

e Left Arrow - moves the cursor one character to the left.

e Right Arrow - moves the cursor one character to the right.

e Backspace - deletes the character to the left of the cursor.

e Home - moves the cursor to the beginning of the line.

e End - moves the cursor to the end of the line.

e Delete - deletes the character to the right of the cursor.

e Shift+Left Arrow - moves and selects text one character to the left.

e Shift+Right Arrow - moves and selects text one character to the right.

e Ctrl+A - moves the cursor to the beginning of the line.

e Ctrl+B - moves the cursor one character to the left.

e Ctrl+C - copies the selected text to the clipboard. (Windows also supports Ctrl+Insert for this operation.)
e Ctrl+D - deletes the character to the right of the cursor.

e Ctrl+E - moves the cursor to the end of the line.

e Ctrl+F - moves the cursor one character to the right.

e Ctrl+H - deletes the character to the left of the cursor.

e Ctrl+K - deletes to the end of the line.

e Ctrl+V - pastes the clipboard text into line edit. (Windows also supports Shift+Insert for this operation.)

e Ctrl+X - deletes the selected text and copies it to the clipboard. (Windows also supports Shift+Delete for this
operation.)

e Ctrl+Z - undoes the last operation.
e Ctrl+Y - redoes the last undone operation.

Any other key sequence, that represents a valid character, will cause the character to be inserted into the line.

IHeIIo IHeIIo

See also QTextEdit [p. 393], QLabel [p. 125], QComboBox [p. 331, GUI Design Handbook: Field, Entry, GUI Design
Handbook: Field, Required and Basic Widgets.

Member Type Documentation

QLineEdit::EchoMode

This enum type describes how a line edit should display its contents. The defined values are:

e QLineEdit:: Normal - display characters as they are entered. This is the default.

e QLi neEdit:: NoEcho - do not display anything. This may be appropriate for passwords where even the length of
the password should be kept secret.

e (QLineEdit:: Password - display asterisks instead of the characters actually entered.

See also echoMode [p. 153] and echoMode [p. 153].

QLineEdit Class Reference 145

Member Function Documentation

QLineEdit::QLineEdit (QWidget * parent, const char * name = 0)

Constructs a line edit with no text.
The maximum text length is set to 32767 characters.
The parent and name arguments are sent to the QWidget constructor.

See also text [p. 155] and maxLength [p. 154].

QLineEdit::QLineEdit (const QString & contents, QWidget * parent, const char * name = 0)

Constructs a line edit containing the text contents.
The cursor position is set to the end of the line and the maximum text length to 32767 characters.
The parent and name arguments are sent to the QWidget constructor.

See also text [p. 155] and maxLength [p. 154].

QLineEdit::~QLineEdit ()

Destroys the line edit.

int QLineEdit::alignment () const

Returns the alignment of the line edit. See the "alignment" [p. 152] property for details.

void QLineEdit::backspace ()

Deletes the character to the left of the text cursor and moves the cursor one position to the left. If any text has been
selected by the user (e.g. by clicking and dragging), the cursor will be put at the beginning of the selected text and the
selected text will be removed.

See also del() [p. 147].

int QLineEdit::characterAt (int xpos, QChar * chr) const

Returns the index position of the character which is at xpos (in logical coordinates from the left). If chr is not O,
*<enpchr </ enp is populated with the character at this position.

void QLineEdit::clear () [virtual slot]

Syntactic sugar for setText(""), provided to match no-argument signals.

QLineEdit Class Reference 146

void QLineEdit::clearValidator () [virtual slot]

This slot is equivalent to setValidator(0).

void QLineEdit::copy () const [virtual slot]

Copies the selected text to the clipboard, if there is any, and if echoMode() is Normal.

See also cut() [p. 147] and paste() [p. 149].

QPopupMenu * QLineEdit::createPopupMenu () [virtual protected]

This function is called to create the popup menu which is shown when the user clicks on the lineedit with the right
mouse button. If you want to create a custom popup menu, reimplement this function and return the popup menu you
create. The popup menu’s ownership is transferred to the caller.

void QLineEdit::cursorBackward (bool mark, int steps = 1)

Moves the cursor back steps characters. If mark is TRUE each character moved over is added to the selection; if mark
is FALSE the selection is cleared.

See also cursorForward() [p. 146].

void QLineEdit::cursorForward (bool mark, int steps = 1)

Moves the cursor forward steps characters. If mark is TRUE each character moved over is added to the selection; if
mark is FALSE the selection is cleared.

See also cursorBackward() [p. 146].

void QLineEdit::cursorLeft (bool mark, int steps = 1)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
For compatibilty with older applications only. Use cursorBackward() instead.

See also cursorBackward() [p. 146].

int QLineEdit::cursorPosition () const

Returns the current cursor position for this line edit. See the "cursorPosition" [p. 153] property for details.

void QLineEdit::cursorRight (bool mark, int steps = 1)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Use cursorForward() instead.

See also cursorForward() [p. 146].

QLineEdit Class Reference 147

void QLineEdit::cursorWordBackward (bool mark)

Moves the cursor one word backward. If mark is TRUE, the word is also selected.

See also cursorWordForward() [p. 147].

void QLineEdit::cursorWordForward (bool mark)

Moves the cursor one word forward. If mark is TRUE, the word is also selected.

See also cursorWordBackward() [p. 147].

void QLineEdit::cut () [virtual slot]

Copies the selected text to the clipboard and deletes it, if there is any, and if echoMode() is Normal.
If the current validator disallows deleting the selected text, cut() will copy it but not delete it.

See also copy() [p. 146] and paste() [p. 149].

void QLineEdit::del ()

Deletes the character on the right side of the text cursor. If any text has been selected by the user (e.g. by clicking and
dragging), the cursor will be put at the beginning of the selected text and the selected text will be removed.

See also backspace() [p. 145].

void QLineEdit::deselect () [virtual slot]

De-selects all text (i.e. removes highlighting) and leaves the cursor at the current position.

See also setSelection() [p. 151] and selectAll() [p. 150].

QString QLineEdit::displayText () const

Returns the text that is displayed. See the "displayText" [p. 153] property for details.

bool QLineEdit::dragEnabled () const

Returns TRUE if the lineedit starts a drag if the user presses and moves the mouse on some selected text; otherwise
returns FALSE. See the "dragEnabled" [p. 153] property for details.

EchoMode QLineEdit::echoMode () const

Returns the echo mode of the line edit. See the "echoMode" [p. 153] property for details.

QLineEdit Class Reference 148

bool QLineEdit::edited () const

Returns the edited flag of the line edit. See the "edited" [p. 153] property for details.

void QLineEdit::end (bool mark)

Moves the text cursor to the end of the line. If mark is TRUE, text is selected towards the last position; otherwise, any
selected text is unselected if the cursor is moved.

See also home() [p. 148].

bool QLineEdit::frame () const

Returns TRUE if the line edit draws itself with a frame; otherwise returns FALSE. See the "frame" [p. 154] property for
details.

bool QLineEdit::getSelection (int * start, int * end)

This function sets *<enpst art </ en> to the position in the text where the selection starts and *<enpend</ en® to the
position where the selection ends. Returns TRUE if start and end are not null and if there is some selected text;
otherwise returns FALSE.

See also setSelection() [p. 151].

bool QLineEdit::hasMarkedText () const

Returns TRUE if part of the text has been selected by the user (e.g. by clicking and dragging); otherwise returns FALSE.
See the "hasMarkedText" [p. 154] property for details.

bool QLineEdit::hasSelectedText () const

Returns TRUE if there is any text selected; otherwise returns FALSE. See the "hasSelectedText" [p. 154] property for
details.

void QLineEdit::home (bool mark)

Moves the text cursor to the beginning of the line. If mark is TRUE, text is selected towards the first position; otherwise,
any selected text is unselected if the cursor is moved.

See also end() [p. 148].

void QLineEdit::insert (const QString & newText) [virtual slot]

Removes any selected text, inserts newText, and validates the result. If it is valid, it sets it as the new contents of the
line edit.

QLineEdit Class Reference 149

bool QLineEdit::isReadOnly () const

Returns TRUE if the line edit is read only; otherwise returns FALSE. See the "readOnly" [p. 154] property for details.

bool QLineEdit::isRedoAvailable () const

Returns TRUE if redo is available; otherwise returns FALSE. See the "redoAvailable" [p. 155] property for details.

bool QLineEdit::isUndoAvailable () const

Returns TRUE if undo is available; otherwise returns FALSE. See the "undoAvailable" [p. 155] property for details.

void QLineEdit::keyPressEvent (QKeyEvent * e) [virtual protected]

Converts key press event e into a line edit action.

If Return or Enter is pressed and the current text is valid (or can be made valid by the validator), the signal return-
Pressed is emitted.

The default key bindings are listed in the detailed description.

Reimplemented from QWidget [p. 461].

QString QLineEdit::markedText () const

Returns the text selected by the user (e.g. by clicking and dragging), or QString::null if no text is selected. See the
"markedText" [p. 154] property for details.

int QLineEdit::maxLength () const

Returns the maximum permitted length of the text in the editor. See the "maxLength" [p. 154] property for details.

QSize QLineEdit::minimumSizeHint () const [virtual]

Returns a minimum size for the line edit.
The width returned is enough for at least one character.

Reimplemented from QWidget [p. 464].

void QLineEdit::paste () [virtual slot]

Inserts the clipboard’s text at the cursor position, deleting any selected text.
If the end result is not acceptable for the current validator, nothing happens.

See also copy() [p. 146] and cut() [p. 1471.

QLineEdit Class Reference 150

void QLineEdit::redo () [virtual slot]

Redoes the last operation

void QLineEdit::repaintArea (int from, int to) [protected]
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

Repaints all characters from from to to. If cursorPos is between from and to, ensures that cursorPos is visible.

void QLineEdit::returnPressed () [signal]

This signal is emitted when the Return or Enter key is pressed.

Example: popup/popup.cpp.

void QLineEdit::selectAll () [virtual slot]

Selects all the text (i.e. highlights it) and moves the cursor to the end. This is useful when a default value has been
inserted because if the user types before clicking on the widget, the selected text will be erased.

See also setSelection() [p. 151] and deselect() [p. 147].

QString QLineEdit::selectedText () const

Returns any text selected by the user or QString::null. See the "selectedText" [p. 155] property for details.

void QLineEdit::selectionChanged () [signal]

This signal is emitted whenever the selection changes.

See also hasSelectedText [p. 154] and selectedText [p. 155].

void QLineEdit::setAlignment (int flag) [virtual slot]

Sets the alignment of the line edit to flag. See the "alignment" [p. 152] property for details.

void QLineEdit::setCursorPosition (int) [virtual slot]

Sets the current cursor position for this line edit. See the "cursorPosition" [p. 153] property for details.

void QLineEdit::setDragEnabled (bool b) [virtual slot]

Sets whether the lineedit starts a drag if the user presses and moves the mouse on some selected text to b. See the
"dragEnabled" [p. 153] property for details.

QLineEdit Class Reference 151

void QLineEdit::setEchoMode (EchoMode) [virtual slot]

Sets the echo mode of the line edit. See the "echoMode" [p. 153] property for details.

void QLineEdit::setEdited (bool)

Sets the edited flag of the line edit. See the "edited" [p. 153] property for details.

void QLineEdit::setFrame (bool) [virtual slot]

Sets whether the line edit draws itself with a frame. See the "frame" [p. 154] property for details.

void QLineEdit::setMaxLength (int) [virtual slot]

Sets the maximum permitted length of the text in the editor. See the "maxLength" [p. 154] property for details.

void QLineEdit::setReadOnly (bool) [virtual slot]

Sets whether the line edit is read only. See the "readOnly" [p. 154] property for details.

void QLineEdit::setSelection (int start, int length) [virtual slot]

Sets the selected area of this line edit to start at position start and be length characters long.

See also deselect() [p. 147], selectAll() [p. 150] and getSelection() [p. 148].

void QLineEdit::setText (const QString &) [virtual slot]

Sets the text in the line. See the "text" [p. 155] property for details.

void QLineEdit::setValidator (const QValidator * v) [virtual slot]
Sets this line edit to accept input only as accepted by the validator, v, allowing arbitrary constraints on the text which
may be entered.

If v == 0, setValidator() removes the current input validator. The initial setting is to have no input validator (i.e. any
input is accepted up to maxLength()).

See also validator() [p. 152] and QValidator [Additional Functionality with Qt].

Examples: lineedits/lineedits.cpp and wizard/wizard.cpp.

QSize QLineEdit::sizeHint () const [virtual]

Returns a recommended size for the widget.

QLineEdit Class Reference 152

The width returned, in pixels, is usually enough for about 15 to 20 characters.

Example: addressbook/centralwidget.cpp.

QString QLineEdit::text () const

Returns the text in the line. See the "text" [p. 155] property for details.

void QLineEdit::textChanged (const QString &) [signal]

This signal is emitted whenever the text changes. The argument is the new text.

Examples: wizard/wizard.cpp and xform/xform.cpp.

void QLineEdit::undo () [virtual slot]

Undoes the last operation

bool QLineEdit::validateAndSet (const QString & newText, int newPos, int newMarkAnchor,
int newMarkDrag)

Validates and perhaps sets this line edit to contain newText with the cursor at position newPos, with selected text from
newMarkAnchor to newMarkDrag. Returns TRUE if it changes the line edit; otherwise returns FALSE.
Linebreaks in newText are converted to spaces, and the text is truncated to maxLength() before its validity is tested.

Repaints and emits textChanged() if appropriate.

const QValidator * QLineEdit::validator () const

Returns a pointer to the current input validator, or O if no validator has been set.
See also setValidator() [p. 151].

Example: wizard/wizard.cpp.

Property Documentation

Alignment alignment

This property holds the alignment of the line edit.

Possible Values are Qt::AlignAuto, Qt::AlignLeft, Qt::AlignRight and Qt::AlignHCenter.
Attempting to set the alignment to an illegal flag combination does nothing.

See also Qt::AlignmentFlags [Additional Functionality with Qt].

Set this property’s value with setAlignment() and get this property’s value with alignment().

QLineEdit Class Reference 153

int cursorPosition

This property holds the current cursor position for this line edit.
Setting the cursor position causes a repaint when appropriate.

Set this property’s value with setCursorPosition() and get this property’s value with cursorPosition().

QString displayText

This property holds the text that is displayed.

If EchoMode is Normal this returns the same as text(); if EchoMode is Password it returns a string of asterisks the

0o ste ste sl o n

text().length() characters long, e.g. "******". if EchoMode is NoEcho returns an empty string,
See also echoMode [p. 153], text [p. 155] and EchoMode [p. 144].
Get this property’s value with displayText().

bool dragEnabled

This property holds whether the lineedit starts a drag if the user presses and moves the mouse on some selected text.

Set this property’s value with setDragEnabled() and get this property’s value with dragEnabled().

EchoMode echoMode

This property holds the echo mode of the line edit.

The initial setting is Normal, but QLineEdit also supports NoEcho and Password modes.
The widget’s display and the ability to copy or drag the text is affected by this setting.
See also EchoMode [p. 144] and displayText [p. 153].

Set this property’s value with setEchoMode() and get this property’s value with echoMode().

bool edited

This property holds the edited flag of the line edit.

The edited flag is never read by QLineEdit; it has a default value of FALSE and is changed to TRUE whenever the user
changes the line edit’s contents.

This is useful for things that need to provide a default value but cannot find the default at once. Just start the line edit
without the best default; when the default is known, check the edited() return value and set the line edit’s contents if
the user has not started editing the line edit.

Calling setText() resets the edited flag to FALSE.

Set this property’s value with setEdited() and get this property’s value with edited().

QLineEdit Class Reference 154

bool frame

This property holds whether the line edit draws itself with a frame.

If enabled (the default) the line edit draws itself inside a two-pixel frame, otherwise the line edit draws itself without
any frame.

Set this property’s value with setFrame() and get this property’s value with frame().

bool hasMarkedText

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
This property holds whether part of the text has been selected by the user (e.g. by clicking and dragging).

Get this property’s value with hasMarkedText().

See also selectedText [p. 155].

bool hasSelectedText

This property holds whether there is any text selected.

hasSelectedText() returns TRUE if some or all of the text has been selected by the user (e.g. by clicking and dragging);
otherwise returns FALSE.

See also selectedText [p. 155].

Get this property’s value with hasSelectedText().

QString markedText

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
This property holds the text selected by the user (e.g. by clicking and dragging), or QString::null if no text is selected.
Get this property’s value with markedText().

See also hasSelectedText [p. 154].

int maxLength

This property holds the maximum permitted length of the text in the editor.
If the text is too long, it is truncated at the limit.

If truncation occurs any selected text will be unselected, the cursor position is set to 0 and the first part of the string is
shown.

Set this property’s value with setMaxLength() and get this property’s value with maxLength().

bool readOnly

This property holds whether the line edit is read only.

QLineEdit Class Reference

In read-only mode, the user can still copy the text to the clipboard or drag-and-drop the text, but cannot edit it.

QLineEdit does not show a cursor in read-only mode.
See also enabled [p. 488].

Set this property’s value with setReadOnly() and get this property’s value with isReadOnly().

bool redoAvailable

This property holds whether redo is available.

Get this property’s value with isRedoAvailable().

QString selectedText

This property holds any text selected by the user or QString::null.
Get this property’s value with selectedText().

See also hasSelectedText [p. 154].

QString text

This property holds the text in the line.
Setting this property clears the selection and moves the cursor to the end of the line.
The text is truncated to maxLength() length.

Set this property’s value with setText() and get this property’s value with text().

bool undoAvailable

This property holds whether undo is available.

Get this property’s value with isUndoAvailable().

155

QListBox Class Reference

The QListBox widget provides a list of selectable, read-only items.

#include <qlistbox. h>

Inherits QScrollView [p. 275].

Public Members

QListBox (QWidget * parent = 0, const char * name = 0, WFlags f = 0)
~QListBox ()

uint count () const

void insertStringList (const QStringList & list, int index = -1)

void insertStrList (const QStrList * list, int index = -1)

void insertStrList (const QStrList & list, int index = -1)

void insertStrList (const char ** strings, int numStrings = -1, int index = -1)
void insertItem (const QListBoxItem * 1bi, int index = -1)

void insertItem (const QListBoxItem * 1bi, const QListBoxItem * after)

void insertItem (const QString & text, int index = -1)

void insertItem (const QPixmap & pixmap, int index = -1)

void insertItem (const QPixmap & pixmap, const QString & text, int index = -1)
void removeltem (int index)

QString text (int index) const

const QPixmap * pixmap (int index) const

void changeltem (const QListBoxItem * 1bi, int index)

void changeltem (const QString & text, int index)

void changeltem (const QPixmap & pixmap, int index)

void changeltem (const QPixmap & pixmap, const QString & text, int index)
void takeltem (const QListBoxItem * item)

int numItemsVisible () const

int currentItem () const

QString currentText () const

virtual void setCurrentItem (int index)

virtual void setCurrentItem (QListBoxItem * i)

void centerCurrentItem ()

int topItem () const

virtual void setTopItem (int index)

156

QListBox Class Reference

virtual void setBottomItem (int index)

long maxItemWidth () const

enum SelectionMode { Single, Multi, Extended, NoSelection }
virtual void setSelectionMode (SelectionMode)
SelectionMode selectionMode () const

void setMultiSelection (bool multi) (obsolete)

bool isMultiSelection () const (obsolete)

virtual void setSelected (QListBoxItem * item, bool select)
void setSelected (int index, bool select)

bool isSelected (int i) const

bool isSelected (const QListBoxItem * i) const
QListBoxItem * item (int index) const

int index (const QListBoxItem * 1bi) const

QListBoxItem * findItem (const QString & text, ComparisonFlags compare = BeginsWith) const

void triggerUpdate (bool doLayout)
bool itemVisible (int index)
bool itemVisible (const QListBoxItem * item)

enum LayoutMode { FixedNumber, FitToWidth, FitToHeight = FitToWidth, Variable }

virtual void setColumnMode (LayoutMode)
virtual void setColumnMode (int columns)
virtual void setRowMode (LayoutMode)
virtual void setRowMode (int rows)
LayoutMode columnMode () const
LayoutMode rowMode () const

int numColumns () const

int numRows () const

bool variableWidth () const

virtual void setVariableWidth (bool)

bool variableHeight () const

virtual void setVariableHeight (bool)

bool autoScrollBar () const

void setAutoScrollBar (bool enable)

bool scrollBar () const

void setScrollBar (bool enable)

bool autoBottomScrollBar () const

void setAutoBottomScrollBar (bool enable)
bool bottomScrollBar () const

void setBottomScrollBar (bool enable)

int inSort (const QListBoxItem * lbi) (obsolete)
int inSort (const QString & text) (obsolete)
int cellHeight (int i) const (obsolete)

int cellHeight () const (obsolete)

int cellWidth () const (obsolete)

int numCols () const (obsolete)

int itemHeight (int index = 0) const
QListBoxItem * itemAt (const QPoint & p) const
QRect itemRect (QListBoxItem * item) const
QListBoxItem * firstltem () const

void sort (bool ascending = TRUE)

157

QListBox Class Reference

Public Slots

void clear ()

virtual void ensureCurrentVisible ()
virtual void clearSelection ()

virtual void selectAll (bool select)
virtual void invertSelection ()

Signals

void highlighted (int index)

void selected (int index)

void highlighted (const QString &)

void selected (const QString &)

void highlighted (QListBoxItem *)

void selected (QListBoxItem *))

void selectionChanged ()

void selectionChanged (QListBoxItem * item)

void currentChanged (QListBoxItem * item)

void clicked (QListBoxItem * item)

void clicked (QListBoxItem * item, const QPoint & pnt)

void pressed (QListBoxItem * item)

void pressed (QListBoxItem * item, const QPoint & pnt)

void doubleClicked (QListBoxItem * item)

void returnPressed (QListBoxItem *)

void rightButtonClicked (QListBoxItem *, const QPoint &)

void rightButtonPressed (QListBoxItem *, const QPoint &)

void mouseButtonPressed (int button, QListBoxItem * item, const QPoint & pos)
void mouseButtonClicked (int button, QListBoxItem * item, const QPoint & pos)
void contextMenuRequested (QListBoxItem * item, const QPoint & pos)
void onltem (QListBoxItem * i)

void onViewport ()

Properties

LayoutMode columnMode — the column layout mode for this list box
uint count — the number of items in the list box (read only)

int currentltem — the current highlighted item

QString currentText — the text of the current item (read only)

bool multiSelection — whether or not the list box is in Multi selection mode (obsolete)

int numColumns — the number of columns in the list box (read only)
int numItemsVisible — the number of visible items (read only)
int numRows — the number of rows in the list box (read only)
LayoutMode rowMode — the row layout mode for this list box

158

QListBox Class Reference 159

m SelectionMode selectionMode — the selection mode of the list box

m int topItem — the index of an item at the top of the screen

m bool variableHeight — whether this list box has variable-height rows

m bool variableWidth — whether this list box has variable-width columns

Protected Members

m void updateltem (int index)

m void updateltem (QListBoxItem * i)

m int totalWidth () const (obsolete)

m int totalHeight () const (obsolete)

virtual void paintCell (QPainter * p, int row, int col)
void toggleCurrentltem ()

bool isRubberSelecting () const

void doLayout () const

bool itemYPos (int index, int * yPos) const (obsolete)

int findItem (int yPos) const (obsolete)

Detailed Description

The QListBox widget provides a list of selectable, read-only items.
This is typically a single-column list in which zero or one item is selected, but it can also be used in many other ways.

QListBox will add scroll bars as necessary, but it isn’t intended for really big lists. If you want more than a few thousand
items, it’s probably better to use a different widget mainly because the scroll bars won’t provide very good navigation,
but also because QListBox may become slow with huge lists.

There are a variety of selection modes described in the QListBox::SelectionMode documentation. The default is Single
selection mode, but you can change it using setSelectionMode(). (setMultiSelection() is still provided for compatibility
with Qt 1.x. We recomment using setSelectionMode() in all code.)

Because QListBox offers multiple selection it must display keyboard focus and selection state separately. Therefore
there are functions both to set the selection state of an item, i.e. setSelected(), and to select which item displays
keyboard focus, i.e. setCurrentItem().

The list box normally arranges its items in a single column and adds a vertical scroll bar if required. It is possible to
have a different fixed number of columns (setColumnMode()), or as many columns as will fit in the list box’s assigned
screen space (setColumnMode(FitTowidth)), or to have a fixed number of rows (setRowMode()) or as many rows as
will fit in the list box’s assigned screen space (setRowMode(FitToHeight)). In all these cases QListBox will add scroll
bars, as appropriate, in at least one direction.

If multiple rows are used, each row can be as high as necessary (the normal setting), or you can request that all
items will have the same height by calling setVariableHeight(FALSE). The same applies to a column’s width, see
setVariableWidth().

The items discussed are QListBoxItem objects. QListBox provides methods to insert new items as strings, as pixmaps,
and as QListBoxItem * (insertltem() with various arguments), and to replace an existing item with a new string,
pixmap or QListBoxItem (changeltem() with various arguments). You can also remove items singly with removeltem ()
or clear() the entire list box. Note that if you create a QListBoxItem yourself and insert it, it becomes the property of
QListBox and you must not delete it. (QListBox will delete it when appropriate.)

QListBox Class Reference 160

You can also create a QListBoxItem, such as QListBoxText or QListBoxPixmap, with the list box as first parameter. The
item will then append itself. When you delete an item it is automatically removed from the list box.

The list of items can be arbitrarily large; QListBox will add scroll bars if necessary. QListBox can display a single-
column (the common case) or multiple-columns, and offers both single and multiple selection. (QListBox does not
support multiple-column items, or tree hierarchies; use QListView if you require such functionality.)

The list box items can be accessed both as QListBoxItem objects (recommended) and using integer indexes (the orig-
inal QListBox implementation used an array of strings internally, and the API still supports this mode of operation).
Everything can be done using the new objects; most things can be done using the indexes, too, but unfortunately not
everything.

Each item in a QListBox contains a QListBoxItem. One of the items can be the current item. The highlighted() signal
is emitted when a new item gets highlighted, e.g. because the user clicks on it or QListBox::setCurrentItem() is called.
The selected() signal is emitted when the user double-clicks on an item or presses Enter when an item is highlighted.

If the user does not select anything, no signals are emitted and currentltem() returns -1.

A list box has WheelFocus as a default focusPolicy(), i.e. it can get keyboard focus by tabbing, clicking and through the
use of the mouse wheel.

New items can be inserted using insertltem(), insertStrList() or insertStringList(). inSort() is obsolete because this
method is quite inefficient. It’s preferable to insert the items normally and call sort() afterwards, or to insert a sorted
QStringList().

By default, vertical and horizontal scroll bars are added and removed as necessary. setHScrollBarMode() and
setVScrollBarMode() can be used to change this policy.

If you need to insert types other than strings and pixmaps, you must define new classes which inherit QListBoxItem.

Warning: The list box assumes ownership of all list box items and will delete them when it does not need them any
more.

First item A First item

Second item Second item

Third item Third item

Fourth item Fourth item

Sixth item hd Sixth item ;I

See also QListView [p. 189], QComboBox [p. 33], QButtonGroup [p. 15], GUI Design Handbook: List Box (two
sections) and Advanced Widgets.

Member Type Documentation

QListBox::LayoutMode

This enum type is used to specify how QListBox lays out its rows and columns.

The possible values for each row or column mode are:

e Qi st Box:: Fi xedNurmber - There is a fixed number of rows (or columns).
e (ListBox:: FitToWdth - There are as many columns as will fit on-screen.
e (ListBox:: FitToHeight - There are as many rows as will fit on-screen.

e (QListBox::Variable - There are as many rows as are required by the column mode. (Or as many columns as
required by the row mode.)

QListBox Class Reference 161

Example: When you call setRowMode(FitToHeight), columnMode() automatically becomes Variable to accommodate
the row mode you've set.

QListBox::SelectionMode
This enumerated type is used by QListBox to indicate how it reacts to selection by the user. It has four values:

e (QListBox::Single-When the user selects an item, any already-selected item becomes unselected and the user
cannot unselect the selected item. This means that the user can never clear the selection, even though the
selection may be cleared by the application programmer using QListBox::clearSelection().

e (QListBox::Milti - When the user selects an item the selection status of that item is toggled and the other items
are left alone.

e (QLi st Box:: Ext ended - When the user selects an item the selection is cleared and the new item selected. However,
if the user presses the Ctrl key when clicking on an item, the clicked item gets toggled and all other items are left
untouched. And if the user presses the Shift key while clicking on an item, all items between the current item
and the clicked item get selected or unselected, depending on the state of the clicked item. Also, multiple items
can be selected by dragging the mouse while the left mouse button is kept pressed.

e (ListBox::NoSel ection - Items cannot be selected.

In other words, Single is a real single-selection list box, Multi is a real multi-selection list box, Extended is a list box
in which users can select multiple items but usually want to select either just one or a range of contiguous items, and
NoSelection is for a list box where the user can look but not touch.

Member Function Documentation

QListBox::QListBox (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a new empty list box, with parent as a parent and name as object name.

Performance is boosted by modifying the widget flags f so that only part of the QListBoxItem children is redrawn. This
may be unsuitable for custom QListBoxItem classes, in which case WStaticContents and WRepaintNoErase should be
cleared immediately after construction.

See also QWidget::clearWFlags() [p. 449] and Qt::WidgetFlags [Additional Functionality with Qt].

QListBox::~QListBox ()

Destroys the list box. Deletes all list box items.

bool QListBox::autoBottomScrollBar () const

Returns TRUE if hScrollBarMode() is Auto; otherwise returns FALSE.

bool QListBox::autoScrollBar () const

Returns TRUE if vScrollBarMode() is Auto; otherwise returns FALSE.

QListBox Class Reference 162

bool QListBox::bottomScrollBar () const

Returns FALSE if vScrollBarMode() is AlwaysOff; otherwise returns TRUE.

int QListBox::cellHeight (int i) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Returns the item height of item i.

See also itemHeight() [p. 169].

int QListBox::cellHeight () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the item height of the first item, item O.

See also itemHeight() [p. 169].

int QListBox::cellWidth () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Returns the maximum item width.

See also maxItemWidth() [p. 169].

void QListBox::centerCurrentitem ()

If there is a current item, the list box is scrolled so that this item is displayed centered.

See also QListBox::ensureCurrentVisible() [p. 164].

void QListBox::changeltem (const QListBoxItem * Ibi, int index)

Replaces the item at position index with Ibi. If index is negative or too large, changeltem() does nothing.

See also insertltem() [p. 166] and removeltem() [p. 171].

void QListBox::changeltem (const QString & text, int index)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Replaces the item at position index with a new list box text item with text text.
The operation is ignored if index is out of range.

See also insertltem() [p. 166] and removeltem() [p. 171].

QListBox Class Reference 163

void QListBox::changeltem (const QPixmap & pixmap, int index)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Replaces the item at position index with a new list box pixmap item with pixmap pixmap.
The operation is ignored if index is out of range.

See also insertltem() [p. 166] and removeltem() [p. 171].

void QListBox::changeltem (const QPixmap & pixmap, const QString & text, int index)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Replaces the item at position index with a new list box pixmap item with pixmap pixmap and text text.
The operation is ignored if index is out of range.

See also insertItem() [p. 166] and removeltem() [p. 171].

void QListBox::clear () [slot]

Deletes all the items in the list.

See also removeltem() [p. 171].

void QListBox::clearSelection () [virtual slot]

Deselects all items, if possible.
Note that a Single selection list box will automatically select an item if it has keyboard focus.

Example: listbox/listbox.cpp.

void QListBox::clicked (QListBoxItem * item) [signal]
This signal is emitted when the user clicks any mouse button. If item is non-null, the cursor is on item. If item is null,
the mouse cursor isn’t on any item.

Note that you must not delete any QListBoxItem objects in slots connected to this signal.

void QListBox::clicked (QListBoxItem * item, const QPoint & pnt) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted when the user clicks any mouse button. If item is non-null, the cursor is on item. If item is null,
the mouse cursor isn’t on any item.

pnt is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()). (If the click’s press
and release differ by a pixel or two, pnt is the position at release time.)

Note that you must not delete any QListBoxItem objects in slots connected to this signal.

QListBox Class Reference 164

LayoutMode QListBox::columnMode () const

Returns the column layout mode for this list box. See the "columnMode" [p. 176] property for details.

void QListBox::contextMenuRequested (QListBoxItem * item, const QPoint & pos) [signal]

This signal is emitted when the user invokes a context menu with the right mouse button or with special system keys,
with item being the item under the mouse cursor or the current item, respectively.

pos is the position for the context menu in the global coordinate system.

uint QListBox::count () const

Returns the number of items in the list box. See the "count" [p. 177] property for details.

void QListBox::currentChanged (QListBoxItem * item) [signal]

This signal is emitted when the user highlights a new current item. item is the new current list box item.

See also currentItem [p. 177] and currentItem [p. 177].

int QListBox::currentltem () const

Returns the current highlighted item. See the "currentItem" [p. 177] property for details.

QString QListBox::currentText () const

Returns the text of the current item. See the "currentText" [p. 177] property for details.

void QListBox::doLayout () const [protected]

This function does the hard layout work. You should never need to call it.

void QListBox::doubleClicked (QListBoxItem * item) [signal]

This signal is emitted whenever an item is double-clicked. It’s emitted on the second button press, not the second
button release. item is the item item on which the user did the double-click. item may be 0.

void QListBox::ensureCurrentVisible () [virtual slot]

Ensures that the current item is visible.

QListBox Class Reference 165

QListBoxItem * QListBox::findItem (const QString & text, ComparisonFlags compare =
BeginsWith) const

Finds the first list box item that has the text text and returns it, or returns O of no such item could be found. If
ComparisonFlags are specified in compare then these flags are used, otherwise the default is a case-sensitive, exact
match search.

See also Qt::StringComparisonMode [Additional Functionality with Qt].

int QListBox::findItem (int yPos) const [protected]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Returns the index of the item a point (0O, yPos).

See also index() [p. 166] and itemAt() [p. 169].

QListBoxItem * QListBox::firstIltem () const

Returns the first item in this list box. If the list box is empty this will be 0.

void QListBox::highlighted (int index) [signal]

This signal is emitted when the user highlights a new current item. index is the index of the highlighted item.

See also selected() [p. 172], currentltem [p. 177] and selectionChanged() [p. 172].

void QListBox::highlighted (const QString &) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted when the user highlights a new current item and the new item is a string. The argument is the
text of the new current item.

See also selected() [p. 172], currentltem [p. 177] and selectionChanged() [p. 172].

void QListBox::highlighted (QListBoxItem *) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This signal is emitted when the user highlights a new current item. The argument is a pointer to the new current item.

See also selected() [p. 172], currentltem [p. 177] and selectionChanged() [p. 172].

int QListBox::inSort (const QListBoxItem * 1bi)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Using this method is quite inefficient. We suggest to use insertItem() for inserting and sort() afterwards.

Inserts [bi at its sorted position in the list box and returns the position.

QListBox Class Reference 166

All items must be inserted with inSort() to maintain the sorting order. inSort() treats any pixmap (or user-defined
type) as lexicographically less than any string.

See also insertltem() [p. 166] and sort() [p. 175].

int QListBox::inSort (const QString & text)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Using this method is quite inefficient. We suggest to use insertItem() for inserting and sort() afterwards.

Inserts a new item of text at its sorted position in the list box and returns the position.

All items must be inserted with inSort() to maintain the sorting order. inSort() treats any pixmap (or user-defined
type) as lexicographically less than any string.

See also insertltem() [p. 166] and sort() [p. 175].

int QListBox::index (const QListBoxItem * 1bi) const

Returns the index of Ibi, or -1 if the item is not in this list box or [bi is a null pointer.

See also item() [p. 168].

void QListBox::insertItem (const QListBoxItem * 1bi, int index = -1)

Inserts the item Ibi into the list at position index.

If index is negative or larger than the number of items in the list box, Ibi is inserted at the end of the list.

See also insertStrList() [p. 167].

Examples: i18n/mywidget.cpp, listbox/listbox.cpp, listboxcombo/listboxcombo.cpp and tabdialog/tabdialog.cpp.

void QListBox::insertItem (const QListBoxItem * 1lbi, const QListBoxItem * after)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts the item [bi into the list after the item after.

If after is NULL, [bi is inserted at the beginning.

See also insertStrList() [p. 167].

void QListBox::insertItem (const QString & text, int index = -1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts a new list box text item with the text text into the list at position index.
If index is negative, text is inserted at the end of the list.

See also insertStrList() [p. 167].

QListBox Class Reference 167

void QListBox::insertItem (const QPixmap & pixmap, int index = -1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts a new list box pixmap item with the pixmap pixmap into the list at position index.
If index is negative, pixmap is inserted at the end of the list.

See also insertStrList() [p. 167].

void QListBox::insertItem (const QPixmap & pixmap, const QString & text, int index = -1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts a new list box pixmap item with the pixmap pixmap and the text text into the list at position index.
If index is negative, pixmap is inserted at the end of the list.

See also insertStrList() [p. 167].

void QListBox::insertStrList (const QStrList * list, int index = -1)

Inserts the string list list into the list at position index.
If index is negative, list is inserted at the end of the list. If index is too large, the operation is ignored.

Warning: This function uses const char * rather than QString, so we recommend against using it. It is provided so
that legacy code will continue to work, and so that programs that certainly will not need to handle code outside a
single 8-bit locale can use it. See insertStringList() which uses real QStrings.

Warning: This function is never significantly faster than a loop around insertItem().

See also insertltem() [p. 166] and insertStringList() [p. 168].

void QListBox::insertStrList (const QStrList & list, int index = -1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts the string list list into the list at position index.
If index is negative, list is inserted at the end of the list. If index is too large, the operation is ignored.

Warning: This function uses const char * rather than QString, so we recommend against using it. It is provided so
that legacy code will continue to work, and so that programs that certainly will not need to handle code outside a
single 8-bit locale can use it. See insertStringList() which uses real QStrings.

Warning: This function is never significantly faster than a loop around insertItem().

See also insertItem() [p. 166] and insertStringList() [p. 168].

void QListBox::insertStrList (const char ** strings, int numStrings = -1, int index = -1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Inserts the numStrings strings of the array strings into the list at position index.

QListBox Class Reference 168

If index is negative, insertStrList() inserts strings at the end of the list. If index is too large, the operation is ignored.

Warning: This function uses const char * rather than QString, so we recommend against using it. It is provided so
that legacy code will continue to work, and so that programs that certainly will not need to handle code outside a
single 8-bit locale can use it. See insertStringList() which uses real QStrings.

Warning: This function is never significantly faster than a loop around insertItem().

See also insertltem() [p. 166] and insertStringList() [p. 168].

void QListBox::insertStringList (const QStringList & list, int index = -1)

Inserts the string list list into the list at position index.
If index is negative, list is inserted at the end of the list. If index is too large, the operation is ignored.
Warning: This function is never significantly faster than a loop around insertItem().

See also insertltem() [p. 166] and insertStrList() [p. 167].

void QListBox::invertSelection () [virtual slot]

Inverts the selection. Only works in Multi and Extended selection mode.

bool QListBox::isMultiSelection () const

Returns TRUE if or not the list box is in Multi selection mode; otherwise returns FALSE. See the "multiSelection"
[p. 1771 property for details.

bool QListBox::isRubberSelecting () const [protected]

Returns whether the user is selecting items using a rubber band rectangle.

bool QListBox::isSelected (int i) const

Returns TRUE if item i is selected; otherwise returns FALSE.

bool QListBox::isSelected (const QListBoxItem * i) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if item i is selected; otherwise returns FALSE.

QListBoxItem * QListBox::item (int index) const

Returns a pointer to the item at position index, or 0O if index is out of bounds.
See also index() [p. 166].

Example: listboxcombo/listboxcombo.cpp.

QListBox Class Reference 169

QListBoxItem * QListBox::itemAt (const QPoint & p) const

Returns a pointer to the item at point p, which is in on-screen coordinates, or a null pointer if there is no item at p.

int QListBox::itemHeight (int index = 0) const

Returns the height in pixels of the item with index index. index defaults to O.

If index is too large, this function returns O.

QRect QListBox::itemRect (QListBoxItem * item) const

Returns the rectangle on the screen that item occupies in viewport()’s coordinates, or an invalid rectangle if item is a
null pointer or is not currently visible.

bool QListBox::itemVisible (int index)

Returns TRUE if the item at position index is at least partly visible; otherwise returns FALSE.

bool QListBox::itemVisible (const QListBoxItem * item)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if item is at least partly visible; otherwise returns FALSE.

bool QListBox::itemYPos (int index, int * yPos) const [protected]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

Returns the vertical pixel-coordinate in *yPos, of the list box item at position index in the list. Returns FALSE if the item
is outside the visible area.

long QListBox::maxItemWidth () const

Returns the width of the widest item in the list box.

void QListBox::mouseButtonClicked (int button, QListBoxItem * item,
const QPoint & pos) [signal]

This signal is emitted when the user clicks mouse button button. If item is non-null, the cursor is on item. If item is
null, the mouse cursor isn’t on any item.

pos is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()). (If the click’s press
and release differ by a pixel or two, pos is the position at release time.)

Note that you must not delete any QListBoxItem objects in slots connected to this signal.

QListBox Class Reference 170

void QListBox::mouseButtonPressed (int button, QListBoxItem * item,
const QPoint & pos) [signal]

This signal is emitted when the user presses mouse button button. If item is non-null, the cursor is on item. If item is
null, the mouse cursor isn’t on any item.

pos is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()).

Note that you must not delete any QListBoxItem objects in slots connected to this signal.

int QListBox::numCols () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Returns the number of columns.

See also numColumns [p. 177].

int QListBox::numColumns () const

Returns the number of columns in the list box. See the "numColumns" [p. 177] property for details.

int QListBox::numlItemsVisible () const

Returns the number of visible items. See the "numlItemsVisible" [p. 178] property for details.

int QListBox::numRows () const

Returns the number of rows in the list box. See the "numRows" [p. 178] property for details.

void QListBox::onltem (QListBoxItem * i) [signal]

This signal is emitted when the user moves the mouse cursor onto an item, similar to the QWidget::enterEvent()
function. i is the QListBoxItem that the mouse has moved on.

void QListBox::onViewport () [signal]

This signal is emitted when the user moves the mouse cursor from an item to an empty part of the list box.

void QListBox::paintCell (QPainter * p, int row, int col) [virtual protected]

Provided for compatibility with the old QListBox. We recommend using QListBoxItem::paint()

Repaints the cell at row, col using painter p.

QListBox Class Reference 171

const QPixmap * QListBox::pixmap (int index) const

Returns a pointer to the pixmap at position index, or O if there is no pixmap there.

See also text() [p. 175].

void QListBox::pressed (QListBoxItem * item) [signal]

This signal is emitted when the user presses any mouse button. If item is non-null, the cursor is on item. If item is null,
the mouse cursor isn’t on any item.

Note that you must not delete any QListBoxItem objects in slots connected to this signal.

void QListBox::pressed (QListBoxItem * item, const QPoint & pnt) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted when the user presses any mouse button. If item is non-null, the cursor is on item. If item is null,
the mouse cursor isn’t on any item.

pnt is the position of the mouse cursor in the global coordinate system (QMouseEvent::globalPos()). (If the click’s press
and release differ by a pixel or two, pnt is the position at release time.)

Note that you must not delete any QListBoxItem objects in slots connected to this signal.

See also mouseButtonPressed() [p. 170], rightButtonPressed() [p. 171] and clicked() [p. 163].

void QListBox::removeltem (int index)

Removes and deletes the item at position index. If index is equal to currentltem(), a new item gets highlighted and the
highlighted () signal is emitted.

See also insertItem() [p. 166] and clear() [p. 163].

void QListBox::returnPressed (QListBoxItem *) [signal]

This signal is emitted when Enter or Return is pressed. The argument is currentItem().

void QListBox::rightButtonClicked (QListBoxItem *, const QPoint &) [signal]

This signal is emitted when the right button is clicked (i.e. when it’s released at the same point where it was pressed).
The arguments are the relevant QListBoxItem (may be 0) and the point in global coordinates.

void QListBox::rightButtonPressed (QListBoxItem *, const QPoint &) [signal]

This signal is emitted when the right button is pressed. The arguments are the relevant QListBoxItem (may be 0) and
the point in global coordinates.

QListBox Class Reference 172

LayoutMode QListBox::rowMode () const

Returns the row layout mode for this list box. See the "rowMode" [p. 178] property for details.

bool QListBox::scrollBar () const

Returns FALSE if vScrollBarMode() is AlwaysOff; otherwise returns TRUE.

void QListBox::selectAll (bool select) [virtual slot]
In Multi and Extended modes, this function sets all items to be selected if select is TRUE, and to be unselected if select
is FALSE.

In Single and NoSelection modes, this function only changes the selection status of currentItem().

void QListBox::selected (int index) [signal]
This signal is emitted when the user double-clicks on an item or presses Enter when an item is highlighted. index is the
index of the selected item.

See also highlighted() [p. 165] and selectionChanged() [p. 172].

void QListBox::selected (const QString &) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted when the user double-clicks on an item or presses Enter while an item is highlighted, and the
selected item is (or has) a string. The argument is the text of the selected item.

See also highlighted() [p. 165] and selectionChanged() [p. 172].

void QListBox::selected (QListBoxItem *) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted when the user double-clicks on an item or presses Enter when an item is highlighted. The
argument is a pointer to the new selected item.

See also highlighted() [p. 165] and selectionChanged() [p. 172].

void QListBox::selectionChanged () [signal]

This signal is emitted when the selection set of a list box changes. This signal is emitted in each selection mode. If the
user selects five items by drag-selecting, QListBox tries to emit just one selectionChanged() signal so the signal can be
connected to computationally expensive slots.

See also selected() [p. 172] and currentltem [p. 177].

QListBox Class Reference 173

void QListBox::selectionChanged (QListBoxItem * item) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This signal is emitted when the selection in a Single selection list box changes. item is the new selected list box item.

See also selected() [p. 172] and currentltem [p. 177].

SelectionMode QListBox::selectionMode () const

Returns the selection mode of the list box. See the "selectionMode" [p. 178] property for details.

void QListBox::setAutoBottomScrollBar (bool enable)

If enable is TRUE sets setHScrollBarMode() to AlwaysOn; otherwise sets setHScrollBarMode() to AlwaysOff.

void QListBox::setAutoScrollBar (bool enable)

If enable is TRUE sets setVScrollBarMode() to AlwaysOn; otherwise sets setVScrollBarMode() to AlwaysOff.

void QListBox::setBottomItem (int index) [virtual]
Scrolls the list box so the item at position index in the list is displayed in the bottom row of the list box.

See also topltem [p. 178].

void QListBox::setBottomScrollBar (bool enable)

If enable is TRUE sets setHScrollBarMode() to AlwaysOn; otherwise sets setHScrollBarMode() to AlwaysOff.

void QListBox::setColumnMode (LayoutMode) [virtual]

Sets the column layout mode for this list box. See the "columnMode" [p. 176] property for details.

void QListBox::setColumnMode (int columns) [virtual]

Sets the column layout mode for this list box to columns. See the "columnMode" [p. 176] property for details.

void QListBox::setCurrentltem (int index) [virtual]

Sets the current highlighted item to index. See the "currentItem" [p. 177] property for details.

QListBox Class Reference 174

void QListBox::setCurrentltem (QListBoxItem * i) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the current item to the QListBoxItem i.

void QListBox::setMultiSelection (bool multi)

Sets whether or not the list box is in Multi selection mode to multi. See the "multiSelection" [p. 177] property for
details.

void QListBox::setRowMode (LayoutMode) [virtual]

Sets the row layout mode for this list box. See the "rowMode" [p. 178] property for details.

void QListBox::setRowMode (int rows) [virtual]

Sets the row layout mode for this list box to rows. See the "rowMode" [p. 178] property for details.

void QListBox::setScrollBar (bool enable)

If enable is TRUE sets setVScrollBarMode() to AlwaysOn; otherwise sets setVScrollBarMode() to AlwaysOff.

void QListBox::setSelected (QListBoxItem * item, bool select) [virtual]

Selects item if select is TRUE or unselects it if select is FALSE, and repaints the item appropriately.
If the list box is a Single selection list box and select is TRUE, setSelected() calls setCurrentItem().
If the list box is a Single selection list box, select is FALSE, setSelected () calls clearSelection().

Note that for this function NoSelection means Multi selection. The user cannot select items in a NoSelection list box,
but the application programmer can.

See also multiSelection [p. 1771, currentltem [p. 1771, clearSelection() [p. 163] and currentltem [p. 177].

void QListBox::setSelected (int index, bool select)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

If select is TRUE the item at position index is selected; otherwise the item is deselected.

void QListBox::setSelectionMode (SelectionMode) [virtual]

Sets the selection mode of the list box. See the "selectionMode" [p. 178] property for details.

QListBox Class Reference 175

void QListBox::setTopltem (int index) [virtual]

Sets the index of an item at the top of the screen to index. See the "topIltem" [p. 178] property for details.

void QListBox::setVariableHeight (bool) [virtual]

Sets whether this list box has variable-height rows. See the "variableHeight" [p. 178] property for details.

void QListBox::setVariableWidth (bool) [virtual]

Sets whether this list box has variable-width columns. See the "variableWidth" [p. 179] property for details.

void QListBox::sort (bool ascending = TRUE)

If ascending is TRUE sorts the items in ascending order; otherwise sorts in descending order.
To compare the items, the text (QListBoxItem::text()) of the items is used.

Example: listbox/listbox.cpp.

void QListBox::takeltem (const QListBoxItem * item)

Removes item from the list box and causes an update of the screen display. The item is not deleted. You should normally
not need to call this function because QListBoxItem::~QListBoxItem() calls it. The normal way to delete an item is
with del ete.

See also QListBox::insertItem() [p. 166].

QString QListBox::text (int index) const

Returns the text at position index, or a null string if there is no text at that position.

See also pixmap() [p. 171].

void QListBox::toggleCurrentltem () [protected]

Toggles the selection status of currentltem() and repaints if the list box is a Multi selection list box.
See also multiSelection [p. 177].

int QListBox::topItem () const

Returns the index of an item at the top of the screen. See the "topItem" [p. 178] property for details.

QListBox Class Reference 176

int QListBox::totalHeight () const [protected]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Returns contentsHeight().

int QListBox::totalWidth () const [protected]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Returns contentsWidth().

void QListBox::triggerUpdate (bool doLayout)

Ensures that a single paint event will occur at the end of the current event loop iteration. If doLayout is TRUE, the
layout is also redone.

void QListBox::updateltem (int index) [protected]

Repaints the item at position index in the list.

void QListBox::updateltem (QListBoxItem * i) [protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Repaints the QListBoxItem i.

bool QListBox::variableHeight () const

Returns TRUE if this list box has variable-height rows; otherwise returns FALSE. See the "variableHeight" [p. 178]
property for details.

bool QListBox::variableWidth () const
Returns TRUE if this list box has variable-width columns; otherwise returns FALSE. See the "variableWidth" [p. 179]

property for details.

Property Documentation

LayoutMode columnMode

This property holds the column layout mode for this list box.
Set this property’s value with setColumnMode() and get this property’s value with columnMode().
See also rowMode [p. 178] and columnMode [p. 176].

QListBox Class Reference 177

setColumnMode() sets the layout mode and adjusts the number of displayed columns. The row layout mode automat-
ically becomes Variable, unless the column mode is Variable.

See also rowMode [p. 178] and columnMode [p. 176].

uint count

This property holds the number of items in the list box.

Get this property’s value with count().

int currentltem

This property holds the current highlighted item.
When setting this property, the highlighting is moved and the list box scrolled as necessary.
If no item has been selected, currentItem() returns -1.

Set this property’s value with setCurrentltem() and get this property’s value with currentltem().

QString currentText

This property holds the text of the current item.
This is equivalent to text(currentltem()).

Get this property’s value with currentText().

bool multiSelection

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
This property holds whether or not the list box is in Multi selection mode.

Consider using the QListBox::selectionMode property instead of this property.

When setting this property, Multi selection mode is used if set to TRUE and to Single selection mode if set to FALSE.

When getting this property, TRUE is returned if the list box is in Multi selection mode or Extended selection mode, and
FALSE if it is in Single selection mode or NoSelection mode.

See also selectionMode [p. 178].

Set this property’s value with setMultiSelection() and get this property’s value with isMultiSelection().

int numColumns

This property holds the number of columns in the list box.
This is normally 1, but can be different if QListBox::columnMode or QListBox::rowMode has been set.
See also columnMode [p. 176], rowMode [p. 178] and numRows [p. 178].

Get this property’s value with numColumns().

QListBox Class Reference 178

int numItemsVisible

This property holds the number of visible items.
Both partially and entirely visible items are counted.

Get this property’s value with numItemsVisible().

int numRows

This property holds the number of rows in the list box.
This is equal to the number of items in the default single-column layout, but can be different.
See also columnMode [p. 176], rowMode [p. 178] and numColumns [p. 177].

Get this property’s value with numRows().

LayoutMode rowMode

This property holds the row layout mode for this list box.
This property is normally Variable.

setRowMode() sets the layout mode and adjusts the number of displayed rows. The column layout mode automatically
becomes Variable, unless the row mode is Variable.

See also columnMode [p. 176] and rowMode [p. 178].

Set this property’s value with setRowMode() and get this property’s value with rowMode().

SelectionMode selectionMode

This property holds the selection mode of the list box.
Sets the list box’s selection mode, which may be one of Single (the default), Extended, Multi or NoSelection.
See also SelectionMode [p. 161].

Set this property’s value with setSelectionMode() and get this property’s value with selectionMode().

int topltem

This property holds the index of an item at the top of the screen.
When getting this property and the listbox has multiple columns, an arbitrary item is selected and returned.

When setting this property, the list box is scrolled so the item at position index in the list is displayed in the top row of
the list box.

Set this property’s value with setTopltem() and get this property’s value with topItem().

bool variableHeight

This property holds whether this list box has variable-height rows.

QListBox Class Reference 179

When the list box has variable-height rows (the default), each row is as high as the highest item in that row. When it
has same-sized rows, all rows are as high as the highest item in the list box.

See also variableWidth [p. 179].

Set this property’s value with setVariableHeight() and get this property’s value with variableHeight().

bool variableWidth

This property holds whether this list box has variable-width columns.

When the list box has variable-width columns, each column is as wide as the widest item in that column. When it has
same-sized columns (the default), all columns are as wide as the widest item in the list box.

See also variableHeight [p. 178].

Set this property’s value with setVariableWidth() and get this property’s value with variableWidth().

QListBoxItem Class Reference

The QListBoxItem class is the base class of all list box items.

#include <qlistbox. h>

Inherited by QListBoxText [p. 187] and QListBoxPixmap [p. 184].

Public Members

QListBoxItem (QListBox * listbox = 0)
QListBoxItem (QListBox * listbox, QListBoxItem * after)
virtual ~QListBoxItem ()

virtual QString text () const

virtual const QPixmap * pixmap () const
virtual int height (const QListBox * 1b) const
virtual int width (const QListBox * Ib) const
bool isSelected () const

bool isCurrent () const

bool selected () const (obsolete)

bool current () const (obsolete)

QListBox * listBox () const

void setSelectable (bool b)

bool isSelectable () const

QListBoxItem * next () const

QListBoxItem * prev () const

virtual int rtti () const

Protected Members

virtual void paint (QPainter * p)
virtual void setText (const QString & text)
void setCustomHighlighting (bool b)

180

QListBoxItem Class Reference 181

Detailed Description

The QListBoxItem class is the base class of all list box items.

This class is an abstract base class used for all list box items. If you need to insert customized items into a QListBox
you must inherit this class and reimplement paint(), height() and width().

See also QListBox [p. 156] and Advanced Widgets.

Member Function Documentation

QListBoxItem::QListBoxItem (QListBox * listbox = 0)

Constructs an empty list box item in the list box listbox.

QListBoxItem::QListBoxItem (QListBox * listbox, QListBoxItem * after)

Constructs an empty list box item in the list box listbox and inserts it after the item after.

QListBoxItem::~QListBoxItem () [virtual]

Destroys the list box item.

bool QListBoxItem::current () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

int QListBoxItem::height (const QListBox * 1b) const [virtual]

Implement this function to return the height of your item. The lb parameter is the same as listBox() and is provided
for convenience and compatibility.

See also paint() [p. 182] and width() [p. 183].

Reimplemented in QListBoxText and QListBoxPixmap.

bool QListBoxItem::isCurrent () const

Returns TRUE if the item is the current item; otherwise returns FALSE.

See also QListBox::currentltem [p. 177], QListBox::item() [p. 168] and isSelected() [p. 182].

bool QListBoxItem::isSelectable () const

Returns TRUE if this item is selectable; otherwise returns FALSE.

See also setSelectable() [p. 183].

QListBoxItem Class Reference 182

bool QListBoxItem::isSelected () const

Returns TRUE if the item is selected; otherwise returns FALSE.
See also QListBox::isSelected() [p. 168] and isCurrent() [p. 181].

Example: listboxcombo/listboxcombo.cpp.

QListBox * QListBoxItem::listBox () const

Returns a pointer to the list box containing this item.

QListBoxItem * QListBoxItem::next () const

Returns the item that comes after this in the list box. If this is the last item, a null pointer is returned.

See also prev() [p. 182].

void QListBoxItem::paint (QPainter * p) [virtual protected]

Implement this function to draw your item. You will need to pass the QPainter that will draw the item in p.
See also height() [p. 181] and width() [p. 183].
Example: listboxcombo/listboxcombo.cpp.

Reimplemented in QListBoxText and QListBoxPixmap.

const QPixmap * QListBoxItem::pixmap () const [virtual]

Returns the pixmap associated with the item, if any.
The default implementation returns a null pointer.
Example: listboxcombo/listboxcombo.cpp.

Reimplemented in QListBoxPixmap.

QListBoxItem * QListBoxItem::prev () const

Returns the item which comes before this in the list box. If this is the first item, a null pointer is returned.

See also next() [p. 182].

int QListBoxItem::rtti () const [virtual]

Returns 0.

Although often frowned upon by purists, Run Time Type Identification is very useful in this case, as it allows a QListBox
to be an efficient indexed storage mechanism.

QListBoxItem Class Reference 183

Make your derived classes return their own values for rtti(), and you can distinguish between listbox items. You should
use values greater than 1000 preferably a large random number, to allow for extensions to this class.

bool QListBoxItem::selected () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

void QListBoxItem::setCustomHighlighting (bool b) [protected]

Defines whether the list box item is responsible for drawing itself in a highlighted state when being selected.
If b is FALSE (the default), the list box will draw some default highlight indicator before calling paint().
See also selected() [p. 183] and paint() [p. 182].

void QListBoxItem::setSelectable (bool b)

If b is TRUE then this item can be selected by the user; otherwise this item cannot be selected by the user.

See also isSelectable() [p. 181].

void QListBoxItem::setText (const QString & text) [virtual protected]

Sets the text of the QListBoxItem to text. This text is also used for sorting. The text is not shown unless explicitly drawn
in paint().

See also text() [p. 183].

QString QListBoxItem::text () const [virtual]

Returns the text of the item. This text is also used for sorting.
See also setText() [p. 183].

Example: listboxcombo/listboxcombo.cpp.

int QListBoxItem::width (const QListBox * 1b) const [virtual]

Implement this function to return the width of your item. The [b parameter is the same as listBox() and is provided for
convenience and compatibility.
See also paint() [p. 182] and height() [p. 181].

Reimplemented in QListBoxText and QListBoxPixmap.

QListBoxPixmap Class Reference

The QListBoxPixmap class provides list box items with a pixmap and optional text.
#include <qlistbox. h>

Inherits QListBoxItem [p. 180].

Public Members

m QListBoxPixmap (QListBox * listbox, const QPixmap & pixmap)

m QListBoxPixmap (const QPixmap & pixmap)

m QListBoxPixmap (QListBox * listbox, const QPixmap & pixmap, QListBoxItem * after)

m QListBoxPixmap (QListBox * listbox, const QPixmap & pix, const QString & text)

m QListBoxPixmap (const QPixmap & pix, const QString & text)

QListBoxPixmap (QListBox * listbox, const QPixmap & pix, const QString & text, QListBoxItem * after)
~QListBoxPixmap ()

virtual const QPixmap * pixmap () const

virtual int height (const QListBox * Ib) const

virtual int width (const QListBox * 1b) const

Protected Members

m virtual void paint (QPainter * painter)

Detailed Description

The QListBoxPixmap class provides list box items with a pixmap and optional text.
Items of this class are drawn with the pixmap on the left with the optional text to the right of the pixmap.

See also QListBox [p. 156], QListBoxItem [p. 180] and Advanced Widgets.

184

ListBoxPixmap Class Reference 185
Q p

Member Function Documentation

QListBoxPixmap::QListBoxPixmap (QListBox * listbox, const QPixmap & pixmap)

Constructs a new list box item in list box listbox showing the pixmap pixmap.

QListBoxPixmap::QListBoxPixmap (const QPixmap & pixmap)

Constructs a new list box item showing the pixmap pixmap.

QListBoxPixmap::QListBoxPixmap (QListBox * listbox, const QPixmap & pixmap,
QListBoxItem * after)

Constructs a new list box item in list box listbox showing the pixmap pixmap. The item gets inserted after the item

after.

QListBoxPixmap::QListBoxPixmap (QListBox * listbox, const QPixmap & pix,
const QString & text)

Constructs a new list box item in list box listbox showing the pixmap pix and the text text.

QListBoxPixmap::QListBoxPixmap (const QPixmap & pix, const QString & text)

Constructs a new list box item showing the pixmap pix and the text to text.

QListBoxPixmap::QListBoxPixmap (QListBox * listbox, const QPixmap & pix,
const QString & text, QListBoxItem * after)

Constructs a new list box item in list box listbox showing the pixmap pix and the string text. The item gets inserted
after the item after.

QListBoxPixmap::~QListBoxPixmap ()

Destroys the item.

int QListBoxPixmap::height (const QListBox * Ib) const [virtual]

Returns the height of the pixmap in list box Ib.
See also paint() [p. 186] and width() [p. 186].

Reimplemented from QListBoxItem [p. 181].

QListBoxPixmap Class Reference

void QListBoxPixmap::paint (QPainter * painter) [virtual protected]

Draws the pixmap using painter.

Reimplemented from QListBoxItem [p. 182].

const QPixmap * QListBoxPixmap::pixmap () const [virtual]

Returns the pixmap associated with the item.

Reimplemented from QListBoxItem [p. 182].

int QListBoxPixmap::width (const QListBox * 1b) const [virtual]

Returns the width of the pixmap plus some margin in list box Ib.
See also paint() [p. 186] and height() [p. 185].

Reimplemented from QListBoxItem [p. 183].

186

QListBoxText Class Reference

The QListBoxText class provides list box items that display text.
#include <qlistbox. h>

Inherits QListBoxItem [p. 180].

Public Members

m QListBoxText (QListBox * listbox, const QString & text = QString::null)

m QListBoxText (const QString & text = QString::null)

QListBoxText (QListBox * listbox, const QString & text, QListBoxItem * after)
~QListBoxText ()

virtual int height (const QListBox * 1b) const

m virtual int width (const QListBox * Ib) const

Protected Members

m virtual void paint (QPainter * painter)

Detailed Description
The QListBoxText class provides list box items that display text.

The text is drawn in the widget’s current font. If you need several different fonts, you must implement your own
subclass of QListBoxItem.

See also QListBox [p. 156], QListBoxItem [p. 180] and Advanced Widgets.

Member Function Documentation

QListBoxText::QListBoxText (QListBox * listbox, const QString & text = QString::null)

Constructs a list box item in list box listbox showing the text text.

187

QListBoxText Class Reference 188

QListBoxText::QListBoxText (const QString & text = QString::null)

Constructs a list box item showing the text text.

QListBoxText::QListBoxText (QListBox * listbox, const QString & text, QListBoxItem * after)

Constructs a list box item in list box listhox showing the text text. The item gets inserted after the item after.

QListBoxText::~QListBoxText ()

Destroys the item.

int QListBoxText::height (const QListBox * Ib) const [virtual]

Returns the height of a line of text in list box [b.
See also paint() [p. 188] and width() [p. 188].

Reimplemented from QListBoxItem [p. 181].

void QListBoxText::paint (QPainter * painter) [virtual protected]

Draws the text using painter.

Reimplemented from QListBoxItem [p. 182].

int QListBoxText::width (const QListBox * lb) const [virtual]

Returns the width of this line in list box [b.
See also paint() [p. 188] and height() [p. 188].

Reimplemented from QListBoxItem [p. 183].

QListView Class Reference

The QListView class implements a list/tree view.

#include <qglistview h>

Inherits QScrollView [p. 275].

Public Members

QListView (QWidget * parent = 0, const char * name = 0, WFlags f = 0)
~QListView ()

int treeStepSize () const

virtual void setTreeStepSize (int)

virtual void insertItem (QListViewItem * i)

virtual void takeltem (QListViewltem * i)

virtual void removeltem (QListViewltem * item) (obsolete)

QHeader * header () const

virtual int addColumn (const QString & label, int width = -1)

virtual int addColumn (const QIconSet & iconset, const QString & label, int width = -1)
virtual void removeColumn (int index)

virtual void setColumnText (int column, const QString & label)

virtual void setColumnText (int column, const QIconSet & iconset, const QString & label)
QString columnText (int c) const

virtual void setColumnWidth (int column, int w)

int columnWidth (int ¢) const

enum WidthMode { Manual, Maximum }

virtual void setColumnWidthMode (int ¢, WidthMode mode)
WidthMode columnWidthMode (int ¢) const

int columns () const

virtual void setColumnAlignment (int column, int align)

int columnAlignment (int column) const

QListViewItem * itemAt (const QPoint & viewPos) const

QRect itemRect (const QListViewItem * i) const

int itemPos (const QListViewItem * item)

void ensureltemVisible (const QListViewItem * i)

void repaintltem (const QListViewItem * item) const

virtual void setMultiSelection (bool enable)

189

QListView Class Reference 190

bool isMultiSelection () const

enum SelectionMode { Single, Multi, Extended, NoSelection }
void setSelectionMode (SelectionMode mode)
SelectionMode selectionMode () const

virtual void clearSelection ()

virtual void setSelected (QListViewltem * item, bool selected)
m bool isSelected (const QListViewItem * i) const

m QListViewltem * selectedItem () const

virtual void setOpen (QListViewltem * item, bool open)

bool isOpen (const QListViewItem * item) const
virtual void setCurrentItem (QListViewItem * i)
QListViewltem * currentltem () const
QListViewItem * firstChild () const
QListViewItem * lastltem () const

m int childCount () const

m virtual void setAllColumnsShowFocus (bool)

= bool allColumnsShowFocus () const

virtual void setIltemMargin (int)

int itemMargin () const

virtual void setRootIsDecorated (bool)

bool rootIsDecorated () const

virtual void setSorting (int column, bool ascending = TRUE)
virtual void sort ()

m virtual bool eventFilter (QObject * o, QEvent * e)

m virtual void setShowSortIndicator (bool show)

bool showSortIndicator () const

virtual void setShowToolTips (bool b)

bool showToolTips () const

enum ResizeMode { NoColumn, AllColumns, LastColumn }
virtual void setResizeMode (ResizeMode m)

ResizeMode resizeMode () const

QListViewItem * findItem (const QString & text, int column, ComparisonFlags compare = ExactMatch |
CaseSensitive) const

e enum RenameAction { Accept, Reject }

e virtual void setDefaultRenameAction (RenameAction a)
o RenameAction defaultRenameAction () const

e bool isRenaming () const

Public Slots

m virtual void clear ()

m virtual void invertSelection ()

m virtual void selectAll (bool select)
m void triggerUpdate ()

QListView Class Reference

Signals

void selectionChanged ()

void selectionChanged (QListViewItem *)

void currentChanged (QListViewltem *)

void clicked (QListViewItem * item)

void clicked (QListViewItem * item, const QPoint & pnt, int c)

void pressed (QListViewlItem * item)

void pressed (QListViewlItem * item, const QPoint & pnt, int ¢)

void doubleClicked (QListViewltem * item)

void returnPressed (QListViewltem *)

void spacePressed (QListViewItem *)

void rightButtonClicked (QListViewItem *, const QPoint &, int)

void rightButtonPressed (QListViewItem *, const QPoint &, int)

void mouseButtonPressed (int button, QListViewltem * item, const QPoint & pos, int c)
void mouseButtonClicked (int button, QListViewltem * item, const QPoint & pos, int ¢)
void contextMenuRequested (QListViewItem * item, const QPoint & pos, int col)
void onltem (QListViewlItem * i)

void onViewport ()

void expanded (QListViewlItem * item)

void collapsed (QListViewItem * item)

void dropped (QDropEvent * e)

void itemRenamed (QListViewItem * item, int col, const QString & text)

void itemRenamed (QListViewltem * item, int col)

Properties

bool allColumnsShowFocus — whether items should show keyboard focus using all columns

int childCount — the number of parentless (top level) QListViewItem objects in this QListView (read only)
int columns — the number of columns in this list view (read only)

RenameAction defaultRenameAction — whether the list view accepts the rename operation by default
int itemMargin — the advisory item margin that list items may use

bool multiSelection — whether the list view is in multi-selection or single selection mode

ResizeMode resizeMode — whether all, none or the last column should be resized

bool rootIsDecorated — whether the list view show open/close signs on root items

SelectionMode selectionMode — the list view’s multi-selection mode

bool showSortIndicator — whether the list view header should display a sort indicator

bool showToolTips — whether this list view should show tooltips for truncated column texts

int treeStepSize — the number of pixels a child is offset from its parent

191

QListView Class Reference 192

Protected Members

virtual void contentsMousePressEvent (QMouseEvent * e)
virtual void contentsMouseReleaseEvent (QMouseEvent * e)
virtual void contentsMouseMoveEvent (QMouseEvent * e)
virtual void contentsMouseDoubleClickEvent (QMouseEvent * e)
virtual QDragObject * dragObject ()

virtual void startDrag ()

virtual void resizeEvent (QResizeEvent * e)

m virtual void drawContentsOffset (QPainter * p, int ox, int oy, int cx, int cy, int cw, int ch)
m virtual void paintEmptyArea (QPainter * p, const QRect & rect)

Protected Slots

m void updateContents ()
m void doAutoScroll ()

Detailed Description

The QListView class implements a list/tree view.

It can display and control a hierarchy of multi-column items, and provides the ability to add new items at any time.
Among others the user may select one or many items and sort the list in increasing or decreasing order by any column.

The simplest mode of use is to create a QListView, add some column headers using addColumn() and create one or
more QListViewlItem objects with the QListView as parent:

QistView * table;

tabl e->addCol um("Qualified name");
t abl e->addCol um(" Namespace");

el ement = new QistViemten(table, gName, namespaceURl);
Further nodes can be added to the listview object (the root of the tree) or as child nodes to QListViewItems:

for (int i =0; i <attributes.length(); i++) {
new QListViewmten(element, attributes.gName(i), attributes.uri(i));

}

(From xml/tagreader-with-features/structureparser.cpp)

The main setup functions are

e addColumn() - adds a column with text and perhaps width.

e setColumnWidthMode() - sets the column to be resized automatically or not.

QListView Class Reference 193

e setAllColumnsShowFocus() - sets whether items should show keyboard focus using all columns or just column 0.
The default is to show focus using just column 0.

e setRootlsDecorated() - sets whether root items can be opened and closed by the user and have open/close deco-
ration to their left. The default is FALSE.

e setTreeStepSize() - sets how many pixels an item’s children are indented relative to their parent. The default is
20. This is mostly a matter of taste.

e setSorting() - sets whether the items should be sorted, whether it should be in ascending or descending order,
and by what column it should be sorted. By default the list view is sorted by the first column; to switch this off
call setSorting(-1).

To handle events such as mouse presses on the list view, derived classes can reimplement the QScrollView
functions contentsMousePressEvent, contentsMouseReleaseEvent, contentsMouseDoubleClickEvent, contentsMouse-
MoveEvent, contentsDragEnterEvent, contentsDragMoveEvent, contentsDragleaveEvent, contentsDropEvent, and con-
tentsWheelEvent.

There are also several functions for mapping between items and coordinates. itemAt() returns the item at a position
on-screen, itemRect() returns the rectangle an item occupies on the screen, and itemPos() returns the position of any
item (not on-screen in the list view). firstChild() returns the item at the top of the view (not necessarily on-screen) so
you can iterate over the items using either QListViewItem::itemBelow() or a combination of QListViewItem::firstChild()
and QListViewltem::nextSibling().

If you need to move a list view item you can use takeltem() and insertltem(). Item’s are deleted with delete; to delete
all items use clear(). See the QListViewltem documentation for examples of traversal.

There are a variety of selection modes described in the QListView::SelectionMode documentation. The default is Single
selection, which you can change using setSelectionMode().

Because QListView offers multiple selection it has to display keyboard focus and selection state separately. Therefore
there are functions both to set the selection state of an item (setSelected()) and to select which item displays keyboard
focus (setCurrentltem()).

QListView emits two groups of signals; one group signals changes in selection/focus state and one signals selection.
The first group consists of selectionChanged() (applicable to all list views), selectionChanged(QListViewItem *)
(applicable only to Single selection list view), and currentChanged(QListViewItem *). The second group consists of
doubleClicked(QListViewltem *), returnPressed(QListViewItem *) and rightButtonClicked(QListViewItem *, const
QPoint&, int), etc.

In Motif style, QListView deviates fairly strongly from the look and feel of the Motif hierarchical tree view. This is done
mostly to provide a usable keyboard interface and to make the list view look better with a white background.

If selectionMode() is Single (the default) the user can select one item at a time, e.g. by clicking an item with the mouse,
see QListView::SelectionMode for details.

The listview can be navigated either using the mouse or the keyboard. Clicking an - icon closes an item (hides its
children) and clicking an + icon opens an item (shows its children). The keyboard controls are these:

e Home - Make the first item current and visible.

e End - Make the last item current and visible.

e Page Up - Make the item above the top visible item current and visible.

e Page Down - Make the item below the bottom visible item current and visible.
e Up Arrow - Make the item above the current item current and visible.

e Down Arrow - Make the item below the current item current and visible.

e Left Arrow - If the current item is closed (+ icon) or has no children make its parent item current and visible. If
the current item is open (- icon) close it, i.e. hide its children. Exception: if the current item is the first item and
is closed and the horizontal scrollbar is offset to the right the listview will be scrolled left.

QListView Class Reference 194

e Right Arrow - If the current item is closed (+ icon) and has children the item is opened. If the current item is
opened (- icon) and has children the item’s first child is made current and visible. If the current item has no
children the listview is scrolled right.

If the user starts typing letters with the focus in the listview an incremental search will occur. For example if the user
types 'd’ the current item will change to the first item that begins with the letter ’d’; if they then type ’a’, the current
item will change to the first item that begins with ’da’, and so on. If no item begins with the letters they type the current
item doesn’t change.

Warning: The list view assumes ownership of all list view items and will delete them when it does not need them any
more.

Mame Type Mame Type -
) Directory R Ditectory
[]—ﬁ[bin Directory --ﬁbin Directary
[]—Qboot Directory E--Qboot Directary
2 aystem.map File -5 System map File
3 3ystem.ald File -5 System.ald Fila
E]—ﬁbg Directory []-ﬁ[bg Directary
£3boot.0800 File 3hoot0800 File
<2haoth File ¢ hooth File
&% chain b File &% chain b Fila
&3chos beect Fila &3 chos.bsact Fila
3 chos loader File & chos.loader File
—¢7chos Inader- bsect File ¢S chos loader-hsect File
-3 chos loader-linux File ¢ chos.oader-linux File
E]—ﬁloshfound Directory []-ﬁ[loshfﬂund Directory -
= = - P = |_»|’I

See also Advanced Widgets.

Member Type Documentation

QListView::RenameAction

This enum describes whether a rename operation is accepted if the rename editor loses focus without the user pressing
Enter.

e (QListView:Accept - Rename if Enter is pressed or focus is lost.

e (QListView:Reject - Discard the rename operation if focus is lost (and Enter has not been pressed).

QListView::ResizeMode
This enum describes how the header adjusts to resize events which affect the width of the listview.

e (ListView :NoCol um - The columns do not get resized in resize events.
e QListView : Al Colums - All columns are resized equally to fit the width of the listview.
e QListView :LastCol um - The last columns is resized to fit the with of the listview.

QListView::SelectionMode

This enumerated type is used by QListView to indicate how it reacts to selection by the user. It has four values:

QListView Class Reference 195

e QListView:Single - When the user selects an item, any already-selected item becomes unselected, and the
user cannot unselect the selected item. This means that the user can never clear the selection, even though the
selection may be cleared by the application programmer using QListView::clearSelection().

e QListView :Milti - When the user selects an item in the most ordinary way, the selection status of that item is
toggled and the other items are left alone.

e (QListView :Extended - When the user selects an item in the most ordinary way, the selection is cleared and the
new item selected. However, if the user presses the CTRL key when clicking on an item, the clicked item gets
toggled and all other items are left untouched. And if the user presses the SHIFT key while clicking on an item,
all items between the current item and the clicked item get selected or unselected, depending on the state of
the clicked item. Also, multiple items can be selected by dragging the mouse while the left mouse button stays
pressed.

e QListView :NoSel ection - Items cannot be selected.
In other words, Single is a real single-selection list view, Multi a real multi-selection list view, Extended is a list view

where users can select multiple items but usually want to select either just one or a range of contiguous items, and
NoSelection is a list view where the user can look but not touch.

QListView::WidthMode

This enum type describes how the width of a column in the view changes. The currently defined modes are:

e (QListView :Mnual -the column width does not change automatically.

e QListView : Maxi mum - the column is automatically sized according to the widths of all items in the column.
(Note: The column never shrinks in this case.) This means the column is always resized to the width of the item
with the largest width in the column.

See also setColumnWidth() [p. 206], setColumnWidthMode() [p. 206] and columnWidth() [p. 1971].

Member Function Documentation

QListView::QListView (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a new empty list view, with parent as a parent and name as object name.

Performance is boosted by modifying the widget flags f so that only part of the QListViewlItem children is redrawn. This
may be unsuitable for custom QListViewlItem classes, in which case WStaticContents and WRepaintNoErase should be
cleared.

See also QWidget::clearWFlags() [p. 449] and Qt::WidgetFlags [Additional Functionality with Qt].

QListView::~QListView ()

Destroys the list view, deleting all its items, and frees up all allocated resources.

int QListView::addColumn (const QString & label, int width = -1) [virtual]

Adds a width pixels wide column with the column header label to this QListView, and returns the index of the new
column.

QListView Class Reference 196

All columns apart from the first one are inserted to the right of the existing ones.
If width is negative, the new column’s WidthMode is set to Maximum instead of Manual.
See also setColumnText() [p. 206], setColumnWidth() [p. 206] and setColumnWidthMode() [p. 206].

Examples: addressbook/centralwidget.cpp, checklists/checklists.cpp, dirview/main.cpp,
fileiconview/mainwindow.cpp, listviews/listviews.cpp and qdir/qdir.cpp.

int QListView::addColumn (const QIconSet & iconset, const QString & label, int width =
-1) [virtual]
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Adds a width pixels wide new column with the header label and iconset to this QListView, and returns the index of the
column.

If width is negative, the new column’s WidthMode is set to Maximum, and to Manual otherwise.

See also setColumnText() [p. 206], setColumnWidth() [p. 206] and setColumnWidthMode() [p. 206].

bool QListView::allColumnsShowFocus () const

Returns TRUE if items should show keyboard focus using all columns; otherwise returns FALSE. See the "all-
ColumnsShowFocus" [p. 209] property for details.

int QListView::childCount () const

Returns the number of parentless (top level) QListViewItem objects in this QListView. See the "childCount" [p. 209]
property for details.

void QListView::clear () [virtual slot]

Removes and deletes all the items in this list view and triggers an update.
See also triggerUpdate() [p. 209].

Examples: addressbook/centralwidget.cpp, checklists/checklists.cpp, listviews/listviews.cpp and
network/ftpclient/ftpmainwindow.cpp.

void QListView::clearSelection () [virtual]

Sets all items to be not selected, updates the list view as necessary and emits the selectionChanged() signals. Note that
for Multi selection list views this function needs to iterate over all items.

See also setSelected() [p. 207] and multiSelection [p. 210].

Example: addressbook/centralwidget.cpp.

QListView Class Reference 197

void QListView::clicked (QListViewItem * item) [signal]

This signal is emitted whenever the user clicks (mouse pressed and mouse released) in the list view. item is the pointer
to the clicked list view item, or O if the user didn’t click on an item.

Note that you may not delete any QListViewlItem objects in slots connected to this signal.

Example: addressbook/centralwidget.cpp.

void QListView::clicked (QListViewItem * item, const QPoint & pnt, int ¢) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted whenever the user clicks (mouse pressed and mouse released) in the list view. item is the pointer
to the clicked list view item, or O if the user didn’t click on an item. pnt is the position where the user has clicked. If
item is not 0, ¢ is the list view column into which the user pressed; if item is O ¢’s value is undefined.

Note that you may not delete any QListViewItem objects in slots connected to this signal.
void QListView::collapsed (QListViewItem * item) [signal]

This signal is emitted when the item has been collapsed, i.e. when the children of item are hidden.
See also setOpen() [p. 207] and expanded() [p. 200].

int QListView::columnAlignment (int column) const

Returns the alignment of column column. The default is AlignAuto.

See also Qt::AlignmentFlags [Additional Functionality with Qt].

QString QListView::columnText (int c) const

Returns the text of column c.

See also setColumnText() [p. 206].

int QListView::columnWidth (int ¢) const

Returns the width of column c.

See also setColumnWidth() [p. 206].

WidthMode QListView::columnWidthMode (int ¢) const

Returns the WidthMode for column c.
See also setColumnWidthMode() [p. 206].

QListView Class Reference 198

int QListView::columns () const

Returns the number of columns in this list view. See the "columns" [p. 210] property for details.

void QListView::contentsMouseDoubleClickEvent (QMouseEvent * e) [virtual protected]

Processes the mouse double-click event e on behalf of the viewed widget.

Reimplemented from QScrollView [p. 284].

void QListView::contentsMouseMoveEvent (QMouseEvent * e) [virtual protected]

Processes the mouse move event e on behalf of the viewed widget.
Example: dirview/dirview.cpp.

Reimplemented from QScrollView [p. 284].

void QListView::contentsMousePressEvent (QMouseEvent * e) [virtual protected]

Processes the mouse move event e on behalf of the viewed widget.
Example: dirview/dirview.cpp.

Reimplemented from QScrollView [p. 284].

void QListView::contentsMouseReleaseEvent (QMouseEvent * e) [virtual protected]

Processes the mouse move event e on behalf of the viewed widget.
Example: dirview/dirview.cpp.

Reimplemented from QScrollView [p. 285].

void QListView::contextMenuRequested (QListViewltem * item, const QPoint & pos,
int col) [signal]

This signal is emitted when the user invokes a context menu with the right mouse button or with special system keys,
with item being the item under the mouse cursor or the current item, respectively.
pos is the position for the context menu in the global coordinate system.

col is the column on which the user pressed, or -1 if the signal was triggered by a key event.

void QListView::currentChanged (QListViewItem *) [signal]
This signal is emitted whenever the current item has changed (normally after the screen update). The current item is
the item responsible for indicating keyboard focus.

The argument is the newly current item, or O if the change was to make no item current. This can happen, for example,
if all items in the list view are deleted.

QListView Class Reference 199

Note that you may not delete any QListViewlItem objects in slots connected to this signal.
See also setCurrentltem() [p. 207] and currentltem() [p. 199].

Example: listviews/listviews.cpp.

QListViewltem * QListView::currentitem () const

Returns a pointer to the currently highlighted item, or O if there isn’t one.
See also setCurrentIitem() [p. 207].

Examples: addressbook/centralwidget.cpp and listviews/listviews.cpp.

RenameAction QListView::defaultRenameAction () const

Returns TRUE if the list view accepts the rename operation by default; otherwise returns FALSE. See the "defaultRe-
nameAction" [p. 210] property for details.

void QListView::doAutoScroll () [protected slot]

This slot handles auto-scrolling when the mouse button is pressed and the mouse is outside the widget.

void QListView::doubleClicked (QListViewItem * item) [signal]

This signal is emitted whenever an item is double-clicked. It’s emitted on the second button press, not the second
button release. item is the list view item on which the user did the double-click.

QDragObject * QListView::dragObject () [virtual protected]

If the user presses the mouse on an item and starts moving the mouse, and the items allow dragging (see
QListViewltem::setDragEnabled()), this function is called to get a drag object and a drag is started unless dragOb-
ject() returns O.

By default this function returns 0. You should reimplement it and create a QDragObject depending on the selected
items.

void QListView::drawContentsOffset (QPainter * p, int ox, int oy, int cx, int cy, int cw,
int ch) [virtual protected]

Calls QListViewItem::paintCell() and/or QListViewItem::paintBranches() for all list view items that require repainting
in the cw pixels wide and ch pixels high bounding rectangle starting at position cx, cy with offset ox, oy. Uses the
painter p.

Reimplemented from QScrollView [p. 286].

QListView Class Reference 200

void QListView::dropped (QDropEvent * e) [signal]

This signal is emitted, when a drop event occurred onto the viewport (not onto an item).

e gives you all information about the drop.

void QListView::ensureltemVisible (const QListViewItem * i)
Ensures that item i is made visible, scrolling the list view vertically as required and also opening (expanding) any
parent items if this is necessary to show the item.

See also itemRect() [p. 202] and QScrollView::ensureVisible() [p. 2871.

bool QListView::eventFilter (QObject * o, QEvent * e) [virtual]

Redirects the event e relating to object o, for the viewport to mousePressEvent(), keyPressEvent() and friends.

Reimplemented from QScrollView [p. 287].

void QListView::expanded (QListViewItem * item) [signal]

This signal is emitted when item has been expanded, i.e. when the children of item are shown.

See also setOpen() [p. 207] and collapsed() [p. 1971].

QListViewltem * QListView::findItem (const QString & text, int column,
ComparisonFlags compare = ExactMatch | CaseSensitive) const

Finds the first list view item in column column, that matches text and returns it, or returns O of no such item could be
found. If ComparisonFlags are specified in compare then these flags are used, otherwise the default is a case-sensitive,
exact match search.

QListViewltem * QListView::firstChild () const

Returns the first item in this QListView. You can use its firstChild() and nextSibling() functions to traverse the entire
tree of items.

Returns O if there is no first item.

See also itemAt() [p. 201], QListViewltem::itemBelow() [p. 220] and QListViewltem::itemAbove() [p. 220].

Examples: addressbook/centralwidget.cpp and listviews/listviews.cpp.

QHeader * QListView::header () const

Returns a pointer to the QHeader object that manages this list view’s columns. Please don’t modify the header behind
the list view’s back.

You may safely call QHeader::setClickEnabled (), QHeader::setResizeEnabled (), QHeader::setMovingEnabled () and all
the const QHeader functions.

QListView Class Reference 201

Examples: listviews/listviews.cpp and qdir/qdir.cpp.

void QListView::insertItem (QListViewltem * i) [virtual]

Inserts item i into the list view as a top-level item. You do not need to call this unless you've called takeltem(i) or
QListViewltem::takeltem(i) and need to reinsert i elsewhere.

See also QListViewlItem::takeltem() [p. 226] and takeltem() [p. 209].

void QListView::invertSelection () [virtual slot]

Inverts the selection. Works only in Multi and Extended selection mode.

bool QListView::isMultiSelection () const

Returns TRUE if the list view is in multi-selection or single selection mode; otherwise returns FALSE. See the "multiSe-
lection” [p. 210] property for details.

bool QListView::isOpen (const QListViewltem * item) const

Identical to item->isOpen(). Provided for completeness.

See also setOpen() [p- 207].

bool QListView::isRenaming () const

Returns whether currently an item of the listview is being renamed

bool QListView::isSelected (const QListViewItem * i) const

Returns TRUE if the list view item i is selected; otherwise returns FALSE.

See also QListViewltem::isSelected() [p. 220].

QListViewItem * QListView::itemAt (const QPoint & viewPos) const

Returns a pointer to the QListViewltem at viewPos. Note that viewPos is in the coordinate system of viewport(), not in
the list view’s own, much larger, coordinate system.

itemAt() returns O if there is no such item.

Note that you also get the pointer to the item if viewPos points to the root decoration (see setRootIsDecorated()) of the
item. To check whether or not viewPos is on the root decoration of the item, you can do something like this:

QistVieMtem*i =itemd(p);
it (i) |
if (p.x() > header()->cellPos(header()->mapToActual(0)) +

QListView Class Reference 202

treeStepSize() * (i->depth() + (rootlsDecorated() ? 1: 0)) + itenMargin() ||
p. x() cellPos(header()->mapToActual (0))) {
; [l pis not on root decoration
el se
; [l pis on the root decoration

}

This might be interesting if you use this function to find out where the user clicked and if you want to start a drag
(which you do not want to do if the user clicked onto the root decoration of an item).

See also itemPos() [p. 202] and itemRect() [p. 202].

int QListView::itemMargin () const

Returns the advisory item margin that list items may use. See the "itemMargin" [p. 210] property for details.

int QListView::itemPos (const QListViewItem * item)

Returns the y-coordinate of item in the list view’s coordinate system. This function is normally much slower than
itemAt() but it works for all items, whereas itemAt() normally works only for items on the screen.

This is a thin wrapper around QListViewItem::itemPos().

See also itemAt() [p. 201] and itemRect() [p. 202].

QRect QListView::itemRect (const QListViewltem * i) const

Returns the rectangle on the screen that item i occupies in viewport()’s coordinates, or an invalid rectangle if i is a null
pointer or is not currently visible.

The rectangle returned does not include any children of the rectangle (i.e. it uses QListViewItem::height(), rather than
QListViewItem::totalHeight()). If you want the rectangle to include children you can use something like this:

QRect r(listView>itenmRect(item));
r.setHeight((QCOORD)(QV N(item >total Height(),
l'istView>viewport->height() - r.y())))

Note the way it avoids too-high rectangles. totalHeight() can be much larger than the window system’s coordinate
system allows.

itemRect() is comparatively slow. It’s best to call it only for items that are probably on-screen.

void QListView::itemRenamed (QListViewltem * item, int col, const QString & text) [signal]

This signal is emitted when item has been renamed to text, e.g. by in in-place renaming, in column col.

void QListView::itemRenamed (QListViewItem * item, int col) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted when item has been renamed, e.g. by in-place renaming, in column col.

QListView Class Reference 203

QListViewltem * QListView::lastItem () const

Returns the last item in the list view tree.
Returns O if there are no items in the QListView.

This function is slow.
void QListView::mouseButtonClicked (int button, QListViewItem * item, const QPoint & pos,
int c¢) [signal]

This signal is emitted whenever the user clicks (mouse pressed and mouse released) in the list view at position pos.
button is the mouse button that the user pressed, item is the pointer to the clicked list view item or O if the user didn’t
click on an item. If item is not O, c is the list view column into which the user pressed; if item is O ¢’s value is undefined.

Note that you may not delete any QListViewlItem objects in slots connected to this signal.
void QListView::mouseButtonPressed (int button, QListViewItem * item, const QPoint & pos,
int ¢) [signal]

This signal is emitted whenever the user pressed the mouse button in the list view at position pos. button is the mouse
button which the user pressed, item is the pointer to the pressed list view item or 0 if the user didn’t press on an item.
If item is not O, c is the list view column into which the user pressed; if item is 0 ¢’s value is undefined.

Note that you may not delete any QListViewltem objects in slots connected to this signal.

void QListView::onltem (QListViewItem * i) [signal]

This signal is emitted when the user moves the mouse cursor onto the item i, similar to the QWidget::enterEvent()
function.

void QListView::onViewport () [signal]

This signal is emitted when the user moves the mouse cursor from an item to an empty part of the list view.

void QListView::paintEmptyArea (QPainter * p, const QRect & rect) [virtual protected]

Paints rect so that it looks like empty background using painter p. rect is is widget coordinates, ready to be fed to p.

The default function fills rect with the viewport()->backgroundBrush()

void QListView::pressed (QListViewItem * item) [signal]

This signal is emitted whenever the user presses the mouse button in a list view. item is the pointer to the list view item
on which the user pressed the mouse button, or O if the user didn’t press the mouse on an item.

Note that you may not delete any QListViewlItem objects in slots connected to this signal.

QListView Class Reference 204

void QListView::pressed (QListViewltem * item, const QPoint & pnt, int ¢) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted whenever the user presses the mouse button in a list view. item is the pointer to the list view item
on which the user pressed the mouse button, or O if the user didn’t press the mouse on an item. pnt is the position of
the mouse cursor, and ¢ is the column where the mouse cursor was when the user pressed the mouse button.

Note that you may not delete any QListViewlItem objects in slots connected to this signal.

void QListView::removeColumn (int index) [virtual]

Removes the column at position index.

void QListView::removeltem (QListViewItem * item) [virtual]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
This function has been renamed takeltem().

void QListView::repaintitem (const QListViewItem * item) const

Repaints item on the screen if item is currently visible. Takes care to avoid multiple repaints.

void QListView::resizeEvent (QResizeEvent * e) [virtual protected]

Ensures that the header is correctly sized and positioned when the resize event e occurs.

ResizeMode QListView::resizeMode () const

Returns TRUE if all, none or the last column should be resized; otherwise returns FALSE. See the "resizeMode" [p. 210]
property for details.

void QListView::returnPressed (QListViewItem *) [signal]

This signal is emitted when Enter or Return is pressed. The argument is the currentItem().

void QListView::rightButtonClicked (QListViewItem *, const QPoint &, int) [signal]

This signal is emitted when the right button is clicked (i.e. when it’s released). The arguments are the relevant
QListViewltem (may be 0), the point in global coordinates and the relevant column (or -1 if the click was outside the
list).

QListView Class Reference 205

void QListView::rightButtonPressed (QListViewItem *, const QPoint &, int) [signal]
This signal is emitted when the right button is pressed. Arguments are then the relevant QListViewItem (may be 0),
the point in global coordinates and the relevant column (or -1 if the click was outside the list).

Example: listviews/listviews.cpp.

bool QListView::rootIsDecorated () const

Returns TRUE if the list view show open/close signs on root items; otherwise returns FALSE. See the "rootIsDecorated"
[p. 211] property for details.

void QListView::selectAll (bool select) [virtual slot]

If select is TRUE, all items get selected; otherwise all items get unselected. This works only in the selection modes Multi
and Extended. In Single and NoSelection mode the selection of the current item is just set to select.

QListViewltem * QListView::selectedItem () const

Returns a pointer to the selected item if the list view is in single-selection mode and an item is selected.
If no items are selected or the list view is in multi-selection mode this function returns 0.

See also setSelected() [p. 207] and multiSelection [p. 210].

void QListView::selectionChanged () [signal]

This signal is emitted whenever the set of selected items has changed (normally before the screen update). It is
available both in Single selection and Multi selection mode but is most useful in Multi selection mode.

Note that you may not delete any QListViewlItem objects in slots connected to this signal.

See also setSelected() [p. 207] and QListViewlItem::setSelected() [p. 225].

Example: listviews/listviews.cpp.

void QListView::selectionChanged (QListViewItem *) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted whenever the selected item has changed in Single selection mode (normally after the screen
update). The argument is the newly selected item.

The no argument overload of this signal is more useful in Multi selection mode.
Note that you may not delete any QListViewlItem objects in slots connected to this signal.

See also setSelected() [p. 2071, QListViewltem::setSelected() [p. 225] and currentChanged() [p. 198].

QListView Class Reference 206

SelectionMode QListView::selectionMode () const

Returns the list view’s multi-selection mode. See the "selectionMode" [p. 211] property for details.

void QListView::setAllColumnsShowFocus (bool) [virtual]

Sets whether items should show keyboard focus using all columns. See the "allColumnsShowFocus" [p. 209] property
for details.

void QListView::setColumnAlignment (int column, int align) [virtual]

Sets column column’s alignment to align. The alignment is ultimately passed to QListViewlItem::paintCell() for each
item in the view.

See also Qt::AlignmentFlags [Additional Functionality with Qt].

Example: listviews/listviews.cpp.

void QListView::setColumnText (int column, const QString & label) [virtual]

Sets the heading of column column to label. The leftmost column is O.

See also columnText() [p. 197].

void QListView::setColumnText (int column, const QIconSet & iconset,
const QString & label) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the heading of column column to iconset and label. The leftmost column is O.

See also columnText() [p. 197].

void QListView::setColumnWidth (int column, int w) [virtual]

Sets the width of column column to w pixels. Note that if the column has a WidthMode other than Manual, this width
setting may be subsequently overridden. The leftmost column is 0.

See also columnWidth() [p. 197].

void QListView::setColumnWidthMode (int ¢, WidthMode mode) [virtual]

Sets column ¢’s width mode to mode. The default depends on whether the width argument to addColumn was positive
or negative.

See also QListViewltem::width() [p. 226].

QListView Class Reference 207

void QListView::setCurrentItem (QListViewltem * i) [virtual]

Sets item i to be the current highlighted item and repaints appropriately. This highlighted item is used for keyboard
navigation and focus indication; it doesn’t mean anything else, e.g. it is different from selection.

See also currentltem() [p. 199] and setSelected() [p. 207].

Example: listviews/listviews.cpp.

void QListView::setDefaultRenameAction (RenameAction a) [virtual]

Sets whether the list view accepts the rename operation by default to a. See the "defaultRenameAction" [p. 210]
property for details.

void QListView::setltemMargin (int) [virtual]

Sets the advisory item margin that list items may use. See the "itemMargin" [p. 210] property for details.

void QListView::setMultiSelection (bool enable) [virtual]

Sets whether the list view is in multi-selection or single selection mode to enable. See the "multiSelection" [p. 210]
property for details.

void QListView::setOpen (QListViewItem * item, bool open) [virtual]

Sets item to be open if open is TRUE and item is expandable, and to be closed if open is FALSE. Repaints accordingly.
Does nothing if item is not expandable.

See also QListViewltem::setOpen() [p. 224] and QListViewItem::setExpandable() [p. 223].

void QListView::setResizeMode (ResizeMode m) [virtual]

Sets whether all, none or the last column should be resized to m. See the "resizeMode" [p. 210] property for details.

void QListView::setRootIsDecorated (bool) [virtual]

Sets whether the list view show open/close signs on root items. See the "rootIsDecorated" [p. 211] property for details.

void QListView::setSelected (QListViewItem * item, bool selected) [virtual]

If selected is TRUE the item is selected; otherwise it is unselected.

If the list view is in Single selection mode and selected is TRUE, the currently selected item is unselected and item
is made current. Unlike QListViewlItem::setSelected(), this function updates the list view as necessary and emits the
selectionChanged () signals.

See also isSelected() [p. 201], multiSelection [p. 210], multiSelection [p. 210] and setCurrentItem() [p. 207].

QListView Class Reference 208
Example: listviews/listviews.cpp.

void QListView::setSelectionMode (SelectionMode mode)

Sets the list view’s multi-selection mode to mode. See the "selectionMode" [p. 211] property for details.

void QListView::setShowSortIndicator (bool show) [virtual]

Sets whether the list view header should display a sort indicator to show. See the "showSortIndicator" [p. 211] property
for details.

void QListView::setShowToolTips (bool b) [virtual]

Sets whether this list view should show tooltips for truncated column texts to b. See the "showToolTips" [p. 211]
property for details.

void QListView::setSorting (int column, bool ascending = TRUE) [virtual]

Sets the list view to be sorted by column and in ascending order if ascending is TRUE or descending order if it is FALSE.
If column is -1, sorting is disabled and the user cannot sort columns by clicking on the column headers.

void QListView::setTreeStepSize (int) [virtual]

Sets the number of pixels a child is offset from its parent. See the "treeStepSize" [p. 211] property for details.

bool QListView::showSortIndicator () const

Returns TRUE if the list view header should display a sort indicator; otherwise returns FALSE. See the "showSortIndi-
cator" [p. 211] property for details.

bool QListView::showToolTips () const

Returns TRUE if this list view should show tooltips for truncated column texts; otherwise returns FALSE. See the
"showToolTips" [p. 211] property for details.

void QListView::sort () [virtual]

(Re)sorts the list view using the last sorting configuration (sort column and ascending/descending).

void QListView::spacePressed (QListViewItem *) [signal]

This signal is emitted when Space is pressed. The argument is currentltem().

QListView Class Reference 209

void QListView::startDrag () [virtual protected]

Starts a drag.

void QListView::takeltem (QListViewlItem * i) [virtual]

Removes item i from the list view; i must be a top-level item. The warnings regarding QListViewItem::takeltem() apply
to this function, too.

See also insertIltem() [p. 201].

int QListView::treeStepSize () const

Returns the number of pixels a child is offset from its parent. See the "treeStepSize" [p. 211] property for details.

void QListView::triggerUpdate () [slot]

Triggers a size, geometry and content update during the next iteration of the event loop. Ensures that there’ll be just
one update to avoid flicker.

void QListView::updateContents () [protected slot]

Updates the sizes of the viewport, header, scroll bars and so on. Don’t call this directly; call triggerUpdate() instead.

Property Documentation

bool allColumnsShowFocus

This property holds whether items should show keyboard focus using all columns.

If this property is TRUE all columns will show focus and selection states, otherwise only column 0 will show focus.
The default is FALSE.

Setting this to TRUE if it’s not necessary may cause noticeable flicker.

Set this property’s value with setAllColumnsShowFocus() and get this property’s value with allColumnsShowFocus().

int childCount

This property holds the number of parentless (top level) QListViewItem objects in this QListView.

Represents the current number of parentless (top level) QListViewltem objects in this QListView, like
QListViewltem::childCount() returns the number of child items for a QListViewItem.

See also QListViewlItem::childCount() [p. 217].

Get this property’s value with childCount().

QListView Class Reference 210

int columns

This property holds the number of columns in this list view,
Get this property’s value with columns().

See also addColumn() [p. 195] and removeColumn() [p. 204].

RenameAction defaultRenameAction

This property holds whether the list view accepts the rename operation by default.

If this property is Accept, and the user renames an item and the editor looses focus (without the user pressing Enter),
the item will still be renamed. If the property’s value is Reject, the item will not be renamed unless the user presses
Enter. The default is Reject.

Set this property’s value with setDefaultRenameAction() and get this property’s value with defaultRenameAction().

int itemMargin

This property holds the advisory item margin that list items may use.

The item margin defaults to one pixel and is the margin between the item’s edges and the area where it draws its
contents. QListViewItem::paintFocus() draws in the margin.

See also QListViewlItem::paintCell() [p. 222].

Set this property’s value with setitemMargin() and get this property’s value with itemMargin().

bool multiSelection

This property holds whether the list view is in multi-selection or single selection mode.

If you enable multi-selection mode, it is possible to specify whether or not this mode should be extended. Extended
means that the user can select multiple items only when pressing the Shift or Ctrl key at the same time.

The default selection mode is Single.
See also selectionMode [p. 211].

Set this property’s value with setMultiSelection() and get this property’s value with isMultiSelection().

ResizeMode resizeMode

This property holds whether all, none or the last column should be resized.

Specifies whether all, none or the last column should be resized to fit the full width of the listview. The values for this
property can be one of the following: NoColumn (the default), AllColumns or LastColumn.

See also QHeader [Additional Functionality with Qt] and header() [p. 200].

Set this property’s value with setResizeMode() and get this property’s value with resizeMode().

QListView Class Reference 211

bool rootIsDecorated

This property holds whether the list view show open/close signs on root items.
Open/close signs are small + or - symbols in windows style, or arrows in Motif style. The default is FALSE.

Set this property’s value with setRootIsDecorated() and get this property’s value with rootIsDecorated().

SelectionMode selectionMode

This property holds the list view’s multi-selection mode.
The mode can be Single (the default), Extended, Multi or NoSelection.
See also multiSelection [p. 210].

Set this property’s value with setSelectionMode() and get this property’s value with selectionMode().

bool showSortIndicator

This property holds whether the list view header should display a sort indicator.

If this property is TRUE, an arrow is drawn in the header of the list view to indicate the sort order of the list view
contents. The arrow will be drawn in the correct column and will point up or down, depending on the current sort
direction. The default is FALSE (don’t show an indicator).

See also QHeader::setSortIndicator() [Additional Functionality with Qt].

Set this property’s value with setShowSortIndicator() and get this property’s value with showSortIndicator().

bool showToolTips

This property holds whether this list view should show tooltips for truncated column texts.
The default is TRUE.

Set this property’s value with setShowToolTips() and get this property’s value with showToolTips().

int treeStepSize

This property holds the number of pixels a child is offset from its parent.
The default is 20 pixels.
Of course, this property is only meaningful for hierarchical list views.

Set this property’s value with setTreeStepSize() and get this property’s value with treeStepSize().

QListViewItem Class Reference

The QListViewltem class implements a list view item.

#include <qglistview h>

Inherits Qt [Additional Functionality with Qt].

Inherited by QCheckListItem [p. 27].

Public Members

QListViewItem (QListView * parent)

QListViewItem (QListViewltem * parent)

QListViewItem (QListView * parent, QListViewItem * after)

QListViewlItem (QListViewItem * parent, QListViewlItem * after)

QListViewlItem (QListView * parent, QString labell, QString label2 = QString::null, QString label3 =
QString::null, QString label4 = QString::null, QString label5 = QString::null, QString label6 = QString::null,
QString label7 = QString::null, QString label8 = QString::null)

QListViewItem (QListViewltem * parent, QString labell, QString label2 = QString::null, QString label3 =
QString::null, QString label4 = QString::null, QString label5 = QString::null, QString label6 = QString::null,
QString label7 = QString::null, QString label8 = QString::null)

QListViewlItem (QListView * parent, QListViewItem * after, QString labell, QString label2 = QString::null,
QString label3 = QString::null, QString label4 = QString::null, QString label5 = QString::null, QString label6
= QString::null, QString label7 = QString::null, QString label8 = QString::null)

QListViewlItem (QListViewItem * parent, QListViewlItem * after, QString labell, QString label2 = QString::null,
QString label3 = QString::null, QString label4 = QString::null, QString label5 = QString::null, QString label6
= QString::null, QString label7 = QString::null, QString label8 = QString::null)

virtual ~QListViewItem ()

virtual void insertItem (QListViewltem * newChild)

virtual void takeltem (QListViewltem * item)

virtual void removeltem (QListViewlItem * item) (obsolete)

int height () const

virtual void invalidateHeight ()

int totalHeight () const

virtual int width (const QFontMetrics & fm, const QListView * lv, int ¢) const

void widthChanged (int ¢ = -1) const

int depth () const

virtual void setText (int column, const QString & text)

virtual QString text (int column) const

212

QListViewltem Class Reference

virtual void setPixmap (int column, const QPixmap & pm)
virtual const QPixmap * pixmap (int column) const

virtual QString key (int column, bool ascending) const
virtual int compare (QListViewlItem * i, int col, bool ascending) const
virtual void sortChildItems (int column, bool ascending)

int childCount () const

bool isOpen () const

virtual void setOpen (bool 0)

virtual void setup ()

virtual void setSelected (bool s)

bool isSelected () const

virtual void paintCell (QPainter * p, const QColorGroup & cg, int column, int width, int align)
virtual void paintBranches (QPainter * p, const QColorGroup & cg, int w, int y, int h)
virtual void paintFocus (QPainter * p, const QColorGroup & cg, const QRect & r)
QListViewItem * firstChild () const

QListViewItem * nextSibling () const

QListViewItem * parent () const

QListViewItem * itemAbove ()

QListViewItem * itemBelow ()

int itemPos () const

QListView * listView () const

virtual void setSelectable (bool enable)

bool isSelectable () const

virtual void setExpandable (bool enable)

bool isExpandable () const

void repaint () const

virtual void sort ()

void moveltem (QListViewItem * after)

virtual void setDragEnabled (bool allow)

virtual void setDropEnabled (bool allow)

bool dragEnabled () const

bool dropEnabled () const

virtual bool acceptDrop (const QMimeSource * mime) const
void setVisible (bool b)

bool isVisible () const

virtual void setRenameEnabled (int col, bool b)

bool renameEnabled (int col) const

virtual void startRename (int col)

virtual void setEnabled (bool b)

bool isEnabled () const

virtual int rtti () const

virtual void setMultiLinesEnabled (bool b)

bool multiLinesEnabled () const

213

QListViewltem Class Reference 214

Protected Members

virtual void enforceSortOrder () const
virtual void setHeight (int height)
virtual void activate ()

bool activatedPos (QPoint & pos)
virtual void dropped (QDropEvent * e)
virtual void dragEntered ()

virtual void dragLeft ()

m virtual void okRename (int col)
m virtual void cancelRename (int col)

Detailed Description

The QListViewlItem class implements a list view item.

A list view item is a multi-column object capable of displaying itself. Its design has the following main goals:

e Work quickly and well for large sets of data.

e Be easy to use in the simple case.

The easiest way to use QListViewltem is to construct one with a few constant strings. This creates an item that is a
child of parent with two fixed-content strings, and discards the pointer to it:

(void) new QListViewten{ parent, "first colum", "second colum");

This object will be deleted when parent is deleted, as for QObjects.

The parent is either another QListViewItem or a QListView. If the parent is a QListView, this item is a top-level item
within that QListView. If the parent is another QListViewlItem, this item becomes a child of that list view item.

If you keep the pointer, you can set or change the texts using setText(), add pixmaps using setPixmap(), change its
mode using setSelectable(), setSelected(), setOpen() and setExpandable(). You'll also be able to change its height
using setHeight(), and traverse the tree. There’s no need to retain the pointer however, since you can get a pointer to
any QListViewltem in a QListView using QListView::selectedItem(), QListView::currentItem(), QListView::firstChild(),
QListView::lastItem(), QListView::findItem().

You can traverse the tree as if it were a doubly-linked list using itemAbove() and itemBelow(); they return pointers
to the items directly above and below this item on the screen (even if none of the three are actually visible at the
moment).

You can also traverse it as a tree by using parent(), firstChild(), and nextSibling().
Example:

QistVieMdtem* nyChild = nyltem>firstChild();

while(nyChild) {

doSonet hing(nyChild);
myChi I d = myChil d->next Sibling();

QListViewltem Class Reference 215

There is also an interator class to traverse a tree of list view items. To iterate over all items of a list view, do the
following:

QistVieMmtemterator it(listview);
for (; it.current(); ++it)
doSomething(it.current()); // it.current() is a Q.istViewtent

Note that the order of the children will change when the sorting order changes and is undefined if the items are not
visible. You can, however, call enforceSortOrder() at any time; QListView will always call it before it needs to show an
item.

Many programs will need to reimplement QListViewItem. The most commonly reimplemented functions are:

e text() returns the text in a column. Many subclasses will compute that on the fly.

e key() is used for sorting. The default key() simply calls text(), but judicious use of key can be used to sort by
date, for example (as QFileDialog does).

e setup() is called before showing the item and whenever the font changes, for example.

e activate() is called whenever the user clicks on the item or presses space when the item is the currently highlighted
item.

Some subclasses call setExpandable(TRUE) even when they have no children, and populate themselves when setup()
or setOpen(TRUE) is called. The dirview/dirview.cpp example program uses this technique to start up quickly: The
files and subdirectories in a directory aren’t inserted into the tree until they’re actually needed.

See also Advanced Widgets.

Member Function Documentation

QListViewItem::QListViewItem (QListView * parent)

Constructs a new top-level list view item in the QListView parent.

QListViewItem::QListViewItem (QListViewItem * parent)

Constructs a new list view item that is a child of parent and first in the parent’s list of children.

QListViewltem::QListViewlItem (QListView * parent, QListViewItem * after)

Constructs an empty list view item that is a child of parent and is after after in the parent’s list of children. Since parent
is a QListView the item will be a top-level item.

QListViewItem::QListViewItem (QListViewItem * parent, QListViewItem * after)

Constructs an empty list view item that is a child of parent and is after after in the parent’s list of children.

QListViewltem Class Reference 216

QListViewItem::QListViewItem (QListView * parent, QString labell, QString label2 =
QString::null, QString label3 = QString::null, QString label4 = QString::null,
QString label5 = QString::null, QString label6 = QString::null, QString label7 =
QString::null, QString label8 = QString::null)

Constructs a new list view item in the QListView parent, parent, with up to eight constant strings labell, label2, label3,
label4, label5, label6, label7 and label8 defining its column contents.
See also setText() [p. 225].

QListViewItem::QListViewlItem (QListViewItem * parent, QString labell, QString label2 =
QString::null, QString label3 = QString::null, QString label4 = QString::null,
QString label5 = QString::null, QString label6 = QString::null, QString label7 =
QString::null, QString label8 = QString::null)

Constructs a new list view item as a child of the QListViewltem parent with optional constant strings labell, label2,
label3, label4, label5, label6, label7 and label8 as column contents.
See also setText() [p. 225].

QListViewItem::QListViewlItem (QListView * parent, QListViewItem * after, QString labell,
QString label2 = QString::null, QString label3 = QString::null, QString label4 =
QString::null, QString label5 = QString::null, QString label6 = QString::null,
QString label7 = QString::null, QString label8 = QString::null)

Constructs a new list view item in the QListView parent that is included after item after and can contain up to eight
column texts labell, label2, label3, label4, label5, label6, label7 andlabel8.

Note that the order is changed according to QListViewItem::key() unless the list view’s sorting is disabled using
QListView::setSorting(-1).

See also setText() [p. 225].

QListViewItem::QListViewItem (QListViewItem * parent, QListViewlItem * after,
QString labell, QString label2 = QString::null, QString label3 = QString::null,
QString label4 = QString::null, QString label5 = QString::null, QString label6 =
QString::null, QString label7 = QString::null, QString label8 = QString::null)

Constructs a new list view item as a child of the QListViewltem parent. It is inserted after item after and may contain
up to eight strings labell, label2, label3, label4, label5, label6, label7 and label8 as column entries.

Note that the order is changed according to QListViewItem::key() unless the list view’s sorting is disabled using
QListView::setSorting(-1).

See also setText() [p. 225].

QListViewItem::~QListViewlItem () [virtual]

Destroys the item, deleting all its children and freeing up all allocated resources.

QListViewltem Class Reference 217

bool QListViewItem::acceptDrop (const QMimeSource * mime) const [virtual]

Returns TRUE if the item can accept drops of type QMimeSource mime; otherwise returns FALSE.

The default implementation does nothing and returns FALSE. A subclass must reimplement this to accept drops.

void QListViewItem::activate () [virtual protected]

This virtual function is called whenever the user clicks on this item or presses Space on it.
See also activatedPos() [p. 217].

Reimplemented in QCheckListItem.

bool QListViewltem::activatedPos (QPoint & pos) [protected]
When called from a reimplementation of activate(), this function gives information on how the item was activated.
Otherwise the behavior is undefined.

If activate() was caused by a mouse press, the function sets pos to where the user clicked and returns TRUE; otherwise
it returns FALSE and does not change pos.

pos is relative to the top-left corner of this item.
We recommend not using this function; it is scheduled to become obsolete.

See also activate() [p. 2171].

void QListViewItem::cancelRename (int col) [virtual protected]

This function is called if the user cancels in-place renaming of this item in column col.

See also okRename() [p. 221].

int QListViewItem::childCount () const

Returns how many children this item has.

int QListViewItem::compare (QListViewItem * i, int col, bool ascending) const [virtual]
Compares this listview item to i using the column col in ascending order. Returns -1 if this item is less than i, O if they
are equal and 1 if this item is greater than i.

This function is used for sorting.

The default implementation compares the item keys (key()) using QString::localeAwareCompare(). A reimplementa-
tion may use different values and a different comparison function. Here is a reimplementation that uses plain Unicode
comparison:

int MListViemtem:conpare(QistViemtem*i, int col,
bool ascending) const
{

QListViewltem Class Reference

return key(col, ascending).conpare(i->key(col, ascending));

We don’t recommend using ascending so your code can safely ignore it.

See also key() [p. 221], QString::localeAwareCompare() [Datastructures and String Handling with Qt] and
QString::compare() [Datastructures and String Handling with Qt].

Example: network/ftpclient/ftpview.cpp.

int QListViewItem::depth () const

Returns the depth of this item.

Example: dirview/dirview.cpp.

bool QListViewItem::dragEnabled () const

Returns TRUE if this item can be dragged; otherwise returns FALSE.
See also setDragEnabled() [p. 223].

void QListViewItem::dragEntered () [virtual protected]

This method is called when a drag entered the item’s bounding rectangle.

The default implementation does nothing, subclasses may need to reimplement this method.

void QListViewItem::dragLeft () [virtual protected]

This method is called when a drag left the item’s bounding rectangle.

The default implementation does nothing, subclasses may need to reimplement this method.

bool QListViewltem::dropEnabled () const

Returns TRUE if this item accepts drops; otherwise returns FALSE.

See also setDropEnabled() [p. 223] and acceptDrop() [p. 217].

void QListViewItem::dropped (QDropEvent * e) [virtual protected]

This method is called when something was dropped on the item. e contains all the information about the drop.

The default implementation does nothing, subclasses may need to reimplement this method.

void QListViewItem::enforceSortOrder () const [virtual protected]

Makes sure that this object’s children are sorted appropriately.

218

QListViewltem Class Reference 219

This works only if every item from the root item down to this item is already sorted.

See also sortChildltems() [p. 225].

QListViewItem * QListViewItem::firstChild () const

Returns a pointer to the first (top) child of this item, or a null pointer if this item has no children.

Note that the children are not guaranteed to be sorted properly. QListView and QListViewItem try to postpone or avoid
sorting to the greatest degree possible, in order to keep the user interface snappy.

See also nextSibling() [p. 221].
Example: checklists/checklists.cpp.

int QListViewItem::height () const

Returns the height of this item in pixels. This does not include the height of any children; totalHeight() returns that.

void QListViewItem::insertItem (QListViewItem * newChild) [virtual]

Inserts newChild into this list view item’s list of children. You should not need to call this function; it is called automat-
ically by the constructor of newChild.

void QListViewItem::invalidateHeight () [virtual]

Invalidates the cached total height of this item, including all open children.

See also setHeight() [p. 224], height() [p. 219] and totalHeight() [p. 226].
bool QListViewItem::isEnabled () const
Returns TRUE if this item is enabled; otherwise returns FALSE.

See also setEnabled() [p. 223].

bool QListViewltem::isExpandable () const

Returns TRUE if this item is expandable even when it has no children; otherwise returns FALSE.

bool QListViewItem::isOpen () const

Returns TRUE if this list view item has children and they are potentially visible. Returns FALSE if the item has no
children or they are hidden.

See also setOpen() [p. 224].

QListViewltem Class Reference 220

bool QListViewItem::isSelectable () const

Returns TRUE if the item is selectable (as it is by default); otherwise returns FALSE

See also setSelectable() [p. 224].

bool QListViewItem::isSelected () const

Returns TRUE if this item is selected; otherwise returns FALSE.
See also setSelected() [p. 225], QListView::setSelected() [p. 207] and QListView::selectionChanged() [p. 205].

Example: listviews/listviews.cpp.

bool QListViewlItem::isVisible () const

Returns TRUE if the item is visible; otherwise returns FALSE.

See also setVisible() [p. 225].

QListViewItem * QListViewItem::itemAbove ()

Returns a pointer to the item immediately above this item on the screen. This is usually the item’s closest older sibling,
but it may also be its parent or its next older sibling’s youngest child, or something else if anyoftheabove->height()
returns 0. Returns a null pointer if there is no item immediately above this item.

This function assumes that all parents of this item are open (i.e. that this item is visible, or can be made visible by
scrolling).

See also itemBelow() [p. 220] and QListView::itemRect() [p. 202].

QListViewItem * QListViewItem::itemBelow ()

Returns a pointer to the item immediately below this item on the screen. This is usually the item’s eldest child, but
it may also be its next younger sibling, its parent’s next younger sibling, grandparent’s, etc., or something else if
anyoftheabove->height() returns 0. Returns a null pointer if there is no item immediately above this item.

This function assumes that all parents of this item are open (i.e. that this item is visible or can be made visible by
scrolling).

See also itemAbove() [p. 220] and QListView::itemRect() [p. 202].

Example: dirview/dirview.cpp.

int QListViewItem::itemPos () const

Returns the y coordinate of this item in the list view’s coordinate system. This function is normally much slower than
QListView::itemAt(), but it works for all items whereas QListView::itemAt() normally only works for items on the
screen.

See also QListView::itemAt() [p. 201], QListView::itemRect() [p. 202] and QListView::itemPos() [p. 202].

QListViewltem Class Reference 221

QString QListViewItem::key (int column, bool ascending) const [virtual]

Returns a key that can be used for sorting by column column. The default implementation returns text(). Derived
classes may also incorporate the order indicated by ascending into this key, although this is not recommended.
If you want to sort on non-alphabetical data, e.g. dates, numbers, etc., reimplement compare().

See also compare() [p. 217] and sortChildItems() [p. 225].

QListView * QListViewItem::listView () const

Returns a pointer to the list view containing this item.

void QListViewItem::moveltem (QListViewltem * after)

Moves this item after the item after. This means it will get the sibling exactly after the item after. To move an item in
the hierarchy, use takeltem() and insertltem().

bool QListViewItem::multiLinesEnabled () const

Returns TRUE if the item can display multiple lines of text; otherwise returns FALSE.

QListViewItem * QListViewItem::nextSibling () const

Returns a pointer to the sibling item below this item, or a null pointer if there is no sibling item after this item.

Note that the siblings are not guaranteed to be sorted properly. QListView and QListViewlItem try to postpone or avoid
sorting to the greatest degree possible, in order to keep the user interface snappy.

See also firstChild() [p. 219].

void QListViewItem::okRename (int col) [virtual protected]

This function is called if the user presses Enter during in-place renaming of the item in column col.

See also cancelRename() [p. 217].

void QListViewItem::paintBranches (QPainter * p, const QColorGroup & cg, int w, int y,
int h) [virtual]

Paints a set of branches from this item to (some of) its children.

Painter p is set up with clipping and translation so that you can draw only in the rectangle you need to; cg is the color
group to use; the update rectangle is at (0, 0) and has size width w by height h. The top of the rectangle you own is at
y (which is never greater than O but can be outside the window system’s allowed coordinate range).

The update rectangle is in an undefined state when this function is called; this function must draw on all of the pixels.

See also paintCell() [p. 222] and QListView::drawContentsOffset() [p. 199].

QListViewltem Class Reference 222

void QListViewItem::paintCell (QPainter * p, const QColorGroup & cg, int column, int width,
int align) [virtual]
This virtual function paints the contents of one column of an item and aligns it as described by align.

p is a QPainter open on the relevant paint device. p is translated so (0, 0) is the top-left pixel in the cell and width-1,
height()-1 is the bottom-right pixel in the cell. The other properties of p (pen, brush, etc) are undefined. cg is the color
group to use. column is the logical column number within the item that is to be painted; O is the column which may
contain a tree.

This function may use QListView::itemMargin() for readability spacing on the left and right sides of data such as text,
and should honor isSelected() and QListView::allColumnsShowFocus().

If you reimplement this function, you should also reimplement width().

The rectangle to be painted is in an undefined state when this function is called, so you must draw on all the pixels.
The painter p has the right font on entry.

See also paintBranches() [p. 221] and QListView::drawContentsOffset() [p. 199].
Example: listviews/listviews.cpp.

Reimplemented in QCheckListItem.
void QListViewlItem::paintFocus (QPainter * p, const QColorGroup & cg,
const QRect & r) [virtual]

Paints a focus indication on the rectangle r using painter p and colors cg.
p is already clipped.
See also paintCell() [p. 222], paintBranches() [p. 221] and QListView::allColumnsShowFocus [p. 209].

Reimplemented in QCheckListItem.

QListViewltem * QListViewItem::parent () const

Returns a pointer to the parent of this item, or a null pointer if this item has no parent.
See also firstChild() [p. 219] and nextSibling() [p. 221].

Example: dirview/dirview.cpp.

const QPixmap * QListViewltem::pixmap (int column) const [virtual]

Returns a pointer to the pixmap for column, or a null pointer if there is no pixmap for column.
See also setText() [p. 225] and setPixmap() [p. 224].

Examples: dirview/dirview.cpp and network/ftpclient/ftpview.cpp.

void QListViewItem::removeltem (QListViewItem * item) [virtual]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

QListViewltem Class Reference 223

This function has been renamed takeltem().

bool QListViewlItem::renameEnabled (int col) const

Returns TRUE if this item can be in-place renamed in column col; otherwise returns FALSE.

void QListViewlItem::repaint () const

Repaints this item on the screen if it is currently visible.

Example: addressbook/centralwidget.cpp.

int QListViewItem::rtti () const [virtual]

Returns 0.

Make your derived classes return their own values for rtti(), and you can distinguish between listview items. You
should use values greater than 1000 preferably a large random number, to allow for extensions to this class.

Reimplemented in QCheckListItem.

void QListViewItem::setDragEnabled (bool allow) [virtual]

If allow is TRUE, the listview starts a drag (see QListView::dragObject()) when the user presses and moves the mouse
on this item.

void QListViewItem::setDropEnabled (bool allow) [virtual]

If allow is TRUE, the listview accepts drops onto the item; otherwise drops are not allowed..

void QListViewItem::setEnabled (bool b) [virtual]

If b is TRUE the item is enabled; otherwise it is disabled. Disabled items are drawn grayed-out and are not accessable
by the user.

void QListViewItem::setExpandable (bool enable) [virtual]
Sets this item to be expandable even if it has no children if enable is TRUE, and to be expandable only if it has children
if enable is FALSE (the default).

The dirview example uses this in the canonical fashion. It checks whether the directory is empty in setup() and calls
setExpandable(TRUE) if not; in setOpen() it reads the contents of the directory and inserts items accordingly. This
strategy means that dirview can display the entire file system without reading very much at startup.

Note that root items are not expandable by the user unless QListView::setRootIsDecorated() is set to TRUE.

See also setSelectable() [p. 224].

QListViewltem Class Reference 224

void QListViewItem::setHeight (int height) [virtual protected]

Sets this item’s height to height pixels. This implicitly changes totalHeight(), too.
Note that a font change causes this height to be overwritten unless you reimplement setup().
For best results in Windows style we suggest using an even number of pixels.

See also height() [p. 2191, totalHeight() [p. 226] and isOpen() [p. 219].

void QListViewItem::setMultiLinesEnabled (bool b) [virtual]

If b is TRUE items may contain multiple lines of text; otherwise they may only contain a single line.

void QListViewItem::setOpen (bool o) [virtual]

Opens or closes an item, i.e. shows or hides an item’s children.

If 0 is TRUE all child items are shown initially. The user can hide them by clicking the - icon to the left of the item. If o
is FALSE, the children of this item are initially hidden. The user can show them by clicking the + icon to the left of the
item.

See also height() [p. 2191, totalHeight() [p. 226] and isOpen() [p. 219].

Examples: checklists/checklists.cpp, dirview/dirview.cpp, dirview/main.cpp, fileiconview/mainwindow.cpp and
xml/tagreader-with-features/structureparser.cpp.

void QListViewItem::setPixmap (int column, const QPixmap & pm) [virtual]

Sets the pixmap in column column to pm, if pm is non-null and different from the current pixmap, and if column is
non-negative.
See also pixmap() [p. 222] and setText() [p. 225].

Example: dirview/dirview.cpp.

void QListViewItem::setRenameEnabled (int col, bool b) [virtual]

If b is TRUE, this item can be in-place renamed in the column col by the user, otherwise it is not possible.

void QListViewItem::setSelectable (bool enable) [virtual]

Sets this items to be selectable if enable is TRUE (the default) or not to be selectable if enable is FALSE.

The user is not able to select a non-selectable item using either the keyboard or mouse. The application programmer
still can, e.g. using setSelected().

See also isSelectable() [p. 220].

Example: network/ftpclient/ftpview.cpp.

QListViewltem Class Reference 225

void QListViewItem::setSelected (bool s) [virtual]

If s is TRUE this item is selected; otherwise it is deselected.
This function does not maintain any invariants or repaint anything — QListView::setSelected() does that.
See also height() [p. 219] and totalHeight() [p. 226].

Example: addressbook/centralwidget.cpp.

void QListViewlItem::setText (int column, const QString & text) [virtual]

Sets the text in column column to text, if column is a valid column number and text is different from the existing text.
If text() has been reimplemented, this function may be a no-op.
See also text() [p- 226] and key() [p. 221].

Examples: addressbook/centralwidget.cpp and xml/outliner/outlinetree.cpp.

void QListViewItem::setVisible (bool b)

If b is TRUE, the item is made visible; otherwise it is hidden.

If the item is not visible, itemAbove() and itemBelow() will never hit this item, although you still can reach it by using
e.g. the QListViewltemlIterator.

void QListViewItem::setup () [virtual]
This virtual function is called before the first time QListView needs to know the height or any other graphical attribute
of this object, and whenever the font, GUI style, or colors of the list view change.

The default calls widthChanged () and sets the item’s height to the height of a single line of text in the list view’s font.
(If you use icons, multi-line text, etc., you will probably need to call setHeight() yourself or reimplement it.)

Example: dirview/dirview.cpp.

void QListViewItem::sort () [virtual]

(Re)sorts all child items of this item using the last sorting configuration (sort column and direction).

See also enforceSortOrder() [p. 218].

void QListViewItem::sortChildItems (int column, bool ascending) [virtual]
Sorts the children of this item using column column. This is done in ascending order if ascending is TRUE and in
descending order if ascending is FALSE.

Asks some of the children to sort their children. (QListView and QListViewltem ensure that all on-screen objects are
properly sorted but may avoid or defer sorting other objects in order to be more responsive.)

See also key() [p. 221] and compare() [p. 217].

QListViewltem Class Reference 226

void QListViewItem::startRename (int col) [virtual]

If in-place renaming of this item is enabled (see renameEnabled()), this function starts renaming the item in cloumn
col, by creating and initializing an edit box.

void QListViewItem::takeltem (QListViewItem * item) [virtual]

Removes item from this object’s list of children and causes an update of the screen display. The item is not deleted. You
should normally not need to call this function because QListViewItem::~QListViewItem() calls it.

The normal way to delete an item is del et e.

If you need to move an item from one place in the hierarchy to another you can use takeltem() to remove the item
from the list view and then insertItem() to put the item back in its new position.

Warning: This function leaves item and its children in a state where most member functions are unsafe. Only a few
functions work correctly on an item in this state, most notably insertItem(). The functions that work on detached items
are explicitly documented as such.

See also QListViewltem::insertltem() [p. 219].

QString QListViewItem::text (int column) const [virtual]

Returns the text in column column, or a null string if there is no text in that column.
See also key() [p. 221] and paintCell() [p. 222].

Examples: addressbook/centralwidget.cpp, dirview/dirview.cpp and network/ftpclient/ftpview.cpp.

int QListViewItem::totalHeight () const

Returns the total height of this object, including any visible children. This height is recomputed lazily and cached for
as long as possible.

Functions which can affect the total height are, setHeight() which is used to set an item’s height, setOpen() to show or
hide an item’s children, and invalidateHeight() to invalidate the cached height.

See also height() [p. 219].

int QListViewItem::width (const QFontMetrics & fm, const QListView * lv, int c¢)
const [virtual]

Returns the number of pixels of width required to draw column c of list view lv, using the metrics fm without cropping.
The list view containing this item may use this information depending on the QListView::WidthMode settings for the
column.

The default implementation returns the width of the bounding rectangle of the text of column c.

See also listView() [p. 221], widthChanged() [p. 2271, QListView::setColumnWidthMode() [p. 206] and
QListView::itemMargin [p. 210].

QListViewltem Class Reference 227

void QListViewlItem::widthChanged (int ¢ = -1) const

Call this function when the value of width() may have changed for column c¢. Normally, you should call this if text(c)
changes. Passing -1 for ¢ indicates that all columns may have changed. For efficiency, you should do this if more than
one call to widthChanged() is required.

See also width() [p. 226].

QListViewItemlIterator Class Reference

The QListViewltemlIterator class provides an iterator for collections of QListViewlItems.

#include <qglistview h>

Public Members

= QListViewItemlterator ()

m QListViewItemlterator (QListViewltem * item)

m QListViewItemlterator (const QListViewltemlIterator & it)
m QListViewlItemlIterator (QListView * lv)

m QListViewItemlIterator & operator= (const QListViewltemIterator & it)
» ~QListViewItemlIterator ()

m QListViewItemlIterator & operator++ ()

m const QListViewItemlIterator operator++ (int)

m QListViewItemlIterator & operator+= (intj)

m QListViewItemlterator & operator-- ()

m const QListViewltemlIterator operator-- (int)

m QListViewItemlIterator & operator-= (int j)

e QListViewltem * current () const

Detailed Description

The QListViewltemlIterator class provides an iterator for collections of QListViewItems.

Construct an instance of a QListViewItemlIterator, with either a QListView* or a QListViewItem* as argument, to operate
on the tree of QListViewItems.

A QListViewItemlIterator iterates over all items of a list view. This means that it always makes the first child of the
current item the new current item. If there is no child, the next sibling becomes the new current item; and if there is
no next sibling, the next sibling of the parent becomes current.

The following example function gets a list of all the items that have been selected by the user, storing pointers to the

items in a QPtrList:

QPtrList * getSelectedltens(QuistView*lv) {
if (1lv)
return O;

228

QListViewltemlIterator Class Reference 229

/] Create the |ist
QPtrList *Ist = new QPtrList;
| st->set Aut oDel et e(FALSE);
/] Create an iterator and give the list view as argunent
QistViemMtemterator it(lv);
/] iterate through all items of the list view
for (; it.current(); ++it) {
if (it.current()->isSelected())
| st->append(it.current());
}

return | st;

}

A QListViewlItemlIterator provides a convenient and easy way to traverse a hierarchical QListView.

Multiple QListViewltemlIterators can operate on the tree of QListViewltems. A QListView knows about all iterators
operating on its QListViewItems. So when a QListViewltem gets removed all iterators that point to this item are
updated and point to the following item.

See also QListView [p. 189], QListViewlItem [p. 212] and Advanced Widgets.

Member Function Documentation

QListViewltemlIterator::QListViewItemlIterator ()

Constructs an empty iterator.

QListViewltemlIterator::QListViewItemlIterator (QListViewItem * item)

Constructs an iterator for the QListView of the item. The current iterator item is set to point to the item.

QListViewltemlIterator::QListViewltemlIterator (const QListViewItemlIterator & it)

Constructs an iterator for the same QListView as it. The current iterator item is set to point on the current item of it.

QListViewltemlIterator::QListViewltemlIterator (QListView * 1v)

Constructs an iterator for the QListView [v. The current iterator item is set to point on the first child (QListViewItem)
of v.

QListViewltemlIterator::~QListViewItemlIterator ()

Destroys the iterator.

QListViewltemlIterator Class Reference 230

QListViewltem * QListViewItemlIterator::current () const

Returns a pointer to the current item of the iterator.

Examples: addressbook/centralwidget.cpp, checklists/checklists.cpp, dirview/dirview.cpp and
network/ftpclient/ftpview.cpp.

QListViewItemlterator & QListViewItemlIterator::operator++ ()

Prefix ++ makes the next item in the QListViewltem tree of the QListView of the iterator the current item and returns
it. If the current item was the last item in the QListView or null, null is returned.

const QListViewItemlIterator QListViewlItemlIterator::operator++ (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix + + makes the next item in the QListViewlItem tree of the QListView of the iterator the current item and returns
the item which was previously current.

QListViewItemlterator & QListViewItemlIterator::operator+= (int j)

Sets the current item to the item j positions after the current item in the QListViewItem hierarchy. If this item is beyond
the last item, the current item is set to null.

The new current item (or null, if the new current item is null) is returned.

QListViewltemlterator & QListViewItemlIterator::operator-- ()

Prefix — makes the previous item in the QListViewltem tree of the QListView of the iterator the current item and
returns it. If the current item was the last first in the QListView or null, null is returned.

const QListViewItemlterator QListViewItemlIterator::operator-- (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix — makes the previous item in the QListViewltem tree of the QListView of the iterator the current item and
returns the item.

QListViewItemlterator & QListViewItemlIterator::operator-= (int j)

Sets the current item to the item j positions before the current item in the QListViewltem hierarchy. If this item is
before the first item, the current item is set to null. The new current item (or null, if the new current item is null) is
returned.

QListViewltemlIterator Class Reference 231

QListViewItemlIterator & QListViewItemlIterator::operator=
(const QListViewItemlIterator & it)

Assignment. Makes a copy of it and returns a reference to its iterator.

QOMultiLineEdit Class Reference (obsolete)

The QMultiLineEdit widget is a simple editor for inputting text.
#include <gmul tilineedit.h>

Inherits QTextEdit [p. 393].

Public Members

m QMultiLineEdit (QWidget * parent = 0, const char * name = 0)

QString textLine (int line) const

m int numLines () const

virtual void insertLine (const QString & txt, int line = -1)

virtual void insertAt (const QString & s, int line, int col, bool mark = FALSE)
virtual void removeLine (int paragraph)

virtual void setCursorPosition (int line, int col, bool mark = FALSE)

bool atBeginning () const

bool atEnd () const

m virtual void setAlignment (int flags)
m int alignment () const

void setEdited (bool)

bool edited () const

bool hasMarkedText () const
QString markedText () const

void cursorWordForward (bool mark)

void cursorWordBackward (bool mark)
bool autoUpdate () const (obsolete)

m virtual void setAutoUpdate (bool) (obsolete)
m int totalWidth () const (obsolete)

m int totalHeight () const (obsolete)

e int maxLines () const (obsolete)

e void setMaxLines (int) (obsolete)

Public Slots

m void deselect () (obsolete)

232

QMultiLineEdit Class Reference (obsolete) 233

Properties

m Alignment alignment — the editor’s paragraph alignment

» bool atBeginning — whether the cursor is placed at the beginning of the text (read only)
m bool atEnd — whether the cursor is placed at the end of the text (read only)

m bool edited — whether the document has been edited by the user

m int numLines — the number of paragraphs in the editor (read only)

Protected Members

= QPoint cursorPoint () const

m virtual void insertAndMark (const QString & str, bool mark)

m virtual void newLine ()

m virtual void killLine ()

m virtual void pageUp (bool mark = FALSE)

virtual void pageDown (bool mark = FALSE)

virtual void cursorLeft (bool mark = FALSE, bool wrap = TRUE)
virtual void cursorRight (bool mark = FALSE, bool wrap = TRUE)
virtual void cursorUp (bool mark = FALSE)

m virtual void cursorDown (bool mark = FALSE)

m virtual void backspace ()

m virtual void home (bool mark = FALSE)

m virtual void end (bool mark = FALSE)

m bool getMarkedRegion (int * linel, int * coll, int * line2, int * col2) const
e int lineLength (int row) const

Detailed Description

This class is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
The QMultiLineEdit widget is a simple editor for inputting text.

The QMultiLineEdit was a simple editor widget in former Qt versions. Qt 3.0 includes a new richtext engine which
obsoletes QMultiLineEdit. It is still included for compatibility reasons. It is now a subclass of QTextEdit, and provides
enough of the old QMultiLineEdit API to keep old applications working.

If you implement something new with QMultiLineEdit, we suggest using QTextEdit instead and call QTextE-
dit::setTextFormat(Qt::PlainText).

Although most of the old QMultiLineEdit API is still available, there is a few difference. The old QMultiLineEdit
operated on lines, not on paragraphs. As lines change all the time during wordwrap, the new richtext engine uses
paragraphs as basic elements in the data structure. All functions (numLines(), textLine(), etc.) that operated on lines,
now operate on paragraphs. Further, getString() has been removed completely. It revealed too much of the internal
data structure.

Applications which made normal and reasonable use of QMultiLineEdit should still work without problems. Some odd
usage will require some porting. In these cases, it may be better to use QTextEdit now.

QMultiLineEdit Class Reference (obsolete) 234

This is a GrultiLineEdit with text Thiz is a QMuUltiLineEdit with text =
The @hultiLineEdit widget is a sn The AkultiLineEdit widget is a sir

The GkultiLineEdit widget prowd
amounts of text. There are no arbl
nnn’nrm::nr'n sl eniffer

The GkultiLineEdit widget pravid
amounts of text. There are no arbi

nnrfr\rm:mr‘n will s iffiar 57
1 .3

See also QTextEdit [p. 393] and Advanced Widgets.

Member Function Documentation

QMultiLineEdit::QMultiLineEdit (QWidget * parent = 0, const char * name = 0)

Constructs a new, empty, QMultiLineEdit with parent parent called name.

int QMultiLineEdit::alignment () const

Returns the editor’s paragraph alignment. See the "alignment" [p. 238] property for details.

bool QMultiLineEdit::atBeginning () const

Returns TRUE if the cursor is placed at the beginning of the text; otherwise returns FALSE. See the "atBeginning"
[p. 238] property for details.

bool QMultiLineEdit::atEnd () const

Returns TRUE if the cursor is placed at the end of the text; otherwise returns FALSE. See the "atEnd" [p. 239] property
for details.

bool QMultiLineEdit::autoUpdate () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

void QMultiLineEdit::backspace () [virtual protected]

Deletes the character on the left side of the text cursor and moves the cursor one position to the left. If a text has
been selected by the user (e.g. by clicking and dragging) the cursor is put at the beginning of the selected text and the
selected text is removed. del()

void QMultiLineEdit::cursorDown (bool mark = FALSE) [virtual protected]

Moves the cursor one line down. If mark is TRUE, the text is selected.

See also cursorUp() [p. 235], cursorLeft() [p. 235] and cursorRight() [p. 235].

QMultiLineEdit Class Reference (obsolete) 235

void QMultiLineEdit::cursorLeft (bool mark = FALSE, bool wrap =
TRUE) [virtual protected]

Moves the cursor one character to the left. If mark is TRUE, the text is selected. The wrap parameter is currently
ignored.

See also cursorRight() [p. 235], cursorUp() [p. 235] and cursorDown() [p. 234].

QPoint QMultiLineEdit::cursorPoint () const [protected]

Returns the top center point where the cursor is drawn.

void QMultiLineEdit::cursorRight (bool mark = FALSE, bool wrap =
TRUE) [virtual protected]

Moves the cursor one character to the right. If mark is TRUE, the text is selected. The wrap parameter is currently
ignored.

See also cursorLeft() [p. 235], cursorUp() [p. 235] and cursorDown() [p. 234].

void QMultiLineEdit::cursorUp (bool mark = FALSE) [virtual protected]

Moves the cursor up one line. If mark is TRUE, the text is selected.

See also cursorDown() [p. 2341, cursorLeft() [p. 235] and cursorRight() [p. 235].

void QMultiLineEdit::cursorWordBackward (bool mark)

Moves the cursor one word to the left. If mark is TRUE, the text is selected.

See also cursorWordForward() [p. 235].

void QMultiLineEdit::cursorWordForward (bool mark)

Moves the cursor one word to the right. If mark is TRUE, the text is selected.

See also cursorWordBackward() [p. 235].

void QMultiLineEdit::deselect () [slot]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

bool QMultiLineEdit::edited () const

Returns TRUE if the document has been edited by the user; otherwise returns FALSE. See the "edited" [p. 239] property
for details.

QMultiLineEdit Class Reference (obsolete) 236

void QMultiLineEdit::end (bool mark = FALSE) [virtual protected]

Moves the text cursor to the right end of the line. If mark is TRUE, text is selected toward the last position. If it is
FALSE and the cursor is moved, all selected text is unselected.

See also home() [p. 236].
bool QMultiLineEdit::getMarkedRegion (int * linel, int * col1, int * line2, int * col2)
const [protected]

If there is selected text, sets linel, coll, line2 and col2 to the start and end of the selected region and returns TRUE.
Returns FALSE if there is no selected text.

bool QMultiLineEdit::hasMarkedText () const

Returns TRUE if there is selected text.

void QMultiLineEdit::home (bool mark = FALSE) [virtual protected]

Moves the text cursor to the left end of the line. If mark is TRUE, text is selected toward the first position. If it is FALSE
and the cursor is moved, all selected text is unselected.

See also end() [p. 236].

void QMultiLineEdit::insertAndMark (const QString & str, bool mark) [virtual protected]

Inserts str at the current cursor position and selects the text if mark is TRUE.

void QMultiLineEdit::insertAt (const QString & s, int line, int col, bool mark =
FALSE) [virtual]

Inserts string s at paragraph number line, after character number col in the paragraph. If s contains newline characters,
new lines are inserted. If mark is TRUE the inserted string will be selected.

The cursor position is adjusted.

void QMultiLineEdit::insertLine (const QString & txt, int line = -1) [virtual]

Inserts txt at paragraph number line. If line is less than zero, or larger than the number of paragraphs, the new text is
put at the end. If txt contains newline characters, several paragraphs are inserted.

The cursor position is not changed.

void QMultiLineEdit::killLine () [virtual protected]

Deletes text from the current cursor position to the end of the line. (Note that this function still operates on lines, not
paragraphs.)

QMultiLineEdit Class Reference (obsolete) 237

int QMultiLineEdit::lineLength (int row) const [protected]

Returns the number of characters at paragraph number row. If row is out of range, -1 is returned.

QString QMultiLineEdit::markedText () const

Returns a copy of the selected text.

int QMultiLineEdit::maxLines () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

void QMultiLineEdit::newLine () [virtual protected]

Splits the paragraph at the current cursor position.

int QMultiLineEdit::numLines () const

Returns the number of paragraphs in the editor. See the "numLines" [p. 239] property for details.

void QMultiLineEdit::pageDown (bool mark = FALSE) [virtual protected]

Moves the cursor one page down. If mark is TRUE, the text is selected.

void QMultiLineEdit::pageUp (bool mark = FALSE) [virtual protected]

Moves the cursor one page up. If mark is TRUE, the text is selected.

void QMultiLineEdit::removeLine (int paragraph) [virtual]

Deletes the paragraph at paragraph number paragraph. If paragraph is less than zero or larger than the number of
paragraphs, nothing is deleted.

void QMultiLineEdit::setAlignment (int flags) [virtual]

Sets the editor’s paragraph alignment to flags. See the "alignment" [p. 238] property for details.
Reimplemented from QTextEdit [p. 412].

void QMultiLineEdit::setAutoUpdate (bool) [virtual]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

Example: qwerty/qwerty.cpp.

QMultiLineEdit Class Reference (obsolete) 238

void QMultiLineEdit::setCursorPosition (int line, int col, bool mark = FALSE) [virtual]

Sets the cursor position to character number col in paragraph number line. The parameters are adjusted to lie within
the legal range.

If mark is FALSE, the selection is cleared. otherwise it is extended.

void QMultiLineEdit::setEdited (bool)

Sets whether the document has been edited by the user. See the "edited" [p. 239] property for details.

void QMultiLineEdit::setMaxLines (int)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

QString QMultiLineEdit::textLine (int line) const

Returns the text at line number line (possibly the empty string), or a null string if line is invalid.
Examples: mdi/application.cpp and qwerty/qwerty.cpp.

int QMultiLineEdit::totalHeight () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

int QMultiLineEdit::totalWidth () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

Property Documentation

Alignment alignment

This property holds the editor’s paragraph alignment.

Sets the alignment to flag, which must be AlignLeft, AlignHCenter or AlignRight.
If flag is an illegal flag nothing happens.

See also Qt::AlignmentFlags [Additional Functionality with Qt].

Set this property’s value with setAlignment() and get this property’s value with alignment().

bool atBeginning

This property holds whether the cursor is placed at the beginning of the text.

QMultiLineEdit Class Reference (obsolete) 239

Get this property’s value with atBeginning().

See also atEnd [p. 239].

bool atEnd

This property holds whether the cursor is placed at the end of the text.
Get this property’s value with atEnd().

See also atBeginning [p. 238].

bool edited

This property holds whether the document has been edited by the user.
This is the same as QTextEdit’s "modifed" property.
See also QTextEdit::modified [p. 419].

Set this property’s value with setEdited() and get this property’s value with edited().

int numLines

This property holds the number of paragraphs in the editor.
The count includes any empty paragraph at top and bottom, so for an empty editor this method returns 1.

Get this property’s value with numLines().

QProgressBar Class Reference

The QProgressBar widget provides a horizontal progress bar.
#i ncl ude <qgprogresshar. h>

Inherits QFrame [p. 67].

Public Members

m QProgressBar (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

m QProgressBar (int totalSteps, QWidget * parent = 0, const char * name = 0, WFlags f = 0)
m int totalSteps () const

m int progress () const

m const QString & progressString () const

void setCenterIndicator (bool on)

bool centerIndicator () const

void setIndicatorFollowsStyle (bool)
bool indicatorFollowsStyle () const
bool percentageVisible () const

void setPercentageVisible (bool)

Public Slots

= void reset ()
m virtual void setTotalSteps (int totalSteps)
m virtual void setProgress (int progress)

Properties

m bool centerIndicator — whether the indicator string should be centered

» bool indicatorFollowsStyle — whether the display of the indicator string should follow the GUI style
m bool percentageVisible — whether the current progress value is displayed

m int progress — the current amount of progress

m QString progressString — the current amount of progress as a string (read only)

m int totalSteps — the total number of steps

240

QProgressBar Class Reference 241

Protected Members

m virtual bool setIndicator (QString & indicator, int progress, int totalSteps)

Detailed Description

The QProgressBar widget provides a horizontal progress bar.

A progress bar is used to give the user an indication of the progress of an operation and to reassure them that the
application is still running.

The progress bar uses the concept of steps; you give it the total number of steps and the number of steps completed so
far and it will display the percentage of steps that have been completed. You can specify the total number of steps in
the constructor or later with setTotalSteps(). The current number of steps is set with setProgress(). The progress bar
can be rewound to the beginning with reset().

See also QProgressDialog [Dialogs and Windows with Qt], GUI Design Handbook: Progress Indicator and Advanced
Widgets.

EE m oo

See also QProgressDialog [Dialogs and Windows with Qt], GUI Design Handbook: Progress Indicator and Advanced
Widgets.

Member Function Documentation

QProgressBar::QProgressBar (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a progress bar.
The total number of steps is set to 100 by default.
The parent, name and widget flags, f, are passed on to the QFrame::QFrame() constructor.

See also totalSteps [p. 244].

QProgressBar::QProgressBar (int totalSteps, QWidget * parent = 0, const char * name = 0,
WFlags f = 0)
Constructs a progress bar.

The totalSteps is the total number of steps that need to be completed for the operation which this progress bar repre-
sents. For example, if the operation is to examine 50 files, this value would be 50. Before examining the first file, call
setProgress(0); call setProgress(50) after examining the last file .

The parent, name and widget flags, f, are passed to the QFrame::QFrame() constructor.

See also totalSteps [p. 244] and progress [p. 244].

QProgressBar Class Reference 242

bool QProgressBar::centerIndicator () const

Returns TRUE if the indicator string should be centered; otherwise returns FALSE. See the "centerIndicator" [p. 243]
property for details.

bool QProgressBar::indicatorFollowsStyle () const

Returns TRUE if the display of the indicator string should follow the GUI style; otherwise returns FALSE. See the
"indicatorFollowsStyle" [p. 243] property for details.

bool QProgressBar::percentageVisible () const

Returns TRUE if the current progress value is displayed; otherwise returns FALSE. See the "percentageVisible" [p. 243]
property for details.

int QProgressBar::progress () const

Returns the current amount of progress. See the "progress" [p. 244] property for details.

const QString & QProgressBar::progressString () const

Returns the current amount of progress as a string. See the "progressString" [p. 244] property for details.

void QProgressBar::reset () [slot]

Reset the progress bar. The progress bar "rewinds" and shows no progress.

Examples: fileiconview/mainwindow.cpp, network/ftpclient/ftpmainwindow.cpp and progressbar/progressbar.cpp.

void QProgressBar::setCenterIndicator (bool on)

Sets whether the indicator string should be centered to on. See the "centerIndicator”" [p. 243] property for details.

bool QProgressBar::setIndicator (QString & indicator, int progress,
int totalSteps) [virtual protected]

This method is called to generate the text displayed in the center (or in some styles, to the left) of the progress bar.
The progress may be negative, indicating that the progress bar is in the "reset" state before any progress is set.

The default implementation is the percentage of completion or blank in the reset state. The percentage is calculated
based on the progress and totalSteps. You can set the indicator text if you wish.

To allow efficient repainting of the progress bar, this method should return FALSE if the string is unchanged from the
last call to this function.

QProgressBar Class Reference

void QProgressBar::setIndicatorFollowsStyle (bool)

243

Sets whether the display of the indicator string should follow the GUI style. See the "indicatorFollowsStyle" [p. 243]

property for details.

void QProgressBar::setPercentageVisible (bool)

Sets whether the current progress value is displayed. See the "percentageVisible" [p. 243] property for details.

void QProgressBar::setProgress (int progress) [virtual slot]

Sets the current amount of progress to progress. See the "progress" [p. 244] property for details.

void QProgressBar::setTotalSteps (int totalSteps) [virtual slot]

Sets the total number of steps to totalSteps. See the "totalSteps" [p. 244] property for details.

int QProgressBar::totalSteps () const

Returns the total number of steps. See the "totalSteps" [p. 244] property for details.

Property Documentation

bool centerIndicator

This property holds whether the indicator string should be centered.
Changing this property sets QProgressBar::indicatorFollowsStyle to FALSE. The default is TRUE.

Set this property’s value with setCenterIndicator() and get this property’s value with centerIndicator().

bool indicatorFollowsStyle

This property holds whether the display of the indicator string should follow the GUI style.
The default is TRUE.

See also centerIndicator [p. 243].

Set this property’s value with setIndicatorFollowsStyle() and get this property’s value with indicatorFollowsStyle().

bool percentageVisible

This property holds whether the current progress value is displayed.
The default is TRUE.

QProgressBar Class Reference 244

\se centerIndicator, indicatorFollowsStyle

Set this property’s value with setPercentageVisible() and get this property’s value with percentageVisible().

int progress

This property holds the current amount of progress.
This property is -1 if the progress counting has not started.

Set this property’s value with setProgress() and get this property’s value with progress().

QString progressString

This property holds the current amount of progress as a string.
This property is QString::null if the progress counting has not started.

Get this property’s value with progressString().

int totalSteps

This property holds the total number of steps.
If totalSteps is null, the progress bar will display a busy indicator.
See also totalSteps [p. 244].

Set this property’s value with setTotalSteps() and get this property’s value with totalSteps().

QPushButton Class Reference

The QPushButton widget provides a command button.
#i ncl ude <gpushbutton. h>

Inherits QButton [p. 5].

Public Members

m QPushButton (QWidget * parent, const char * name = 0)

m QPushButton (const QString & text, QWidget * parent, const char * name = 0)

m QPushButton (const QIconSet & icon, const QString & text, QWidget * parent, const char * name = 0)
= ~QPushButton ()

void setToggleButton (bool)

bool autoDefault () const

virtual void setAutoDefault (bool autoDef)

bool isDefault () const

virtual void setDefault (bool def)

m virtual void setIsMenuButton (bool enable) (obsolete)
m bool isMenuButton () const (obsolete)

void setPopup (QPopupMenu * popup)

QPopupMenu * popup () const

void setIlconSet (const QIconSet &)

QlconSet * iconSet () const

void setFlat (bool)

e bool isFlat () const

Public Slots

m virtual void setOn (bool)

Important Inherited Members

m QString text () const
m virtual void setText (const QString &)

245

QPushButton Class Reference 246

const QPixmap * pixmap () const

virtual void setPixmap (const QPixmap &)
QKeySequence accel () const

virtual void setAccel (const QKeySequence &)
bool isToggleButton () const

virtual void setDown (bool)

= bool isDown () const

= bool isOn () const

ToggleState state () const

bool autoRepeat () const

virtual void setAutoRepeat (bool)
bool isExclusiveToggle () const
QButtonGroup * group () const
void toggle ()

m void pressed ()

m void released ()

= void clicked ()

m void toggled (bool on)

e void stateChanged (int state)

Properties

m bool autoDefault — whether the push button is the auto default button

m bool autoMask — whether the button is automatically masked (read only)

m bool default — whether the push button is the default button

m bool flat — whether the border is disabled

m QlconSet iconSet — the icon set on the push button

m bool menuButton — whether the push button has a menu button on it (read only) (obsolete)
m bool on — whether the push button is toggled

m bool toggleButton — whether the button is a toggle button

Detailed Description

The QPushButton widget provides a command button.

The push button, or command button, is perhaps the most commonly used widget in any graphical user interface. Push
(click) a button to command the computer to perform some action, or to answer a question. Typical buttons are OK,
Apply, Cancel, Close, Yes, No and Help.

A command button is rectangular and typically displays a text label describing its action. An underscored character in
the label (signified by preceding it with an ampersand in the text) indicates an accelerator key, e.g.

QPushButton *pb = new QPushButton("&Downl ocad", this);

QPushButton Class Reference 247

In this example the accelerator is Ctrl+D, and the label text will be displayed as Download.

Push buttons can display a textual label or a pixmap, and optionally a small icon. These can be set using the constructors
and changed later using setText(), setPixmap() and setlconSet(). If the button is disabled the appearance of the text
or pixmap and iconset will be manipulated with respect to the GUI style to make the button look "disabled".

A push button emits the signal clicked() when it is activated by the mouse, the Spacebar or by a keyboard accelerator.
Connect to this signal to perform the button’s action. Push buttons also provide less commonly used signals, for
example, pressed() and released().

Command buttons in dialogs are by default auto-default buttons, i.e. they become the default push button automati-
cally when they receive the keyboard input focus. A default button is a push button that is activated when the user hits
the Enter or Return key in a dialog. You can change this with setAutoDefault(). Note that auto-default buttons reserve
a little extra space which is necessary to draw a default-button indicator. If you do not want this space around your
buttons, call setAutoDefault(FALSE).

Being so central, the button widget has grown to accommodate a great many variations in the past decade. The
Microsoft style guide now shows about ten different states of Windows push buttons and the text implies that there are
dozens more when all the combinations of features are taken into consideration.

The most important modes or states are:

Available or not (grayed out, disabled).

Standard push button, toggling push button or menu button.

On or off (only for toggling push buttons).

Default or normal. The default button in a dialog can generally be "clicked" using the Enter or Return key.

Auto-repeat or not.

Pressed down or not.

As a general rule, use a push button when the application or dialog window performs an action when the user clicks on
it (such as Apply, Cancel, Close and Help) and when the widget is supposed to have a wide, rectangular shape with a
text label. Small, typically square buttons that change the state of the window rather than performing an action (such
as the buttons in the top-right corner of the QFileDialog) are not command buttons, but tool buttons. Qt provides a
special class (QToolButton) for these buttons.

If you need toggle behavior (see setToggleButton()) or a button that auto-repeats the activation signal when being
pushed down like the arrows in a scroll bar (see setAutoRepeat()), a command button is probably not what you want.
When in doubt, use a tool button.

A variation of a command button is a menu button. These provide not just one command, but several, since when they
are clicked they pop up a menu of options. Use the method setPopup() to associate a popup menu with a push button.

Other classes of buttons are option buttons (see QRadioButton) and check boxes (see QCheckBox).

In Qt, the QButton base class provides most of the modes and other API, and QPushButton provides GUI logic. See
QButton for more information about the API.

See also QToolButton [Dialogs and Windows with Qt], QRadioButton [p. 255], QCheckBox [p. 20], GUI Design
Handbook: Push Button and Basic Widgets.

QPushButton Class Reference 248

Member Function Documentation

QPushButton::QPushButton (QWidget * parent, const char * name = 0)

Constructs a push button with no text.

The parent and name arguments are sent to the QWidget constructor.

QPushButton::QPushButton (const QString & text, QWidget * parent, const char * name =
0)

Constructs a push button called name with the parent parent and the text text.

QPushButton::QPushButton (const QIconSet & icon, const QString & text, QWidget * parent,
const char * name = 0)

Constructs a push button with an icon and a text.
Note that you can also pass a QPixmap object as an icon (thanks to the implicit type conversion provided by C++).
The parent and name arguments are sent to the QWidget constructor.

QPushButton::~QPushButton ()

Destroys the push button

QKeySequence QButton::accel () const

Returns the accelerator associated with the button. See the "accel" [p. 13] property for details.

bool QPushButton::autoDefault () const

Returns TRUE if the push button is the auto default button; otherwise returns FALSE. See the "autoDefault" [p. 252]
property for details.

bool QButton::autoRepeat () const

Returns TRUE if autoRepeat is enabled; otherwise returns FALSE. See the "autoRepeat" [p. 13] property for details.

void QButton::clicked () [signal]

This signal is emitted when the button is activated (i.e. first pressed down and then released when the mouse cursor is
inside the button), when the accelerator key is typed or when animateClick() is called.

The QButtonGroup::clicked() signal does the same job, if you want to connect several buttons to the same slot.

QPushButton Class Reference 249

See also pressed() [p. 10], released() [p. 11] and toggled() [p. 12].

Examples: fonts/simple-qfont-demo/viewer.cpp, listbox/listbox.cpp, network/clientserver/client/client.cpp,
network/ftpclient/ftpmainwindow.cpp, richtext/richtext.cpp, t2/main.cpp and t4/main.cpp.

QButtonGroup * QButton::group () const

Returns a pointer to the group of which this button is a member.

If the button is not a member of any QButtonGroup, this function returns O.
See also QButtonGroup [p. 15].

QIconSet * QPushButton::iconSet () const

Returns the icon set on the push button. See the "iconSet" [p. 253] property for details.

bool QPushButton::isDefault () const

Returns TRUE if the push button is the default button; otherwise returns FALSE. See the "default" [p. 253] property for
details.

bool QButton::isDown () const

Returns TRUE if the button is pressed; otherwise returns FALSE. See the "down" [p. 13] property for details.

bool QButton::isExclusiveToggle () const

Returns TRUE if the button is an exclusive toggle; otherwise returns FALSE. See the "exclusiveToggle" [p. 13] property
for details.

bool QPushButton::isFlat () const

Returns TRUE if the border is disabled; otherwise returns FALSE. See the "flat" [p. 253] property for details.

bool QPushButton::isMenuButton () const

Returns TRUE if the push button has a menu button on it; otherwise returns FALSE. See the "menuButton" [p. 253]
property for details.

bool QButton::isOn () const

Returns TRUE if the button is toggled; otherwise returns FALSE. See the "on" [p. 13] property for details.

QPushButton Class Reference 250

bool QButton::isToggleButton () const

Returns TRUE if the button is a toggle button; otherwise returns FALSE. See the "toggleButton" [p. 14] property for
details.

const QPixmap * QButton::pixmap () const

Returns the pixmap shown on the button. See the "pixmap" [p. 14] property for details.

QPopupMenu * QPushButton::popup () const

Returns the button’s associated popup menu or 0O if no popup menu has been defined.
See also setPopup() [p. 2511].

void QButton::pressed () [signal]

This signal is emitted when the button is pressed down.
See also released() [p. 11] and clicked() [p. 9].
Examples: network/httpd/httpd.cpp and popup/popup.cpp-

void QButton::released () [signal]

This signal is emitted when the button is released.

See also pressed() [p. 10], clicked() [p. 9] and toggled() [p. 12].

void QButton::setAccel (const QKeySequence &) [virtual]

Sets the accelerator associated with the button. See the "accel" [p. 13] property for details.

void QPushButton::setAutoDefault (bool autoDef) [virtual]

Sets whether the push button is the auto default button to autoDef. See the "autoDefault" [p. 252] property for details.

void QButton::setAutoRepeat (bool) [virtual]

Sets whether autoRepeat is enabled. See the "autoRepeat" [p. 13] property for details.

void QPushButton::setDefault (bool def) [virtual]

Sets whether the push button is the default button to def. See the "default" [p. 253] property for details.

QPushButton Class Reference 251

void QButton::setDown (bool) [virtual]

Sets whether the button is pressed. See the "down" [p. 13] property for details.

void QPushButton::setFlat (bool)

Sets whether the border is disabled. See the "flat" [p. 253] property for details.

void QPushButton::setlconSet (const QIconSet &)

Sets the icon set on the push button. See the "iconSet" [p. 253] property for details.

void QPushButton::setIsMenuButton (bool enable) [virtual]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

void QPushButton::setOn (bool) [virtual slot]

Sets whether the push button is toggled. See the "on" [p. 254] property for details.

void QButton::setPixmap (const QPixmap &) [virtual]

Sets the pixmap shown on the button. See the "pixmap" [p. 14] property for details.

void QPushButton::setPopup (QPopupMenu * popup)

Associates the popup menu popup with this push button and thus turns it into a menu button.
Ownership of the popup menu is not transferred to the push button.

See also popup() [p. 250].

Example: qdir/qdir.cpp.

void QButton::setText (const QString &) [virtual]

Sets the text shown on the button. See the "text" [p. 14] property for details.

void QPushButton::setToggleButton (bool)

Sets whether the button is a toggle button. See the "toggleButton" [p. 254] property for details.

ToggleState QButton::state () const

Returns TRUE if the button is toggled; otherwise returns FALSE. See the "toggleState" [p. 14] property for details.

QPushButton Class Reference 252

void QButton::stateChanged (int state) [signal]

This signal is emitted whenever a toggle button changes status. state is 2 if the button is on, 1 if it is in the "no change"
state or 0 if the button is off.

This may be the result of a user action, toggle() slot activation, setState(), or because setOn() was called.

See also clicked() [p. 91.

QString QButton::text () const

Returns the text shown on the button. See the "text" [p. 14] property for details.

void QButton::toggle () [slot]

Toggles the state of a toggle button.
See also on [p. 254], on [p. 254], toggled() [p. 12] and toggleButton [p. 254].

void QButton::toggled (bool on) [signal]

This signal is emitted whenever a toggle button changes status. on is TRUE if the button is on, or FALSE if the button
is off.

This may be the result of a user action, toggle() slot activation, or because setOn() was called.

See also clicked() [p. 91.

Example: listbox/listbox.cpp.

Property Documentation

QKeySequence accel

This property holds the accelerator associated with the button.
This property is 0 if there is no accelerator set. If you set this property to O then any current accelerator is removed.

Set this property’s value with setAccel() and get this property’s value with accel().

bool autoDefault

This property holds whether the push button is the auto default button.
If this property is set to TRUE then the push button will be the focused item in a dialog when the dialog is first shown.
This property’s default is FALSE.

Set this property’s value with setAutoDefault() and get this property’s value with autoDefault().

QPushButton Class Reference 253

bool autoMask

This property holds whether the button is automatically masked.
See also QWidget::autoMask [p. 485].

bool autoRepeat

This property holds whether autoRepeat is enabled.

If autoRepeat is enabled then the clicked() signal is emitted at regular intervals if the button is down. This property
has no effect on toggle buttons. autoRepeat is off by default.

Set this property’s value with setAutoRepeat() and get this property’s value with autoRepeat().

bool default

This property holds whether the push button is the default button.
If this property is set to TRUE then the push button will be pressed if the user hits the Enter key in a dialog.
This property’s default is FALSE.

Set this property’s value with setDefault() and get this property’s value with isDefault().

bool flat

This property holds whether the border is disabled.
This property’s default is FALSE.

Set this property’s value with setFlat() and get this property’s value with isFlat().

QIconSet iconSet

This property holds the icon set on the push button.
This property will return O if the push button has no iconset

Set this property’s value with setlconSet() and get this property’s value with iconSet().

bool menuButton

This property holds whether the push button has a menu button on it.
This property is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

If this property is set to TRUE, then a down arrow is drawn on the push button to indicate that a menu will pop up if
the user clicks on the arrow.

Get this property’s value with isMenuButton().

QPushButton Class Reference 254

bool on

This property holds whether the push button is toggled.
This property should only be set for toggle push buttons. The default value is FALSE.
See also on [p. 254], toggle() [p. 12], toggled() [p. 12] and toggleButton [p. 2541].

Set this property’s value with setOn().

QPixmap pixmap

This property holds the pixmap shown on the button.

If the pixmap is monochrome (i.e., it is a QBitmap or its depth is 1) and it does not have a mask, this property will
set the pixmap to be its own mask. The purpose of this is to draw transparent bitmaps which are important for toggle
buttons, for example.

pixmap() returns O if no pixmap was set.

Set this property’s value with setPixmap() and get this property’s value with pixmap().

QString text

This property holds the text shown on the button.

This property will return a null string if the button has no text. If the text has an ampersand ('&’) in it, then an
accelerator is automatically created for it using the character after the '&’ as the accelerator key.

There is no default text.

Set this property’s value with setText() and get this property’s value with text().

bool toggleButton

This property holds whether the button is a toggle button.
Toggle buttons have an on/off state similar to check boxes. A push button is initially not a toggle button.
See also on [p. 254], toggle() [p. 12], toggleButton [p. 254] and toggled() [p. 12].

Set this property’s value with setToggleButton().

QRadioButton Class Reference

The QRadioButton widget provides a radio button with a text or pixmap label.
#incl ude <qgradiobutton. h>

Inherits QButton [p. 5].

Public Members

» QRadioButton (QWidget * parent, const char * name = 0)
» QRadioButton (const QString & text, QWidget * parent, const char * name = 0)
= bool isChecked () const

Public Slots

m virtual void setChecked (bool check)

Important Inherited Members

QString text () const

m virtual void setText (const QString &)

m const QPixmap * pixmap () const

m virtual void setPixmap (const QPixmap &)
= QKeySequence accel () const

m virtual void setAccel (const QKeySequence &)
m bool isToggleButton () const

m virtual void setDown (bool)

= bool isDown () const

m bool isOn () const

m ToggleState state () const

m bool autoRepeat () const

m virtual void setAutoRepeat (bool)

m bool isExclusiveToggle () const

m QButtonGroup * group () const

m void toggle ()

255

QRadioButton Class Reference 256

m void pressed ()

m void released ()

m void clicked ()

void toggled (bool on)

e void stateChanged (int state)

Properties

m bool autoMask — whether the radio button is automatically masked (read only)
m bool checked — whether the radio button is checked

Detailed Description

The QRadioButton widget provides a radio button with a text or pixmap label.

QRadioButton and QCheckBox are both option buttons. That is, they can be switched on (checked) or off (unchecked).
The classes differ in how the choices for the user are restricted. Check boxes define "many of many" choices, whereas
radio buttons provide a "one of many" choice. In a group of radio buttons only one button at a time can be checked; if
the user selects another button, the previously selected button is switched off.

The easiest way to implement a "one of many" choice is simply to put the radio buttons into QButtonGroup.

Whenever a button is switched on or off it emits the signal toggled(). Connect to this signal if you want to trigger an
action each time the button changes state. Otherwise, use isChecked() to query whether or not a particular button is
selected.

Just like QPushButton, a radio button can display text or a pixmap. The text can be set in the constructor or with
setText(); the pixmap is set with setPixmap().

4 First @ First
+ Second " Second
+ Third Third

See also QPushButton [p. 245], QToolButton [Dialogs and Windows with Qt], GUI Design Handbook: Radio Button
and Basic Widgets.

Member Function Documentation

QRadioButton::QRadioButton (QWidget * parent, const char * name = 0)

Constructs a radio button with no text.

The parent and name arguments are sent to the QWidget constructor.

QRadioButton::QRadioButton (const QString & text, QWidget * parent, const char * name =
0)

Constructs a radio button with the text text.

QRadioButton Class Reference 257

The parent and name arguments are sent to the QWidget constructor.

QKeySequence QButton::accel () const

Returns the accelerator associated with the button. See the "accel" [p. 13] property for details.

bool QButton::autoRepeat () const

Returns TRUE if autoRepeat is enabled; otherwise returns FALSE. See the "autoRepeat" [p. 13] property for details.

void QButton::clicked () [signal]

This signal is emitted when the button is activated (i.e. first pressed down and then released when the mouse cursor is
inside the button), when the accelerator key is typed or when animateClick() is called.

The QButtonGroup::clicked() signal does the same job, if you want to connect several buttons to the same slot.
See also pressed() [p. 10], released() [p. 11] and toggled() [p. 12].

Examples: fonts/simple-qfont-demo/viewer.cpp, listbox/listbox.cpp, network/clientserver/client/client.cpp,
network/ftpclient/ftpmainwindow.cpp, richtext/richtext.cpp, t2/main.cpp and t4/main.cpp.

QButtonGroup * QButton::group () const

Returns a pointer to the group of which this button is a member.
If the button is not a member of any QButtonGroup, this function returns O.
See also QButtonGroup [p. 15].

bool QRadioButton::isChecked () const

Returns TRUE if the radio button is checked; otherwise returns FALSE. See the "checked" [p. 260] property for details.

bool QButton::isDown () const

Returns TRUE if the button is pressed; otherwise returns FALSE. See the "down" [p. 13] property for details.

bool QButton::isExclusiveToggle () const

Returns TRUE if the button is an exclusive toggle; otherwise returns FALSE. See the "exclusiveToggle" [p. 13] property
for details.

bool QButton::isOn () const

Returns TRUE if the button is toggled; otherwise returns FALSE. See the "on" [p. 13] property for details.

QRadioButton Class Reference 258

bool QButton::isToggleButton () const

Returns TRUE if the button is a toggle button; otherwise returns FALSE. See the "toggleButton" [p. 14] property for
details.

const QPixmap * QButton::pixmap () const

Returns the pixmap shown on the button. See the "pixmap" [p. 14] property for details.

void QButton::pressed () [signal]

This signal is emitted when the button is pressed down.
See also released() [p. 11] and clicked() [p. 9].
Examples: network/httpd/httpd.cpp and popup/popup.cpp.

void QButton::released () [signal]

This signal is emitted when the button is released.

See also pressed() [p- 10], clicked() [p. 9] and toggled() [p. 12].

void QButton::setAccel (const QKeySequence &) [virtual]

Sets the accelerator associated with the button. See the "accel" [p. 13] property for details.

void QButton::setAutoRepeat (bool) [virtual]

Sets whether autoRepeat is enabled. See the "autoRepeat" [p. 13] property for details.

void QRadioButton::setChecked (bool check) [virtual slot]

Sets whether the radio button is checked to check. See the "checked" [p. 260] property for details.

void QButton::setDown (bool) [virtual]

Sets whether the button is pressed. See the "down" [p. 13] property for details.

void QButton::setPixmap (const QPixmap &) [virtual]

Sets the pixmap shown on the button. See the "pixmap" [p. 14] property for details.

QRadioButton Class Reference 259

void QButton::setText (const QString &) [virtual]

Sets the text shown on the button. See the "text" [p. 14] property for details.

ToggleState QButton::state () const

Returns TRUE if the button is toggled; otherwise returns FALSE. See the "toggleState" [p. 14] property for details.

void QButton::stateChanged (int state) [signal]

This signal is emitted whenever a toggle button changes status. state is 2 if the button is on, 1 if it is in the "no change"
state or O if the button is off.

This may be the result of a user action, toggle() slot activation, setState(), or because setOn() was called.

See also clicked() [p. 91.

QString QButton::text () const

Returns the text shown on the button. See the "text" [p. 14] property for details.

void QButton::toggle () [slot]

Toggles the state of a toggle button.
See also on [p. 13], setOn() [p. 11], toggled() [p. 12] and toggleButton [p. 14].

void QButton::toggled (bool on) [signal]

This signal is emitted whenever a toggle button changes status. on is TRUE if the button is on, or FALSE if the button
is off.

This may be the result of a user action, toggle() slot activation, or because setOn() was called.

See also clicked() [p. 9].

Example: listbox/listbox.cpp.

Property Documentation

QKeySequence accel

This property holds the accelerator associated with the button.
This property is O if there is no accelerator set. If you set this property to O then any current accelerator is removed.

Set this property’s value with setAccel() and get this property’s value with accel().

QRadioButton Class Reference 260

bool autoMask

This property holds whether the radio button is automatically masked.

See also QWidget::autoMask [p. 485].

bool autoRepeat

This property holds whether autoRepeat is enabled.

If autoRepeat is enabled then the clicked() signal is emitted at regular intervals if the button is down. This property
has no effect on toggle buttons. autoRepeat is off by default.

Set this property’s value with setAutoRepeat() and get this property’s value with autoRepeat().

bool checked

This property holds whether the radio button is checked.

This property will not effect any other radio buttons unless they have been placed in the same QButtonGroup. The
default value is FALSE (unchecked).

Set this property’s value with setChecked() and get this property’s value with isChecked().

QPixmap pixmap

This property holds the pixmap shown on the button.

If the pixmap is monochrome (i.e., it is a QBitmap or its depth is 1) and it does not have a mask, this property will
set the pixmap to be its own mask. The purpose of this is to draw transparent bitmaps which are important for toggle
buttons, for example.

pixmap() returns O if no pixmap was set.

Set this property’s value with setPixmap() and get this property’s value with pixmap().

QString text

This property holds the text shown on the button.

This property will return a null string if the button has no text. If the text has an ampersand ('&’) in it, then an
accelerator is automatically created for it using the character after the '&’ as the accelerator key.

There is no default text.

Set this property’s value with setText() and get this property’s value with text().

QRangeControl Class Reference

The QRangeControl class provides an integer value within a range.
#i ncl ude <grangecontrol.h>

Inherited by QDial [p. 571, QScrollBar [p. 267], QSlider [p. 302] and QSpinBox [p. 312].

Public Members

= QRangeControl ()

m QRangeControl (int minValue, int maxValue, int lineStep, int pageStep, int value)
virtual ~QRangeControl ()

int value () const

void setValue (int value)

void addPage ()

void subtractPage ()

void addLine ()

void subtractLine ()

int minValue () const

int maxValue () const

void setRange (int minValue, int maxValue)
void setMinValue (int minVal)

void setMaxValue (int maxVal)

int lineStep () const

int pageStep () const

void setSteps (int lineStep, int pageStep)
int bound (int v) const

Protected Members

int positionFromValue (int logical val, int span) const
int valueFromPosition (int pos, int span) const

void directSetValue (int value)

int prevValue () const

virtual void valueChange ()

virtual void rangeChange ()

virtual void stepChange ()

261

QRangeControl Class Reference 262

Detailed Description

The QRangeControl class provides an integer value within a range.

Although originally designed for the QScrollBar widget, the QRangeControl can also be used in conjunction with other
widgets such as QSlider and QSpinBox. Here are the five main concepts in the class:

1. Current value. This is the bounded integer that QRangeControl maintains. value() returns this and several
functions, including setValue(), set it.

2. Minimum. This is the lowest value that value() can ever return. Returned by minValue() and set by setRange()
or one of the constructors.

3. Maximum. This is the highest value that value() can ever return. Returned by maxValue() and set by setRange()
or one of the constructors.

4. Line step. This is the smaller of two natural steps that QRangeControl provides and typically corresponds to
the user pressing an arrow key. The line step is returned by lineStep() and set using setSteps(). The functions
addLine() and subtractLine() respectively increment and decrement the current value by lineStep().

5. Page step. This is the larger of two natural steps that QRangeControl provides and typically corresponds to the
user pressing PageUp or PageDown. The page step is returned by pageStep() and set using setSteps(). The
functions addPage() and substractPage() respectively increment and decrement the current value by pageStep().

Unity (1) may be viewed as a third step size. setValue() lets you set the current value to any integer in the allowed
range, not just minValue() + n * lineStep() for integer values of n. Some widgets may allow the user to set any value
at all; others may just provide multiples of lineStep() or pageStep().

QRangeControl provides three virtual functions that are well suited for updating the on-screen representation of range
controls and emitting signals, namely valueChange(), rangeChange() and stepChange().

QRangeControl also provides a function called bound() which lets you force arbitrary integers to be within the allowed
range of the range control.

We recommend that all widgets that inherit QRangeControl provide at least a signal called valueChanged(); many
widgets will want to provide addStep(), addPage(), substractStep() and substractPage() as slots.

Note that you have to use multiple inheritance if you plan to implement a widget using QRangeControl because
QRangeControl is not derived from QWidget.

See also Miscellaneous Classes.

Member Function Documentation

QRangeControl::QRangeControl ()
Constructs a range control with min value 0, max value 99, line step 1, page step 10 and initial value O.
QRangeControl::QRangeControl (int minValue, int maxValue, int lineStep, int pageStep,
int value)
Constructs a range control whose value can never be smaller than minValue or greater than maxValue, whose line step

size is lineStep and page step size is pageStep and whose value is initially value (which is guaranteed to be in range
using bound()).

QRangeControl Class Reference 263

QRangeControl::~QRangeControl () [virtual]

Destroys the range control

void QRangeControl::addLine ()

Equivalent to set Val ue(value() + lineStep()).
If the value is changed, then valueChange() is called.
See also subtractLine() [p. 265], addPage() [p. 263] and setValue() [p. 265].

void QRangeControl::addPage ()

Equivalent to set Val ue(val ue() + pageStep()).
If the value is changed, then valueChange() is called.

See also subtractPage() [p. 2661, addLine() [p. 263] and setValue() [p. 265].

int QRangeControl::bound (int v) const

Forces the value v to be within the range from minValue() to maxValue() inclusive, and returns the result.

This function is provided so that you can easily force other numbers than value() into the allowed range. You do not
need to call it in order to use QRangeControl itself.

See also setValue() [p. 265], value() [p. 266], minValue() [p. 264] and maxValue() [p. 263].

void QRangeControl::directSetValue (int value) [protected]

Sets the range control value directly without calling valueChange().
Forces the new value to be within the legal range.

You will rarely have to call this function. However, if you want to change the range control’s value inside the overloaded
method valueChange(), setValue() would call the function valueChange() again. To avoid this recursion you must use
directSetValue() instead.

See also setValue() [p. 265].

int QRangeControl::lineStep () const
Returns the current line step.

See also setSteps() [p. 265] and pageStep() [p. 264].

int QRangeControl::maxValue () const

Returns the current maximum value of the range.

See also setMaxValue() [p. 264], setRange() [p. 265] and minValue() [p. 264].

QRangeControl Class Reference 264

int QRangeControl::minValue () const

Returns the current minimum value of the range.

See also setMinValue() [p. 265], setRange() [p. 265] and maxValue() [p. 263].

int QRangeControl::pageStep () const

Returns the current page step.

See also setSteps() [p. 265] and lineStep() [p. 263].

int QRangeControl::positionFromValue (int logical val, int span) const [protected]

Converts logical val to a pixel position. minValue() maps to 0, maxValue() maps to span and other values are distributed
evenly in-between.

This function can handle the entire integer range without overflow.

Calling this method is useful when actually drawing a range control such as a QScrollBar on-screen.

See also valueFromPosition() [p. 266].

int QRangeControl::prevValue () const [protected]

Returns the previous value of the range control. "Previous value" means the value before the last change occurred.
Setting a new range may affect the value, too, because the value is forced to be inside the specified range. When the
range control is initially created, this is the same as value().

prevValue() can be outside the current legal range if a call to setRange() causes the current value to change. For
example, if the range was [0, 1000] and the current value is 500, setRange(0, 400) makes value() return 400 and
prevValue() return 500.

See also value() [p. 266] and setRange() [p. 265].

void QRangeControl::rangeChange () [virtual protected]

This virtual function is called whenever the range control’s range changes. You can reimplement it if you want to be
notified when the range changes. The default implementation does nothing.

Note that this method is called after the range changed.

See also setRange() [p. 265], valueChange() [p. 266] and stepChange() [p. 265].

Reimplemented in QDial, QSlider and QSpinBox.

void QRangeControl::setMaxValue (int maxVal)

Sets the current minimum value of the range to maxVal.
If necessary, the minValue() is adjusted so that the range remains valid.

See also maxValue() [p. 263] and setMinValue() [p. 265].

QRangeControl Class Reference 265

void QRangeControl::setMinValue (int minVal)

Sets the current minimum value of the range to minVal.
If necessary, the maxValue() is adjusted so that the range remains valid.

See also minValue() [p. 264] and setMaxValue() [p. 264].

void QRangeControl::setRange (int minValue, int maxValue)

Sets the range control’s min value to minValue and its max value to maxValue.

Calls the virtual rangeChange() function if one or both of the new min and max values are different from the previous
setting. Calls the virtual valueChange() function if the current value is adjusted because it was outside the new range.

If maxValue is smaller than minValue, minValue becomes the only legal value.
See also minValue() [p. 264] and maxValue() [p. 263].
Examples: listbox/listbox.cpp, t12/lcdrange.cpp, t5/main.cpp, t6/main.cpp, t8/lcdrange.cpp and xform/xform.cpp.

void QRangeControl::setSteps (int lineStep, int pageStep)

Sets the range line step to lineStep and page step to pageStep.
Calls the virtual stepChange() function if the new line step and/or page step are different from the previous settings.

See also lineStep() [p. 263], pageStep() [p. 264] and setRange() [p. 265].

void QRangeControl::setValue (int value)

Sets the range control’s value to value and forces it to be within the legal range.

Calls the virtual valueChange() function if the new value is different from the previous value. The old value can still
be retrieved using prevValue().

See also value() [p. 266].

void QRangeControl::stepChange () [virtual protected]

This virtual function is called whenever the range control’s line/page step settings change. You can reimplement it if
you want to be notified when the step changes. The default implementation does nothing.

Note that this method is called after the step settings change.

See also setSteps() [p. 265], rangeChange() [p. 264] and valueChange() [p. 266].

void QRangeControl::subtractLine ()

Equivalent to set Val ue(value() - lineStep()).
If the value is changed, then valueChange() is called.

See also addLine() [p. 263], subtractPage() [p. 266] and setValue() [p. 265].

QRangeControl Class Reference 266

void QRangeControl::subtractPage ()

Equivalent to set Val ue(val ue() - pageStep()).
If the value is changed, then valueChange() is called.

See also addPage() [p. 263], subtractLine() [p. 265] and setValue() [p. 265].

int QRangeControl::value () const

Returns the current range control value. This is guaranteed to be within the range [minValue(), maxValue()].

See also setValue() [p. 265] and prevValue() [p. 264].

void QRangeControl::valueChange () [virtual protected]

This virtual function is called whenever the range control value changes. You can reimplement it if you want to be
notified when the value changes. The default implementation does nothing.

Note that this method is called after the value changed. The previous value can be retrieved using prevValue().

See also setValue() [p. 265], addPage() [p. 263], subtractPage() [p. 2661, addLine() [p. 263], subtractLine() [p. 2651,
rangeChange() [p. 264] and stepChange() [p. 265].

Reimplemented in QDial, QSlider and QSpinBox.

int QRangeControl::valueFromPosition (int pos, int span) const [protected]

Converts the pixel position pos to a value. 0 maps to minValue(), span maps to maxValue() and other values are
distributed evenly in-between.

This function can handle the entire integer range without overflow.

Calling this method is useful if you actually implemented a range control widget such as QScrollBar and want to handle
mouse press events. This function then maps screen coordinates to the logical values.

See also positionFromValue() [p. 264].

QScrollBar Class Reference

The QScrollBar widget provides a vertical or horizontal scroll bar.
#incl ude <gscrol | bar. h>

Inherits QWidget [p. 436] and QRangeControl [p. 261].

Public Members

m QScrollBar (QWidget * parent, const char * name = 0)

m QScrollBar (Orientation orientation, QWidget * parent, const char * name = 0)

m QScrollBar (int minValue, int maxValue, int lineStep, int pageStep, int value, Orientation orientation,
QWidget * parent, const char * name = 0)

m virtual void setOrientation (Orientation)

Orientation orientation () const

virtual void setTracking (bool enable)

bool tracking () const

bool draggingSlider () const

virtual void setPalette (const QPalette & p)
int minValue () const

= int maxValue () const

= void setMinValue (int)

= void setMaxValue (int)

int lineStep () const

int pageStep () const
void setLineStep (int)
void setPageStep (int)
int value () const

int sliderStart () const
QRect sliderRect () const

Public Slots

m void setValue (int)

267

QScrollBar Class Reference 268

Signals

void valueChanged (int value)
void sliderPressed ()

void sliderMoved (int value)
void sliderReleased ()

void nextLine ()

void prevLine ()

void nextPage ()
m void prevPage ()

Properties

m bool draggingSlider — whether the user has clicked the mouse on the slider and is currently dragging it (read
only)

m int lineStep — the current line step

int maxValue — the current maximum value of the scroll bar

int minValue — the current minimum value of the scroll bar
Orientation orientation — the orientation of the scroll bar
int pageStep — the current line step

bool tracking — whether scroll bar tracking is enabled

int value — the current scroll bar value

Detailed Description

The QScrollBar widget provides a vertical or horizontal scroll bar.

A scroll bar allows the user to control a value within a program-definable range and gives users a visible indication of
the current value of a range control.

Scroll bars include four separate controls:

e The line-up and line-down controls are little buttons which the user can use to move one line up or down. The
meaning of "line" is configurable. In editors and list boxes it means one line of text; in an image viewer it might
mean 20 pixels.

e The slider is the handle that indicates the current value of the scroll bar, which the user can drag to change the
value. This part of the scroll bar is sometimes called the "thumb".

e The page-up/page-down control is the area on which the slider slides (the scroll bar’s background). Clicking here
moves the scroll bar towards the click. The meaning of "page" is also configurable: in editors and list boxes it
means as many lines as there is space for in the widget.

QScrollBar has very few of its own functions; it mostly relies on QRangeControl. The most useful functions are set-
Value() to set the scroll bar directly to some value; addPage(), addLine(), subtractPage(), and subtractLine() to simulate
the effects of clicking (useful for accelerator keys); setSteps() to define the values of pageStep() and lineStep(); and
setRange() to set the minValue() and maxValue() of the scroll bar. QScrollBar has a convenience constructor with
which you can set most of these properties.

QScrollBar Class Reference 269

Some GUI styles (for example, the Windows and Motif styles provided), also use the pageStep() value to calculate the
size of the slider.

In addition to the access functions from QRangeControl, QScrollBar has a comprehensive set of signals:

e valueChanged() - emitted when the scroll bar’s value has changed. The tracking() determines whether this signal
is emitted during user interaction.

e sliderPressed() - emitted when the user starts to drag the slider.

e sliderMoved() - emitted when the user drags the slider.

e sliderReleased() - emitted when the user releases the slider.

e nextLine() - emitted when the scroll bar has moved one line down or right. Line is defined in QRangeControl.
e prevLine() - emitted when the scroll bar has moved one line up or left.

e nextPage() - emitted when the scroll bar has moved one page down or right.

e prevPage() - emitted when the scroll bar has moved one page up or left.

QScrollBar only provides integer ranges. Note that although QScrollBar handles very large numbers, scroll bars on
current screens cannot usefully control ranges above about 100,000 pixels. Beyond that, it becomes difficult for the
user to control the scroll bar using either the keyboard or the mouse.

A scroll bar can be controlled by the keyboard, but it has a default focusPolicy() of NoFocus. Use setFocusPolicy() to
enable keyboard focus. See keyPressEvent() for a list of key bindings.

If you need to add scroll bars to an interface, consider using the QScrollView class, which encapsulates the common
uses for scroll bars.

AN =

<[

-l
See also QSlider [p. 302], QSpinBox [p. 312], QScrollView [p. 275], GUI Design Handbook: Scroll Bar and Basic
Widgets.

Member Function Documentation

QScrollBar::QScrollBar (QWidget * parent, const char * name = 0)

Constructs a vertical scroll bar.

The parent and name arguments are sent to the QWidget constructor.

QScrollBar::QScrollBar (Orientation orientation, QWidget * parent, const char * name = 0)

Constructs a scroll bar.
The orientation must be Qt::Vertical or Qt::Horizontal.

The parent and name arguments are sent to the QWidget constructor.

QScrollBar::QScrollBar (int minValue, int maxValue, int lineStep, int pageStep, int value,
Orientation orientation, QWidget * parent, const char * name = 0)

Constructs a scroll bar whose value can never be smaller than minValue or greater than maxValue, whose line step size
is lineStep and page step size is pageStep and whose value is initially value (which is guaranteed to be in range using

QScrollBar Class Reference 270

bound()).
If orientation is Vertical the scroll bar is vertical and if it is Horizontal the scroll bar is horizontal.

The parent and name arguments are sent to the QWidget constructor.

bool QScrollBar::draggingSlider () const

Returns TRUE if the user has clicked the mouse on the slider and is currently dragging it; otherwise returns FALSE. See
the "draggingSlider" [p. 272] property for details.

int QScrollBar::lineStep () const

Returns the current line step. See the "lineStep" [p. 273] property for details.

int QScrollBar::maxValue () const

Returns the current maximum value of the scroll bar. See the "maxValue" [p. 273] property for details.

int QScrollBar::minValue () const

Returns the current minimum value of the scroll bar. See the "minValue" [p. 273] property for details.

void QScrollBar::nextLine () [signal]

This signal is emitted when the scroll bar scrolls one line down or right.

void QScrollBar::nextPage () [signal]

This signal is emitted when the scroll bar scrolls one page down or right.

Orientation QScrollBar::orientation () const

Returns the orientation of the scroll bar. See the "orientation" [p. 273] property for details.

int QScrollBar::pageStep () const

Returns the current line step. See the "pageStep" [p. 273] property for details.

void QScrollBar::prevLine () [signal]

This signal is emitted when the scroll bar scrolls one line up or left.

QScrollBar Class Reference 271

void QScrollBar::prevPage () [signal]

This signal is emitted when the scroll bar scrolls one page up or left.

void QScrollBar::setLineStep (int)

Sets the current line step. See the "lineStep" [p. 273] property for details.

void QScrollBar::setMaxValue (int)

Sets the current maximum value of the scroll bar. See the "maxValue" [p. 273] property for details.

void QScrollBar::setMinValue (int)

Sets the current minimum value of the scroll bar. See the "minValue" [p. 273] property for details.

void QScrollBar::setOrientation (Orientation) [virtual]

Sets the orientation of the scroll bar. See the "orientation" [p. 273] property for details.

void QScrollBar::setPageStep (int)

Sets the current line step. See the "pageStep" [p. 273] property for details.

void QScrollBar::setPalette (const QPalette & p) [virtual]

Reimplements the virtual function QWidget::setPalette().
Sets the background color to the mid color for Motif style scroll bars using palette p.

Reimplemented from QWidget [p. 477].

void QScrollBar::setTracking (bool enable) [virtual]

Sets whether scroll bar tracking is enabled to enable. See the "tracking" [p. 273] property for details.

void QScrollBar::setValue (int) [slot]

Sets the current scroll bar value. See the "value" [p. 274] property for details.

void QScrollBar::sliderMoved (int value) [signal]

This signal is emitted when the slider is moved by the user, with the new scroll bar value as an argument.

QScrollBar Class Reference 272

This signal is emitted even when tracking is turned off.

See also tracking [p. 273], valueChanged() [p. 272], nextLine() [p. 270], prevLine() [p. 270], nextPage() [p. 270]
and prevPage() [p. 271].

void QScrollBar::sliderPressed () [signal]

This signal is emitted when the user presses the slider with the mouse.

QRect QScrollBar::sliderRect () const

Returns the scroll bar slider rectangle.

See also sliderStart() [p. 272].

void QScrollBar::sliderReleased () [signal]

This signal is emitted when the user releases the slider with the mouse.

int QScrollBar::sliderStart () const

Returns the pixel position where the scroll bar slider starts.

This is equivalent to sliderRect().y() for vertical scroll bars or sliderRect().x() for horizontal scroll bars.

bool QScrollBar::tracking () const

Returns TRUE if scroll bar tracking is enabled; otherwise returns FALSE. See the "tracking" [p. 273] property for details.

int QScrollBar::value () const

Returns the current scroll bar value. See the "value" [p. 274] property for details.

void QScrollBar::valueChanged (int value) [signal]

This signal is emitted when the scroll bar value has changed, with the new scroll bar value as an argument.

Property Documentation

bool draggingSlider

This property holds whether the user has clicked the mouse on the slider and is currently dragging it.

Get this property’s value with draggingSlider().

QScrollBar Class Reference 273

int lineStep

This property holds the current line step.

When setting lineStep, the virtual stepChange() function will be called if the new line step is different from the previous
setting.

See also setSteps() [p. 2651, QRangeControl::pageStep() [p. 264] and setRange() [p. 265].

Set this property’s value with setLineStep() and get this property’s value with lineStep().

int maxValue

This property holds the current maximum value of the scroll bar.
When setting this property, the QScrollBar::minValue is adjusted so that the range remains valid if necessary.
See also setRange() [p. 265].

Set this property’s value with setMaxValue() and get this property’s value with maxValue().

int minValue

This property holds the current minimum value of the scroll bar.
When setting this property, the QScrollBar::maxValue is adjusted so that the range remains valid if necessary.
See also setRange() [p. 265].

Set this property’s value with setMinValue() and get this property’s value with minValue().

Orientation orientation

This property holds the orientation of the scroll bar.
The orientation must be Qt::Vertical (the default) or Qt::Horizontal.

Set this property’s value with setOrientation() and get this property’s value with orientation().

int pageStep

This property holds the current line step.

When setting pageStep, the virtual stepChange() function will be called if the new page step is different from the
previous setting.

See also QRangeControl::setSteps() [p. 2651, lineStep [p. 273] and setRange() [p. 265].

Set this property’s value with setPageStep() and get this property’s value with pageStep().

bool tracking

This property holds whether scroll bar tracking is enabled.

QScrollBar Class Reference 274

If tracking is enabled (the default), the scroll bar emits the valueChanged() signal while the slider is being dragged. If
tracking is disabled, the scroll bar emits the valueChanged() signal only when the user releases the mouse button after
moving the slider.

Set this property’s value with setTracking() and get this property’s value with tracking().

int value

This property holds the current scroll bar value.
Set this property’s value with setValue() and get this property’s value with value().

See also QRangeControl::value() [p. 266] and prevValue() [p. 264].

QScrollView Class Reference

The QScrollView widget provides a scrolling area with on-demand scroll bars.
#incl ude <gscrol | vi ew. h>
Inherits QFrame [p. 67].

Inherited by QCanvasView [Graphics with Qt], QTable [p. 3441, QGridView [p. 76], QlconView [p. 92], QListBox
[p. 156], QListView [p. 189] and QTextEdit [p. 393].

Public Members

QScrollView (QWidget * parent = 0, const char * name = 0, WFlags f = 0)
= ~QScrollView ()

m enum ResizePolicy { Default, Manual, AutoOne, AutoOneFit }

m virtual void setResizePolicy (ResizePolicy)

m ResizePolicy resizePolicy () const

m void removeChild (QWidget * child)

m virtual void addChild (QWidget * child, int x = 0, inty = 0)
virtual void moveChild (QWidget * child, int x, int y)
int childX (QWidget * child)

int childY (QWidget * child)

bool childIsVisible (QWidget * child) (obsolete)

m void showChild (QWidget * child, bool y = TRUE) (obsolete)
= enum ScrollBarMode { Auto, AlwaysOff, AlwaysOn }
m ScrollBarMode vScrollBarMode () const

m virtual void setVScrollBarMode (ScrollBarMode)

m ScrollBarMode hScrollBarMode () const

virtual void setHScrollBarMode (ScrollBarMode)
QWidget * cornerWidget () const

virtual void setCornerWidget (QWidget * corner)
QScrollBar * horizontalScrollBar () const

m QScrollBar * verticalScrollBar () const

m QWidget * viewport () const

m QWidget * clipper () const

m int visibleWidth () const

m int visibleHeight () const

m int contentsWidth () const

275

QScrollView Class Reference

int contentsHeight () const

int contentsX () const

int contentsY () const

void updateContents (int x, int y, int w, int h)

void updateContents (const QRect & 1)

void updateContents ()

void repaintContents (int x, int y, int w, int h, bool erase = TRUE)
void repaintContents (const QRect & 1, bool erase = TRUE)
void repaintContents (bool erase = TRUE)

void contentsToViewport (int x, int y, int & vx, int & vy) const
void viewportToContents (int vx, int vy, int & x, int & y) const
QPoint contentsToViewport (const QPoint & p) const

QPoint viewportToContents (const QPoint & vp) const

void enableClipper (bool y)

void setStaticBackground (bool y)

bool hasStaticBackground () const

QSize viewportSize (int x, int y) const

virtual void setDragAutoScroll (bool b)

bool dragAutoScroll () const

Public Slots

virtual void resizeContents (int w, int h)

void scrollBy (int dx, int dy)

virtual void setContentsPos (int x, int y)

void ensureVisible (int x, int y)

void ensureVisible (int x, int y, int xmargin, int ymargin)
void center (int x, int y)

void center (int x, int y, float xmargin, float ymargin)
void updateScrollBars ()

Signals

void contentsMoving (int x, int y)

Properties

int contentsHeight — the height of the contents area (read only)
int contentsWidth — the width of the contents area (read only)

int contentsX — the X coordinate of the contents that are at the left edge of the viewport (read only)
int contentsY — the Y coordinate of the contents that are at the top edge of the viewport (read only)
bool dragAutoScroll — whether autoscrolling in drag move events is enabled

ScrollBarMode hScrollBarMode — the mode for the horizontal scroll bar

276

QScrollView Class Reference 277

ResizePolicy resizePolicy — the current resize policy

ScrollBarMode vScrollBarMode — the mode for the vertical scroll bar

int visibleHeight — the vertical amount of the content that is visible (read only)
int visibleWidth — the horizontal amount of the content that is visible (read only)

Protected Members

m virtual void drawContents (QPainter * p, int clipx, int clipy, int clipw, int cliph)

» virtual void drawContentsOffset (QPainter * p, int offsetx, int offsety, int clipx, int clipy, int clipw, int cliph)
m virtual void contentsMousePressEvent (QMouseEvent *)

m virtual void contentsMouseReleaseEvent (QMouseEvent *)

virtual void contentsMouseDoubleClickEvent (QMouseEvent *)

virtual void contentsMouseMoveEvent (QMouseEvent *)

virtual void contentsDragEnterEvent (QDragEnterEvent *)

virtual void contentsDragMoveEvent (QDragMoveEvent *)

virtual void contentsDragLeaveEvent (QDraglLeaveEvent *)

virtual void contentsDropEvent (QDropEvent *)

m virtual void contentsWheelEvent (QWheelEvent * e)

m virtual void contentsContextMenuEvent (QContextMenuEvent * e)
virtual void viewportPaintEvent (QPaintEvent * pe)

virtual void viewportResizeEvent (QResizeEvent *)

virtual void setMargins (int left, int top, int right, int bottom)

int leftMargin () const

int topMargin () const

int rightMargin () const

int bottomMargin () const

m virtual void setHBarGeometry (QScrollBar & hbar, int x, int y, int w, int h)
m virtual void setVBarGeometry (QScrollBar & vbar, int x, int y, int w; int h)
e virtual bool eventFilter (QObject * obj, QEvent * e)

Detailed Description

The QScrollView widget provides a scrolling area with on-demand scroll bars.

The QScrollView is a large canvas - potentially larger than the coordinate system normally supported by the underlying
window system. This is important because it is quite easy to go beyond these limitations (e.g. many web pages are
more than 32000 pixels high). Additionally, the QScrollView can have QWidgets positioned on it that scroll around
with the drawn content. These subwidgets can also have positions outside the normal coordinate range (but they are
still limited in size).

To provide content for the widget, inherit from QScrollView, reimplement drawContents() and use resizeContents() to
set the size of the viewed area. Use addChild() and moveChild() to position widgets on the view.

To use QScrollView effectively it is important to understand its widget structure in the three styles of use: a single large
child widget, a large panning area with some widgets and a large panning area with many widgets.

QScrollView Class Reference 278

Using One Big Widget

g -~= single child

this QScrollView

viewport()

verticalScrollBar()

cornerWidget()

horizontalScrollBar()

The first, simplest usage of QScrollView (depicted above), is appropriate for scrolling areas that are never more than
about 4000 pixels in either dimension (this is about the maximum reliable size on X11 servers). In this usage, you just
make one large child in the QScrollView. The child should be a child of the viewport() of the scrollview and be added
with addChild():

QScrol I View sv = new QScrollView...);
QvBox* big_box = new QvBox(sv->viewport());
sv->addChi | d(bi g_box);

You may go on to add arbitrary child widgets to the single child in the scrollview as you would with any widget:

Q.abel * childl = new Q.abel ("CHI LD', big_box);
Q.abel * child2 = new QLabel ("CHI LD', big_box);
Q.abel * child3 = new Q.abel ("CHI LD', big_box);

Here the QScrollView has four children: the viewport(), the verticalScrollBar(), the horizontalScrollBar() and a small
cornerWidget(). The viewport() has one child — the big QVBox. The QVBox has the three QLabel objects as child
widgets. When the view is scrolled, the QVBox is moved; its children move with it as child widgets normally do.

QScrollView Class Reference 279

Using a Very Big View with Some Widgets

_ contentsWidth(), contentsHeighut()

this QScrollView

| viewport()

| wverticalScrollBar()

[E40E8 baataes Hadsaiaeas

1 cornerWidge)

horizontal SerollBar()

The second usage of QScrollView (depicted above) is appropriate when few, if any, widgets are on a very large scrolling
area that is potentially larger than 4000 pixels in either dimension. In this usage you call resizeContents() to set the
size of the area and reimplement drawContents() to paint the contents. You may also add some widgets by making
them children of the viewport() and adding them with addChild() (this is the same as the process for the single large
widget in the previous example):

@scrol I View sv = new QScrollView...);
Q.abel * childl = new Q.abel ("CHI LD", sv->viewport());
sv->addChi | d(chi | d1);
Q.abel * child2 = new Q.abel ("CHI LD", sv->viewport());
sv->addChi | d(chi | d2);
Q.abel * child3 = new Q.abel ("CHI LD", sv->viewport());
sv->addChi | d(chi | d3);

Here, the QScrollView has the same four children: the viewport(), the verticalScrollBar(), the horizontalScrollBar()
and a small cornerWidget(). The viewport() has the three QLabel objects as child widgets. When the view is scrolled,
the scrollview moves the child widgets individually.

QScrollView Class Reference 280

e, \ _ contentsWidth(), contentsHeighu()

viewport()

this QScroll View

bt clipper()

| verticalScrollBar(}

| cornerWidget()

horizentalScrollBar()

Using a Very Big View with Many Widgets L

The final usage of QScrollView (depicted above) is appropriate when many widgets are on a very large scrolling area
that is potentially larger than 4000 pixels in either dimension. In this usage you call resizeContents() to set the size of
the area and reimplement drawContents() to paint the contents. You then call enableClipper(TRUE) and add widgets,
again by making them children of the viewport(), and adding them with addChild():

scrol I View sv = new QScrollView...);

sv->enabl ed i pper (TRUE);

Q.abel * childl = new Q.abel ("CHI LD", sv->viewport());
sv->addChi | d(chi | d1);

Q.abel * child2 = new Q.abel ("CHI LD", sv->viewport());
sv->addChi | d(chi | d2);

Q.abel * child3 = new Q.abel ("CHI LD", sv->viewport());
sv->addChi | d(chi | d3);

Here, the QScrollView has four children: the clipper() (not the viewport() this time), the verticalScrollBar(), the
horizontalScrollBar() and a small cornerWidget(). The clipper() has one child: the viewport(). The viewport() has the
same three labels as child widgets. When the view is scrolled the viewport() is moved; its children move with it as
child widgets normally do.

Details Relevant for All Views

Normally you will use the first or third method if you want any child widgets in the view.

Note that the widget you see in the scrolled area is the viewport() widget, not the QScrollView itself. So to turn mouse
tracking on, for example, use viewport()->setMouseTracking(TRUE).

To enable drag-and-drop, you would setAcceptDrops(TRUE) on the QScrollView (because drag-and-drop events propa-
gate to the parent). But to work out the logical position in the view, you would need to map the drop co-ordinate from
being relative to the QScrollView to being relative to the contents; use the function viewportToContents() for this.

To handle mouse events on the scrolling area, subclass scrollview as you would subclass other widgets, but rather than
reimplementing mousePressEvent(), reimplement contentsMousePressEvent() instead. The contents specific event
handers provide translated events in the coordinate system of the scrollview. If you reimplement mousePressEvent(),
you'll get called only when part of the QScrollView is clicked — and the only such part is the "corner" (if you don’t set
a cornerWidget()) and the frame; everything else is covered up by the viewport, clipper or scroll bars.

When you construct a QScrollView, some of the widget flags apply to the viewport() instead of being sent to the

QScrollView Class Reference 281

QWidget constructor for the QScrollView. This applies to WResizeNoErase, WStaticContents, WRepaintNoErase and
WPaintClever. See Qt::WidgetFlags for documentation about these flags. Here are some examples:

e Animage-manipulation widget would use WResi zeNoEr ase| Wot ati cCont ent s because the widget draws all pixels
itself, and when its size increases, it only needs a paint event for the new part because the old part remains
unchanged.

e A word processing widget might use WResizeNoErase and repaint itself line by line to get a less-flickery resizing.
If the widget is in a mode in which no text justification can take place, it might use WStaticContents too, so that
it would only get a repaint for the newly visible parts.

e A scrolling game widget in which the background scrolls as the characters move might use WRepaintNoErase (in
addition to WStaticContents and WResizeNoErase) so that the window system background does not flash in and
out during scrolling.

Child widgets may be moved using addChild() or moveChild(). Use childX() and childY() to get the position of a child
widget.

A widget may be placed in the corner between the vertical and horizontal scrollbars with setCornerWidget(). You can
get access to the scrollbars using horizontalScrollBar() and verticalScrollBar(), and to the viewport with viewport().
The scroll view can be scrolled using scrollBy(), ensureVisible(), setContentsPos() or center().

The visible area is given by visibleWidth() and visibleHeight(), and the contents area by contentsWidth() and con-
tentsHeight(). The contents may be repainted using one of the repaintContents() or updateContents() functions.

Coordinate conversion is provided by contentsToViewport() and viewportToContents().
The contentsMoving() signal is emitted just before the contents are moved to a new position.

Warning: WResizeNoErase is currently set by default, i.e. you always have to clear the background manually in
scrollview subclasses. This will change in a future version of Qt and we recommend specifying the flag explicitly.

|]

See also Abstract Widget Classes.

Member Type Documentation

QScrollView::ResizePolicy
This enum type is used to control a QScrollView’s reaction to resize events. There are four possible settings:

e (Scrol | View : Default - the QScrollView selects one of the other settings automatically when it has to. In this
version of Qt, QScrollView changes to Manual if you resize the contents with resizeContents() and to AutoOne if
a child is added.

e (Scrol | View : Manual - the view stays the size set by resizeContents().

e (Scrol | View : Aut oOne - if there is only one child widget the view stays the size of that widget. Otherwise the
behaviour is undefined.

QScrollView Class Reference 282

e (Scrol | View : AutoOneFit - if there is only one child widget the view stays the size of that widget’s sizeHint().
If the scrollview is resized larger than the child’s sizeHint(), the child will be resized to fit. If there is more than
one child, the behaviour is undefined.

QScrollView::ScrollBarMode

This enum type describes the various modes of QScrollView’s scroll bars. The defined modes are:

e (Scrol | View : Aut o - QScrollView shows a scroll bar when the content is too large to fit and not otherwise. This
is the default.

e (Scrol |l View : AlwaysC f - QScrollView never shows a scroll bar.
e (Scrol | View : Alwaysn - QScrollView always shows a scroll bar.

(The modes for the horizontal and vertical scroll bars are independent.)

Member Function Documentation

QScrollView::QScrollView (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a QScrollView with a parent, a name and widget flags f.

The widget flags WStaticContents, WRepaintNoErase and WPaintClever are propagated to the viewport() widget. The
other widget flags are propagated to the parent constructor as usual.

QScrollView::~QScrollView ()

Destroys the QScrollView. Any children added with addChild () will be deleted.

void QScrollView::addChild (QWidget * child, int x = 0, int y = 0) [virtual]

Inserts the widget, child, into the scrolled area positioned at (x, y). The position defaults to (0, 0). If the child is already
in the view, it is just moved.

You may want to call enableClipper(TRUE) if you add a large number of widgets.

Example: scrollview/scrollview.cpp.

int QScrollView::bottomMargin () const [protected]

Returns the bottom margin.

See also setMargins() [p. 290].

void QScrollView::center (int X, int y) [slot]

Scrolls the content so that the point (x, y) is in the center of visible area.

Example: scrollview/scrollview.cpp.

QScrollView Class Reference 283

void QScrollView::center (int x, int y, float xmargin, float ymargin) [slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Scrolls the content so that the point (x, y) is visible with the xmargin and ymargin margins (as fractions of visible area).

For example:

e Margin 0.0 allows (x, y) to be on the edge of the visible area.
e Margin 0.5 ensures that (x, y) is in middle 50% of the visible area.
e Margin 1.0 ensures that (%, y) is in the center of the the visible area.

bool QScrollView::childIsVisible (QWidget * child)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

Returns TRUE if child is visible. This is equivalent to child->isVisible().

int QScrollView::childX (QWidget * child)

Returns the X position of the given child widget. Use this rather than QWidget::x() for widgets added to the view.

int QScrollView::childY (QWidget * child)

Returns the Y position of the given child widget. Use this rather than QWidget::y() for widgets added to the view.

QWidget * QScrollView::clipper () const

Returns the clipper widget. Contents in the scrollview are ultimately clipped to be inside the clipper widget.
You should not need to use this function.

See also visibleWidth [p. 294] and visibleHeight [p. 294].

void QScrollView::contentsContextMenuEvent (QContextMenuEvent * e) [virtual protected]

This event handler is called whenever the QScrollView receives a contextMenuEvent() in e - the mouse position is
translated to be a point on the contents.

void QScrollView::contentsDragEnterEvent (QDragEnterEvent *) [virtual protected]

This event handler is called whenever the QScrollView receives a dragEnterEvent() - the drag position is translated to
be a point on the contents.

Example: dirview/dirview.cpp.

Reimplemented in QTable.

QScrollView Class Reference 284

void QScrollView::contentsDragl.eaveEvent (QDragleaveEvent *) [virtual protected]

This event handler is called whenever the QScrollView receives a dragleaveEvent() - the drag position is translated to
be a point on the contents.

Example: dirview/dirview.cpp.

Reimplemented in QTable.

void QScrollView::contentsDragMoveEvent (QDragMoveEvent *) [virtual protected]

This event handler is called whenever the QScrollView receives a dragMoveEvent() - the drag position is translated to
be a point on the contents.

Example: dirview/dirview.cpp.

Reimplemented in QTable.

void QScrollView::contentsDropEvent (QDropEvent *) [virtual protected]

This event handler is called whenever the QScrollView receives a dropEvent() - the drop position is translated to be a
point on the contents.

Example: dirview/dirview.cpp.

Reimplemented in QTable.

int QScrollView::contentsHeight () const

Returns the height of the contents area. See the "contentsHeight" [p. 292] property for details.

void QScrollView::contentsMouseDoubleClickEvent (QMouseEvent *) [virtual protected]

This event handler is called whenever the QScrollView receives a mouseDoubleClickEvent() - the click position is
translated to be a point on the contents.

Reimplemented in QListView.

void QScrollView::contentsMouseMoveEvent (QMouseEvent *) [virtual protected]

This event handler is called whenever the QScrollView receives a mouseMoveEvent() - the mouse position is translated
to be a point on the contents.

Reimplemented in QListView.

void QScrollView::contentsMousePressEvent (QMouseEvent *) [virtual protected]

This event handler is called whenever the QScrollView receives a mousePressEvent() - the press position is translated
to be a point on the contents.

Reimplemented in QListView.

QScrollView Class Reference 285

void QScrollView::contentsMouseReleaseEvent (QMouseEvent *) [virtual protected]

This event handler is called whenever the QScrollView receives a mouseReleaseEvent() - the release position is trans-
lated to be a point on the contents.

Reimplemented in QListView.

void QScrollView::contentsMoving (int x, int y) [signal]

This signal is emitted just before the contents are moved to position (x, y).

See also contentsX [p. 293] and contentsY [p. 293].

void QScrollView::contentsToViewport (int x, int y, int & vx, int & vy) const

Translates a point (x, y) in the contents to a point (vx, vy) on the viewport() widget.

QPoint QScrollView::contentsToViewport (const QPoint & p) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the point p translated to a point on the viewport() widget.

void QScrollView::contentsWheelEvent (QWheelEvent * e) [virtual protected]

This event handler is called whenever the QScrollView receives a wheelEvent() in e - the mouse position is translated
to be a point on the contents.

int QScrollView::contentsWidth () const

Returns the width of the contents area. See the "contentsWidth" [p. 292] property for details.

int QScrollView::contentsX () const

Returns the X coordinate of the contents that are at the left edge of the viewport. See the "contentsX" [p. 293] property
for details.

int QScrollView::contentsY () const

Returns the Y coordinate of the contents that are at the top edge of the viewport. See the "contentsY" [p. 293] property
for details.

QWidget * QScrollView::cornerWidget () const

Returns the widget in the corner between the two scroll bars.

QScrollView Class Reference 286

By default, no corner widget is present.

Example: scrollview/scrollview.cpp.

bool QScrollView::dragAutoScroll () const

Returns TRUE if autoscrolling in drag move events is enabled; otherwise returns FALSE. See the "dragAutoScroll"
[p. 293] property for details.

void QScrollView::drawContents (QPainter * p, int clipx, int clipy, int clipw,
int cliph) [virtual protected]

Reimplement this function if you are viewing a drawing area rather than a widget.

The function should draw the rectangle (clipx, clipy, clipw, cliph) of the contents using painter p. The clip rectangle is
in the scrollview’s coordinates.

For example:

{
/1 Fill a 40000 by 50000 rectangle at (100000, 150000)

/1 Calculate the coordinates...
int x1 = 100000, y1 = 150000;
int x2 = x1+40000-1, y2 = y1+50000-1;

/I Cip the coordinates so XY Wndows will not have problens...
if (x1 <clipx) x1=clipx;

if (yl clipx+clipw1) x2=clipx+clipw1;

if (y2 > clipy+cliph-1) y2=clipy+cliph-1;

/] Paint using the small coordinates...
if ((x2 >=x1 & y2 >=yl)
p->fillRect(x1, yl, x2-x1+1, y2-yl+l, red);
}

The clip rectangle and translation of the painter p is already set appropriately.
Example: qdir/qdir.cpp.

Reimplemented in QCanvasView and QTable.

void QScrollView::drawContentsOffset (QPainter * p, int offsetx, int offsety, int clipx,
int clipy, int clipw, int cliph) [virtual protected]

For backward-compatibility only. It is easier to use drawContents(QPainter*,int,int,int,int).

The default implementation translates the painter appropriately and calls drawContents(QPainter*,int,int,int,int). See
drawContents for an explanation of the parameters p, offsetx, offsety, clipx, clipy, clipw and cliph.

Reimplemented in QListView.

QScrollView Class Reference 287

void QScrollView::enableClipper (bool y)

When a large numbers of child widgets are in a scrollview, especially if they are close together, the scrolling performance
can suffer greatly. If y is TRUE the scrollview will use an extra widget to group child widgets.

Note that you may only call enableClipper() prior to adding widgets.
For a full discussion, see this class’s detailed description.

Example: scrollview/scrollview.cpp.

void QScrollView::ensureVisible (int x, int y) [slot]

Scrolls the content so that the point (x, y) is visible with at least 50-pixel margins (if possible, otherwise centered).

void QScrollView::ensureVisible (int x, int y, int xmargin, int ymargin) [slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Scrolls the content so that the point (x, y) is visible with at least the xmargin and ymargin margins (if possible, otherwise
centered).

bool QScrollView::eventFilter (QObject * obj, QEvent * e) [virtual protected]

This event filter ensures the scroll bars are updated when a single contents widget is resized, shown, hidden or de-
stroyed; it passes mouse events to the QScrollView. The event is in e and the object is in obj.

Reimplemented from QObject [Additional Functionality with Qt].

Reimplemented in QListView.

ScrollBarMode QScrollView::hScrollBarMode () const

Returns the mode for the horizontal scroll bar. See the "hScrollBarMode" [p. 293] property for details.

bool QScrollView::hasStaticBackground () const

Returns TRUE if QScrollView uses a static background; otherwise returns FALSE.

See also setStaticBackground() [p. 290].

QScrollBar * QScrollView::horizontalScrollBar () const

Returns the component horizontal scroll bar. It is made available to allow accelerators, autoscrolling, etc. and to allow
changing arrow scroll rates, e.g. bar->setSteps(rate, bar->pageStep()).

It should not be otherwise manipulated.

This function never returns O.

QScrollView Class Reference 288

int QScrollView::leftMargin () const [protected]

Returns the left margin.

See also setMargins() [p. 290].

void QScrollView::moveChild (QWidget * child, int x, int y) [virtual]

Repositions the child widget to (x, y). This function is the same as addChild().

void QScrollView::removeChild (QWidget * child)

Removes the child widget from the scrolled area. Note that this happens automatically if the child is deleted.

void QScrollView::repaintContents (int x, int y, int w, int h, bool erase = TRUE)

Calls repaint() on a rectangle defined by x, y, w, h, translated appropriately. If the rectangle in not visible, nothing is
repainted. If erase is TRUE the background is cleared using the background color.

See also updateContents() [p. 291].

void QScrollView::repaintContents (const QRect & r, bool erase = TRUE)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Repaints the contents of rectangle r. If erase is TRUE the background is cleared using the background color.
void QScrollView::repaintContents (bool erase = TRUE)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Repaints the contents. If erase is TRUE the background is cleared using the background color.

void QScrollView::resizeContents (int w, int h) [virtual slot]

Sets the size of the contents area to w pixels wide and h pixels high and updates the viewport accordingly.

ResizePolicy QScrollView::resizePolicy () const

Returns the current resize policy. See the "resizePolicy" [p. 293] property for details.

int QScrollView::rightMargin () const [protected]

Returns the right margin.

See also setMargins() [p. 290].

QScrollView Class Reference 289

void QScrollView::scrollBy (int dx, int dy) [slot]

Scrolls the content by dx to the left and dy upwards.

void QScrollView::setContentsPos (int x, int y) [virtual slot]

Scrolls the content so that the point (X, y) is in the top-left corner.

Example: process/process.cpp.

void QScrollView::setCornerWidget (QWidget * corner) [virtual]

Sets the widget in the corner between the two scroll bars.

You will probably also want to set at least one of the scroll bar modes to AlwaysOn.
Passing 0 shows no widget in the corner.

Any previous corner widget is hidden.

You may call setCornerWidget() with the same widget at different times.

All widgets set here will be deleted by the QScrollView when it is destroyed unless you separately reparent the widget
after setting some other corner widget (or 0).

Any newly set widget should have no current parent.
By default, no corner widget is present.
See also vScrollBarMode [p. 293] and hScrollBarMode [p. 293].

Example: scrollview/scrollview.cpp.

void QScrollView::setDragAutoScroll (bool b) [virtual]

Sets whether autoscrolling in drag move events is enabled to b. See the "dragAutoScroll" [p. 293] property for details.

void QScrollView::setHBarGeometry (QScrollBar & hbar, int x, int y, int w,
int h) [virtual protected]

Called when the horizontal scroll bar geometry changes. This is provided as a protected function so that subclasses can
do interesting things such as providing extra buttons in some of the space normally used by the scroll bars.

The default implementation simply gives all the space to hbar. The new geometry is given by x, y, w and h.

See also setVBarGeometry() [p. 290].

void QScrollView::setHScrollBarMode (ScrollBarMode) [virtual]

Sets the mode for the horizontal scroll bar. See the "hScrollBarMode" [p. 293] property for details.

QScrollView Class Reference 290

void QScrollView::setMargins (int left, int top, int right, int bottom) [virtual protected]

Sets the margins around the scrolling area to left, top, right and bottom. This is useful for applications such as spread-
sheets with "locked" rows and columns. The marginal space is inside the frameRect() and is left blank; reimplement
drawContents() or put widgets in the unused area.

By default all margins are zero.

See also frameChanged() [p. 70].

void QScrollView::setResizePolicy (ResizePolicy) [virtual]

Sets the current resize policy. See the "resizePolicy" [p. 293] property for details.

void QScrollView::setStaticBackground (bool y)

Sets the scrollview to have a static background if y is TRUE, or a scrolling background if y is FALSE. By default, the
background is scrolling.

Be aware that this mode is quite slow, as a full repaint of the visible area has to be triggered on every contents move.

See also hasStaticBackground() [p. 287].

void QScrollView::setVBarGeometry (QScrollBar & vbar, int x, int y, int w,
int h) [virtual protected]

Called when the vertical scroll bar geometry changes. This is provided as a protected function so that subclasses can
do interesting things such as providing extra buttons in some of the space normally used by the scroll bars.

The default implementation simply gives all the space to vbar. The new geometry is given by x, y, w and h.

See also setHBarGeometry() [p. 289].

void QScrollView::setVScrollBarMode (ScrollBarMode) [virtual]

Sets the mode for the vertical scroll bar. See the "vScrollBarMode" [p. 293] property for details.

void QScrollView::showChild (QWidget * child, bool y = TRUE)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Sets the visibility of child. Equivalent to QWidget::show() or QWidget::hide().

int QScrollView::topMargin () const [protected]

Returns the top margin.

See also setMargins() [p. 290].

QScrollView Class Reference 291

void QScrollView::updateContents (int x, int y, int w, int h)

Calls update() on a rectangle defined by x, y, w, h, translated appropriately. If the rectangle is not visible, nothing is
repainted.

See also repaintContents() [p. 288].

void QScrollView::updateContents (const QRect & r)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Updates the contents in rectangle r

void QScrollView::updateContents ()

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

void QScrollView::updateScrollBars () [slot]

Updates scroll bars - all possibilities considered. You should never need to call this in your code.

ScrollBarMode QScrollView::vScrollBarMode () const

Returns the mode for the vertical scroll bar. See the "vScrollBarMode" [p. 293] property for details.

QScrollBar * QScrollView::verticalScrollBar () const

Returns the component vertical scroll bar. It is made available to allow accelerators, autoscrolling, etc. and to allow
changing arrow scroll rates, e.g. bar->setSteps(rate, bar->pageStep()).

It should not be otherwise manipulated.

This function never returns 0.

QWidget * QScrollView::viewport () const

Returns the viewport widget of the scrollview. This is the widget containing the contents widget or which is the drawing
area.

Example: scrollview/scrollview.cpp.

void QScrollView::viewportPaintEvent (QPaintEvent * pe) [virtual protected]

This is a low-level painting routine that draws the viewport contents. Reimplement this if drawContents() is too
high-level (for example, if you don’t want to open a QPainter on the viewport). The paint event is passed in pe.

QScrollView Class Reference 292

void QScrollView::viewportResizeEvent (QResizeEvent *) [virtual protected]

To provide simple processing of events on the contents, this function receives all resize events sent to the viewport.
See also QWidget::resizeEvent() [p. 471].

QSize QScrollView::viewportSize (int x, int y) const

Returns the viewport size for size (x, y).

The viewport size depends on (x, y) (the size of the contents), the size of this widget and the modes of the horizontal
and vertical scroll bars.

This function permits widgets that can trade vertical and horizontal space for each other to control scroll bar appearance
better. For example, a word processor or web browser can control the width of the right margin accurately, whether or
not there needs to be a vertical scroll bar.

void QScrollView::viewportToContents (int vx, int vy, int & x, int & y) const

Translates a point (vx, vy) on the viewport() widget to a point (x, y) in the contents.

QPoint QScrollView::viewportToContents (const QPoint & vp) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the point on the viewport vp translated to a point in the contents.

int QScrollView::visibleHeight () const

Returns the vertical amount of the content that is visible. See the "visibleHeight" [p. 294] property for details.

int QScrollView::visibleWidth () const

Returns the horizontal amount of the content that is visible. See the "visibleWidth" [p. 294] property for details.

Property Documentation

int contentsHeight

This property holds the height of the contents area.

Get this property’s value with contentsHeight().

int contentsWidth

This property holds the width of the contents area.

QScrollView Class Reference 293
Get this property’s value with contentsWidth().

int contentsX

This property holds the X coordinate of the contents that are at the left edge of the viewport.

Get this property’s value with contentsX().

int contentsY

This property holds the Y coordinate of the contents that are at the top edge of the viewport.

Get this property’s value with contentsY().

bool dragAutoScroll

This property holds whether autoscrolling in drag move events is enabled.

If this property is set to TRUE (the default), the QScrollView automatically scrolls the contents in drag move events
if the user moves the cursor close to a border of the view. Of course this works only if the viewport accepts drops.
Specifying FALSE disables this autoscroll feature.

Set this property’s value with setDragAutoScroll() and get this property’s value with dragAutoScroll().

ScrollBarMode hScrollBarMode

This property holds the mode for the horizontal scroll bar.

The default mode is QScrollView::Auto.

See also vScrollBarMode [p. 293].

Set this property’s value with setHScrollBarMode() and get this property’s value with hScrollBarMode().

ResizePolicy resizePolicy

This property holds the current resize policy.
The default is Default.
See also ResizePolicy [p. 281].

Set this property’s value with setResizePolicy() and get this property’s value with resizePolicy().

ScrollBarMode vScrollBarMode

This property holds the mode for the vertical scroll bar.
The default mode is QScrollView::Auto.
See also hScrollBarMode [p. 293].

Set this property’s value with setVScrollBarMode() and get this property’s value with vScrollBarMode().

QScrollView Class Reference 294

int visibleHeight

This property holds the vertical amount of the content that is visible.

Get this property’s value with visibleHeight().

int visibleWidth

This property holds the horizontal amount of the content that is visible.

Get this property’s value with visibleWidth().

QSizeGrip Class Reference

The QSizeGrip class provides corner-grip for resizing a top-level window.
#incl ude <qgsi zegrip. h>

Inherits QWidget [p. 436].

Public Members

m QSizeGrip (QWidget * parent, const char * name = 0)
m ~QSizeGrip ()
m virtual QSize sizeHint () const

Protected Members

m virtual void paintEvent (QPaintEvent * e)
m virtual void mousePressEvent (QMouseEvent * e)
m virtual void mouseMoveEvent (QMouseEvent * e)

Detailed Description

The QSizeGrip class provides corner-grip for resizing a top-level window.

This widget works like the standard Windows resize handle. In the X11 version this resize handle generally works
differently from the one provided by the system; we hope to reduce this difference in the future.

Put this widget anywhere in a tree and the user can use it to resize the top-level window. Generally, this should be in
the lower right-hand corner. Note that QStatusBar already uses this widget, so if you have a status bar (e.g. you are
using QMainWindow), then you don’t need to use this widget explicitly.

24 | 4

See also QStatusBar [p. 329], Widget Appearance and Style, Main Window and Related Classes and Basic Widgets.

295

QSizeGrip Class Reference 296

Member Function Documentation

QSizeGrip::QSizeGrip (QWidget * parent, const char * name = 0)

Constructs a resize corner as a child widget of parent with the name name.

QSizeGrip::~QSizeGrip ()

Destroys the size grip.

void QSizeGrip::mouseMoveEvent (QMouseEvent * e) [virtual protected]

Resizes the top-level widget containing this widget. The event is in e.

Reimplemented from QWidget [p. 465].

void QSizeGrip::mousePressEvent (QMouseEvent * e) [virtual protected]

Primes the resize operation. The event is in e.

Reimplemented from QWidget [p. 465].

void QSizeGrip::paintEvent (QPaintEvent * e) [virtual protected]

Paints the resize grip. Resize grips are usually rendered as small diagonal textured lines in the lower-right corner. The
event is in e.

Reimplemented from QWidget [p. 466].

QSize QSizeGrip::sizeHint () const [virtual]

Returns the size grip’s size hint; this is a small size.

Reimplemented from QWidget [p. 481].

QSizePolicy Class Reference

The QSizePolicy class is a layout attribute describing horizontal and vertical resizing.

#i ncl ude <gsi zepolicy. h>

Public Members

m enum SizeType { Fixed = 0, Minimum = MayGrow, Maximum = MayShrink, Preferred = MayGrow |
MayShrink, MinimumExpanding = MayGrow | ExpMask, Expanding = MayGrow | MayShrink | ExpMask,
Ignored = ExpMask }

» enum ExpandData { NoDirection = 0, Horizontally = 1, Vertically = 2, BothDirections = Horizontally |
Vertically, Horizontal = Horizontally, Vertical = Vertically }

m QSizePolicy ()

m QSizePolicy (SizeType hor, SizeType ver, bool hfw = FALSE)
m QSizePolicy (SizeType hor, SizeType ver, uchar horStretch, uchar verStretch, bool hfw = FALSE)
m SizeType horData () const

m SizeType verData () const

» bool mayShrinkHorizontally () const

m bool mayShrinkVertically () const

bool mayGrowHorizontally () const

bool mayGrowVertically () const

ExpandData expanding () const

void setHorData (SizeType d)

m void setVerData (SizeType d)

m void setHeightForWidth (bool b)

m bool hasHeightForWidth () const

m bool operator== (const QSizePolicy & s) const

bool operator!= (const QSizePolicy & s) const

uint horStretch () const

uint verStretch () const

void setHorStretch (uchar sf)

void setVerStretch (uchar sf)

297

QSizePolicy Class Reference 298

Detailed Description

The QSizePolicy class is a layout attribute describing horizontal and vertical resizing.
The size policy of a widget is an expression of its willingness to be resized in various ways.

Widgets that reimplement QWidget::sizePolicy() return a QSizePolicy describing the horizontal and vertical resizing
policy best used when laying out the widget. Only one of the constructors is of interest in most applications.

QSizePolicy contains two independent SizeType objects; one describes the widgets’s horizontal size policy, and the
other describes its vertical size policy. It also contains a flag to indicate whether the height and width of its preferred
size are related.

The per-dimension SizeType objects are set in the usual constructor and can be queried using a variety of functions,
none of which are really interesting to application programmers.

The hasHeightForWidth() flag indicates whether the widget’s sizeHint() is width-dependent (such as a word-wrapping
label).

See also QSizePolicy::SizeType [p. 298], Widget Appearance and Style and Layout Management.

Member Type Documentation

QSizePolicy::ExpandData
This enum type describes in which directions a widget can make use of extra space. There are four possible values:

e (Si zePol i cy:: NoDi rection - the widget cannot make use of extra space in any direction.

e (Si zePolicy::Horizontally - the widget can usefully be wider than the sizeHint().

e (SizePolicy:: Vertically -the widget can usefully be taller than the sizeHint().

e (Si zePol i cy:: BothDirections - the widget can usefully be both wider and taller than the sizeHint().

QSizePolicy::SizeType
The per-dimension sizing types used when constructing a QSizePolicy are:

e (Gi zePol i cy: : Fi xed - the QWidget::sizeHint() is the only acceptable alternative, so the widget can never grow
or shrink (e.g. the vertical direction of a push button).

e (Si zePol i cy:: M ni num- the sizeHint() is minimal, and sufficient. The widget can be expanded, but there is no
advantage to it being larger (e.g. the horizontal direction of a push button).

e (Si zePol i cy: : Maxi num- the sizeHint() is a maximum. The widget can be shrunk any amount without detriment
if other widgets need the space (e.g. a separator line).

e (Si zePolicy::Preferred - the sizeHint() is best, but the widget can be shrunk and still be useful. The widget
can be expanded, but there is no advantage to it being larger than sizeHint() (the default QWidget policy).

e (SizePol i cy: : Expanding - the sizeHint() is a sensible size, but the widget can be shrunk and still be useful. The
widget can make use of extra space, so it should get as much space as possible (e.g. the horizontal direction of a
slider).

e (Si zePol i cy: : M ni nuniExpandi ng - the sizeHint() is minimal, and sufficient. The widget can make use of extra
space, so it should get as much space as possible (e.g. the horizontal direction of a slider).

QSizePolicy Class Reference 299

e (Si zePol i cy: : | gnored - the sizeHint() is ignored. The widget will get as much space as possible.

In any case, QLayout never shrinks a widget below the QWidget::minimumSizeHint().

Member Function Documentation

QSizePolicy::QSizePolicy ()

Default constructor; produces a minimally initialized QSizePolicy.

QSizePolicy::QSizePolicy (SizeType hor, SizeType ver, bool hfw = FALSE)
This is the constructor normally used to return a value in the overridden QWidget::sizePolicy() function of a QWidget
subclass.

It constructs a QSizePolicy with independent horizontal and vertical sizing types, hor and ver respectively. These sizing
types affect how the widget is treated by the layout engine.

If hfw is TRUE, the preferred height of the widget is dependent on the width of the widget (for example, a QLabel with
line wrapping).

See also horData() [p. 300], verData() [p. 301] and hasHeightForWidth() [p. 299].

QSizePolicy::QSizePolicy (SizeType hor, SizeType ver, uchar horStretch, uchar verStretch,
bool hfw = FALSE)

Constructs a QSizePolicy with independent horizontal and vertical sizing types hor and ver, and stretch factors
horStretch and verStretch.

If hfw is TRUE, the preferred height of the widget is dependent on the width of the widget.

See also horStretch() [p. 300] and verStretch() [p. 301].

ExpandData QSizePolicy::expanding () const

Returns a value indicating whether the widget can make use of extra space (i.e. if it "wants" to grow) horizontally
and/or vertically.

See also mayShrinkHorizontally() [p. 300], mayGrowHorizontally() [p. 300], mayShrinkVertically() [p. 300] and
mayGrowVertically() [p. 300].

bool QSizePolicy::hasHeightForWidth () const

Returns TRUE if the widget’s preferred height depends on its width; otherwise returns FALSE.
See also setHeightForWidth() [p. 301].

QSizePolicy Class Reference 300

SizeType QSizePolicy::horData () const

Returns the horizontal component of the size policy.

See also setHorData() [p. 301], verData() [p. 301] and horStretch() [p. 300].

uint QSizePolicy::horStretch () const

Returns the horizontal stretch factor of the size policy.

See also setHorStretch() [p. 301] and verStretch() [p. 301].

bool QSizePolicy::mayGrowHorizontally () const

Returns TRUE if the widget can sensibly be wider than its sizeHint(); otherwise returns FALSE.
See also mayGrowVertically() [p. 300] and mayShrinkHorizontally() [p. 300].

bool QSizePolicy::mayGrowVertically () const

Returns TRUE if the widget can sensibly be taller than its sizeHint(); otherwise returns FALSE.

See also mayGrowHorizontally() [p. 300] and mayShrinkVertically() [p. 300].

bool QSizePolicy::mayShrinkHorizontally () const

Returns TRUE if the widget can sensibly be narrower than its sizeHint(); otherwise returns FALSE.

See also mayShrinkVertically() [p. 300] and mayGrowHorizontally() [p. 300].

bool QSizePolicy::mayShrinkVertically () const

Returns TRUE if the widget can sensibly be shorter than its sizeHint(); otherwise returns FALSE.

See also mayShrinkHorizontally() [p. 300] and mayGrowVertically() [p. 300].
bool QSizePolicy::operator!= (const QSizePolicy & s) const
Returns TRUE if this policy is different from s; otherwise returns FALSE.

See also operator==() [p. 300].

bool QSizePolicy::operator== (const QSizePolicy & s) const

Returns TRUE if this policy is equal to s; otherwise returns FALSE.

See also operator!=() [p. 300].

QSizePolicy Class Reference 301

void QSizePolicy::setHeightForWidth (bool b)

Sets the hasHeightForWidth() flag to b.
See also hasHeightForWidth() [p. 299].

void QSizePolicy::setHorData (SizeType d)

Sets the horizontal component of the size policy to size type d.
See also horData() [p. 300] and setVerData() [p. 301].

void QSizePolicy::setHorStretch (uchar sf)

Sets the horizontal stretch factor of the size policy to sf.

See also horStretch() [p. 300] and setVerStretch() [p. 301].
void QSizePolicy::setVerData (SizeType d)

Sets the vertical component of the size policy to size type d.
See also verData() [p. 301] and setHorData() [p. 301].

void QSizePolicy::setVerStretch (uchar sf)

Sets the vertical stretch factor of the size policy to sf.

See also verStretch() [p. 301] and setHorStretch() [p. 301].
SizeType QSizePolicy::verData () const

Returns the vertical component of the size policy.

See also setVerData() [p. 301], horData() [p. 300] and verStretch() [p. 301].

uint QSizePolicy::verStretch () const

Returns the vertical stretch factor of the size policy.

See also setVerStretch() [p. 301] and horStretch() [p. 300].

QSlider Class Reference

The QSlider widget provides a vertical or horizontal slider.
#incl ude <qslider.h>

Inherits QWidget [p. 436] and QRangeControl [p. 261].

Public Members

m enum TickSetting { NoMarks = 0, Above = 1, Left = Above, Below = 2, Right = Below, Both = 3 }
m QSlider (QWidget * parent, const char * name = 0)
m QSlider (Orientation orientation, QWidget * parent, const char * name = 0)

m QSlider (int minValue, int maxValue, int pageStep, int value, Orientation orientation, QWidget * parent,
const char * name = 0)

virtual void setOrientation (Orientation)

Orientation orientation () const

virtual void setTracking (bool enable)
bool tracking () const

virtual void setPalette (const QPalette & p)
int sliderStart () const

= QRect sliderRect () const

m virtual void setTickmarks (TickSetting)
m TickSetting tickmarks () const

m virtual void setTickInterval (int)

int tickInterval () const

int minValue () const

int maxValue () const
void setMinValue (int)
= void setMaxValue (int)
m int lineStep () const

= int pageStep () const

m void setLineStep (int)
e void setPageStep (int)
e int value () const

302

QSlider Class Reference

Public Slots

m virtual void setValue (int)
m void addStep ()
m void subtractStep ()

Signals

void valueChanged (int value)
m void sliderPressed ()

void sliderMoved (int value)
void sliderReleased ()

Properties

m int lineStep — the current line step

m int maxValue — the current maximum value of the slider
int minValue — the current minimum value of the slider
Orientation orientation — the orientation of the slider
int pageStep — the current page step

int tickInterval — the interval between tickmarks

TickSetting tickmarks — the tickmark settings for this slider
bool tracking — whether slider tracking is enabled
m int value — the current slider value

Protected Members

m virtual void valueChange ()
m virtual void rangeChange ()

Detailed Description

The QSlider widget provides a vertical or horizontal slider.

303

The slider is the classic widget for controlling a bounded value. It lets the user move a slider along a horizontal or

vertical groove and translates the slider’s position into an integer value within the legal range.

QSlider inherits QRangeControl, which provides the "integer" side of the slider. setRange() and value() are likely to
be used by practically all slider users; see the QRangeControl documentation for information about the many other

functions that class provides.

The main functions offered by the slider itself are tickmark and orientation control; you can use setTickmarks() to
indicate where you want the tickmarks to be, setTickInterval() to indicate how many of them you want and setOrien-

tation() to indicate whether the slider is to be horizontal or vertical.

QSlider Class Reference 304

A slider has a default focusPolicy() of WeakWeel Focus, i.e. it accepts focus on Tab and uses the mouse wheel and a
suitable keyboard interface.

See also QScrollBar [p. 267], QSpinBox [p. 312], GUI Design Handbook: Slider and Basic Widgets.

Member Type Documentation

QSlider::TickSetting

This enum specifies where the tickmarks are to be drawn relative to the slider’s groove and the handle the user moves.
The possible values are:

e (Slider::NoMarks - do not draw any tickmarks.

e (Slider:: Both - draw tickmarks on both sides of the groove.

e (Slider:: Above - draw tickmarks above the (horizontal) slider

e (Slider::Bel ow- draw tickmarks below the (horizontal) slider

e (Slider::Left - draw tickmarks to the left of the (vertical) slider

e (Slider::Right - draw tickmarks to the right of the (vertical) slider

Member Function Documentation

QSlider::QSlider (QWidget * parent, const char * name = 0)

Constructs a vertical slider.

The parent and name arguments are sent to the QWidget constructor.

QSlider::QSlider (Orientation orientation, QWidget * parent, const char * name = 0)

Constructs a slider.
The orientation must be Qt::Vertical or Qt::Horizontal.

The parent and name arguments are sent to the QWidget constructor.

QSlider::QSlider (int minValue, int maxValue, int pageStep, int value,
Orientation orientation, QWidget * parent, const char * name = 0)

Constructs a slider whose value can never be smaller than minValue or greater than maxValue, whose page step size is
pageStep and whose value is initially value (which is guaranteed to be in range using bound()).
If orientation is Qt::Vertical the slider is vertical and if it is Qt::Horizontal the slider is horizontal.

The parent and name arguments are sent to the QWidget constructor.

QSlider Class Reference 305

void QSlider::addStep () [slot]

Moves the slider one pageStep() up or right.

int QSlider::lineStep () const

Returns the current line step. See the "lineStep" [p. 308] property for details.

int QSlider::maxValue () const

Returns the current maximum value of the slider. See the "maxValue" [p. 308] property for details.

int QSlider::minValue () const

Returns the current minimum value of the slider. See the "minValue" [p. 308] property for details.

Orientation QSlider::orientation () const

Returns the orientation of the slider. See the "orientation" [p. 308] property for details.

int QSlider::pageStep () const

Returns the current page step. See the "pageStep" [p. 308] property for details.

void QSlider::rangeChange () [virtual protected]

Implements the virtual QRangeControl function.

Reimplemented from QRangeControl [p. 264].

void QSlider::setLineStep (int)

Sets the current line step. See the "lineStep" [p. 308] property for details.

void QSlider::setMaxValue (int)

Sets the current maximum value of the slider. See the "maxValue" [p. 308] property for details.

void QSlider::setMinValue (int)

Sets the current minimum value of the slider. See the "minValue" [p. 308] property for details.

QSlider Class Reference 306

void QSlider::setOrientation (Orientation) [virtual]

Sets the orientation of the slider. See the "orientation" [p. 308] property for details.

void QSlider::setPageStep (int)

Sets the current page step. See the "pageStep" [p. 308] property for details.

void QSlider::setPalette (const QPalette & p) [virtual]

Reimplements the virtual function QWidget::setPalette().
Sets the background color to the mid color for Motif style sliders using palette p.

Reimplemented from QWidget [p. 477].

void QSlider::setTickInterval (int) [virtual]

Sets the interval between tickmarks. See the "tickInterval" [p. 309] property for details.

void QSlider::setTickmarks (TickSetting) [virtual]

Sets the tickmark settings for this slider. See the "tickmarks" [p. 309] property for details.

void QSlider::setTracking (bool enable) [virtual]

Sets whether slider tracking is enabled to enable. See the "tracking" [p. 309] property for details.

void QSlider::setValue (int) [virtual slot]

Sets the current slider value. See the "value" [p. 309] property for details.

void QSlider::sliderMoved (int value) [signal]

This signal is emitted when the slider is dragged, with the new slider value as an argument.

void QSlider::sliderPressed () [signal]

This signal is emitted when the user presses the slider with the mouse.

QRect QSlider::sliderRect () const

Returns the slider handle rectangle. (This is the visual marker that the user can move.)

QSlider Class Reference 307

void QSlider::sliderReleased () [signal]

This signal is emitted when the user releases the slider with the mouse.

int QSlider::sliderStart () const

Returns the start position of the slider.

void QSlider::subtractStep () [slot]

Moves the slider one pageStep() down or left.

int QSlider::tickInterval () const

Returns the interval between tickmarks. See the "tickInterval" [p. 309] property for details.

TickSetting QSlider::tickmarks () const

Returns the tickmark settings for this slider. See the "tickmarks" [p. 309] property for details.

bool QSlider::tracking () const

Returns TRUE if slider tracking is enabled; otherwise returns FALSE. See the "tracking" [p. 309] property for details.

int QSlider::value () const

Returns the current slider value. See the "value" [p. 309] property for details.

void QSlider::valueChange () [virtual protected]

Implements the virtual QRangeControl function.

Reimplemented from QRangeControl [p. 266].

void QSlider::valueChanged (int value) [signal]

This signal is emitted when the slider value is changed, with the new slider value as an argument.

Examples: rangecontrols/rangecontrols.cpp, t12/lcdrange.cpp, t5/main.cpp, t6/main.cpp, t7/lcdrange.cpp and
xform/xform.cpp.

QSlider Class Reference 308

Property Documentation

int lineStep

This property holds the current line step.

When setting lineStep, the virtual stepChange() function will be called if the new line step is different from the previous
setting.

See also setSteps() [p. 265], QRangeControl::pageStep() [p. 264] and setRange() [p. 265].

Set this property’s value with setLineStep() and get this property’s value with lineStep().

int maxValue

This property holds the current maximum value of the slider.
When setting this property, the QSlider::minValue is adjusted, if necessary, to ensure that the range remains valid.
See also setRange() [p. 265].

Set this property’s value with setMaxValue() and get this property’s value with maxValue().

int minValue

This property holds the current minimum value of the slider.
When setting this property, the QSlider::maxValue is adjusted, if necessary, to ensure that the range remains valid.
See also setRange() [p. 265].

Set this property’s value with setMinValue() and get this property’s value with minValue().

Orientation orientation

This property holds the orientation of the slider.
The orientation must be Qt::Vertical (the default) or Qt::Horizontal.

Set this property’s value with setOrientation() and get this property’s value with orientation().

int pageStep

This property holds the current page step.

When setting pageStep, the virtual stepChange() function will be called if the new page step is different from the
previous setting.

See also QRangeControl::setSteps() [p. 265], lineStep [p. 308] and setRange() [p. 265].

Set this property’s value with setPageStep() and get this property’s value with pageStep().

QSlider Class Reference 309

int tickInterval

This property holds the interval between tickmarks.

This is a value interval, not a pixel interval. If it is O, the slider will choose between lineStep() and pageStep(). The
initial value of tickInterval is O.

See also QRangeControl::lineStep() [p. 263] and QRangeControl::pageStep() [p. 264].

Set this property’s value with setTickInterval() and get this property’s value with tickInterval().

TickSetting tickmarks

This property holds the tickmark settings for this slider.
The valid values are in QSlider::TickSetting. The default is NoMarks.
See also tickInterval [p. 309].

Set this property’s value with setTickmarks() and get this property’s value with tickmarks().

bool tracking

This property holds whether slider tracking is enabled.

If tracking is enabled (the default), the slider emits the valueChanged() signal whenever the slider is being dragged.
If tracking is disabled, the slider emits the valueChanged() signal when the user releases the mouse button (unless the
value happens to be the same as before).

Set this property’s value with setTracking() and get this property’s value with tracking().

int value

This property holds the current slider value.
Set this property’s value with setValue() and get this property’s value with value().

See also QRangeControl::value() [p. 266] and prevValue() [p. 264].

QSpacerltem Class Reference

The QSpacerItem class provides blank space in a layout.
#incl ude <qgl ayout. h>

Inherits QLayoutltem [Events, Actions, Layouts and Styles with Qt].

Public Members

m QSpacerltem (int w, int h, QSizePolicy::SizeType hData = QSizePolicy::Minimum, QSizePolicy::SizeType vData
= QSizePolicy::Minimum)

m void changeSize (int w, int h, QSizePolicy::SizeType hData = QSizePolicy::Minimum,

QSizePolicy::SizeType vData = QSizePolicy::Minimum)

virtual QSize sizeHint () const

virtual QSize minimumSize () const

virtual QSize maximumsSize () const

virtual QSizePolicy::ExpandData expanding () const

virtual bool isEmpty () const

virtual void setGeometry (const QRect & r)

Detailed Description

The QSpacerltem class provides blank space in a layout.
This class is used by custom layouts.

See also QLayout [Events, Actions, Layouts and Styles with Qt], Widget Appearance and Style and Layout
Management.

Member Function Documentation

QSpacerltem::QSpacerItem (int w, int h, QSizePolicy::SizeType hData =
QSizePolicy::Minimum, QSizePolicy::SizeType vData = QSizePolicy::Minimum)

Constructs a spacer item with preferred width w, preferred height h, horizontal size policy hData and vertical size
policy vData.

The default values provide a gap that is able to stretch if nothing else wants the space.

310

QSpacerltem Class Reference 311

void QSpacerltem::changeSize (int w, int h, QSizePolicy::SizeType hData =
QSizePolicy::Minimum, QSizePolicy::SizeType vData = QSizePolicy::Minimum)

Changes this spacer item to have preferred width w, preferred height h, horizontal size policy hData and vertical size
policy vData.

The default values provide a gap that is able to stretch if nothing else wants the space.
QSizePolicy::ExpandData QSpacerItem::expanding () const [virtual]
Returns TRUE if this spacer item is expanding; otherwise returns FALSE.
Reimplemented from QLayoutltem [Events, Actions, Layouts and Styles with Qt].
bool QSpacerItem::isEmpty () const [virtual]

Returns TRUE because a spacer item never contains widgets.

Reimplemented from QLayoutltem [Events, Actions, Layouts and Styles with Qt].
QSize QSpacerItem::maximumSize () const [virtual]

Returns the maximum size of this space item.

Reimplemented from QLayoutltem [Events, Actions, Layouts and Styles with Qt].
QSize QSpacerltem::minimumsSize () const [virtual]

Returns the minimum size of this spacer item.

Reimplemented from QLayoutltem [Events, Actions, Layouts and Styles with Qt].
void QSpacerltem::setGeometry (const QRect & r) [virtual]

This function stores the spacer item’s rect r so that it can be returned by geometry().
Reimplemented from QLayoutltem [Events, Actions, Layouts and Styles with Qt].

QSize QSpacerItem::sizeHint () const [virtual]

Returns the preferred size of this spacer item.

Reimplemented from QLayoutltem [Events, Actions, Layouts and Styles with Qt].

QSpinBox Class Reference

The QSpinBox class provides a spin box widget (spin button).
#i ncl ude <gspi nbox. h>

Inherits QWidget [p. 436] and QRangeControl [p. 261].

Public Members

m QSpinBox (QWidget * parent = 0, const char * name = 0)

m QSpinBox (int minValue, int maxValue, int step = 1, QWidget * parent = 0, const char * name = 0)
m ~QSpinBox ()

m QString text () const

m virtual QString prefix () const

virtual QString suffix () const

virtual QString cleanText () const

virtual void setSpecialValueText (const QString & text)
QString specialValueText () const

virtual void setWrapping (bool on)

bool wrapping () const

= enum ButtonSymbols { UpDownArrows, PlusMinus }

m virtual void setButtonSymbols (ButtonSymbols)
ButtonSymbols buttonSymbols () const

virtual void setValidator (const QValidator * v)
const QValidator * validator () const

int minValue () const

int maxValue () const

void setMinValue (int)

void setMaxValue (int)

m int lineStep () const

m void setLineStep (int)

m int value () const
QRect upRect () const
e QRect downRect () const

312

QSpinBox Class Reference 313

Public Slots

m virtual void setValue (int value)

m virtual void setPrefix (const QString & text)
m virtual void setSuffix (const QString & text)
m virtual void stepUp ()

m virtual void stepDown ()

m virtual void selectAll ()

Signals

m void valueChanged (int value)
m void valueChanged (const QString & valueText)

Properties

m ButtonSymbols buttonSymbols — the current button symbol mode

m QString cleanText — the text of the spin box with any prefix() or suffix() and with any whitespace at the start
and end removed (read only)

int lineStep — the line step
int maxValue — the maximum value of the spin box

int minValue — the minimum value of the spin box
QString prefix — the prefix of the spin box
QString specialValueText — the special-value text

QString suffix — the suffix of the spin box
m QString text — the text of the spin box, including any prefix() and suffix() (read only)
m int value — the value of the spin box

m bool wrapping — whether it is possible to step the value from the highest value to the lowest value and vice
versa

Protected Members

m virtual QString mapValueToText (int v)
virtual int mapTextToValue (bool * ok)
QString currentValueText ()

virtual void updateDisplay ()

virtual void interpretText ()

QLineEdit * editor () const

virtual void valueChange ()

m virtual void rangeChange ()
m virtual bool eventFilter (QObject * obj, QEvent * ev)

SpinBox Class Reference 314
QSp.

Protected Slots

m void textChanged ()

Detailed Description

The QSpinBox class provides a spin box widget (spin button).

QSpinBox allows the user to choose a value either by clicking the up/down buttons to increase/decrease the value
currently displayed or by typing the value directly into the spin box. The value is usually an integer.

Every time the value changes QSpinBox emits the valueChanged() signal. The current value can be fetched with
value() and set with setValue().

The spin box keeps the value within a numeric range, and to multiples of the lineStep() size (see QRangeControl
for details). Clicking the up/down buttons or using the keyboard accelerator’s up and down arrows will increase or
decrease the current value in steps of size lineStep(). The minimum and maximum value and the step size can be set
using one of the constructors, and can be changed later with setMinValue(), setMaxValue() and setLineStep().

Most spin boxes are directional, but QSpinBox can also operate as a circular spin box, i.e. if the range is 0-99 and the
current value is 99, clicking "up" will give 0. Use setWrapping() if you want circular behavior.

The displayed value can be prepended and appended with arbitrary strings indicating, for example, currency or the unit
of measurement. See setPrefix() and setSuffix(). The text in the spin box is retrieved with text() (which includes any
prefix() and suffix()), or with cleanText() (which has no prefix(), no suffix() and no leading or trailing whitespace).
currentValueText() returns the spin box’s current value as text.

Normally the spin box displays up and down arrows in the buttons. You can use setButtonSymbols() to change the
display to show + and - symbols if this is clearer for your intended purpose. In either case the up and down arrow keys
work as expected.

It is often desirable to give the user a special (often default) choice in addition to the range of numeric values. See
setSpecialValueText() for how to do this with QSpinBox.

The default QWidget::focusPolicy() is StrongFocus.

If using prefix(), suffix() and specialValueText() don’t provide enough control, you can ignore them and subclass
QSpinBox instead.

QSpinBox can easily be subclassed to allow the user to input things other than an integer value as long as the allowed
input can be mapped to a range of integers. This can be done by overriding the virtual functions mapValueToText()
and mapTextToValue(), and setting another suitable validator using setValidator().

For example, these functions could be changed so that the user provided values from 0.0 to 10.0, or -1 to signify ’Auto’,
while the range of integers used inside the program would be -1 to 100:

class MySpinBox : public QSpi nBox
{

Q OBJECT
public:

QString nmapVal ueToText (int val ue)
{

if (value == -1) [/ Special case
return QString("Auto");

QSpinBox Class Reference 315

return QString("%.%") // 0.0 to 10.0
.arg(value / 10).arg(value %10);

}
i nt mapText ToVal ue(bool *ok)
{ if (text() =="Auto") // Special case
return -1;
} return (int) (10 * text().toFloat()); // 0 to 100

[z ill [z 4

See also QScrollBar [p. 267], QSlider [p. 302], GUI Design Handbook: Spin Box and Basic Widgets.

Member Type Documentation

QSpinBox::ButtonSymbols
This enum type determines what the buttons in a spin box show. The currently defined values are:

e (Spi nBox: : UpDownAr r ows - the buttons show little arrows in the classic style.
e (Spi nBox: : Pl usM nus - the buttons show + and - symbols.

See also QSpinBox::buttonSymbols [p. 321].

Member Function Documentation

QSpinBox::QSpinBox (QWidget * parent = 0, const char * name = 0)
Constructs a spin box with the default QRangeControl range and step values. It has the parent parent and the name
name.

See also minValue [p. 3211, maxValue [p. 321], setRange() [p. 265], lineStep [p. 321] and setSteps() [p. 265].

QSpinBox::QSpinBox (int minValue, int maxValue, int step = 1, QWidget * parent = 0,
const char * name = 0)

Constructs a spin box that allows values from minValue to maxValue inclusive, with step amount step. The value is
initially set to minValue.
The widget’s parent is parent and the spin box is called name.

See also minValue [p. 3211, maxValue [p. 321], setRange() [p. 265], lineStep [p. 321] and setSteps() [p. 265].

QSpinBox Class Reference 316

QSpinBox::~QSpinBox ()

Destroys the spin box, freeing all memory and other resources.

ButtonSymbols QSpinBox::buttonSymbols () const

Returns the current button symbol mode. See the "buttonSymbols" [p. 321] property for details.

QString QSpinBox::cleanText () const [virtual]

Returns the text of the spin box with any prefix() or suffix() and with any whitespace at the start and end removed.
See the "cleanText" [p. 321] property for details.

QString QSpinBox::currentValueText () [protected]

Returns the full text calculated from the current value, including any prefix and suffix. If there is special value text and
the value is minValue() the specialValueText() is returned.

QRect QSpinBox::downRect () const

Returns the geometry of the "down" button.

QLineEdit * QSpinBox::editor () const [protected]

Returns a pointer to the embedded QLineEdit.

bool QSpinBox::eventFilter (QObject * obj, QEvent * ev) [virtual protected]

Intercepts and handles the events coming to the embedded QLineEdit that have special meaning for the QSpinBox.
The object is passed as obj and the event is passed as ev.

Reimplemented from QObject [Additional Functionality with Qt].

void QSpinBox::interpretText () [virtual protected]

QSpinBox calls this after the user has manually edited the contents of the spin box (i.e. by typing in the embedded
QLineEdit, rather than using the up/down buttons/keys).

The default implementation of this function interprets the new text using mapTextToValue(). If mapTextToValue() is
successful, it changes the spin box’s value; if not, the value is left unchanged.

See also editor() [p. 316].

int QSpinBox::lineStep () const

Returns the line step. See the "lineStep" [p. 321] property for details.

SpinBox Class Reference 317
QSp.

int QSpinBox::mapTextToValue (bool * ok) [virtual protected]

This virtual function is used by the spin box whenever it needs to interpret text entered by the user as a value. The
text is available as text() and as cleanText(), and this function must parse it if possible, and set the bool *ok to TRUE
if successful and to FALSE otherwise.

Subclasses that need to display spin box values in a non-numeric way need to reimplement this function.
Note that Qt handles specialvalueText() separately; this function is only concerned with the other values.
The default implementation tries to interpret the text() as an integer in the standard way and returns the integer value.

See also interpretText() [p. 316] and mapValueToText() [p. 317].

QString QSpinBox::mapValueToText (int v) [virtual protected]

This virtual function is used by the spin box whenever it needs to display value v. The default implementation returns
a string containing v printed in the standard way. Reimplementations may return anything. (See the example in the
detailed description.)

Note that Qt does not call this function for specialValueText() and that neither prefix() nor suffix() are included in the
return value.

If you reimplement this, you may also need to reimplement mapTextToValue().

See also updateDisplay() [p. 319] and mapTextToValue() [p. 317].

int QSpinBox::maxValue () const

Returns the maximum value of the spin box. See the "maxValue" [p. 321] property for details.

int QSpinBox::minValue () const

Returns the minimum value of the spin box. See the "minValue" [p. 321] property for details.

QString QSpinBox::prefix () const [virtual]

Returns the prefix of the spin box. See the "prefix" [p. 322] property for details.

void QSpinBox::rangeChange () [virtual protected]

This virtual function is called by QRangeControl whenever the range has changed. It adjusts the default validator and
updates the display; if you need additional processing, you may reimplement this function.

Reimplemented from QRangeControl [p. 264].

void QSpinBox::selectAll () [virtual slot]

Selects all the text in the editor of the spinbox

SpinBox Class Reference 318
QSp.

void QSpinBox::setButtonSymbols (ButtonSymbols) [virtual]

Sets the current button symbol mode. See the "buttonSymbols" [p. 321] property for details.

void QSpinBox::setLineStep (int)

Sets the line step. See the "lineStep" [p. 321] property for details.

void QSpinBox::setMaxValue (int)

Sets the maximum value of the spin box. See the "maxValue" [p. 321] property for details.

void QSpinBox::setMinValue (int)

Sets the minimum value of the spin box. See the "minValue" [p. 321] property for details.

void QSpinBox::setPrefix (const QString & text) [virtual slot]

Sets the prefix of the spin box to text. See the "prefix" [p. 322] property for details.

void QSpinBox::setSpecialValueText (const QString & text) [virtual]

Sets the special-value text to text. See the "specialValueText" [p. 322] property for details.

void QSpinBox::setSuffix (const QString & text) [virtual slot]

Sets the suffix of the spin box to text. See the "suffix" [p. 322] property for details.

void QSpinBox::setValidator (const QValidator * v) [virtual]

Sets the validator to v. The validator controls what keyboard input is accepted when the user is editing in the value
field. The default is to use a suitable QIntValidator.

Use setValidator(0) to turn off input validation (entered input will still be clamped to the range of the spinbox).

void QSpinBox::setValue (int value) [virtual slot]

Sets the value of the spin box to value. See the "value" [p. 323] property for details.

void QSpinBox::setWrapping (bool on) [virtual]

Sets whether it is possible to step the value from the highest value to the lowest value and vice versa to on. See the
"wrapping" [p. 323] property for details.

SpinBox Class Reference 319
QSp.

QString QSpinBox::specialValueText () const

Returns the special-value text. See the "specialValueText" [p. 322] property for details.

void QSpinBox::stepDown () [virtual slot]

Decreases the spin box’s value one lineStep(), wrapping as necessary. This is the same as clicking on the pointing-down
button and can be used for keyboard accelerators, for example.

See also stepUp() [p. 3191, subtractLine() [p. 265], lineStep [p. 321], setSteps() [p. 265], value [p. 323] and value
[p. 323].

void QSpinBox::stepUp () [virtual slot]

Increases the spin box’s value by one lineStep(), wrapping as necessary. This is the same as clicking on the pointing-up
button and can be used for keyboard accelerators, for example.

See also stepDown() [p. 319], addLine() [p. 263], lineStep [p. 3211, setSteps() [p. 265], value [p. 323] and value
[p. 323].

QString QSpinBox::suffix () const [virtual]

Returns the suffix of the spin box. See the "suffix" [p. 322] property for details.

QString QSpinBox::text () const

Returns the text of the spin box, including any prefix() and suffix(). See the "text" [p. 323] property for details.

void QSpinBox::textChanged () [protected slot]

This slot is called whenever the user edits the text of the spin box.

QRect QSpinBox::upRect () const

Returns the geometry of the "up” button.

void QSpinBox::updateDisplay () [virtual protected]

Updates the contents of the embedded QLineEdit to reflect the current value using mapValueToText(). Also en-
ables/disables the up/down push buttons accordingly.

See also mapValueToText() [p. 317].

QSpinBox Class Reference 320

const QValidator * QSpinBox::validator () const

Returns the validator that constrains editing for this spin box if there is any; otherwise returns 0.

See also setValidator() [p. 318] and QValidator [Additional Functionality with Qt].

int QSpinBox::value () const

Returns the value of the spin box. See the "value" [p. 323] property for details.

void QSpinBox::valueChange () [virtual protected]

This virtual function is called by QRangeControl whenever the value has changed. The QSpinBox reimplementation
updates the display and emits the valueChanged() signals; if you need additional processing, either reimplement this
or connect to one of the valueChanged() signals.

Reimplemented from QRangeControl [p. 266].

void QSpinBox::valueChanged (int value) [signal]

This signal is emitted every time the value of the spin box changes; the new value is passed in value. This signal will
be emitted as a result of a call to setValue(), or because the user changed the value by using a keyboard accelerator or
mouse click, etc.

Note that the valueChanged() signal is emitted every time, not just for the "final" step; i.e. if the user clicks "up" three
times, this signal is emitted three times.

See also value [p. 323].
Examples: listbox/listbox.cpp, qfd/fontdisplayer.cpp and scribble/scribble.cpp.

void QSpinBox::valueChanged (const QString & valueText) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This signal is emitted whenever the valueChanged(int) signal is emitted, i.e. every time the value of the spin box
changes (whatever the cause, e.g. by setValue(), by a keyboard accelerator, by mouse clicks, etc.).

The valueText parameter is the same string that is displayed in the edit field of the spin box.

See also value [p. 323], prefix [p. 322], suffix [p. 322] and specialValueText [p. 322].

bool QSpinBox::wrapping () const

Returns TRUE if it is possible to step the value from the highest value to the lowest value and vice versa; otherwise
returns FALSE. See the "wrapping" [p. 323] property for details.

QSpinBox Class Reference 321

Property Documentation

ButtonSymbols buttonSymbols

This property holds the current button symbol mode.
The possible values can be either UpDownArrows or PlusMinus. The default is UpDownArrows.
See also ButtonSymbols [p. 315].

Set this property’s value with setButtonSymbols() and get this property’s value with buttonSymbols().

QString cleanText

This property holds the text of the spin box with any prefix() or suffix() and with any whitespace at the start and end
removed.

Get this property’s value with cleanText().

See also text [p. 323], prefix [p. 322] and suffix [p. 322].

int lineStep

This property holds the line step.

When the user uses the arrows to change the spin box’s value the value will be incremented/decremented by the
amount of the line step.

The setLineStep() function calls the virtual stepChange() function if the new line step is different from the previous
setting.

See also QRangeControl::setSteps() [p. 265] and setRange() [p. 265].

Set this property’s value with setLineStep() and get this property’s value with lineStep().

int maxValue

This property holds the maximum value of the spin box.
When setting this property, the QSpinBox::minValue is adjusted so that the range remains valid if necessary.
See also setRange() [p. 265] and specialValueText [p. 322].

Set this property’s value with setMaxValue() and get this property’s value with maxValue().

int minValue

This property holds the minimum value of the spin box.
When setting this property, the QSpinBox::maxValue is adjusted so that the range remains valid if necessary.
See also setRange() [p. 265] and specialValueText [p. 322].

Set this property’s value with setMinValue() and get this property’s value with minValue().

QSpinBox Class Reference 322

QString prefix

This property holds the prefix of the spin box.

The prefix is prepended to the start of the displayed value. Typical use is to indicate the unit of measurement to the
user. For example:

sh->setPrefix("$");

To turn off the prefix display, set this property to an empty string. The default is no prefix. The prefix is not displayed
for the minValue() if specialValueText() is not empty.

If no prefix is set, prefix() returns a null string.
See also suffix [p. 322].

Set this property’s value with setPrefix() and get this property’s value with prefix().

QString specialValueText

This property holds the special-value text.

If set, the spin box will display this text instead of a numeric value whenever the current value is equal to minVal().
Typical use is to indicate that this choice has a special (default) meaning.

For example, if your spin box allows the user to choose the margin width in a print dialog and your application is able

to automatically choose a good margin width, you can set up the spin box like this:

QSpi nBox margi nBox(-1, 20, 1, parent, "nmarginBox");
mar gi nBox->set Suffix(" md');
mar gi nBox- >set Speci al Val ueText ("Auto");

The user will then be able to choose a margin width from 0-20 millimeters or select "Auto" to leave it to the application
to choose. Your code must then interpret the spin box value of -1 as the user requesting automatic margin width.

All values are displayed with the prefix() and suffix() (if set), except for the special value, which only shows the special
value text.

To turn off the special-value text display, call this function with an empty string. The default is no special-value text,
i.e. the numeric value is shown as usual.

If no special-value text is set, specialValueText() returns a null string.

Set this property’s value with setSpecialValueText() and get this property’s value with specialValueText().

QString suffix

This property holds the suffix of the spin box.

The suffix is appended to the end of the displayed value. Typical use is to indicate the unit of measurement to the user.
For example:

sb->setSuffix(" knt);

QSpinBox Class Reference 323

To turn off the suffix display, set this property to an empty string. The default is no suffix. The suffix is not displayed
for the minValue() if specialValueText() is not empty.

If no suffix is set, suffix() returns a null string.
See also prefix [p. 322].

Set this property’s value with setSuffix() and get this property’s value with suffix().

QString text

This property holds the text of the spin box, including any prefix() and suffix().
There is no default text.
See also value [p. 323].

Get this property’s value with text().

int value

This property holds the value of the spin box.
Set this property’s value with setValue() and get this property’s value with value().

See also QRangeControl::setValue() [p. 265].

bool wrapping

This property holds whether it is possible to step the value from the highest value to the lowest value and vice versa.
By default, wrapping is turned off.

If you have a range of 0..100 and wrapping is off when the user reaches 100 and presses the Up Arrow nothing will
happen; but if wrapping is on the value will change from 100 to 0, then to 1, etc. When wrapping is on, navigating
past the highest value takes you to the lowest and vice versa.

See also minValue [p. 321], maxValue [p. 321] and setRange() [p. 265].

Set this property’s value with setWrapping() and get this property’s value with wrapping().

QSplitter Class Reference

The QSplitter class implements a splitter widget.
#include <gsplitter.h>

Inherits QFrame [p. 67].

Public Members

enum ResizeMode { Stretch, KeepSize, FollowSizeHint }
QSplitter (QWidget * parent = 0, const char * name = 0)
QSplitter (Orientation o, QWidget * parent = 0, const char * name = 0)
~QSplitter ()

virtual void setOrientation (Orientation)

Orientation orientation () const

virtual void setResizeMode (QWidget * w, ResizeMode mode)
virtual void setOpaqueResize (bool on = TRUE)

bool opaqueResize () const

void moveToFirst (QWidget * w)

void moveToLast (QWidget * w)

void refresh ()

QValueList<int> sizes () const

void setSizes (QValueList<int> list)

Properties

» Orientation orientation — the orientation of the splitter

Protected Members

virtual void childEvent (QChildEvent * ¢)

int idAfter (QWidget * w) const

void moveSplitter (QCOORD p, int id)

virtual void drawSplitter (QPainter * p, QCOORD x, QCOORD y, QCOORD w, QCOORD h)
int adjustPos (int p, int id)

virtual void setRubberband (int p)

void getRange (int id, int * min, int * max)

324

QSplitter Class Reference 325

Detailed Description

The QSplitter class implements a splitter widget.

A splitter lets the user control the size of child widgets by dragging the boundary between the children. Any number
of widgets may be controlled.

To show a QListBox, a QListView and a QTextEdit side by side:

QSplitter *split = new QSplitter(parent);
Qi stBox *I'b = new QListBox(split);
QistView*lv = new QListView split);
QlextEdit *ed = new QlextEdit(split);

In QSplitter the boundary can be either horizontal or vertical. The default is horizontal (the children are side by side)
but you can use setOrientation(QSplitter::Vertical) to set it to vertical.

By default, all widgets can be as large or as small as the user wishes, down to minimumSizeHint(). You can also use
setMinimumSize() and setMaximumSize() on the children. Use setResizeMode() to specify that a widget should keep
its size when the splitter is resized.

Although QSplitter normally resizes the children only at the end of a resize operation, if you call setOpaqueResize(
TRUE) the widgets are resized as often as possible.

The initial distribution of size between the widgets is determined by the initial size of each widget. You can also use
setSizes() to set the sizes of all the widgets. The function sizes() returns the sizes set by the user.

If you hide() a child its space will be distributed among the other children. It will be reinstated when you show() it
again. It is also possible to reorder the widgets within the splitter using moveToFirst() and moveToLast().

See also QTabBar [p. 336] and Organizers.

Member Type Documentation

QSplitter::ResizeMode
This enum type describes how QSplitter will resize each of its child widgets. The currently defined values are:

e (Splitter::Stretch - the widget will be resized when the splitter itself is resized.
o (Splitter::KeepSize - QSplitter will try to keep this widget’s size unchanged.
e (Splitter:: FollowSi zeH nt - QSplitter will resize the widget when the widget’s size hint changes.

Member Function Documentation

QSplitter::QSplitter (QWidget * parent = 0, const char * name = 0)

Constructs a horizontal splitter with the parent and name arguments being passed on to the QFrame constructor.

QSplitter Class Reference 326

QSplitter::QSplitter (Orientation o, QWidget * parent = 0, const char * name = 0)

Constructs a splitter with orientation o with the parent and name arguments being passed on to the QFrame constructor.

QSplitter::~QSplitter ()

Destroys the splitter and any children.

int QSplitter::adjustPos (int p, int id) [protected]

Returns the closest legal position to p of the splitter with id id.
See also idAfter() [p. 326].

void QSplitter::childEvent (QChildEvent * c) [virtual protected]

Tells the splitter that a child widget has been inserted or removed. The event is passed in c.

Reimplemented from QObject [Additional Functionality with Qt].

void QSplitter::drawSplitter (QPainter * p, QCOORD x, QCOORD y, QCOORD w,
QCOORD h) [virtual protected]

Draws the splitter handle in the rectangle described by x, y, w, h using painter p.

See also QStyle::drawPrimitive() [Events, Actions, Layouts and Styles with Qt].

void QSplitter::getRange (int id, int * min, int * max) [protected]

Returns the valid range of the splitter with id id in *min and *max.

See also idAfter() [p. 326].

int QSplitter::idAfter (QWidget * w) const [protected]

Returns the id of the splitter to the right of or below the widget w, or 0 if there is no such splitter (i.e. it is either not
in this QSplitter or it is at the end).

void QSplitter::moveSplitter (QCOORD p, int id) [protected]
Moves the left/top edge of the splitter handle with id id as close as possible to position p, which is the distance from
the left (or top) edge of the widget.

For Arabic and Hebrew the layout is reversed, and using this function to set the position of the splitter might lead to
unexpected results, since in Arabic and Hebrew the position of splitter one is to the left of the position of splitter zero.

See also idAfter() [p. 326].

QSplitter Class Reference 327

void QSplitter::moveToFirst (QWidget * w)

Moves widget w to the leftmost/top position.

Example: splitter/splitter.cpp.

void QSplitter::moveToLast (QWidget * w)

Moves widget w to the rightmost/bottom position.

bool QSplitter::opaqueResize () const

Returns TRUE if opaque resize is on; otherwise returns FALSE.

See also setOpaqueResize() [p. 327].

Orientation QSplitter::orientation () const

Returns the orientation of the splitter. See the "orientation" [p. 328] property for details.

void QSplitter::refresh ()

Updates the splitter’s state. You should not need to call this function.

void QSplitter::setOpaqueResize (bool on = TRUE) [virtual]

If on is TRUE then opaque resizing is turned on; otherwise opaque resizing is turned off. Opaque resizing is initially
turned off.

See also opaqueResize() [p. 327].

Examples: mainlyQt/editor.cpp and splitter/splitter.cpp.

void QSplitter::setOrientation (Orientation) [virtual]

Sets the orientation of the splitter. See the "orientation" [p. 328] property for details.

void QSplitter::setResizeMode (QWidget * w, ResizeMode mode) [virtual]

Sets resize mode of w to mode.
See also ResizeMode [p. 325].

Examples: fileiconview/mainwindow.cpp, listviews/listviews.cpp, network/ftpclient/ftpmainwindow.cpp and
splitter/splitter.cpp.

QSplitter Class Reference 328

void QSplitter::setRubberband (int p) [virtual protected]

Shows a rubber band at position p. If p is negative, the rubber band is removed.

void QSplitter::setSizes (QValueList<int> list)

Sets the size parameters to the values given in list. If the splitter is horizontal, the values set the sizes from left to right.
If it is vertical, the sizes are applied from top to bottom. Extra values in list are ignored.

If list contains too few values, the result is undefined but the program will still be well-behaved.

See also sizes() [p. 328].

QValueList<int> QSplitter::sizes () const

Returns a list of the size parameters of all the widgets in this splitter.
Giving the values to another splitter’s setSizes() function will produce a splitter with the same layout as this one.

See also setSizes() [p. 328].

Property Documentation

Orientation orientation

This property holds the orientation of the splitter.

By default the orientation is horizontal (the widgets are side by side). The possible orientations are Qt:Vertical and
Qt::Horizontal (the default).

Set this property’s value with setOrientation() and get this property’s value with orientation().

QStatusBar Class Reference

The QStatusBar class provides a horizontal bar suitable for presenting status information.
#incl ude <qgstatusbar. h>

Inherits QWidget [p. 436].

Public Members

QStatusBar (QWidget * parent = 0, const char * name = 0)

virtual ~QStatusBar ()

virtual void addWidget (QWidget * widget, int stretch = 0, bool permanent = FALSE)
m virtual void removeWidget (QWidget * widget)

void setSizeGripEnabled (bool)

m bool isSizeGripEnabled () const

Public Slots
m void message (const QString & message)
m void message (const QString & message, int ms)
» void clear ()

Properties

m bool sizeGripEnabled — whether the QSizeGrip in the bottom right of the status bar is enabled

Protected Members
m virtual void paintEvent (QPaintEvent *)

m void reformat ()
m void hideOrShow ()

329

QStatusBar Class Reference 330

Detailed Description

The QStatusBar class provides a horizontal bar suitable for presenting status information.

Each status indicator falls into one of three categories:

e Temporary - briefly occupies most of the status bar. Used to explain tool tip texts or menu entries, for example.

e Normal - occupies part of the status bar and may be hidden by temporary messages. Used to display the page
and line number in a word processor, for example.

e Permanent - is never hidden. Used for important mode indications, for example, some applications put a Caps
Lock indicator in the status bar.

QStatusBar lets you display all three types of indicators.

To display a temporary message, call message() (perhaps by connecting a suitable signal to it). To remove a temporary
message, call clear(). There are two variants of message(): one that displays the message until the next clear() or
mesage() and one that has a time limit:

connect (| oader, SIGNAL(progressMessage(const QString&)),
statusBar(), SLOT(message(const QString&)));

statusBar()->nessage("Loading..."); [/ Initial message

| oader. | oadSt uff(); /] Emts progress nessages
statusBar ()->message("Done.", 2000); // Final message for 2 seconds

Normal and permanent messages are displayed by creating a small widget and then adding it to the status bar with
addWidget(). Widgets like QLabel, QProgressBar or even QToolButton are useful for adding to status bars. removeWid-
get() is used to remove widgets.

stat usBar () - >addW dget (new MyReadW it el ndication(statusBar()));

By default QStatusBar provides a QSizeGrip in the lower-right corner. You can disable it with setSizeGripEn-
abled (FALSE);

Ready 4 Ready A

See also QToolBar [Dialogs and Windows with Qt], QMainWindow [Dialogs and Windows with Qt], QLabel [p. 125],
GUI Design Handbook: Status Bar, Main Window and Related Classes and Help System.

Member Function Documentation

QStatusBar::QStatusBar (QWidget * parent = 0, const char * name = 0)
Constructs a status bar with the parent parent and the name name and with a size grip.

See also sizeGripEnabled [p. 332].

QStatusBar::~QStatusBar () [virtual]

Destroys the status bar and frees any allocated resources and child widgets.

QStatusBar Class Reference 331

void QStatusBar::addWidget (QWidget * widget, int stretch = 0, bool permanent =
FALSE) [virtual]
Adds widget to this status bar.

widget is permanently visible if permanent is TRUE and may be obscured by temporary messages if permanent is FALSE.
The default is FALSE.

If permanent is TRUE, widget is located at the far right of the status bar. If permanent is FALSE (the default), widget is
located just to the left of the first permanent widget.

stretch is used to compute a suitable size for widget as the status bar grows and shrinks. The default of O uses a
minimum of space.

This function may cause some flicker.

See also removeWidget() [p. 332].

void QStatusBar::clear () [slot]

Removes any temporary message being shown.

See also message() [p. 3311].

void QStatusBar::hideOrShow () [protected]

Ensures that the right widgets are visible. Used by message() and clear().

bool QStatusBar::isSizeGripEnabled () const

Returns TRUE if the QSizeGrip in the bottom right of the status bar is enabled; otherwise returns FALSE. See the
"sizeGripEnabled" [p. 332] property for details.

void QStatusBar::message (const QString & message) [slot]

Hides the normal status indicators and displays message until clear() or another message() is called.

See also clear() [p. 331].

void QStatusBar::message (const QString & message, int ms) [slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Hides the normal status indications and displays message for ms milli-seconds or until clear() or another message() is
called, whichever occurs first.

void QStatusBar::paintEvent (QPaintEvent *) [virtual protected]

Shows the temporary message, if appropriate.

Reimplemented from QWidget [p. 466].

QStatusBar Class Reference 332

void QStatusBar::reformat () [protected]

Changes the status bar’s appearance to account for item changes. Special subclasses may need this, but geometry
management will usually take care of any necessary rearrangements.

void QStatusBar::removeWidget (QWidget * widget) [virtual]

Removes widget from the status bar.
This function may cause some flicker.
Note that widget is not deleted.

See also addWidget() [p. 3311.

void QStatusBar::setSizeGripEnabled (bool)
Sets whether the QSizeGrip in the bottom right of the status bar is enabled. See the "sizeGripEnabled" [p. 332] property

for details.

Property Documentation

bool sizeGripEnabled

This property holds whether the QSizeGrip in the bottom right of the status bar is enabled.
Enables or disables the QSizeGrip in the bottom right of the status bar. By default, the size grip is enabled.

Set this property’s value with setSizeGripEnabled() and get this property’s value with isSizeGripEnabled ().

QTab Class Reference

The QTab class provides the structures in a QTabBar.
#i ncl ude <qtabbar. h>

Inherits Qt [Additional Functionality with Qt].

Public Members

m QTab ()

virtual ~QTab ()

QTab (const QString & text)

QTab (const QIconSet & icon, const QString & text = QString::null)
void setText (const QString & text)
QString text () const

void setlconSet (const QIconSet & icon)
QlconSet * iconSet () const

void setRect (const QRect & rect)

QRect rect () const

void setEnabled (bool enable)

bool isEnabled () const

void setIdentifier (int i)

int identifier () const

Detailed Description

The QTab class provides the structures in a QTabBar.
This class is used for custom QTabBar tab headings.

See also QTabBar [p. 336] and Advanced Widgets.

Member Function Documentation

QTab::QTab ()

Constructs an empty tab. All fields are set to empty.

333

QTab Class Reference

QTab::QTab (const QString & text)

Constructs a tab with the text, text.

QTab::QTab (const QIconSet & icon, const QString & text = QString::null)

Constructs a tab with an icon and the text, text.

QTab::~QTab () [virtual]

Destroys the tab and frees up all allocated resources

QIconSet * QTab::iconSet () const

Return the QIconSet of the QTab.

int QTab::identifier () const

Return the identifier for the QTab.

bool QTab::isEnabled () const

Returns TRUE if the QTab is enabled, otherwise return FALSE.

QRect QTab::rect () const

Return the QRect for the QTab.

void QTab::setEnabled (bool enable)

If enable is TRUE enable the QTab, otherwise disable it.

void QTab::setIconSet (const QIconSet & icon)

Sets the tab iconset to icon

void QTab::setldentifier (int i)

Set the identifier for the QTab to i. Each identifier for a QTabBar must be unique

334

QTab Class Reference

void QTab::setRect (const QRect & rect)

Set the QTab QRect to rect.

void QTab::setText (const QString & text)

Sets the text of the tab to text.

QString QTab::text () const

Return the text of the QTab label.

335

QTabBar Class Reference

The QTabBar class provides a tab bar, e.g. for use in tabbed dialogs.
#i ncl ude <qtabbar. h>
Inherits QWidget [p. 436].

Public Members

QTabBar (QWidget * parent = 0, const char * name = 0)
m ~QTabBar ()

m enum Shape { RoundedAbove, RoundedBelow, TriangularAbove, TriangularBelow }
Shape shape () const

virtual void setShape (Shape)

virtual int addTab (QTab * newTab)

virtual int insertTab (QTab * newTab, int index = -1)
virtual void removeTab (QTab * t)

virtual void setTabEnabled (int id, bool enabled)

= bool isTabEnabled (int id) const

m int currentTab () const

int keyboardFocusTab () const

QTab * tab (int id) const

QTab * tabAt (int index) const

int indexOf (int id) const

int count () const

virtual void layoutTabs ()

virtual QTab * selectTab (const QPoint & p) const
m void removeToolTip (int index)

m void setToolTip (int index, const QString & tip)
QString toolTip (int index) const

Public Slots

m virtual void setCurrentTab (int)
m virtual void setCurrentTab (QTab * tab)

336

QTabBar Class Reference 337

Signals

m void selected (int id)

Properties

int count — the number of tabs in the tab bar (read only)

int currentTab — the id of the currently visible tab in the tab bar

int keyboardFocusTab — the id of the tab that currently has the keyboard focus (read only)
Shape shape — the shape of the tabs in the tab bar

Protected Members

m virtual void paint (QPainter * p, QTab * t, bool selected) const

m virtual void paintLabel (QPainter * p, const QRect & br, QTab * t, bool has_focus) const
m virtual void paintEvent (QPaintEvent * e)

m QPtrList<QTab> * tabList ()

Detailed Description

The QTabBar class provides a tab bar, e.g. for use in tabbed dialogs.

QTabBar is straightforward to use; it draws the tabs using one of the predefined shapes, and emits a signal when a tab
is selected. It can be subclassed to tailor the look and feel.

The choice of tab shape is a matter of taste, although tab dialogs (preferences and the like) invariably use Rounded-
Above, and nobody uses TriangularAbove. Tab controls in windows other than dialogs almost always use either Round-
edBelow or TriangularBelow. Many spreadsheets and other tab controls in which all the pages are essentially similar
use TriangularBelow, whereas RoundedBelow is used mostly when the pages are different (e.g. a multi-page tool
palette).

The most important part of QTabBar’s API is the signal selected(). This is emitted whenever the selected page changes
(even at startup, when the selected page changes from 'none’). There is also a slot, setCurrentTab(), which can be used
to select a page programmatically.

QTabBar creates automatic accelerator keys in the manner of QButton; e.g. if a tab’s label is "&Graphics", Alt+G
becomes an accelerator key for switching to that tab.

The following virtual functions may need to be reimplemented:

e paint() paints a single tab. paintEvent() calls paint() for each tab so that any overlap will look right.
e addTab() creates a new tab and adds it to the bar.

e selectTab() decides which tab, if any, the user selects with the mouse.

The index of the current tab is returned by currentTab(). The tab with a particular index is returned by tabAt(), the
tab with a particular id is returned by tab(). The index of a tab is returned by indexOf(). The current tab can be set by
index or tab pointer using one of the setCurrentTab() functions.

QTabBar Class Reference 338

|Innings | Sj:l

|Innings | Sl

See also Advanced Widgets.

Member Type Documentation

QTabBar::Shape
This enum type lists the built-in shapes supported by QTabBar:

e QTabBar: : RoundedAbove - the normal rounded look above the pages
e QrabBar: : RoundedBel ow - the normal rounded look below the pages
e QlabBar: : Tri angul ar Above - triangular tabs above the pages (very unusual; included for completeness)

e QTabBar: : Tri angul ar Bel ow - triangular tabs similar to those used in the spreadsheet Excel, for example

Member Function Documentation

QTabBar::QTabBar (QWidget * parent = 0, const char * name = 0)

Constructs a new, empty tab bar; the parent and name arguments are passed on to the QWidget constructor.

QTabBar::~QTabBar ()

Destroys the tab control, freeing memory used.

int QTabBar::addTab (QTab * newTab) [virtual]

Adds the tab, newTab, to the tab control.

Sets newTab’s id to a new id and places the tab just to the right of the existing tabs. If the tab’s label contains an
ampersand, the letter following the ampersand is used as an accelerator for the tab, e.g. if the label is "Bro&wse" then
Alt+W becomes an accelerator which will move the focus to this tab. Returns the id.

See also insertTab() [p. 339].

int QTabBar::count () const

Returns the number of tabs in the tab bar. See the "count" [p. 341] property for details.

int QTabBar::currentTab () const

Returns the id of the currently visible tab in the tab bar. See the "currentTab" [p. 342] property for details.

QTabBar Class Reference 339

int QTabBar::indexOf (int id) const

Returns the position index of the tab with id id.
See also tabAt() [p. 341].

int QTabBar::insertTab (QTab * newTab, int index = -1) [virtual]

Inserts the tab, newTab, into the tab control.
If index is not specified, the tab is simply added. Otherwise it’s inserted at the specified position.

Sets newTab’s id to a new id. If the tab’s label contains an ampersand, the letter following the ampersand is used as an
accelerator for the tab, e.g. if the label is "Bro&wse" then Alt+W becomes an accelerator which will move the focus to
this tab. Returns the id.

See also addTab() [p. 338].

bool QTabBar::isTabEnabled (int id) const

Returns TRUE if the tab with id id is enabled, or FALSE if it is disabled or there is no such tab.
See also setTabEnabled() [p. 341].

int QTabBar::keyboardFocusTab () const

Returns the id of the tab that currently has the keyboard focus. See the "keyboardFocusTab" [p. 342] property for
details.

void QTabBar::layoutTabs () [virtual]

Lays out all existing tabs according to their label and their iconset.

void QTabBar::paint (QPainter * p, QTab * t, bool selected) const [virtual protected]

Paints the tab t using painter p. If and only if selected is TRUE, t is drawn currently selected.

This virtual function may be reimplemented to change the look of QTabBar. If you decide to reimplement it, you may
also need to reimplement sizeHint().

void QTabBar::paintEvent (QPaintEvent * e) [virtual protected]

Repaints the tab row. All the painting is done by paint(); paintEvent() only decides which tabs need painting and in
what order. The event is passed in e.

See also paint() [p. 339].

Reimplemented from QWidget [p. 466].

QTabBar Class Reference 340

void QTabBar::paintLabel (QPainter * p, const QRect & br, QTab * t, bool has_focus)
const [virtual protected]

Paints the label of tab t centered in rectangle br using painter p. A focus indication is drawn if has_focus is TRUE.

void QTabBar::removeTab (QTab * t) [virtual]

Removes tab t from the tab control, and deletes the tab.

void QTabBar::removeToolTip (int index)

Removes the tool tip for the tab at index index.

QTab * QTabBar::selectTab (const QPoint & p) const [virtual]

This virtual function is called by the mouse event handlers to determine which tab is pressed. The default implementa-
tion returns a pointer to the tab whose bounding rectangle contains p, if exactly one tab’s bounding rectangle contains
p. Otherwise it returns O.

See also mousePressEvent() [p. 465] and mouseReleaseEvent() [p. 466].

void QTabBar::selected (int id) [signal]

QTabBar emits this signal whenever any tab is selected, whether by the program or by the user. The argument id is the
id of the tab as returned by addTab().

show() is guaranteed to emit this signal; you can display your page in a slot connected to this signal.

void QTabBar::setCurrentTab (int) [virtual slot]

Sets the id of the currently visible tab in the tab bar. See the "currentTab" [p. 342] property for details.

void QTabBar::setCurrentTab (QTab * tab) [virtual slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Raises tab and emits the selected() signal unless the tab was already current.

See also currentTab [p. 342] and selected() [p. 340].

void QTabBar::setShape (Shape) [virtual]

Sets the shape of the tabs in the tab bar. See the "shape" [p. 342] property for details.

QTabBar Class Reference 341

void QTabBar::setTabEnabled (int id, bool enabled) [virtual]

Enables tab id if enabled is TRUE or disables it if enabled is FALSE. If id is currently selected, setTabEnabled (FALSE)
makes another tab selected.

setTabEnabled () updates the display if this causes a change in id’s status.

See also update() [p. 483] and isTabEnabled() [p. 339].

void QTabBar::setToolTip (int index, const QString & tip)

Sets the tool tip for the tab at index index to tip.

Shape QTabBar::shape () const

Returns the shape of the tabs in the tab bar. See the "shape" [p. 342] property for details.

QTab * QTabBar::tab (int id) const
Returns a pointer to the tab with id id or O if there is no such tab.

See also count [p. 341].

QTab * QTabBar::tabAt (int index) const

Returns a pointer to the tab at the position index.
See also indexOf() [p. 339].

QPtrList<QTab> * QTabBar::tabList () [protected]

The list of QTab objects in the tab bar.

QString QTabBar::toolTip (int index) const

Returns the tool tip for the tab at index index.

Property Documentation

int count

This property holds the number of tabs in the tab bar.
Get this property’s value with count().

See also tab() [p. 341].

QTabBar Class Reference 342

int currentTab

This property holds the id of the currently visible tab in the tab bar.

If no tab page is currently visible, -1 will be the current value for this property. Even if the property value is not -1, you
cannot assume that the user can see the relevant page, or that the tab is enabled. When you need to display something
the value of this property represents the best page to display.

When this property is set to id, it will raise the tab with the id id and emit the selected() signal.
See also selected() [p. 340] and isTabEnabled() [p. 339].

Set this property’s value with setCurrentTab() and get this property’s value with currentTab().

int keyboardFocusTab

This property holds the id of the tab that currently has the keyboard focus.

This property contains the id of the tab that currently has the keyboard focus. If the tab bar does not have keyboard
focus, the value of this property will be -1.

Get this property’s value with keyboardFocusTab().

Shape shape

This property holds the shape of the tabs in the tab bar.

The value of this property can be one of the following: RoundedAbove (default), RoundedBelow, TriangularAbove or
TriangularBelow.

See also Shape [p. 338].

Set this property’s value with setShape() and get this property’s value with shape().

Table Module

This module is part of the Qt Enterprise Edition.

The table module provides a flexible and editable table widget, QTable. For many applications QTables can be used
directly and simply, providing a grid of editable cells. QTable can also be subclassed in a straightforward way to provide
very large sparse tables, e.g. one million by one million cells.

File Size (bytes) |usein sum |4 Al

1302ves i
G426 es
2107 es

29758% es
3307es

107z0%es |

37zaYes

952
15974es

o n oo A .

The table module provides the following classes:

e QTable itself is the abstract widget of choice whenever you need to provide your users with the ability to display
and edit tabular data such as spreadsheet or database data.

QTableltem objects are used to populate a QTable with data with each table item holding the contents of a cell.

The QComboTableltem class provides memory-efficient combobox items for QTables.

The QCheckTableltem class provides memory-efficient checkbox items for QTables.

QTableSelection provides access to selections of cells in a QTable.

QHeader provides access to the table’s horizontal header (column headers) and vertical header (row headers).

Please see the appropriate class documentation for details and refer to the Qt table examples for practical demonstra-
tion.

343

QTable Class Reference

The QTable class provides a flexible editable table widget.
This class is part of the table module.

#include <qgtable. h>

Inherits QScrollView [p. 275].

Inherited by QDataTable [Databases with Qt].

Public Members

m QTable (QWidget * parent = 0, const char * name = 0)

m QTable (int numRows, int numCols, QWidget * parent = 0, const char * name = 0)
= ~QTable ()

m QHeader * horizontalHeader () const

m QHeader * verticalHeader () const

m enum SelectionMode { Single, Multi, SingleRow, MultiRow, NoSelection }

virtual void setSelectionMode (SelectionMode mode)

SelectionMode selectionMode () const

virtual void setItem (int row, int col, QTableltem * item)

virtual void setText (int row, int col, const QString & text)
virtual void setPixmap (int row, int col, const QPixmap & pix)
virtual QTableltem * item (int row, int col) const

virtual QString text (int row, int col) const

m virtual QPixmap pixmap (int row, int col) const

m virtual void clearCell (int row, int col)

virtual QRect cellGeometry (int row, int col) const
virtual int columnWidth (int col) const

virtual int rowHeight (int row) const

virtual int columnPos (int col) const

virtual int rowPos (int row) const
virtual int columnAt (int x) const
m virtual int rowAt (int y) const

m virtual int numRows () const
m virtual int numCols () const
m void updateCell (int row, int col)

344

QTable Class Reference

int currentRow () const

int currentColumn () const

void ensureCellVisible (int row, int col)

bool isSelected (int row, int col) const

bool isRowSelected (int row, bool full = FALSE) const
bool isColumnSelected (int col, bool full = FALSE) const
int numSelections () const

QTableSelection selection (int num) const

virtual int addSelection (const QTableSelection & s)
virtual void removeSelection (const QTableSelection & s)
virtual void removeSelection (int num)

virtual int currentSelection () const

bool showGrid () const

bool columnMovingEnabled () const

bool rowMovingEnabled () const

virtual void sortColumn (int col, bool ascending = TRUE, bool wholeRows = FALSE)
bool sorting () const

virtual void takeltem (QTableltem * i)

virtual void setCellWidget (int row, int col, QWidget * e)
virtual QWidget * cellWidget (int row, int col) const
virtual void clearCellWidget (int row, int col)

virtual QRect cellRect (int row, int col) const

virtual void paintCell (QPainter * p, int row, int col, const QRect & cr, bool selected)

345

virtual void paintCell (QPainter * p, int row, int col, const QRect & cr, bool selected, const QColorGroup & cg)

virtual void paintFocus (QPainter * p, const QRect & cr)
bool isReadOnly () const

bool isRowReadOnly (int row) const

bool isColumnReadOnly (int col) const

void repaintSelections ()

enum FocusStyle { FollowStyle, SpreadSheet }

virtual void setFocusStyle (FocusStyle fs)

FocusStyle focusStyle () const

Public Slots

virtual void setNumRows (int r)

virtual void setNumCols (int r)

virtual void setShowGrid (bool b)

virtual void hideRow (int row)

virtual void hideColumn (int col)

virtual void showRow (int row)

virtual void showColumn (int col)

virtual void setColumnWidth (int col, int w)
virtual void setRowHeight (int row, int h)
virtual void adjustColumn (int col)

QTable Class Reference

virtual void adjustRow (int row)

virtual void setColumnStretchable (int col, bool stretch)
virtual void setRowStretchable (int row, bool stretch)

bool isColumnStretchable (int col) const

bool isRowStretchable (int row) const

virtual void setSorting (bool b)

virtual void swapRows (int row1, int row2, bool swapHeader = FALSE)
virtual void swapColumns (int coll, int col2, bool swapHeader = FALSE)
virtual void swapCells (int row1, int coll, int row2, int col2)
virtual void setLeftMargin (int m)

virtual void setTopMargin (int m)

virtual void setCurrentCell (int row, int col)

void clearSelection (bool repaint = TRUE)

virtual void setColumnMovingEnabled (bool b)

virtual void setRowMovingEnabled (bool b)

virtual void setReadOnly (bool b)

virtual void setRowReadOnly (int row, bool ro)

virtual void setColumnReadOnly (int col, bool ro)

virtual void setDragEnabled (bool b)

bool dragEnabled () const

virtual void insertRows (int row, int count = 1)

virtual void insertColumns (int col, int count = 1)

virtual void removeRow (int row)

virtual void removeRows (const QMemArray<int> & rows)
virtual void removeColumn (int col)

virtual void removeColumns (const QMemArray<int> & cols)
virtual void editCell (int row, int col, bool replace = FALSE)

Signals

void currentChanged (int row, int col)

void clicked (int row, int col, int button, const QPoint & mousePos)

void doubleClicked (int row, int col, int button, const QPoint & mousePos)
void pressed (int row, int col, int button, const QPoint & mousePos)

void selectionChanged ()

void valueChanged (int row, int col)

void contextMenuRequested (int row, int col, const QPoint & pos)

void dropped (QDropEvent * e)

346

QTable Class Reference 347

Properties

m bool columnMovingEnabled — whether columns can be moved by the user
FocusStyle focusStyle — how the current (focus) cell is drawn

m int numCols — the number of columns in the table

m int numRows — the number of rows in the table

m bool readOnly — whether the table is read-only

m bool rowMovingEnabled — whether rows can be moved by the user

m SelectionMode selectionMode — the current selection mode

m bool showGrid — whether the table’s grid is displayed

m bool sorting — whether a click on the header of a column sorts that column

Protected Members

enum EditMode { NotEditing, Editing, Replacing }

virtual void drawContents (QPainter * p, int cx, int cy, int cw, int ch)
void setEditMode (EditMode mode, int row, int col)

virtual void contentsDragEnterEvent (QDragEnterEvent * e)

virtual void contentsDragMoveEvent (QDragMoveEvent * e)

virtual void contentsDragLeaveEvent (QDragleaveEvent * e)

m virtual void contentsDropEvent (QDropEvent * e)

m virtual QDragObject * dragObject ()

m virtual void startDrag ()

m virtual void paintEmptyArea (QPainter * p, int cx, int cy, int cw, int ch)
virtual void activateNextCell ()

virtual QWidget * createEditor (int row, int col, bool initFromCell) const
virtual void setCellContentFromEditor (int row, int col)

virtual QWidget * beginEdit (int row, int col, bool replace)

m virtual void endEdit (int row, int col, bool accept, bool replace)
m virtual void resizeData (int len)

m virtual void insertWidget (int row, int col, QWidget * w)

m int indexOf (int row, int col) const

» bool isEditing () const

m EditMode editMode () const

e int currEditRow () const

e int currEditCol () const

Protected Slots

m virtual void columnWidthChanged (int col)

m virtual void rowHeightChanged (int row)

m virtual void columnIndexChanged (int section, int fromIndex, int toIndex)
m virtual void rowIndexChanged (int section, int fromIndex, int toIndex)

m virtual void columnClicked (int col)

QTable Class Reference 348

Detailed Description

The QTable class provides a flexible editable table widget.

QTable is easy to use, although it does have a large API because of the comprehensive functionality that it provides.
QTable includes functions for manipulating headers, rows and columns, cells and selections. QTable also provides
in-place editing and drag and drop, as well as a useful set of signals. QTable efficiently supports very large tables, for
example, tables one million by one million cells are perfectly possible. QTable is economical with memory, using none
for unused cells.

Qrabl e *table = new Qrabl e(100, 250, this);
tabl e->set Pi xmap(3, 2, pix);
tabl e->set Text(3, 2, "A pixmp");

The first line constructs the table specifying its size in rows and columns. We then insert a pixmap and some text into
the same cell, with the pixmap appearing to the left of the text. By default a vertical header appears at the left of the
table showing row numbers and a horizontal header appears at the top of the table showing column numbers. (The
numbers displayed start at 1, although row and column numbers within QTable begin at 0.)

If you want to use mouse tracking call setMouseTracking(TRUE) on the viewport; (see QScrollView).

Headers

QTable supports a header column, e.g. to display row numbers, and a header row, e.g to display column titles. To set
row or column labels use QHeader::setLabel() on the pointers returned by verticalHeader() and horizontalHeader ()
respectively. The vertical header is displayed within the table’s left margin whose width is set with setLeftMargin().
The horizontal header is displayed within the table’s top margin whose height is set with setTopMargin(). The table’s
grid can be switched off with setShowGrid(). If you want to hide a vertical header call hide(), and call setTopMargin(
0) so that the area the header would have occupied is reduced to zero size.

Header labels are indexed via their section numbers. Note that the default behavior of QHeader regarding section
numbers is overriden for QTable. See the explanation below in Rows and Columns section in the discussion of moving
columns and rows.

Rows and Columns

Row and column sizes are set with setRowHeight() and setColumnWidth(). If you want a row high enough to show
the tallest item in its entirety, use adjustRow(). Similarly, to make a column wide enough to show the widest item use
adjustColumn(). If you want the row height and column width to adjust automatically as the height and width of the
table changes use setRowStretchable() and setColumnStretchable().

Rows and columns can be hidden and shown with hideRow(), hideColumn(), showRow() and showColumn(). New
rows and columns are inserted using insertRows() and insertColumns(). Additional rows and columns are added
at the bottom (rows) or right (columns) if you set setNumRows() or setNumCols() to be larger than numRows() or
numCols(). Existing rows and columns are removed with removeRow() and removeColumn(). Multiple rows and
columns can be removed with removeRows() and removeColumns().

Rows and columns can be set to be moveable, i.e. the user can drag them to reorder them, using rowMovingEnabled ()
and columnMovingEnabled(). For performance reasons, the default behavior of QHeader section numbers is over-
written by QTable. Currently in QTable, when a row or column is dragged and reordered, the section number is also
changed to its new position. Therefore, there is no difference between the section and the index fields in QHeader. The
QTable QHeader classes do not provide a mechanism for indexing independent of the user interface ordering.

QTable Class Reference 349

The table can be sorted using sortColumn(). Users can sort a column by clicking its header if setSorting() is set to
TRUE. Rows can be swapped with swapRows(), columns with swapColumns() and cells with swapCells().

For editable tables (see setReadOnly()) you can set the read-only property of individual rows and columns with
setRowReadOnly() and setColumnReadOnly(). (Whether a cell is editable or read-only depends on these settings
and the cell’s QTableltem::EditType.)

The row and column which have the focus are returned by currentRow() and currentColumn() respectively.

Although many QTable functions operate in terms of rows and columns the indexOf() function returns a single integer
identifying a particular cell.

Cells

All of a QTable’s cells are empty when the table is constructed.

There are two approaches to populating the table’s cells. The first and simplest approach is to use QTableltems or
QTableltem subclasses. The second approach doesn’t use QTableltems at all which is useful for very large sparse tables
but requires you to reimplement a number of functions. We’ll look at each approach in turn.

To put a string in a cell use setText(). This function will create a new QTableltem for the cell if one doesn’t already
exist, and displays the text in it. By default the table item’s widget will be a QLineEdit. A pixmap may be put in a
cell with setPixmap(), which also creates a table item if required. A cell may contain both a pixmap and text; the
pixmap is displayed to the left of the text. Another approach is to construct a QTableltem or QTableItem subclass, set
its properties, then insert it into a cell with setItem().

If you want cells which contain comboboxes use the QComboTableltem class. Similarly if you require cells containing
checkboxes use the QCheckTableltem class. These table items look and behave just like the combobox or checkbox
widgets but consume far less memory.

for (int j =0;] < numRows; +4)
table.setlten(j, 1, new QCheckTablelten(&t able, "Check me"));

In the example above we create a column of QCheckTableltems and insert them into the table using setltem().

QTable takes ownership of its QTableItems and will delete them when the table itself is destroyed. You can take
ownership of a table item using takeltem() which you use to move a cell’s contents from one cell to another, either
within the same table, or from one table to another. (See also, swapCells()).

In-place editing of the text in QTableltems, and the values in QComboTableltems and QCheckTableltems works auto-
matically. Cells may be editable or read-only, see QTableltem::EditType.

The contents of a cell can be retrieved as a QTableltem using item(), or as a string with text() or as a pixmap (if there
is one) with pixmap(). A cell’s bounding rectangle is given by cellGeometry(). Use updateCell() to repaint a cell, for
example to clear away a cell’s visual representation after it has been deleted with clearCell(). The table can be forced
to scroll to show a particular cell with ensureCellVisible(). The isSelected() function indicates if a cell is selected.

It is possible to use your own widget as a cell’s widget using setCellWidget(), but subclassing QTableIltem might be a
simpler approach. The cell’s widget (if there is one) can be removed with clearCellWidget().

Large tables

For large, sparse, tables using QTableltems or other widgets is inefficient. The solution is to draw the cell as it should
appear and to create and destroy cell editors on demand.

QTable Class Reference 350

This approach requires that you reimplement various functions. Reimplement paintCell() to display your data, and
createEditor() and setCellContentFromEditor() to facilitate in-place editing. It is very important to reimplement re-
sizeData() to have no functionality, to prevent QTable from attempting to create a huge array. You will also need to
reimplement item(), setltem(), clearCell(), and insertWidget(), cellWidget() and clearCellWidget(). If you wish to
support sorting you should also reimplement swapRows(), swapCells() and possibly swapColumns().

If you represent active cells with a dictionary of QTableltems and QWidgets, i.e. only store references to cells that are
actually used, most of the functions can be implemented with a single line of code. (See the table/bigtable/main.cpp
example.)

For more information on cells see the QTableltem documenation.

Selections

QTable’s support single selection, multi-selection (multiple cells) or no selection. The selection mode is set with set-
SelectionMode(). Use isSelected() to determine if a particular cell is selected, and isRowSelected() and isColumnSe-
lected() to see if a row or column is selected.

QTable’s support multiple selections. You can programmatically select cells with addSelection(). The number of selec-
tions is given by numSelections(). The current selection is returned by currentSelection(). You can remove a selection
with removeSelection() and remove all selections with clearSelection(). Selections are QTableSelection objects.

Signals

When the user clicks a cell the currentChanged() signal is emitted. You can also connect to the lower level clicked(),
doubleClicked() and pressed() signals. If the user changes the selection the selectionChanged() signal is emitted;
similarly if the user changes a cell’s value the valueChanged() signal is emitted. If the user right-clicks (or presses the
platform-specific key sequence) the contextMenuRequested () signal is emitted. If the user drops a drag and drop object
the dropped() signal is emitted with the drop event.

See also Advanced Widgets.

Member Type Documentation

QTable::EditMode

e Qrabl e:: Not Edi ti ng - No cell is currently being edited.
e QTabl e:: Editing - A cell is currently being edited. The editor was initialised with the cell’s contents.
e QTabl e: : Repl aci ng - A cell is currently being edited. The editor was not initialised with the cell’s contents.

QTable::FocusStyle
Specifies how the current cell (focus cell) is drawn.

e Qrabl e:: Fol | owStyl e - The current cell is drawn according to the current style and the cell’s background is also
drawn selected, if the current cell is position within a selection

e Qrabl e: : SpreadSheet - The current cell is drawn as in a spread sheet. This means, it is indicated by a black
rectangle around the cell, and the background of the current cell is always drawn with the widget’s base color -
even when selected.

QTable Class Reference 351

QTable::SelectionMode

e QTabl e: : NoSel ecti on - No cell can be selected by the user.

e Qrabl e: : Si ngl e - The user may only select a single range of cells.

e Qlabl e:: Ml ti - The user may select multiple ranges of cells.

e QTabl e:: Si ngl eRow - The user may select one row at once (there is always the row of the current item selected)

e Qrabl e:: Mul ti Row - The user may select multiple rows

Member Function Documentation

QTable::QTable (QWidget * parent = 0, const char * name = 0)

Creates an empty table object called name as a child of parent.
Call setNumRows() and setNumCols() to set the table size before populating the table if you’re using QTableltems.

See also QWidget::clearWFlags() [p. 449] and Qt::WidgetFlags [Additional Functionality with Qt].

QTable::QTable (int numRows, int numCols, QWidget * parent = 0, const char * name = 0)

Constructs an empty table called name with numRows rows and numCols columns. The table is a child of parent.

If you’re using QTableltems to populate the table’s cells, you can create QTableltem, QComboTableltem and QCheck-
Tableltem items and insert them into the table using setltem(). (See the notes on large tables for an alternative to
using QTableltems.)

See also QWidget::clearWFlags() [p. 449] and Qt::WidgetFlags [Additional Functionality with Qt].

QTable::~QTable ()

Destructor. Deletes all the resources used by a QTable object, including all QTableltems and their widgets.

void QTable::activateNextCell () [virtual protected]

This function is called to activate the next cell if in-place editing was finished by pressing the Return key.

The default behaviour is to move from top to bottom, i.e. move to the cell beneath the cell being edited. Reimplement
this function if you want different behaviour, e.g. moving from left to right.

int QTable::addSelection (const QTableSelection & s) [virtual]

Adds a selection described by s to the table and returns its number or -1 if the selection is invalid.

Remember to call QTableSelection::init() and QTableSelection::expandTo() to make the selection valid (see also QTa-
bleSelection::isActive()).

See also numSelections() [p. 360], removeSelection() [p. 362] and clearSelection() [p. 353].

QTable Class Reference 352

void QTable::adjustColumn (int col) [virtual slot]

Resizes column col so that the column width is wide enough to display the widest item the column contains.

See also adjustRow() [p. 352].

void QTable::adjustRow (int row) [virtual slot]

Resizes row row so that the row height is tall enough to display the tallest item the row contains.

See also adjustColumn() [p. 352].

QWidget * QTable::beginEdit (int row, int col, bool replace) [virtual protected]

This function is called to start in-place editing of the cell at row, col. Editing is achieved by creating an editor (cre-
ateEditor() is called) and setting the cell’s editor with setCellWidget() to the newly created editor. (After editing is
complete endEdit() will be called to replace the cell’s content with the editor’s content.) If replace is TRUE the editor
will be initialized with the cell’s content (if any), i.e. the user will be modifying the original cell content; otherwise the
user will be entering new data.

See also endEdit() [p. 357].

QRect QTable::cellGeometry (int row, int col) const [virtual]

Returns the bounding rectangle of the cell at row, col in content coordinates.

QRect QTable::cellRect (int row, int col) const [virtual]

Returns the geometry of cell row, col in the cell’s coordinate system. This is a convenience function useful in paintCell().
It is equivalent to QRect(QPoint(0,0), cellGeometry(row, col).size());

See also cellGeometry() [p. 352].

QWidget * QTable::cellWidget (int row, int col) const [virtual]

Returns the widget that has been set for the cell at row, col, or 0 if no widget has been set.
If you don’t use QTableltems you may need to reimplement this function: see the notes on large tables.

See also clearCellWidget() [p. 353] and setCellWidget() [p. 364].

void QTable::clearCell (int row, int col) [virtual]

Removes the QTableltem at row, col.

If you don’t use QTableltems you may need to reimplement this function: see the notes on large tables.

QTable Class Reference 353

void QTable::clearCellWidget (int row, int col) [virtual]

Removes the widget (if there is one) set for the cell at row, col.
If you don’t use QTableltems you may need to reimplement this function: see the notes on large tables.

This function deletes the widget at row, col. Note that the widget is not deleted immediately but QObject::deleteLater()
is called on the widget to avoid problems with timing issues.

See also cellWidget() [p. 352] and setCellWidget() [p. 364].

void QTable::clearSelection (bool repaint = TRUE) [slot]

Clears all selections and repaints the appropriate regions if repaint is TRUE.

See also removeSelection() [p. 362].

void QTable::clicked (int row, int col, int button, const QPoint & mousePos) [signal]

This signal is emitted when mouse button button is clicked. The cell where the event took place is at row, col, and the
mouse’s position is in mousePos.

int QTable::columnAt (int x) const [virtual]

Returns the number of the column at position x. x must be given in content coordinates.

See also columnPos() [p. 354] and rowAt() [p. 363].

void QTable::columnClicked (int col) [virtual protected slot]

This function is called when the column col has been clicked. The default implementation sorts this column if sorting()
is TRUE.

void QTable::columnIndexChanged (int section, int fromIndex,
int toIndex) [virtual protected slot]

This function is called when column order is to be changed, i.e. when the user moved the column header section from
fromlIndex to toIndex.

If you want to change the column order programmatically, call swapRows() or swapColumns();

See also QHeader::indexChange() [Additional Functionality with Qt] and rowIndexChanged() [p. 363].

bool QTable::columnMovingEnabled () const

Returns TRUE if columns can be moved by the user; otherwise returns FALSE. See the "columnMovingEnabled" [p. 370]
property for details.

QTable Class Reference 354

int QTable::columnPos (int col) const [virtual]

Returns the x-coordinate of the column col in content coordinates.

See also columnAt() [p. 353] and rowPos() [p. 363].

int QTable::columnWidth (int col) const [virtual]

Returns the width of column col.

See also setColumnWidth() [p. 365] and rowHeight() [p. 363].

void QTable::columnWidthChanged (int col) [virtual protected slot]

This function should be called whenever the column width of col has been changed. It updates the geometry of any
affected columns and repaints the table to reflect the changes it has made.

void QTable::contentsDragEnterEvent (QDragEnterEvent * e) [virtual protected]

This event handler is called whenever a QTable object receives a QDragEnterEvent e, i.e. when the user pressed the
mouse button to drag something.

The focus is moved to the cell where the QDragEnterEvent occurred.

Reimplemented from QScrollView [p. 283].

void QTable::contentsDragleaveEvent (QDragLeaveEvent * e) [virtual protected]

This event handler is called when a drag activity leaves this QTable object with event e.

Reimplemented from QScrollView [p. 284].

void QTable::contentsDragMoveEvent (QDragMoveEvent * e) [virtual protected]

This event handler is called whenever a QTable object receives a QDragMoveEvent e, i.e. when the user actually drags
the mouse.

The focus is moved to the cell where the QDragMoveEvent occurred.

Reimplemented from QScrollView [p. 284].

void QTable::contentsDropEvent (QDropEvent * e) [virtual protected]

This event handler is called when the user ends a drag and drop by dropping something onto this QTable and thus
triggers the drop event, e.

Reimplemented from QScrollView [p. 284].

QTable Class Reference 355

void QTable::contextMenuRequested (int row, int col, const QPoint & pos) [signal]

This signal is emitted when the user invokes a context menu with the right mouse button (or with a system-specific
keyboard key). The cell where the event took place is at row, col. pos is the position where the context menu will
appear in the global coordinate system.

QWidget * QTable::createEditor (int row, int col, bool initFromCell)
const [virtual protected]

This function returns the widget which should be used as an editor for the contents of the cell at row, col.

If initFromCell is TRUE, the editor is used to edit the current contents of the cell (so the editor widget should be
initialized with this content). If initFromCell is FALSE, the content of the cell is replaced with the new content which
the user entered into the widget created by this function.

The default functionality is as follows: if initFromCell is TRUE or the cell has a QTableltem and the ta-
ble item’s QTableltem::isReplaceable() is FALSE then the cell is asked to create an appropriate editor (using
QTableltem::createEditor()). Otherwise a QLineEdit is used as the editor.

If you want to create your own editor for certain cells, implement a custom QTableltem subclass and reimplement
QTableltem::createEditor().

If you are not using QTableltems and you don’t want to use a QLineEdit as the default editor, subclass QTable and

reimplement this function with code like this:

Qrableltem*i = iten(row, col);

if (initFromCell || (i & !i->isReplaceable()))
/1 1f we had a Qrableltem ask the base class to create the editor
return Qrable::createEditor(row, col, initFronCell);

el se
return ...(create your editor)

Ownership of the editor widget is transferred to the caller.

If you reimplement this function return O for read-only cells. You will need to reimplement setCellContentFromEditor()
to retrieve the data the user entered.

See also QTableltem::createEditor() [p. 375].

int QTable::currEditCol () const [protected]

Returns the current edited column

int QTable::currEditRow () const [protected]

Returns the current edited row

void QTable::currentChanged (int row, int col) [signal]

This signal is emitted when the current cell has changed to row, col.

QTable Class Reference 356

int QTable::currentColumn () const

Returns the current column.

See also currentRow() [p. 356].

int QTable::currentRow () const

Returns the current row.

See also currentColumn() [p. 356].

int QTable::currentSelection () const [virtual]

Returns the number of the current selection or -1 if there is no current selection.

See also numSelections() [p. 360].

void QTable::doubleClicked (int row, int col, int button, const QPoint & mousePos) [signal]

This signal is emitted when mouse button button is double-clicked. The cell where the event took place is at row, col,
and the mouse’s position is in mousePos.

bool QTable::dragEnabled () const [slot]

If this function returns TRUE, the table supports dragging.
See also setDragEnabled() [p. 365].

QDragObject * QTable::dragObject () [virtual protected]
If the user presses the mouse on a selected cell, starts moving (i.e. dragging), and dragEnabled() is TRUE, this function
is called to obtain a drag object. A drag using this object begins immediately unless dragObject() returns O.

By default this function returns 0. You might reimplement it and create a QDragObject depending on the selected
items.

See also dropped() [p. 357].

void QTable::drawContents (QPainter * p, int cx, int ¢y, int cw, int ch) [virtual protected]
Draws the table contents on the painter p. This function is optimized so that it only draws the cells inside the cw pixels
wide and ch pixels high clipping rectangle at position cx, cy.

Additionally, drawContents() highlights the current cell.

Reimplemented from QScrollView [p. 286].

QTable Class Reference 357

void QTable::dropped (QDropEvent * e) [signal]

This signal is emitted when a drop event occurred on the table.

e contains information about the drop.

void QTable::editCell (int row, int col, bool replace = FALSE) [virtual slot]

Starts editing the cell at row, col.

If replace is TRUE the content of this cell will be replaced by the content of the editor when editing is finished, i.e. the
user will be entering new data; otherwise the current content of the cell (if any) will be modified in the editor.

See also beginEdit() [p. 352].

EditMode QTable::editMode () const [protected]

Returns the current edit mode

void QTable::endEdit (int row;, int col, bool accept, bool replace) [virtual protected]

This function is called when in-place editing of the cell at row, col is requested to stop.
If the cell is not being edited or accept is FALSE the function returns and the cell’s contents are left unchanged.

If accept is TRUE the content of the editor must be transferred to the relevant cell. If replace is TRUE the current content
of this cell should be replaced by the content of the editor (this means removing the current QTableltem of the cell
and creating a new one for the cell). Otherwise (if possible) the content of the editor should just be set to the existing
QTableltem of this cell.

If the cell contents should be replaced or if no QTableltem exists for the cell, setCellContentFromEditor() is called.
Otherwise QTableltem::setContentFromEditor() is called on the QTableltem of the cell.

Finally clearCellWidget() is called to remove the editor widget.
See also setCellContentFromEditor() [p. 364] and beginEdit() [p. 352].

void QTable::ensureCellVisible (int row, int col)

Scrolls the table until the cell at row, col becomes visible.

FocusStyle QTable::focusStyle () const

Returns how the current (focus) cell is drawn. See the "focusStyle" [p. 370] property for details.

void QTable::hideColumn (int col) [virtual slot]

Hides column col.

See also showColumn() [p. 367] and hideRow() [p. 358].

QTable Class Reference 358

void QTable::hideRow (int row) [virtual slot]

Hides row row.

See also showRow() [p. 367] and hideColumn() [p. 3571].

QHeader * QTable::horizontalHeader () const

Returns the table’s top QHeader.
This header contains the column labels.

To modify a column label use QHeader::setLabel(), e.g.
hori zont al Header () ->set Label (0, tr("File"));

See also verticalHeader() [p. 369], setTopMargin() [p. 367] and QHeader [Additional Functionality with Qt].

int QTable::indexOf (int row, int col) const [protected]

Returns a single integer which identifies a particular row and col by mapping the 2D table to a 1D array.

This is useful, for example, if you have a sparse table and want to use a QIntDict to map integers to the cells that are
used.

void QTable::insertColumns (int col, int count = 1) [virtual slot]

Inserts count empty columns at column col.

See also insertRows() [p. 358] and removeColumn() [p. 361].

void QTable::insertRows (int row, int count = 1) [virtual slot]

Inserts count empty rows at row row,

See also insertColumns() [p. 358] and removeRow() [p. 362].

void QTable::insertWidget (int row, int col, QWidget * w) [virtual protected]

Inserts widget w at row, col into the internal datastructure. See the documentation of setCellWidget() for further
details.

If you don’t use QTableltems you may need to reimplement this function: see the notes on large tables.

bool QTable::isColumnReadOnly (int col) const

Returns whether column col is read-only.

Whether a cell in this column is editable or read-only depends on the cell's EditType, and this setting: see
QTableltem::EditType.

QTable Class Reference 359

See also setColumnReadOnly() [p. 364] and isRowReadOnly() [p. 359].

bool QTable::isColumnSelected (int col, bool full = FALSE) const

Returns TRUE if column col is selected; otherwise returns FALSE.

If full is FALSE (the default), ’col is selected’ means that at least one cell in the column is selected. If full is TRUE, then
"col is selected’ means every cell in the column is selected.

See also isRowSelected() [p. 359] and isSelected() [p. 360].

bool QTable::isColumnStretchable (int col) const [slot]

Returns TRUE if column col is stretchable; otherwise returns FALSE.

See also setColumnStretchable() [p. 364] and isRowStretchable() [p. 359].

bool QTable::isEditing () const [protected]

Returns TRUE if the EditMode is Editing or Replacing. Returns FALSE if the EditMode is NotEditing.
See also QTable::EditMode [p. 350].

bool QTable::isReadOnly () const

Returns TRUE if the table is read-only; otherwise returns FALSE. See the "readOnly" [p. 370] property for details.

bool QTable::isRowReadOnly (int row) const

Returns whether row row is read-only.

Whether a cell in this row is editable or read-only depends on the cell’s EditType, and this setting: see
QTableltem::EditType.

See also setRowReadOnly() [p. 366] and isColumnReadOnly() [p. 358].

bool QTable::isRowSelected (int row, bool full = FALSE) const

Returns TRUE if row row is selected; otherwise returns FALSE.

If full is FALSE (the default), 'row is selected’ means that at least one cell in the row is selected. If full is TRUE, then
'row is selected’ means every cell in the row is selected.

See also isColumnSelected() [p. 359] and isSelected() [p. 360].

bool QTable::isRowStretchable (int row) const [slot]

Returns TRUE if row row is stretchable; otherwise returns FALSE.

See also setRowStretchable() [p. 366] and isColumnStretchable() [p. 359].

QTable Class Reference 360

bool QTable::isSelected (int row, int col) const

Returns TRUE if the cell at row, col is selected; otherwise returns FALSE.

See also isRowSelected() [p. 359] and isColumnSelected() [p. 359].

QTableltem * QTable::item (int row, int col) const [virtual]

Returns the QTableltem representing the contents of the cell at row, col.
If row or col are out of range or no content has been set for this cell, item() returns 0.
If you don’t use QTableltems you may need to reimplement this function: see the notes on large tables.

See also setltem() [p. 365].

int QTable::numCols () const [virtual]

Returns the number of columns in the table. See the "numCols" [p. 370] property for details.

Reimplemented in QDataTable.

int QTable::numRows () const [virtual]

Returns the number of rows in the table. See the "numRows" [p. 370] property for details.

Reimplemented in QDataTable.

int QTable::numSelections () const

Returns the number of selections.

See also currentSelection() [p. 356].

void QTable::paintCell (QPainter * p, int row, int col, const QRect & cr, bool selected,
const QColorGroup & cg) [virtual]

Paints the cell at row, col on the painter p. The painter has already been translated to the cell’s origin. cr describes the
cell coordinates in the content coordinate system.

If selected is TRUE the cell is highlighted.
cg is the colorgroup which should be used to draw the cell content.

If you want to draw custom cell content, for example right-aligned text, you must either reimplement paintCell(), or
subclass QTableltem and reimplement QTableltem::paint() to do the custom drawing.

If you're using a QTableltem subclass, for example, to store a data structure, then reimplementing QTableltem::paint()
may be the best approach. For data you want to draw immediately, e.g. data retrieved from a database, it is probably
best to reimplement paintCell(). Note that if you reimplement paintCell, i.e. don’t use QTableltems, you will have to
reimplement other functions: see the notes on large tables.

QTable Class Reference 361

Note that the painter is not clipped by default in order to get maximum efficiency. If you want clipping, use code like
this:

p->setCipRect(cellRect(row, col), QPainter::CipPainter);
[]... your draw ng code
p->set O i pping(FALSE);

void QTable::paintCell (QPainter * p, int row, int col, const QRect & cr,
bool selected) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Use the other paintCell() function. This function is only included for backwards compatibilty.

void QTable::paintEmptyArea (QPainter * p, int cx, int cy, int cw, int ch) [virtual protected]

This function fills the cw pixels wide and ch pixels high rectangle starting at position cx, ¢y with the background color
using the painter p.

paintEmptyArea() is invoked by drawContents() to erase or fill unused areas.

void QTable::paintFocus (QPainter * p, const QRect & cr) [virtual]

Draws the focus rectangle of the current cell (see currentRow(), currentColumn()).

The painter p is already translated to the cell’s origin, while cr specifies the cell’s geometry in content coordinates.

QPixmap QTable::pixmap (int row, int col) const [virtual]

Returns the pixmap set for the cell at row, col, or a null-pixmap if the cell contains no pixmap.

See also setPixmap() [p. 366].

void QTable::pressed (int row, int col, int button, const QPoint & mousePos) [signal]

This signal is emitted when mouse button button is pressed. The cell where the event took place is at row, col, and the
mouse’s position is in mousePos.

void QTable::removeColumn (int col) [virtual slot]

Removes column col, and deletes all its cells including any table items and widgets the cells may contain.

The array passed in has to contain only valid columns (in the range from 0 to numCols() - 1), no duplicates and must
be sorted in ascending order.

See also removeColumns() [p. 362], hideColumn() [p. 3571, insertColumns() [p. 358] and removeRow() [p. 362].

QTable Class Reference 362

void QTable::removeColumns (const QMemArray<int> & cols) [virtual slot]

Removes the columns listed in the array cols, and deletes all their cells including any table items and widgets the cells
may contain.

See also removeColumn() [p. 361], insertColumns() [p. 358] and removeRows() [p. 362].

void QTable::removeRow (int row) [virtual slot]

Removes row row, and deletes all its cells including any table items and widgets the cells may contain.

See also hideRow() [p. 358], insertRows() [p. 358], removeColumn() [p. 361] and removeRows() [p. 362].

void QTable::removeRows (const QMemArray<int> & rows) [virtual slot]

Removes the rows listed in the array rows, and deletes all their cells including any table items and widgets the cells
may contain.

The array passed in has to contain only valid rows (in the range from 0 to numRows() - 1), no duplicates and must be
sorted in ascending order.

See also removeRow() [p. 362], insertRows() [p. 358] and removeColumns() [p. 362].

void QTable::removeSelection (const QTableSelection & s) [virtual]

If the table has a selection, s, this selection is removed from the table.

See also addSelection() [p. 351] and numSelections() [p. 360].

void QTable::removeSelection (int num) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Removes selection number num from the table.

See also numSelections() [p. 360], addSelection() [p. 351] and clearSelection() [p. 353].

void QTable::repaintSelections ()

Repaints all selections

void QTable::resizeData (int len) [virtual protected]

This is called when QTable’s internal array needs to be resized to len elements.

If you don’t use QTableltems you should reimplement this as an empty method to avoid wasting memory. See the notes
on large tables [p. 349] for further details.

QTable Class Reference 363

int QTable::rowAt (int y) const [virtual]

Returns the number of the row at position y. y must be given in content coordinates.

See also rowPos() [p. 363] and columnAt() [p. 353].

int QTable::rowHeight (int row) const [virtual]

Returns the height of row row.

See also setRowHeight() [p. 366] and columnWidth() [p. 354].

void QTable::rowHeightChanged (int row) [virtual protected slot]

This function should be called whenever the row height of row has been changed. It updates the geometry of any
affected rows and repaints the table to reflect the changes it has made.

void QTable::rowIndexChanged (int section, int fromIndex,
int tolndex) [virtual protected slot]

This function is called when the order of the rows is to be changed, i.e. the user moved the row header section section
from fromIndex to toIndex.

If you want to change the order programmatically, call swapRows() or swapColumns();

See also QHeader::indexChange() [Additional Functionality with Qt] and columnIndexChanged() [p. 353].

bool QTable::rowMovingEnabled () const

Returns TRUE if rows can be moved by the user; otherwise returns FALSE. See the "rowMovingEnabled" [p. 370]
property for details.

int QTable::rowPos (int row) const [virtual]

Returns the y-coordinate of the row row in content coordinates.
See also rowAt() [p. 363] and columnPos() [p. 354].

QTableSelection QTable::selection (int num) const

Returns selection number num, or an empty QTableSelection if num is out of range (see QTableSelection::isNull()).

void QTable::selectionChanged () [signal]

This signal is emitted whenever a selection changes.

See also QTableSelection [Additional Functionality with Qt].

QTable Class Reference 364

SelectionMode QTable::selectionMode () const

Returns the current selection mode. See the "selectionMode" [p. 371] property for details.

void QTable::setCellContentFromEditor (int row, int col) [virtual protected]
This function is called to replace the contents of the cell at row, col with the contents of the cell’s editor. If a QTableltem
already exists for this cell, it is removed first (see clearCell()).

If for example, you want to create different QTableltems depending on the contents of the editor, you might reimple-
ment this function.

If you want to work without QTableltems, you will need to reimplement this function to save the data the user entered
into your data structure. (See the notes on large tables.)

See also QTableltem::setContentFromEditor() [p. 377] and createEditor() [p. 355].

void QTable::setCellWidget (int row, int col, QWidget * e) [virtual]
Sets the widget e to the cell at row, col and takes care of placing and resizing the widget when the cell geometry
changes.

By default widgets are inserted into a vector with numRows() * numCols() elements. In very large tables you will
probably want to store the widgets in a data structure that consumes less memory (see the notes on large tables). To
support the use of your own data structure this function calls insertWidget() to add the widget to the internal data
structure. To use your own data structure reimplement insertWidget(), cellWidget() and clearCellWidget().

void QTable::setColumnMovingEnabled (bool b) [virtual slot]

Sets whether columns can be moved by the user to b. See the "columnMovingEnabled" [p. 370] property for details.

void QTable::setColumnReadOnly (int col, bool ro) [virtual slot]

If ro is TRUE, column col is set to be read-only; otherwise the column is set to be editable.

Whether a cell in this column is editable or read-only depends on the cell's EditType, and this setting: see
QTableltem::EditType.

See also isColumnReadOnly() [p. 358], setRowReadOnly() [p. 366] and readOnly [p. 370].

void QTable::setColumnStretchable (int col, bool stretch) [virtual slot]

If stretch is TRUE, column col is set to be stretchable; otherwise column col is set to be unstretchable.

If the table widget’s width decreases or increases stretchable columns will grow narrower or wider to fit the space
available as completely as possible. The user cannot manually resize stretchable columns.

See also isColumnStretchable() [p. 3591, setRowStretchable() [p. 366] and adjustColumn() [p. 352].

QTable Class Reference 365

void QTable::setColumnWidth (int col, int w) [virtual slot]

Resizes column col to be w pixels wide.

See also columnWidth() [p. 354] and setRowHeight() [p. 366].

void QTable::setCurrentCell (int row, int col) [virtual slot]

Moves the focus to the cell at row, col.

See also currentRow() [p. 356] and currentColumn() [p. 356].

void QTable::setDragEnabled (bool b) [virtual slot]

If b is TRUE, the table starts a drag (see dragObject()) when the user presses and moves the mouse on a selected cell.

void QTable::setEditMode (EditMode mode, int row, int col) [protected]

Sets the current edit mode to mode, the current edit row to row and the current edit column to col.

See also EditMode [p. 350].

void QTable::setFocusStyle (FocusStyle fs) [virtual]

Sets how the current (focus) cell is drawn to fs. See the "focusStyle" [p. 370] property for details.

void QTable::setItem (int row, int col, QTableItem * item) [virtual]

Inserts the table item item into the table at row row, column col, and repaints the cell. If a table item already exists in
this cell it is deleted and replaced with item. The table takes ownership of the table item.

If you don’t use QTableltems you may need to reimplement this function: see the notes on large tables.

See also item() [p. 360] and takeltem() [p. 369].

Example: table/small-table-demo/main.cpp.

void QTable::setLeftMargin (int m) [virtual slot]

Sets the left margin to be m pixels wide.

The verticalHeader (), which displays row labels, occupies this margin.

See also leftMargin() [p. 288], setTopMargin() [p. 367] and verticalHeader() [p. 369].

void QTable::setNumCols (int r) [virtual slot]

Sets the number of columns in the table to r. See the "numCols" [p. 370] property for details.

QTable Class Reference 366

void QTable::setNumRows (int r) [virtual slot]

Sets the number of rows in the table to r. See the "numRows" [p. 370] property for details.

void QTable::setPixmap (int row, int col, const QPixmap & pix) [virtual]

Sets the pixmap in the cell at row, col to pix.

If the cell does not contain a table item a QTableltem is created with an EditType of OnTypi ng, otherwise the existing
table item’s pixmap (if any) is replaced with pix.

Note that QComboTableltems and QCheckTableltems don’t show pixmaps.
See also pixmap() [p. 3611, setText() [p. 3671, setltem() [p. 365] and QTableltem::setPixmap() [p. 378].

void QTable::setReadOnly (bool b) [virtual slot]

Sets whether the table is read-only to b. See the "readOnly" [p. 370] property for details.

void QTable::setRowHeight (int row, int h) [virtual slot]

Resizes row row to be h pixels high.

See also rowHeight() [p. 363] and setColumnWidth() [p. 365].

void QTable::setRowMovingEnabled (bool b) [virtual slot]

Sets whether rows can be moved by the user to b. See the "rowMovingEnabled" [p. 370] property for details.

void QTable::setRowReadOnly (int row, bool ro) [virtual slot]

If ro is TRUE, row row is set to be read-only; otherwise the row is set to be editable.

Whether a cell in this row is editable or read-only depends on the cell’s EditType, and this setting: see
QTableltem::EditType.

See also isRowReadOnly() [p. 359], setColumnReadOnly() [p. 364] and readOnly [p. 370].

void QTable::setRowStretchable (int row, bool stretch) [virtual slot]

If stretch is TRUE, row row is set to be stretchable; otherwise row row is set to be unstretchable.

If the table widget’s height decreases or increases stretchable rows will grow shorter or taller to fit the space available
as completely as possible. The user cannot manually resize stretchable rows.

See also isRowStretchable() [p. 359] and setColumnStretchable() [p. 364].

QTable Class Reference 367

void QTable::setSelectionMode (SelectionMode mode) [virtual]

Sets the current selection mode to mode. See the "selectionMode" [p. 371] property for details.

void QTable::setShowGrid (bool b) [virtual slot]

Sets whether the table’s grid is displayed to b. See the "showGrid" [p. 371] property for details.

void QTable::setSorting (bool b) [virtual slot]

Sets whether a click on the header of a column sorts that column to b. See the "sorting" [p. 371] property for details.

void QTable::setText (int row, int col, const QString & text) [virtual]

Sets the text in the cell at row, col to text.

If the cell does not contain a table item a QTableltem is created with an EditType of OnTypi ng, otherwise the existing
table item’s text (if any) is replaced with text.

See also text() [p. 369], setPixmap() [p. 3661, setltem() [p. 365] and QTableltem::setText() [p. 378].

void QTable::setTopMargin (int m) [virtual slot]

Sets the top margin to be m pixels high.
The horizontalHeader (), which displays column labels, occupies this margin.

See also topMargin() [p. 290] and setLeftMargin() [p. 365].

void QTable::showColumn (int col) [virtual slot]
Show column col.

See also hideColumn() [p. 357] and showRow() [p. 367].
bool QTable::showGrid () const

Returns TRUE if the table’s grid is displayed; otherwise returns FALSE. See the "showGrid" [p. 371] property for details.

void QTable::showRow (int row) [virtual slot]

Show row row.

See also hideRow() [p. 358] and showColumn() [p. 3671].

QTable Class Reference 368

void QTable::sortColumn (int col, bool ascending = TRUE, bool wholeRows =
FALSE) [virtual]

Sorts column col. If ascending is TRUE the sort is in ascending order, otherwise the sort is in descending order.

If wholeRows is TRUE, entire rows are sorted using swapRows(); otherwise only cells in the column are sorted using
swapCells().

Note that if you are not using QTableltems you will need to reimplement swapRows() and swapCells(). (See the notes
on large tables.)

See also swapRows() [p. 369].

Reimplemented in QDataTable.

bool QTable::sorting () const

Returns TRUE if a click on the header of a column sorts that column; otherwise returns FALSE. See the "sorting" [p. 371]
property for details.

void QTable::startDrag () [virtual protected]

Starts a drag.
Usually you don’t need to call or reimplement this function yourself.

See also dragObject() [p. 356].

void QTable::swapCells (int row1, int coll, int row2, int col2) [virtual slot]

Swaps the contents of the cell at row1, coll with the contents of the cell at row2, col2.
This function is also called when the table is sorted.

If you don’t use QTableltems and want your users to be able to swap cells, you will need to reimplement this function.
(See the notes on large tables.)

See also swapColumns() [p. 368] and swapRows() [p. 369].

void QTable::swapColumns (int col1, int col2, bool swapHeader = FALSE) [virtual slot]

Exchanges col1 with col2.

This function is used to swap the positions of two columns. It is called when the user changes the order of columns
(see setColumnMovingEnabled(), and when columns are sorted.

If you don’t use QTableltems and want your users to be able to swap columns you will need to reimplement this
function. (See the notes on large tables.)

If swapHeader is TRUE, also the header contents of the columns is swapped.

See also swapCells() [p. 368].

QTable Class Reference 369

void QTable::swapRows (int row1, int row2, bool swapHeader = FALSE) [virtual slot]

Swaps data of rowl and row2.

This function is used to swap the positions of two rows. It is called when the user changes the order of rows (see
setRowMovingEnabled()), and when rows are sorted.

If you don’t use QTableltems and want your users to be able to swap rows, e.g. for sorting, you will need to reimplement
this function. (See the notes on large tables.)

If swapHeader is TRUE, also the header contents of the rows is swapped.

See also swapColumns() [p. 368] and swapCells() [p. 368].

void QTable::takeltem (QTableltem * i) [virtual]

Takes the table item i out of the table. This function does not delete the table item. You must either delete the table
item yourself or put it into a table (using setltem()) which will then take ownership of it.

Use this function if you want to move an item from one cell in a table to another, or to move an item from one table to
another, reinserting the item with setltem().

If you want to exchange two cells use swapCells().

QString QTable::text (int row, int col) const [virtual]

Returns the text in cell at row, col, or a null string if the relevant item does not exist or has no text.
See also setText() [p. 367] and setPixmap() [p. 366].

Reimplemented in QDataTable.

void QTable::updateCell (int row, int col)

Repaints the cell at row, col.

void QTable::valueChanged (int row, int col) [signal]

This signal is emitted when the user changed the value in the cell at row, col.

QHeader * QTable::verticalHeader () const

Returns the table’s left QHeader.
This header contains the row labels.

See also horizontalHeader() [p. 358], setLeftMargin() [p. 365] and QHeader [Additional Functionality with Qt].

QTable Class Reference 370

Property Documentation

bool columnMovingEnabled

This property holds whether columns can be moved by the user.
The default is FALSE.
See also rowMovingEnabled [p. 370].

Set this property’s value with setColumnMovingEnabled() and get this property’s value with columnMovingEnabled().

FocusStyle focusStyle

This property holds how the current (focus) cell is drawn.
The default style is SpreadSheet.
See also QTable::FocusStyle [p. 350].

Set this property’s value with setFocusStyle() and get this property’s value with focusStyle().

int numcCols

This property holds the number of columns in the table.
Set this property’s value with setNumCols() and get this property’s value with numCols().

See also numRows [p. 370].

int numRows

This property holds the number of rows in the table.
Set this property’s value with setNumRows() and get this property’s value with numRows().

See also numCols [p. 370].

bool readOnly

This property holds whether the table is read-only.

Whether a cell in the table is editable or read-only depends on the cell’s EditType, and this setting: see
QTableltem::EditType.

See also QWidget::enabled [p. 488], setColumnReadOnly() [p. 364] and setRowReadOnly() [p. 366].

Set this property’s value with setReadOnly() and get this property’s value with isReadOnly().

bool rowMovingEnabled

This property holds whether rows can be moved by the user.

QTable Class Reference 371

The default is FALSE.
See also columnMovingEnabled [p. 370].

Set this property’s value with setRowMovingEnabled() and get this property’s value with rowMovingEnabled().

SelectionMode selectionMode

This property holds the current selection mode.
The default mode is Multi which allows the user to select multiple ranges of cells.
See also SelectionMode [p. 351] and selectionMode [p. 371].

Set this property’s value with setSelectionMode() and get this property’s value with selectionMode().

bool showGrid

This property holds whether the table’s grid is displayed.
The grid is shown by default.

Set this property’s value with setShowGrid() and get this property’s value with showGrid().

bool sorting

This property holds whether a click on the header of a column sorts that column.
Set this property’s value with setSorting() and get this property’s value with sorting().

See also sortColumn() [p. 368].

QTableltem Class Reference

The QTableltem class provides the cell content for QTable cells.

This class is part of the table module.

#include <qgtable. h>

Inherits Qt [Additional Functionality with Qt].

Inherited by QComboTableltem [p. 45] and QCheckTableltem [p. 31].

Public Members

m enum EditType { Never, OnTyping, WhenCurrent, Always }

m QTableltem (QTable * table, EditType et, const QString & text)

m QTableltem (QTable * table, EditType et, const QString & text, const QPixmap & p)
m virtual ~QTableltem ()

m virtual QPixmap pixmap () const

m virtual QString text () const

virtual void setPixmap (const QPixmap & p)

virtual void setText (const QString & str)

QTable * table () const

virtual int alignment () const

virtual void setWordWrap (bool b)

bool wordWrap () const

EditType editType () const

m virtual QWidget * createEditor () const

m virtual void setContentFromEditor (QWidget * w)
virtual void setReplaceable (bool b)

bool isReplaceable () const

virtual QString key () const

virtual QSize sizeHint () const
virtual void setSpan (int rs, int cs)
int rowSpan () const

m int colSpan () const

m virtual void setRow (int r)

m virtual void setCol (int c¢)
= int row () const

372

QTableltem Class Reference 373

= int col () const

m virtual void paint (QPainter * p, const QColorGroup & cg, const QRect & cr, bool selected)
m virtual void setEnabled (bool b)

e bool isEnabled () const

virtual int rtti () const

Detailed Description

The QTableltem class provides the cell content for QTable cells.

For many applications QTableltems are ideal for presenting and editing the contents of table cells. In situations where
you need to create very large tables you may prefer an alternative approach to using QTableltems: see the notes on
large tables.

A QTableltem contains a cell’s data, by default, a string and a pixmap. The table item also holds the cell’s display
size and how the data should be aligned. The table item specifies the cell’s EditType and the editor used for in-
place editing (by default a QLineEdit). If you want checkboxes use QCheckTableltem, and if you want comboboxes
use QComboTableltem. The EditType (set in the constructor) determines whether the cell’s contents may be edited;
setReplaceable() sets whether the cell’s contents may be replaced by another cell’s contents.

If a pixmap is specified it is displayed to the left of any text. You can change the text or pixmap with setText() and
setPixmap() respectively. For text you can use setWordWrap(). A table item’s alignment is set in the constructor.

Reimplement createEditor() and setContentFromEditor() if you want to use your own widget instead of a QLineEdit
for editing cell contents. Reimplement paint() if you want to display custom content. If you want a checkbox table
item use QCheckTableltem, and if you want a combo table item use QComboTableltem.

When sorting table items the key() function is used; by default this returns the table item’s text(). Reimplement key()
to customize how your table items will sort.

Table items are inserted into a table using QTable::setltem(). If you insert an item into a cell that already contains a
table item the original item will be deleted.

Example:
for (int row= 0; row nunRows(): rowt+) {
for (int col =0; col numCols(); col++) {

tabl e->setlten(row, col,
new Qrabl eltem(table, WhenCurrent, QString::number(row* col)));

}

You can move a table item from one cell to another, in the same or a different table, using QTable::takeltem() and
QTable::setltem() but see also QTable::swapCells().

Table items can be deleted with delete in the standard way; the table and cell will be updated accordingly.

See also Advanced Widgets.

QTableltem Class Reference 374

Member Type Documentation

QTableltem::EditType

This enum is used to define whether a cell is editable or read-only (in conjunction with other settings), and how the
cell should be displayed.

e Qrabl el tem : Al ways - The cell always looks editable.

Using this EditType ensures that the editor created with createEditor() (by default a QLineEdit) is always visible. This
has implications for the alignment of the content: the default editor aligns everything (even numbers) to the left whilst
numerical values in the cell are by default aligned to the right.

If a cell with the edit type Always looks misaligned you could reimplement createEditor() for these items.

e Qlableltem:WenCurrent - The cell looks editable only when it has keyboard focus (see
QTable::setCurrentCell()).

e QTabl el tem : OnTypi ng - The cell looks editable only when the user types in it or double-clicks it. It resembles
the WhenCurrent functionality but is, perhaps, nicer.

The OnTyping edit type is the default when QTableltem objects are created by the convenience functions
QTable::setText() and QTable::setPixmap().

e Qrabl el tem : Never - The cell is not editable.

The cell is actually editable only if QTable::isRowReadOnly() is FALSE for its row, QTable::isColumnReadOnly() is
FALSE for its column, and QTable::isReadOnly() is FALSE.

QComboTableltems have an isEditable() property. This property is used to indicate whether the user may enter their
own text or are restricted to choosing one of the choices in the list. QComboTableltems may be interacted with only if
they are editable in accordance with their EditType as described above.

Member Function Documentation

QTableltem::QTableltem (QTable * table, EditType et, const QString & text)

Creates a child item of table table with text text. The item has the EditType et.

The table item will use a QLineEdit for its editor, will not word-wrap and will occupy a single cell. Insert the table item
into a table with QTable::setItem().

The table takes ownership of the table item, so a table item should not be inserted into more than one table at a time.

QTableltem::QTableltem (QTable * table, EditType et, const QString & text,
const QPixmap & p)

Creates a child item of table table with text text and pixmap p. The item has the EditType et.

The table item will display the pixmap to the left of the text. It will use a QLineEdit for editing the text, will not
word-wrap and will occupy a single cell. Insert the table item into a table with QTable::setltem().

The table takes ownership of the table item, so a table item should not be inserted in more than one table at a time.

QTableltem Class Reference 375

QTableltem:: ~QTableltem () [virtual]

The destructor deletes this item and frees all allocated resources.

If the table item is in a table (i.e. was inserted with setltem()), it will be removed from the table and the cell it
occupied.

int QTableltem::alignment () const [virtual]
The alignment function returns how the text contents of the cell are aligned when drawn. The default implementation
aligns numbers to the right and any other text to the left.

See also Qt::AlignmentFlags [Additional Functionality with Qt].

int QTableltem::col () const
Returns the column where the table item is located. If the cell spans multiple columns, this function returns the
left-most column.

See also row() [p. 377] and setCol() [p. 3771.

int QTableltem::colSpan () const

Returns the column span of the table item, usually 1.

See also setSpan() [p. 378] and rowSpan() [p. 377].

QWidget * QTableltem::createEditor () const [virtual]

This virtual function creates an editor which the user can interact with to edit the cell’s contents. The default imple-
mentation creates a QLineEdit.

If the function returns 0, the cell is read-only.
The returned widget should preferably be invisible, ideally with QTable::viewport() as parent.

If you reimplement this function youwll almost certainly need to reimplement setContentFromEditor(), and may need
to reimplement sizeHint().

QN dget *Conboltem :createEditor() const
{
Il create an editor - a combobox in our case
((Comboltent)this)->chb = new QConboBox(tabl e()->viewort());
cb->insertlten("Yes");
cb->insertlten{ "No");
Il and initialize it
ch->setCurrentltem text() == "No" ? 1: 0);
return cb;

See also QTable::createEditor() [p. 3551, setContentFromEditor() [p. 377] and QTable::viewport() [p. 291].

Example: table/statistics/statistics.cpp.

QTableltem Class Reference 376

EditType QTableltem::editType () const

Returns the table item’s edit type.
This is set when the table item is constructed.

See also EditType [p. 374] and QTableltem() [p. 374].

bool QTableltem::isEnabled () const

Returns TRUE if the table item is enabled; otherwise returns FALSE.

See also setEnabled() [p. 378].

bool QTableltem::isReplaceable () const

This function returns whether the contents of the cell may be replaced with the contents of another table item. Re-
gardless of this setting, table items that span more than one cell may not have their contents replaced by another table
item.

(This differs from EditType because EditType is concerned with whether the user is able to change the contents of a
cell.)

See also setReplaceable() [p. 378] and EditType [p. 374].

QString QTableltem::key () const [virtual]
This virtual function returns the key that should be used for sorting. The default implementation returns the text() of
the relevant item.

See also QTable::sorting [p. 371].

void QTableltem::paint (QPainter * p, const QColorGroup & cg, const QRect & cr,
bool selected) [virtual]

This virtual function is used to paint the contents of an item using the painter p in the rectangular area cr using the
color group cg.
If selected is TRUE the cell is displayed in a way that indicates that it is highlighted.

You don’t usually need to use this function but if you want to draw custom content in a cell you will need to reimplement
it.

Note that the painter is not clipped by default in order to get maximum efficiency. If you want clipping, use

QPixmap QTableltem::pixmap () const [virtual]

Returns the table item’s pixmap or a null pixmap if no pixmap has been set.

See also setPixmap() [p. 378] and text() [p. 379].

QTableltem Class Reference 377

int QTableltem::row () const

Returns the row where the table item is located. If the cell spans multiple rows, this function returns the top-most row.

See also col() [p. 375] and setRow() [p. 378].

int QTableltem::rowSpan () const

Returns the row span of the table item, usually 1.

See also setSpan() [p. 378] and colSpan() [p. 375].

int QTableltem::rtti () const [virtual]

Returns the Run Time Type Identification value for this table item which for QTableltems is O.

Although often frowned upon by purists, Run Time Type Identification is very useful for QTables as it allows for an
efficient indexed storage mechanism.

When you create subclasses based on QTableIltem make sure that each subclass returns a unique rtti() value. It is
advisable to use values greater than 1000, preferably large random numbers, to allow for extensions to this class.

See also QCheckTableltem::rtti() [p. 32] and QComboTableltem::rtti() [p. 46].
Reimplemented in QComboTableltem and QCheckTableltem.

void QTableltem::setCol (int ¢) [virtual]

Sets column c as the table item’s column. Usually you will not need to call this function.

If the cell spans multiple columns, this function sets the left-most column and retains the width of the multi-cell table
item.

See also col() [p. 3751, setRow() [p. 378] and colSpan() [p. 375].

void QTableltem::setContentFromEditor (QWidget * w) [virtual]

Whenever the content of a cell has been edited by the editor w, QTable calls this virtual function to copy the new values
into the QTableltem.

If you reimplement createEditor() and return something that is not a QLineEdit you will almost certainly have to
reimplement this function.

voi d Conbol tem : set ContentFronEditor(QN dget *w)
{
Il the user changed the value of the conbobox, so synchronize the
Il value of the item(its text), with the value of the conbobox
if (w>inherits("QComboBox"))
set Text (((QConboBox*)w)->current Text());
el se
Qrabl el tem : set Content FronEditor(w);

See also QTable::setCellContentFromEditor() [p. 364].

QTableltem Class Reference 378

void QTableltem::setEnabled (bool b) [virtual]

If b is TRUE, the table item is enabled; if b is FALSE the table item is disabled.
A disabled item doesn’t respond to user interaction.

See also isEnabled() [p. 376].

void QTableltem::setPixmap (const QPixmap & p) [virtual]

Sets pixmap p to be this item’s pixmap.

Note that setPixmap() does not update the cell the table item belongs to. Use QTable::updateCell() to repaint the cell’s
contents.

For QComboTableltems and QCheckTableltems this function has no visible effect.

See also QTable::setPixmap() [p. 366], pixmap() [p. 376] and setText() [p. 378].

void QTableltem::setReplaceable (bool b) [virtual]

If b is TRUE it is acceptable to replace the contents of the cell with the contents of another QTableltem. If b is FALSE
the contents of the cell may not be replaced by the contents of another table item. Table items that span more than
one cell may not have their contents replaced by another table item.

(This differs from EditType because EditType is concerned with whether the user is able to change the contents of a
cell.)

See also isReplaceable() [p. 376].

void QTableltem::setRow (int r) [virtual]

Sets row r as the table item’s row. Usually you do not need to call this function.
If the cell spans multiple rows, this function sets the top row and retains the height of the multi-cell table item.

See also row() [p. 3771, setCol() [p. 377] and rowSpan() [p. 377].

void QTableltem::setSpan (int rs, int cs) [virtual]

Changes the extent of the QTableltem so that it spans multiple cells covering rs rows and cs columns. The top left cell
is the original cell.

Warning: This function only works, if the item has already been inserted into the table using e.g. QTable::setltem().

See also rowSpan() [p. 377] and colSpan() [p. 375].

void QTableltem::setText (const QString & str) [virtual]

Changes the text of the table item to str.

Note that setText() does not update the cell the table item belongs to. Use QTable::updateCell() to repaint the cell’s
contents.

QTableltem Class Reference 379

See also QTable::setText() [p. 3671, text() [p. 3791, setPixmap() [p. 378] and QTable::updateCell() [p. 369].

void QTableltem::setWordWrap (bool b) [virtual]

If b is TRUE, the cell’s text will be wrapped over multiple lines, when necessary, to fit the width of the cell; otherwise
the text will be written as a single line.

See also wordWrap() [p. 3791, QTable::adjustColumn() [p. 352] and QTable::setColumnStretchable() [p. 364].

QSize QTableltem::sizeHint () const [virtual]

This virtual function returns the size a cell needs to show its entire content.

If you subclass QTableltem you will often need to reimplement this function.

QTable * QTableltem::table () const

Returns the QTable the table item belongs to.

See also QTable::setltem() [p. 365] and QTableltem() [p. 3741.

QString QTableltem::text () const [virtual]

Provides the text of the table item or a null string if there’s no text.

See also setText() [p. 378] and pixmap() [p. 376].

bool QTableItem::wordWrap () const

Returns TRUE if word wrap is enabled for the cell; otherwise returns FALSE.
See also setWordWrap() [p. 3791.

QTabWidget Class Reference

The QTabWidget class provides a stack of tabbed widgets.
#incl ude <qtabwi dget. h>
Inherits QWidget [p. 436].

Public Members

m QTabWidget (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

m virtual void addTab (QWidget * child, const QString & label)

m virtual void addTab (QWidget * child, const QIconSet & iconset, const QString & label)
m virtual void addTab (QWidget * child, QTab * tab)

m virtual void insertTab (QWidget * child, const QString & label, int index = -1)
virtual void insertTab (QWidget * child, const QIconSet & iconset, const QString & label, int index = -1)
virtual void insertTab (QWidget * child, QTab * tab, int index = -1)

void changeTab (QWidget * w, const QString & label)

void changeTab (QWidget * w, const QIconSet & iconset, const QString & label)
bool isTabEnabled (QWidget * w) const

void setTabEnabled (QWidget * w, bool enable)

m QString tabLabel (QWidget * w) const

m void setTabLabel (QWidget * w, const QString & 1)

QlIconSet tabIconSet (QWidget * w) const

void setTabIconSet (QWidget * w, const QIconSet & iconset)

void removeTabToolTip (QWidget * w)

void setTabToolTip (QWidget * w, const QString & tip)

QString tabToolTip (QWidget * w) const

QWidget * currentPage () const

QWidget * page (int index) const

m QString label (int index) const

m int currentPageIndex () const

int indexOf (QWidget * w) const

enum TabPosition { Top, Bottom }

TabPosition tabPosition () const

void setTabPosition (TabPosition)

enum TabShape { Rounded, Triangular }
TabShape tabShape () const

380

QTabWidget Class Reference 381

m void setTabShape (TabShape s)
int margin () const

void setMargin (int)

int count () const

Public Slots

m void setCurrentPage (int)
m virtual void showPage (QWidget * w)
m virtual void removePage (QWidget * w)

Signals

m void currentChanged (QWidget *)

Properties

m bool autoMask — whether the tab widget is automatically masked (read only)
m int count — the number of tabs in the tab bar (read only)

int currentPage — the index position of the current tab page

int margin — the margin in this tab widget

TabPosition tabPosition — the position of the tabs in this tab widget

m TabShape tabShape — the shape of the tabs in this tab widget

Protected Members

= void setTabBar (QTabBar * tb)
m QTabBar * tabBar () const

Detailed Description

The QTabWidget class provides a stack of tabbed widgets.

A tabbed widget is a widget that has a tab bar of tabs, and for each tab a "page" which is a widget. The user selects
which page to see and use by clicking on its tab or by pressing the indicated Alt+letter key combination.

QTabWidget provides a single row of tabs along the top or bottom of the pages (see TabPosition).

The normal way to use QTabWidget is to do the following in the constructor:

1. Create a QTabWidget.

2. Create a QWidget for each of the pages in the tab dialog, insert children into it, set up geometry management for
it and use addTab() (or insertTab()) to set up a tab and keyboard accelerator for it.

3. Connect to the signals and slots.

QTabWidget Class Reference 382

The position of the tabs is set with setTabPosition(), their shape with setTabShape(), and their margin with setMargin().

If you don’t call addTab() the page you have created will not be visible. Don’t confuse the object name you supply to the
QWidget constructor and the tab label you supply to addTab(). addTab() takes a name which indicates an accelerator
and is meaningful and descriptive to the user, whereas the widget name is used primarily for debugging.

The signal currentChanged() is emitted when the user selects a page.

The current page is available as an index position with currentPageIndex() or as a wiget pointer with currentPage().
You can retrieve a pointer to a page with a given index using page(), and can find the index position of a page with
indexOf(). Use setCurrentPage() to show a particular page by index, or showPage() to show a page by widget pointer.

You can change a tab’s label and iconset using changeTab() or setTabLabel() and setTabIconSet(). A tab page can be
removed with removePage().

Each tab is either enabled or disabled at any given time (see setTabEnabled()). If a tab is enabled, the tab text is drawn
in black and the user can select that tab. If it is disabled, the tab is drawn in a different way and the user cannot select
that tab. Note that even if a tab is disabled, the page can still be visible, for example if all of the tabs happen to be
disabled.

Although tab widgets can be a very good way to split up a complex dialog, it’s also very easy to get into a mess. See
QTabDialog for some design hints.

Most of the functionality in QTabWidget is provided by a QTabBar (at the top, providing the tabs) and a QWidgetStack
(most of the area, organizing the individual pages).

Base |Innings |Sty\e | Ease Ilnnings |Sty|e |

4 First & First
+ Second " Second
~ Third Third

See also QTabDialog [Dialogs and Windows with Qt], Advanced Widgets and Organizers.

Member Type Documentation

QTabWidget::TabPosition
This enum type defines where QTabWidget can draw the tab row:
e QTabW dget : : Top - above the pages
e (QTabW dget : : Bott om- below the pages
QTabWidget::TabShape
This enum type defines the shape of the tabs:

e (QTabW dget : : Rounded - rounded look (normal)
e QTabW dget:: Triangul ar - triangular look (very unusual, included for completeness)

QTabWidget Class Reference 383

Member Function Documentation

QTabWidget::QTabWidget (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a tabbed widget with parent parent, name name, and widget flags f.

void QTabWidget::addTab (QWidget * child, const QString & label) [virtual]

Adds another tab and page to the tab view.

The new page is child; the tab’s label is label. Note the difference between the widget name (which you supply to
widget constructors and to setTabEnabled(), for example) and the tab label. The name is internal to the program and
invariant, whereas the label is shown on-screen and may vary according to language and other factors.

If the tab’s label contains an ampersand, the letter following the ampersand is used as an accelerator for the tab, e.g. if
the label is "Bro&wse" then Alt+W becomes an accelerator which will move the focus to this tab.

If you call addTab() after show() the screen will flicker and the user may be confused.
See also insertTab() [p. 384].

Examples: addressbook/centralwidget.cpp and themes/themes.cpp.
void QTabWidget::addTab (QWidget * child, const QIconSet & iconset,

const QString & label) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Adds another tab and page to the tab view.

This function is the same as addTab(), but with an additional iconset.

void QTabWidget::addTab (QWidget * child, QTab * tab) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This is a low-level function for adding tabs. It is useful if you are using setTabBar() to set a QTabBar subclass with an
overridden QTabBar::paint() routine for a subclass of QTab. The child is the new page and tab is the tab to put the
child on.

void QTabWidget::changeTab (QWidget * w, const QString & label)

Defines a new label for page w’s tab.

void QTabWidget::changeTab (QWidget * w, const QIconSet & iconset,
const QString & label)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Defines a new iconset and a new label for page w’s tab.

QTabWidget Class Reference 384

int QTabWidget::count () const

Returns the number of tabs in the tab bar. See the "count" [p. 387] property for details.

void QTabWidget::currentChanged (QWidget *) [signal]

This signal is emitted whenever the current page changes. The parameter is the new current page.

See also currentPage() [p. 3841, showPage() [p. 386] and tabLabel() [p. 3871.

QWidget * QTabWidget::currentPage () const

Returns a pointer to the page currently being displayed by the tab dialog. The tab dialog does its best to make sure
that this value is never 0 (but if you try hard enough, it can be).

int QTabWidget::currentPagelndex () const

Returns the index position of the current tab page. See the "currentPage" [p. 387] property for details.

int QTabWidget::indexOf (QWidget * w) const

Returns the index position of page w, or -1 if the widget cannot be found.

void QTabWidget::insertTab (QWidget * child, const QString & label, int index =
-1) [virtual]
Inserts another tab and page to the tab view.

The new page is child; the tab’s label is label. Note the difference between the widget name (which you supply to
widget constructors and to setTabEnabled(), for example) and the tab label. The name is internal to the program and
invariant, whereas the label is shown on-screen and may vary according to language and other factors.

If the tab’s label contains an ampersand, the letter following the ampersand is used as an accelerator for the tab, e.g. if
the label is "Bro&wse" then Alt+W becomes an accelerator which will move the focus to this tab.

If index is not specified, the tab is simply added. Otherwise it is inserted at the specified position.
If you call insertTab() after show(), the screen will flicker and the user may be confused.

See also addTab() [p. 383].

void QTabWidget::insertTab (QWidget * child, const QIconSet & iconset,
const QString & label, int index = -1) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts another tab and page to the tab view.

This function is the same as insertTab(), but with an additional iconset.

QTabWidget Class Reference 385

void QTabWidget::insertTab (QWidget * child, QTab * tab, int index = -1) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This is a lower-level method for inserting tabs, similar to the other insertTab() method. It is useful if you are using
setTabBar() to set a QTabBar subclass with an overridden QTabBar::paint() routine for a subclass of QTab. The child is
the new page, tab is the tab to put the child on and index is the position in the tab bar that this page should occupy.

bool QTabWidget::isTabEnabled (QWidget * w) const

Returns TRUE if the page w is enabled; otherwise returns FALSE.
See also setTabEnabled() [p. 386] and QWidget::enabled [p. 488].

QString QTabWidget::label (int index) const

Returns the label of the tab at index position index.

int QTabWidget::margin () const

Returns the margin in this tab widget. See the "margin" [p. 388] property for details.

QWidget * QTabWidget::page (int index) const

Returns the tab page at index position index.

void QTabWidget::removePage (QWidget * w) [virtual slot]

Removes page w from this stack of widgets. Does not delete w.

See also showPage() [p. 386] and QWidgetStack::removeWidget() [p. 508].

void QTabWidget::removeTabToolTip (QWidget * w)

Removes the tab tool tip for page w. If the page does not have a tip, nothing happens.

See also setTabToolTip() [p. 386] and tabToolTip() [p. 387].

void QTabWidget::setCurrentPage (int) [slot]

Sets the index position of the current tab page. See the "currentPage" [p. 387] property for details.

void QTabWidget::setMargin (int)

Sets the margin in this tab widget. See the "margin" [p. 388] property for details.

QTabWidget Class Reference 386

void QTabWidget::setTabBar (QTabBar * tb) [protected]

Replaces the QTabBar heading the dialog by the tab bar tb. Note that this must be called before any tabs have been
added, or the behavior is undefined.

See also tabBar() [p. 387].

void QTabWidget::setTabEnabled (QWidget * w, bool enable)

If enable is TRUE, page w is enabled; otherwise page w is disabled. The page’s tab is redrawn appropriately.
QTabWidget uses QWidget::setEnabled() internally, rather than keeping a separate flag.

Note that even a disabled tab/page may be visible. If the page is visible already, QTabWidget will not hide it; if all the
pages are disabled, QTabWidget will show one of them.

See also isTabEnabled() [p. 385] and QWidget::enabled [p. 488].

void QTabWidget::setTablconSet (QWidget * w, const QIconSet & iconset)

Sets the iconset for page w to iconset.

void QTabWidget::setTabLabel (QWidget * w, const QString & 1)

Sets the tab label for page w to [

void QTabWidget::setTabPosition (TabPosition)

Sets the position of the tabs in this tab widget. See the "tabPosition" [p. 388] property for details.

void QTabWidget::setTabShape (TabShape s)

Sets the shape of the tabs in this tab widget to s. See the "tabShape" [p. 388] property for details.

void QTabWidget::setTabToolTip (QWidget * w, const QString & tip)

Sets the tab tool tip for page w to tip.
See also removeTabToolTip() [p. 385] and tabToolTip() [p. 387].

void QTabWidget::showPage (QWidget * w) [virtual slot]

Ensures that page w is shown. This is useful mainly for accelerators.
Warning: Used carelessly, this function can easily surprise or confuse the user.

See also QTabBar::currentTab [p. 342].

QTabWidget Class Reference 387

QTabBar * QTabWidget::tabBar () const [protected]

Returns the currently set QTabBar.
See also setTabBar() [p. 386].

QIconSet QTabWidget::tabIconSet (QWidget * w) const

Returns the iconset of page w.

QString QTabWidget::tabLabel (QWidget * w) const

Returns the label text for the tab on page w.

TabPosition QTabWidget::tabPosition () const

Returns the position of the tabs in this tab widget. See the "tabPosition" [p. 388] property for details.

TabShape QTabWidget::tabShape () const

Returns the shape of the tabs in this tab widget. See the "tabShape" [p. 388] property for details.

QString QTabWidget::tabToolTip (QWidget * w) const

Returns the tab tool tip for page w.

See also setTabToolTip() [p. 386] and removeTabToolTip() [p. 385].

Property Documentation

bool autoMask

This property holds whether the tab widget is automatically masked.
See also QWidget::autoMask [p. 485].

int count

This property holds the number of tabs in the tab bar.

Get this property’s value with count().

int currentPage

This property holds the index position of the current tab page.

QTabWidget Class Reference

Set this property’s value with setCurrentPage() and get this property’s value with currentPagelndex().

See also QTabBar::currentTab [p. 342].

int margin

This property holds the margin in this tab widget.

The margin is the distance between the innermost pixel of the frame and the outermost pixel of the pages.

Set this property’s value with setMargin() and get this property’s value with margin().

TabPosition tabPosition

This property holds the position of the tabs in this tab widget.
Possible values for this property are QTabWidget::Top and QTabWidget::Bottom.
See also TabPosition [p. 382].

Set this property’s value with setTabPosition() and get this property’s value with tabPosition().

TabShape tabShape

This property holds the shape of the tabs in this tab widget.

Possible values for this property are QTabWidget::Rounded (default) or QTabWidget::Triangular.
See also TabShape [p. 382].

Set this property’s value with setTabShape() and get this property’s value with tabShape().

388

QTextBrowser Class Reference

The QTextBrowser class provides a rich text browser with hypertext navigation.
#incl ude <qtextbrowser. h>

Inherits QTextEdit [p. 393].

Public Members
m QTextBrowser (QWidget * parent = 0, const char * name = 0)
m QString source () const

Public Slots

virtual void setSource (const QString & name)
virtual void backward ()

virtual void forward ()

virtual void home ()

virtual void reload ()

Signals

void backwardAvailable (bool available)
void forwardAvailable (bool available)
void highlighted (const QString & href)
void linkClicked (const QString & link)

Properties

m QString source — the name of the currently displayed document

Protected Members

m virtual void keyPressEvent (QKeyEvent * e)

389

QTextBrowser Class Reference 390

Detailed Description

The QTextBrowser class provides a rich text browser with hypertext navigation.

This class extends QTextEdit (in read-only mode), adding some navigation functionality so that users can follow links
in hypertext documents. The contents of QTextEdit is set with setText(), but QTextBrowser has an additional function,
setSource(), which makes it possible to set the text to a named document. The name is looked up in the text view’s
mime source factory. If a document name ends with an anchor (for example, "#anchor "), the text browser automatically
scrolls to that position (using scrollToAnchor()). When the user clicks on a hyperlink, the browser will call setSource()
itself, with the link’s hr ef value as argument.

QTextBrowser provides backward() and forward() slots which you can use to implement Back and Forward buttons.
The home() slot sets the text to the very first document displayed. The linkClicked() signal is emitted when the user
clicks a link.

By using QTextEdit::setMimeSourceFactory() you can provide your own subclass of QMimeSourceFactory. This makes
it possible to access data from anywhere, for example from a network or from a database. See QMimeSourceFac-
tory::data() for details.

If you intend using the mime factory to read the data directly from the file system, you may have to specify the encoding
for the file extension you are using. For example:

m meSour ceFact ory()- >set Ext ensi onType("qm ", "text/utf8");

This is to ensure that the factory is able to resolve the document names.

If you want to provide your users with editable rich text use QTextEdit. If you want a text browser without hypertext
navigation use QTextEdit, and use QTextEdit::setReadOnly() to disable editing. If you just need to display a small piece
of rich text use QSimpleRichText or QLabel.

@

ON-LINE REF

Casses - Annotated - Tree @

ON-LINE REF

Classes - Annotated - Tree

F:. -

F:. -

General Getting Started What' General Getting Started What'

* Ahout Gt * [nstallation = KevF * Ahout Gt * [nstallation = KevF

« Common Problems * Tutarial Gree « Common Problems * Tutarial Gree

* Windowsystem-specific * YWalkthrough * Detall * Windowsystem-specific * YWalkthrough * Detail

notes o Examples hotes notes o Examples hotes

o Howto buy Gt * Chan o Howto buy Gt * Chan
o Frrtin il » FortinT

T 4 | D

See also Advanced Widgets, Help System and Text Related Classes.

Member Function Documentation

QTextBrowser::QTextBrowser (QWidget * parent = 0, const char * name = 0)

Constructs an empty QTextBrowser with parent parent called name.

QTextBrowser Class Reference 391

void QTextBrowser::backward () [virtual slot]

Changes the document displayed to the previous document in the list of documents built by navigating links. Does
nothing if there is no previous document.

See also forward() [p. 391] and backwardAvailable() [p. 391].

Example: helpviewer/helpwindow.cpp.

void QTextBrowser::backwardAvailable (bool available) [signal]

This signal is emitted when the availability of the backward () changes. available is FALSE when the user is at home();
otherwise it is TRUE.

Example: helpviewer/helpwindow.cpp.

void QTextBrowser::forward () [virtual slot]

Changes the document displayed to the next document in the list of documents built by navigating links. Does nothing
if there is no next document.

See also backward() [p. 391] and forwardAvailable() [p. 391].

Example: helpviewer/helpwindow.cpp.

void QTextBrowser::forwardAvailable (bool available) [signal]

This signal is emitted when the availability of the forward() changes. available is TRUE after the user navigates
backward() and FALSE when the user navigates or goes forward().

Example: helpviewer/helpwindow.cpp.

void QTextBrowser::highlighted (const QString & href) [signal]

This signal is emitted when the user has selected but not activated a link in the document. href is the value of the href
tag in the link.

Example: helpviewer/helpwindow.cpp.

void QTextBrowser::home () [virtual slot]

Changes the document displayed to be the first document the browser displayed.
Example: helpviewer/helpwindow.cpp.

void QTextBrowser::keyPressEvent (QKeyEvent * e) [virtual protected]
The event e is used to provide the following keyboard shortcuts:

e Alt+Left Arrow - backward ()

QTextBrowser Class Reference 392
o Alt+Right Arrow - forward()
e Alt+Up Arrow - home()

Reimplemented from QTextEdit [p. 408].

void QTextBrowser::linkClicked (const QString & link) [signal]

This signal is emitted when the user clicks a link. The link is the value of the hr ef i.e. the name of the target document.

void QTextBrowser::reload () [virtual slot]

Reloads the current set source

void QTextBrowser::setSource (const QString & name) [virtual slot]

Sets the name of the currently displayed document to name. See the "source" [p. 392] property for details.

QString QTextBrowser::source () const

Returns the name of the currently displayed document. See the "source" [p. 392] property for details.

Property Documentation

QString source

This property holds the name of the currently displayed document.
This is a null string if no document is displayed or the source is unknown.

Setting this property uses the mimeSourceFactory to lookup the named document. It also checks for optional anchors
and scrolls the document accordingly.

If the first tag in the document is <qt type=det ai | >, the document is displayed as a popup rather than as new docu-
ment in the browser window itself. Otherwise, the document is displayed normally in the text browser with the text
set to the contents of the named document with setText().

If you are using the filesystem access capabilities of the mime source factory, you must ensure that the factory knows
about the encoding of specified files; otherwise no data will be available. The default factory handles a couple of
common file extensions such as *. htnl and *.txt with reasonable defaults. See QMimeSourceFactory::data() for
details.

Set this property’s value with setSource() and get this property’s value with source().

QTextEdit Class Reference

The QTextEdit widget provides a sophisticated single-page rich text editor.
#include <qtextedit.h>

Inherits QScrollView [p. 275].

Inherited by QMultiLineEdit [p. 232], QTextBrowser [p. 389] and QTextView.

Public Members

m enum WordWrap { NoWrap, WidgetWidth, FixedPixelWidth, FixedColumnWidth }
m enum WrapPolicy { AtWordBoundary, Anywhere, AtWhiteSpace = AtWordBoundary }
m enum KeyboardAction { ActionBackspace, ActionDelete, ActionReturn, ActionKill }

m enum CursorAction { MoveBackward, MoveForward, MoveWordBackward, MoveWordForward, MoveUp,
MoveDown, MoveLineStart, MoveLineEnd, MoveHome, MoveEnd, MovePgUp, MovePgDown }

m enum VerticalAlignment { AlignNormal, AlignSuperScript, AlignSubScript }

m QTextEdit (const QString & text, const QString & context = QString::null, QWidget * parent = 0,
const char * name = 0)

m QTextEdit (QWidget * parent = 0, const char * name = 0)

m QString text () const

QString text (int para) const

TextFormat textFormat () const

QString context () const

QString documentTitle () const

void getSelection (int * paraFrom, int * indexFrom, int * paraTo, int * indexTo, int selNum = 0) const

virtual bool find (const QString & expr, bool cs, bool wo, bool forward = TRUE, int * para = 0, int * index = 0)
m int paragraphs () const

m int lines () const

int linesOfParagraph (int para) const

int lineOfChar (int para, int index)

int length () const

QRect paragraphRect (int para) const

int paragraphAt (const QPoint & pos) const

int charAt (const QPoint & pos, int * para) const

int paragraphLength (int para) const

QStyleSheet * styleSheet () const

m QMimeSourceFactory * mimeSourceFactory () const

393

QTextEdit Class Reference

QBrush paper () const

bool linkUnderline () const

virtual int heightForWidth (int w) const
bool hasSelectedText () const

QString selectedText () const

bool isUndoAvailable () const

bool isRedoAvailable () const
WordWrap wordWrap () const

int wrapColumnOrWidth () const
WrapPolicy wrapPolicy () const

int tabStopWidth () const

QString anchorAt (const QPoint & pos)
bool isReadOnly () const

void getCursorPosition (int * para, int * index) const
bool isModified () const

bool italic () const

bool bold () const

bool underline () const

QString family () const

int pointSize () const

QColor color () const

QFont font () const

int alignment () const

int undoDepth () const

394

virtual bool getFormat (int para, int index, QFont * font, QColor * color, VerticalAlignment * verticalAlignment)

virtual bool getParagraphFormat (int para, QFont * font, QColor * color,
VerticalAlignment * verticalAlignment, int * alignment, QStyleSheetltem::DisplayMode * displayMode,

QStyleSheetItem::ListStyle * listStyle, int * listDepth)
bool isOverwriteMode () const

QColor paragraphBackgroundColor (int para) const
bool isUndoRedoEnabled () const

Public Slots

virtual void setMimeSourceFactory (QMimeSourceFactory * factory)

virtual void setStyleSheet (QStyleSheet * styleSheet)
virtual void scrollToAnchor (const QString & name)
virtual void setPaper (const QBrush & pap)

virtual void setLinkUnderline (bool)

virtual void setWordWrap (WordWrap mode)

virtual void setWrapColumnOrWidth (int)

virtual void setWrapPolicy (WrapPolicy policy)
virtual void copy ()

virtual void append (const QString & text)

void setText (const QString & txt)

virtual void setText (const QString & text, const QString & context)

QTextEdit Class Reference

virtual void setTextFormat (TextFormat f)

virtual void selectAll (bool select = TRUE)

virtual void setTabStopWidth (int ts)

virtual void zoomlIn (int range)

virtual void zoomlIn ()

virtual void zoomOut (int range)

virtual void zoomOut ()

virtual void zoomTo (int size)

virtual void setReadOnly (bool b)

virtual void undo ()

virtual void redo ()

virtual void cut ()

virtual void paste ()

virtual void pasteSubType (const QCString & subtype)

virtual void clear ()

virtual void del ()

virtual void indent ()

virtual void setItalic (bool b)

virtual void setBold (bool b)

virtual void setUnderline (bool b)

virtual void setFamily (const QString & fontFamily)

virtual void setPointSize (int s)

virtual void setColor (const QColor & ¢)

virtual void setVerticalAlignment (VerticalAlignment a)

virtual void setAlignment (int a)

virtual void setParagType (QStyleSheetItem::DisplayMode dm, QStyleSheetltem::ListStyle listStyle)
virtual void setCursorPosition (int para, int index)

virtual void setSelection (int paraFrom, int indexFrom, int paraTo, int indexTo, int selNum = 0)
virtual void setSelectionAttributes (int selNum, const QColor & back, bool invertText)
virtual void setModified (bool m)

virtual void setUndoDepth (int d)

virtual void ensureCursorVisible ()

virtual void placeCursor (const QPoint & pos, QTextCursor * ¢ = 0)
virtual void moveCursor (CursorAction action, bool select)

virtual void doKeyboardAction (KeyboardAction action)

virtual void removeSelectedText (int selNum = 0)

virtual void removeSelection (int selNum = 0)

virtual void setCurrentFont (const QFont & f)

virtual void setOverwriteMode (bool b)

virtual void scrollToBottom ()

virtual void insert (const QString & text, bool indent = FALSE, bool checkNewLine = TRUE,
bool removeSelected = TRUE)

virtual void insertAt (const QString & text, int para, int index)

virtual void removeParagraph (int para)

virtual void insertParagraph (const QString & text, int para)

virtual void setParagraphBackgroundColor (int para, const QColor & bg)
virtual void clearParagraphBackground (int para)

virtual void setUndoRedoEnabled (bool b)

395

QTextEdit Class Reference 396

Signals
m void textChanged ()
m void selectionChanged ()
» void copyAvailable (bool yes)
» void undoAvailable (bool yes)
m void redoAvailable (bool yes)
m void currentFontChanged (const QFont & f)
m void currentColorChanged (const QColor & c)
m void currentAlignmentChanged (int a)
m void currentVerticalAlignmentChanged (VerticalAlignment a)
m void cursorPositionChanged (QTextCursor * ¢)
m void cursorPositionChanged (int para, int pos)
m void returnPressed ()
» void modificationChanged (bool m)

Properties

QString documentTitle — the title of the document parsed from the text (read only)

bool hasSelectedText — whether some text is selected in selection 0 (read only)

int length — the number of characters in the text (read only)

bool linkUnderline — whether hypertext links will be underlined

bool modified — whether the document has been modified by the user

bool overwriteMode — the text edit’s overwrite mode

QBrush paper — the background (paper) brush

bool readOnly — whether the text edit is read-only

QString selectedText — the selected text (from selection 0) or an empty string if there is no currently selected
text (in selection 0) (read only)

QString text — the text edit’s text

TextFormat textFormat — the text format: rich text, plain text or auto text

int undoDepth — the depth of the undo history

bool undoRedoEnabled — whether undo/redo is enabled

WordWrap wordWrap — the word wrap mode

int wrapColumnOrWidth — the position (in pixels or columns depending on the wrap mode) where text will be
wrapped

WrapPolicy wrapPolicy — the word wrap policy, at whitespace or anywhere

Protected Members

void repaintChanged ()

void updateStyles ()

virtual void keyPressEvent (QKeyEvent * e)

virtual bool focusNextPrevChild (bool n)

QTextCursor * textCursor () const

virtual QPopupMenu * createPopupMenu (const QPoint & pos)
virtual QPopupMenu * createPopupMenu ()

QTextEdit Class Reference 397

Detailed Description

The QTextEdit widget provides a sophisticated single-page rich text editor.

QTextEdit is an advanced WYSIWYG editor supporting rich text formatting. It is optimized to handle large documents
and to respond quickly to user input.

Internally QTextEdit works on paragraphs and characters. A paragraph is a formatted string which is word-wrapped to
fit into the width of the widget. The words in the paragraph are aligned in accordance with the paragraph’s alignment().
Paragraphs are separated by hard line breaks. Each character within a paragraph has its own attributes, for example,
font and color.

QTextEdit can display images (using QMimeSourceFactory), lists and tables. If the text is too large to view within
the text edit’s viewport, scrollbars will appear. The text edit can load both plain text and HTML files (a subset of
HTML 3.2 and 4). The rendering style and the set of valid tags are defined by a styleSheet(). Change the style sheet
with setStyleSheet(); see QStyleSheet for details. The images identified by image tags are displayed if they can be
interpreted using the text edit’'s QMimeSourceFactory; see setMimeSourceFactory().

If you want a text browser with more navigation use QTextBrowser. If you just need to display a small piece of rich text
use QLabel or QSimpleRichText.

If you create a new QTextEdit, and want to allow the user to edit rich text, call setTextFormat(Qt::RichText) to ensure
that the text is treated as rich text. (Rich text uses HTML tags to set text formatting attributes. See QStyleSheet for
information on the HTML tags that are supported.). If you don’t call setTextFormat() explicitly the text edit will guess
from the text itself whether it is rich text or plain text.

The text edit documentation uses the following concepts:

e current format — this is the format at the current cursor position, and it is the format of the selected text if any.

e current paragraph — the paragraph which contains the cursor.

The text is set or replaced using setText() which deletes any existing text and replaces it with the text passed in the
setText() call. Text can be inserted with insert(), paste() and pasteSubType(). Text can also be cut(). The entire text
is deleted with clear() and the selected text is deleted with removeSelectedText(). Selected (marked) text can also be
deleted with del() (which will delete the character to the right of the cursor if no text is selected).

The current format’s attributes are set with setltalic(), setBold(), setUnderline(), setFamily() (font family), setPoint-
Size(), setColor() and setCurrentFont(). The current paragraph’s style is set with setParagType() and its alignment is
set with setAlignment().

Use setSelection() to select text. The setSelectionAttributes() function is used to indicate how selected text should be
displayed. Use hasSelectedText() to find out if any text is selected. The currently selected text’s position is available
using getSelection() and the selected text itself is returned by selectedText(). The selection can be copied to the
clipboard with copy(), or cut to the clipboard with cut(). It can be deleted with removeSelectedText(). The entire
text can be selected (or unselected) using selectAll(). QTextEdit supports multiple selections. Most of the selection
functions operate on the default selection, selection 0.

Set and get the position of the cursor with setCursorPosition() and getCursorPosition() respectively. When the cursor
is moved, the signals currentFontChanged(), currentColorChanged() and currentAlignmentChanged() are emitted to
reflect the font, color and alignment at the new cursor position.

If the text changes, the textChanged() signal is emitted, and if the user inserts a new line by pressing Return or Enter,
returnPressed() is emitted. The isModified() function will return TRUE if the text has been modified.

QTextEdit provides command-based undo and redo. To set the depth of the command history use setUndoDepth()
which defaults to 100 steps. To undo or redo the last operation call undo() or redo(). The signals undoAvailable() and
redoAvailable() indicate whether the undo and redo operations can be executed.

QTextEdit Class Reference 398

The indent() function is used to reindent a paragraph. It is useful for code editors, for example in Qt Designer’s code
editor Ctrl+I invokes the indent() function.

Loading and saving text is achieved using setText() and text(), for example:

QFile file(fileNane); // Read the text froma file
if (file.open(10 ReadOnly)) {

Qlext Streamts(&file);

text Edit->set Text(ts.read());

QFile file(fileNane); // Wite the text to a file
if (file.open(1O WiteOnly)) {

Qlext Streamts(&file);

ts <text();

text Edi t->set Modi fied(FALSE);

By default the text edit wraps words at whitespace to fit within the text edit widget. The setWordWrap() function is
used to specify the kind of word wrap you want, or NoWrap if you don’t want any wrapping. Call setWordWrap() to
set a fixed pixel width FixedPixelWidth, or character column (e.g. 80 column) FixedColumnWidth with the pixels or
columns specified with setWrapColumnOrWidth(). If you use word wrap to the widget’s width WidgetWidth, you can
specify whether to break on whitespace or anywhere with setWrapPolicy().

The background color is set differently than other widgets, using setPaper(). You specify a brush style which could be
a plain color or a complex pixmap.

Hypertext links are automatically underlined; this can be changed with setLinkUnderline(). The tab stop width is set
with setTabStopWidth().

The zoomIn() and zoomOut() functions can be used to resize the text by increasing (decreasing for zoomOut()) the
point size used. Images are not affected by the zoom functions.

The lines() function returns the number of lines in the text and paragraphs() returns the number of paragraphs. The
number of lines within a particular paragraph is returned by linesOfParagraph(). The length of the entire text in
characters is returned by length().

You can scroll to an anchor in the text, e.g. with scrollToAnchor(). The find() function can be used
to find and select a given string within the text.

The list of key-bindings which are implemented for editing:

e Backspace — Delete the character to the left of the cursor

e Delete — Delete the character to the right of the cursor

e Ctrl+A — Move the cursor to the beginning of the line

e (Ctrl+B — Move the cursor one character left

e Ctrl+C — Copy the marked text to the clipboard (also Ctrl+Insert under Windows)
e Ctrl+D — Delete the character to the right of the cursor

e (trl+E — Move the cursor to the end of the line

e (Ctrl+F — Move the cursor one character right

e Ctrl+H — Delete the character to the left of the cursor

e (trl+K — Delete to end of line

e (Ctrl+N — Move the cursor one line down

QTextEdit Class Reference 399

e (Ctrl+P — Move the cursor one line up

e (trl+V — Paste the clipboard text into line edit (also Shift+Insert under Windows)
e (Ctrl+X — Cut the marked text, copy to clipboard (also Shift+Delete under Windows)
e Ctrl+Z — Undo the last operation

e Ctrl+Y — Redo the last operation

e Left Arrow — Move the cursor one character left

e Ctrl+Left Arrow — Move the cursor one word left

e Right Arrow — Move the cursor one character right

e (trl+Right Arrow — Move the cursor one word right

e Up Arrow — Move the cursor one line up

e Ctrl+Up Arrow — Move the cursor one word up

e Down Arrow — Move the cursor one line down

e (Ctrl+Down Arrow — Move the cursor one word down

e Page Up — Move the cursor one page up

e Page Down — Move the cursor one page down

e Home — Move the cursor to the beginning of the line

e Ctrl+Home Arrow — Move the cursor to the beginning of the text

e End — Move the cursor to the end of the line

e Ctrl+End Arrow — Move the cursor to the end of the text

e Shift+Wheel — Scroll the page horizontally (the Wheel is the mouse wheel)
e Ctrl+Wheel — Zoom the text

To select (mark) text hold down the Shift key whilst pressing one of the movement keystrokes, for example, Shift+Right
Arrow will select the character to the right, and Shift+Ctrl+Right Arrow will select the word to the right, etc.

By default the text edit widget operates in insert mode so all text that the user enters is inserted into the text edit and
any text to the right of the cursor is moved out of the way. The mode can be changed to overwrite, where new text
overwrites any text to the right of the cursor, using setOverwriteMode().

QTextEdit can also be used as read-only text viewer. Call setReadOnly(TRUE) to disable editing. A read-only QTextEdit
provides the same functionality as the (obsolete) QTextView. (QTextView is still supplied for compatibility with old
code.)

When QTextEdit is used read-only the key-bindings are limited to navigation, and text may only be selected with the
mouse:

e Up Arrow — Move one line up

e Down Arrow — Move one line down

e Left Arrow — Move one character left

e Right Arrow — Move one character right

e Page Up — Move one (viewport) page up

e Page Down — Move one (viewport) page down

e Home — Move to the beginning of the text

e End — Move to the end of the text

e Shift+Wheel — Scroll the page horizontally (the Wheel is the mouse wheel)

QTextEdit Class Reference 400

o (Ctrl+Wheel — Zoom the text

The text edit may be able to provide some meta-information. For example, the documentTitle() function will return
the text from within HTML <t i t| e> tags.

The text displayed in a text edit has a context. The context is a path which the text edit’s QMimeSourceFactory uses to
resolve the locations of files and images. It is passed to the mimeSourceFactory() when quering data. (See QTextEdit()
and context().)

Note that we do not intend to add a full-featured web browser widget to Qt (because that would easily double Qt’s size
and only a few applications would benefit from it). The rich text support in Qt is designed to provide a fast, portable
and efficient way to add reasonable online help facilities to applications, and to provide a basis for rich text editors.

See also Basic Widgets and Text Related Classes.

Member Type Documentation

QTextEdit::CursorAction
This enum is used by moveCursor() to specify in which direction the cursor should be moved:

e Qlext Edit:: MoveBackwar d - Moves the cursor one character backward

e Qlext Edit:: MoveWr dBackwar d - Moves the cursor one word backward

e QTlext Edi t:: MoveForwar d - Moves the cursor one character forward

e Qlext Edit:: MoveWr dForwar d - Moves the cursor one word forward

e (QText Edit:: MvelUp - Moves the cursor up one line

e Qlext Edit:: MoveDown - Moves the cursor down one line

e Qlext Edit:: MveLineXart - Moves the cursor to the beginning of the line
e QText Edit:: MveLi neEnd - Moves the cursor to the end of the line

e Qlext Edi t:: MoveHone - Moves the cursor to the beginning of the document
e QTlext Edi t:: MoveEnd - Moves the cursor to the end of the document

e Qlext Edit:: MovePgUp - Moves the cursor one page up

e QText Edit:: MovePgDown - Moves the cursor one page down

QTextEdit::KeyboardAction
This enum is used by doKeyboardAction() to specify which action should be executed:

e Qlext Edit:: ActionBackspace - Delete the character to the left of the cursor.
e Qlext Edit:: ActionDelete - Delete the character to the right of the cursor.
e Qlext Edit:: ActionReturn - Split the paragraph at the cursor position.

e QlextEdit::ActionKill -Ifthe cursor is not at the end of the paragraph, delete the text from the cursor position
until the end of the paragraph. If the cursor is at the end of the paragraph, delete the hard line break at the end
of the paragraph - this will cause this paragraph to be joined with the following paragraph.

QTextEdit Class Reference 401

QTextEdit::VerticalAlignment
This enum is used to set the vertical alignment of the text.

e Qlext Edit:: AlignNornal - Normal alignment
e Qlext Edit:: AlignSuperScript - Superscript
e QlextEdit::AlignSubScript - Subscript

QTextEdit::WordWrap
This enum defines the QTextEdit’s word wrap modes. The following values are valid:

e QText Edit:: NoWap - Do not wrap the text.

e Qlext Edit:: Wdget Wdth - Wrap the text at the current width of the widget (this is the default). Wrapping is at
whitespace by default; this can be changed with setWrapPolicy().

e Qlext Edit:: Fi xedPi xel Wdt h - Wrap the text at a fixed number of pixels from the widget’s left side. The number
of pixels is set with wrapColumnOrWidth().

e Qlext Edit:: Fi xedCol umW dt h - Wrap the text at a fixed number of character columns from the widget’s left
side. The number of characters is set with wrapColumnOrWidth(). This is useful if you need formatted text
that can also be displayed gracefully on devices with monospaced fonts, for example a standard VT100 terminal,
where you might set wrapColumnOrWidth() to 80.

See also wordWrap [p. 421] and wordWrap [p. 421].

QTextEdit::WrapPolicy

This enum defines where text can be wrapped in word wrap mode.

The following values are valid:

e QTlext Edi t:: At Whi t eSpace - Break lines at whitespace, e.g. spaces or newlines.
e QText Edi t:: Anywher e - Break anywhere, including within words.

e Qlext Edit:: At WordBoundary - Don’t use this deprecated value (it is a synonym for AtWhiteSpace which you
should use instead).

See also wrapPolicy [p. 421].

Member Function Documentation

QTextEdit::QTextEdit (const QString & text, const QString & context = QString::null,
QWidget * parent = 0, const char * name = 0)
Constructs a QTextEdit with parent parent and name name. The text edit will display the text text using context context.

The context is a path which the text edit’s QMimeSourceFactory uses to resolve the locations of files and images. It is
passed to the mimeSourceFactory() when quering data.

QTextEdit Class Reference 402

For example if the text contains an image tag, <ing src="image.png"> and the context is "path/to/look/in",
the QMimeSourceFactory will try to load the image from "path/to/look/in/image.png". If the tag was <ing
src="/image. png">, the context will not be used (because QMimeSourceFactory recognizes that we have used an
absolute path) and will try to load "/image.png". The context is applied in exactly the same way to hrefs, for example,
Tar get </ a>, would resolve to "path/to/look/in/target.html".

QTextEdit::QTextEdit (QWidget * parent = 0, const char * name = 0)

Constructs an empty QTextEdit with parent parent and name name.

int QTextEdit::alignment () const

Returns the alignment of the current paragraph.

See also setAlignment() [p. 412].

QString QTextEdit::anchorAt (const QPoint & pos)

If there is an anchor at position pos (in contents coordinates), its name is returned, otherwise an empty string is
returned.

void QTextEdit::append (const QString & text) [virtual slot]

Appends the text text to the end of the text edit.

Examples: network/clientserver/client/client.cpp, network/clientserver/server/server.cpp, network/httpd/httpd.cpp
and process/process.cpp.

bool QTextEdit::bold () const

Returns TRUE if the current format is bold; otherwise returns FALSE.

See also setBold() [p. 412].

int QTextEdit::charAt (const QPoint & pos, int * para) const

Returns the index of the character (relative to its paragraph) at position pos (in contents coordinates). If para is not
null, para is set to this paragraph. If there is no character at pos, -1 is returned.

void QTextEdit::clear () [virtual slot]

Deletes all the text in the text edit.

See also cut() [p. 404], removeSelectedText() [p. 411] and text [p. 420].

QTextEdit Class Reference 403

void QTextEdit::clearParagraphBackground (int para) [virtual slot]

Clears the background color of the paragraph para, so that the default color is used again.

QColor QTextEdit::color () const

Returns the color of the current format.

See also setColor() [p. 412] and paper [p. 419].

QString QTextEdit::context () const

Returns the context of the edit. The context is a path which the text edit’s QMimeSourceFactory uses to resolve the
locations of files and images.

See also text [p. 420].

Examples: helpviewer/helpwindow.cpp and qdir/qdir.cpp.

void QTextEdit::copy () [virtual slot]

Copies any selected text (from selection 0) to the clipboard.

See also hasSelectedText [p. 419] and copyAvailable() [p. 403].

void QTextEdit::copyAvailable (bool yes) [signal]

This signal is emitted when text is selected or de-selected in the text edit.

When text is selected this signal will be emitted with yes set to TRUE. If no text has been selected or if the selected text
is de-selected this signal is emitted with yes set to FALSE.

If yes is TRUE then copy() can be used to copy the selection to the clipboard. If yes is FALSE then copy() does nothing.
See also selectionChanged() [p. 412].

QPopupMenu * QTextEdit::createPopupMenu (const QPoint & pos) [virtual protected]

This function is called to create a right mouse button popup menu at the document position pos. If you want to create
a custom popup menu, reimplement this function and return the created popup menu. Ownership of the popup menu
is transferred to the caller.

QPopupMenu * QTextEdit::createPopupMenu () [virtual protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This function is called to create a right mouse button popup menu. If you want to create a custom popup menu,
reimplement this function and return the created popup menu. Ownership of the popup menu is transferred to the
caller.

QTextEdit Class Reference

void QTextEdit::currentAlignmentChanged (int a) [signal]

This signal is emitted if the alignment of the current paragraph has changed.
The new alignment is a.

See also setAlignment() [p. 412].

void QTextEdit::currentColorChanged (const QColor & c) [signal]

This signal is emitted if the color of the current format has changed.
The new color is c.

See also setColor() [p. 412].

void QTextEdit::currentFontChanged (const QFont & f) [signal]

This signal is emitted if the font of the current format has changed.
The new font is f.

See also setCurrentFont() [p. 412].

void QTextEdit::currentVerticalAlignmentChanged (VerticalAlignment a) [signal]

This signal is emitted if the vertical alignment of the current format has changed.
The new vertical alignment is a.

See also setVerticalAlignment() [p. 415].

void QTextEdit::cursorPositionChanged (QTextCursor * c) [signal]

This signal is emitted if the position of the cursor changed. ¢ points to the text cursor object.

See also setCursorPosition() [p. 413].

void QTextEdit::cursorPositionChanged (int para, int pos) [signal]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

404

This signal is emitted if the position of the cursor changed. para contains the paragraph index and pos contains the

character position within the paragraph.
See also setCursorPosition() [p. 413].

void QTextEdit::cut () [virtual slot]

Copies the selected text (from selection 0) to the clipboard and deletes it from the text edit.

If there is no selected text (in selection 0) nothing happens.

QTextEdit Class Reference 405

See also QTextEdit::copy() [p. 4031, paste() [p. 410] and pasteSubType() [p. 410].

void QTextEdit::del () [virtual slot]
If there is some selected text (in selection 0) it is deleted. If there is no selected text (in selection 0) the character to
the right of the text cursor is deleted.

See also removeSelectedText() [p. 411] and cut() [p. 404].

void QTextEdit::doKeyboardAction (KeyboardAction action) [virtual slot]

Executes keyboard action action. This is normally called by a key event handler.

QString QTextEdit::documentTitle () const

Returns the title of the document parsed from the text. See the "documentTitle" [p. 419] property for details.

void QTextEdit::ensureCursorVisible () [virtual slot]

Ensures that the cursor is visible by scrolling the text edit if necessary.

See also setCursorPosition() [p. 413].

QString QTextEdit::family () const

Returns the font family of the current format.

See also setFamily() [p. 413], setCurrentFont() [p. 412] and setPointSize() [p. 414].

bool QTextEdit::find (const QString & expr, bool cs, bool wo, bool forward = TRUE,
int * para = 0, int * index = 0) [virtual]

Finds the next occurrence of the string, expr, starting from character position *index within paragraph *para. Both
index and para must be non-null int pointers.

If *para and *index are both O the search begins from the start of the text. If c¢s is TRUE the search is case sensitive,
otherwise it is case insensitive. If wo is TRUE the search looks for whole word matches only; otherwise it searches for
any matching text. If forward is TRUE (the default) the search works forward from the starting position to the end of
the text, otherwise it works backwards to the beginning of the text.

If expr is found the function returns TRUE and sets *para to the number of the paragraph in which the first character
of the match was found and sets *index to the index position of that character within the *para.

If expr is not found the function returns FALSE and the contents of index and para are undefined.

QTextEdit Class Reference 406

bool QTextEdit::focusNextPrevChild (bool n) [virtual protected]

Reimplemented to allow tabbing through links. If n is TRUE the tab moves the focus to the next child; if n is FALSE the
tab moves the focus to the previous child. Returns TRUE if the focus was moved; otherwise returns FALSE.

QFont QTextEdit::font () const

Returns the font of the current format.
See also setCurrentFont() [p. 4121, setFamily() [p. 413] and setPointSize() [p. 414].

Examples: action/application.cpp, application/application.cpp, mdi/application.cpp and qwerty/qwerty.cpp.

void QTextEdit::getCursorPosition (int * para, int * index) const

This function sets the *para and *index parameters to the current cursor position. para and index must be non-null int
pointers.

See also setCursorPosition() [p. 413].

bool QTextEdit::getFormat (int para, int index, QFont * font, QColor * color,
VerticalAlignment * verticalAlignment) [virtual]

This function gets the format of the character at position index in paragraph para. Sets font to the character’s font,
color to the character’s color and verticalAlignment to the character’s vertical alignment.

Returns FALSE if para or index is out of range otherwise returns TRUE.

bool QTextEdit::getParagraphFormat (int para, QFont * font, QColor * color,
VerticalAlignment * verticalAlignment, int * alignment,
QStyleSheetItem::DisplayMode * displayMode, QStyleSheetItem::ListStyle * listStyle,
int * listDepth) [virtual]

This function gets the format of the paragraph para. Sets font to the paragraphs’s font, color to the paragraph’s color, ver-
ticalAlignment to the paragraph’s vertical alignment, alignment to the paragraph’s alignment, displayMode to the para-
graph’s display mode, listStyle to the paragraph’s list style (if the display mode is QStyleSheetItem::DisplayListItem)
and listDepth to the depth of the list (if the display mode is QStyleSheetItem::DisplayListitem).

Returns FALSE if para is out of range otherwise returns TRUE.

void QTextEdit::getSelection (int * paraFrom, int * indexFrom, int * paraTo, int * indexTo,
int seINum = 0) const

If there is a selection, *paraFrom is set to the number of the paragraph in which the selection begins and *paraTo is set
to the number of the paragraph in which the selection ends. (They could be the same.) *indexFrom is set to the index
at which the selection begins within *paraFrom, and *indexTo is set to the index at which the selection ends within
*paraTo.

If there is no selection, *paraFrom, *indexFrom, *paraTo and *indexTo are all set to -1.

QTextEdit Class Reference 407

paraFrom, indexFrom, paraTo and indexTo must be non-null int pointers.
The selNum is the number of the selection (multiple selections are supported). It defaults to O (the default selection).

See also setSelection() [p. 414] and selectedText [p. 420].

bool QTextEdit::hasSelectedText () const

Returns TRUE if some text is selected in selection 0; otherwise returns FALSE. See the "hasSelectedText" [p. 419]
property for details.

int QTextEdit::heightForWidth (int w) const [virtual]

Returns how many pixels high the text edit needs to be to display all the text if the text edit is w pixels wide.

Reimplemented from QWidget [p. 458].

void QTextEdit::indent () [virtual slot]

Re-indents the current paragraph.

void QTextEdit::insert (const QString & text, bool indent = FALSE, bool checkNewLine =
TRUE, bool removeSelected = TRUE) [virtual slot]

Inserts text at the current cursor position. If indent is TRUE, the paragraph is re-indented. If checkNewLine is TRUE,
newline characters in text result in hard line breaks (i.e. new paragraphs). If checkNewLine is FALSE the behaviour
of the editor is undefined if the text contains newlines. If removeSelected is TRUE, any selected text (in selection 0) is
removed before the text is inserted.

See also paste() [p. 410] and pasteSubType() [p. 410].

void QTextEdit::insertAt (const QString & text, int para, int index) [virtual slot]

Inserts text in the paragraph para and position index

void QTextEdit::insertParagraph (const QString & text, int para) [virtual slot]

Inserts text as the paragraph at position para. If para is -1, the text is appended.

bool QTextEdit::isModified () const

Returns TRUE if the document has been modified by the user; otherwise returns FALSE. See the "modified" [p. 419]
property for details.

QTextEdit Class Reference 408

bool QTextEdit::isOverwriteMode () const

Returns the text edit’s overwrite mode. See the "overwriteMode" [p. 419] property for details.

bool QTextEdit::isReadOnly () const

Returns TRUE if the text edit is read-only; otherwise returns FALSE. See the "readOnly" [p. 420] property for details.

bool QTextEdit::isRedoAvailable () const

Returns whether redo is available

bool QTextEdit::isUndoAvailable () const

Returns whether undo is available

bool QTextEdit::isUndoRedoEnabled () const

Returns TRUE if undo/redo is enabled; otherwise returns FALSE. See the "undoRedoEnabled" [p. 421] property for
details.

bool QTextEdit::italic () const

Returns TRUE if the current format is italic; otherwise returns FALSE.

See also setltalic() [p. 413].

void QTextEdit::keyPressEvent (QKeyEvent * e) [virtual protected]

Processes the key event, e. By default key events are used to provide keyboard navigation and text editing.
Reimplemented from QWidget [p. 461].

Reimplemented in QTextBrowser.

int QTextEdit::length () const

Returns the number of characters in the text. See the "length" [p. 419] property for details.

int QTextEdit::lineOfChar (int para, int index)

Returns the line number of the line in paragraph para in which the character at position index appears. The index
position is relative to the beginning of the paragraph. If there is no such paragraph or no such character at the index
position (e.g. the index is out of range) -1 is returned.

QTextEdit Class Reference 409

int QTextEdit::lines () const

Returns the number of lines in the text edit.

Warning: This function may be slow. Lines change all the time during word wrapping, so this function has to iterate
over all the paragraphs and get the number of lines from each one individually.

Examples: action/application.cpp and application/application.cpp.
int QTextEdit::linesOfParagraph (int para) const

Returns the number of lines in paragraph para.

bool QTextEdit::linkUnderline () const

Returns TRUE if hypertext links will be underlined; otherwise returns FALSE. See the "linkUnderline" [p. 419] property
for details.

QMimeSourceFactory * QTextEdit::mimeSourceFactory () const

Returns the QMimeSourceFactory which is currently used by this text edit.
See also setMimeSourceFactory() [p. 413].

Examples: helpviewer/helpwindow.cpp and qdir/qdir.cpp.

void QTextEdit::modificationChanged (bool m) [signal]

This signal is emitted when the modification of the document changed. If m is TRUE, the document was modified,
otherwise the modification state has been reset to unmodified.

See also modified [p. 419].

void QTextEdit::moveCursor (CursorAction action, bool select) [virtual slot]

Moves the text cursor according to action. This is normally used by some key event handler. select specifies whether
the text between the current cursor position and the new position should be selected.

QBrush QTextEdit::paper () const

Returns the background (paper) brush. See the "paper" [p. 419] property for details.

int QTextEdit::paragraphAt (const QPoint & pos) const

Returns the paragraph which is at position pos (in contents coordinates), or -1 if there is no paragraph at pos.

QTextEdit Class Reference 410

QColor QTextEdit::paragraphBackgroundColor (int para) const

Returns the background color of the paragraph para or an invalid color if para is out of range or the paragraph has no
background set

int QTextEdit::paragraphLength (int para) const

Returns the length of the paragraph para (number of characters)

QRect QTextEdit::paragraphRect (int para) const

Returns the rectangle of the paragraph para in contents coordinates, or an invalid rectangle if para is out of range.

int QTextEdit::paragraphs () const

Returns the number of paragraphs in the text.

void QTextEdit::paste () [virtual slot]

Pastes the text from the clipboard into the text edit at the current cursor position. Only plain text is pasted.
If there is no text in the clipboard nothing happens.

See also pasteSubType() [p. 4101, cut() [p- 404] and QTextEdit::copy() [p. 403].

void QTextEdit::pasteSubType (const QCString & subtype) [virtual slot]

Pastes the text with format subtype from the clipboard into the text edit at the current cursor position. The subtype can
be "plain" or "html".

If there is no text with format subtype in the clipboard nothing happens.

See also paste() [p. 4101, cut(Q [p. 404] and QTextEdit::copy() [p. 403].

void QTextEdit::placeCursor (const QPoint & pos, QTextCursor * ¢ = 0) [virtual slot]

Places the cursor c at the character which is closest to position pos (in contents coordinates). If ¢ is 0, the default text
cursor is used.

See also setCursorPosition() [p. 413].

int QTextEdit::pointSize () const

Returns the point size of the font of the current format.

See also setFamily() [p. 413], setCurrentFont() [p. 412] and setPointSize() [p. 414].

QTextEdit Class Reference 411

void QTextEdit::redo () [virtual slot]

Redoes the last operation.
If there is no operation to redo, e.g. there is no redo step in the undo/redo history, nothing happens.

See also redoAvailable() [p. 411], undo() [p. 4171 and undoDepth [p. 421].

void QTextEdit::redoAvailable (bool yes) [signal]

This signal is emitted when the availability of redo changes. If yes is TRUE, then redo() will work until redoAvailable(
FALSE) is next emitted.

See also redo() [p. 411] and undoDepth [p. 421].

void QTextEdit::removeParagraph (int para) [virtual slot]

Removes the paragraph para

void QTextEdit::removeSelectedText (int selNum = 0) [virtual slot]

Deletes the selected text (i.e. the default selection’s text) of the selection selNum (by default, 0). If there is no selected
text nothing happens.

See also selectedText [p. 420] and removeSelection() [p. 411].

void QTextEdit::removeSelection (int selNum = 0) [virtual slot]
Removes the selection selNum (by default 0). This does not remove the selected text.
See also removeSelectedText() [p. 411].

void QTextEdit::repaintChanged () [protected]

Repaints any paragraphs that have changed.

Although used extensively internally you shouldn’t need to call this yourself.

void QTextEdit::returnPressed () [signal]

This signal is emitted if the user pressed the Return or the Enter key.

void QTextEdit::scrollToAnchor (const QString & name) [virtual slot]

Scrolls the text edit to make the text at the anchor called name visible, if it can be found in the document. If the anchor
isn’t found no scrolling will occur. An anchor is defined using the HTML anchor tag, e.g. .

QTextEdit Class Reference 412

void QTextEdit::scrollToBottom () [virtual slot]

Scrolls to the bottom of the document and does formatting if required

void QTextEdit::selectAll (bool select = TRUE) [virtual slot]

If select is TRUE (the default), all the text is selected as selection 0. If select is FALSE any selected text is unselected,
i.e., the default selection (selection 0) is cleared.

See also selectedText [p. 420].

QString QTextEdit::selectedText () const

Returns the selected text (from selection 0) or an empty string if there is no currently selected text (in selection 0). See
the "selectedText" [p. 420] property for details.

void QTextEdit::selectionChanged () [signal]

This signal is emitted whenever the selection changes.

See also setSelection() [p. 414] and copyAvailable() [p. 403].

void QTextEdit::setAlignment (int a) [virtual slot]

Sets the alignment of the current paragraph to a. Valid alignments are Qt::AlignLeft, Qt::AlignRight, Qt::AlignJustify
and Qt::AlignCenter (which centers horizontally).

See also setParagType() [p. 414].

Reimplemented in QMultiLineEdit.

void QTextEdit::setBold (bool b) [virtual slot]

If b is TRUE sets the current format to bold; otherwise sets the current format to non-bold.
See also bold() [p. 402].

void QTextEdit::setColor (const QColor & c¢) [virtual slot]

Sets the color of the current format, i.e. of the text, to c.
See also color() [p. 403] and paper [p. 419].
Example: action/actiongroup/editor.cpp.

void QTextEdit::setCurrentFont (const QFont & f) [virtual slot]

Sets the font of the current format to f.

QTextEdit Class Reference 413
See also font() [p. 406], setPointSize() [p. 414] and setFamily() [p. 413].

void QTextEdit::setCursorPosition (int para, int index) [virtual slot]

Sets the cursor to position index in paragraph para.

See also getCursorPosition() [p. 406].

void QTextEdit::setFamily (const QString & fontFamily) [virtual slot]

Sets the font family of the current format to fontFamily.

See also family() [p. 405] and setCurrentFont() [p. 412].

void QTextEdit::setItalic (bool b) [virtual slot]

If b is TRUE sets the current format to italic; otherwise sets the current format to non-italic.

See also italic() [p. 408].

void QTextEdit::setLinkUnderline (bool) [virtual slot]

Sets whether hypertext links will be underlined. See the "linkUnderline" [p. 419] property for details.

void QTextEdit::setMimeSourceFactory (QMimeSourceFactory * factory) [virtual slot]

Sets the text edit’s mimesource factory to factory. See QMimeSourceFactory for further details.

See also mimeSourceFactory() [p. 409].

void QTextEdit::setModified (bool m) [virtual slot]

Sets whether the document has been modified by the user to m. See the "modified" [p. 419] property for details.

void QTextEdit::setOverwriteMode (bool b) [virtual slot]

Sets the text edit’s overwrite mode to b. See the "overwriteMode" [p. 419] property for details.

void QTextEdit::setPaper (const QBrush & pap) [virtual slot]

Sets the background (paper) brush to pap. See the "paper" [p. 419] property for details.

QTextEdit Class Reference 414

void QTextEdit::setParagType (QStyleSheetItem::DisplayMode dm,
QStyleSheetItem::ListStyle listStyle) [virtual slot]

Sets the paragraph style of the current paragraph to dm. If dm is QStyleSheetItem::DisplayListitem, the type of the list
item is set to listStyle.

See also setAlignment() [p. 412].

void QTextEdit::setParagraphBackgroundColor (int para, const QColor & bg) [virtual slot]

Sets the background color of the paragraph para to bg

void QTextEdit::setPointSize (int s) [virtual slot]

Sets the point size of the current format to s.
Note that if s is zero or negative, the behaviour of this function is not defined.

See also pointSize() [p. 410], setCurrentFont() [p. 412] and setFamily() [p. 413].

void QTextEdit::setReadOnly (bool b) [virtual slot]

Sets whether the text edit is read-only to b. See the "readOnly" [p. 420] property for details.

void QTextEdit::setSelection (int paraFrom, int indexFrom, int paraTo, int indexTo,
int selNum = 0) [virtual slot]

Sets a selection which starts at position indexFrom in paragraph paraFrom and ends at position indexTo in paragraph
paraTo. Existing selections which have a different id (selNum) are not removed, existing selections which have the
same id as selNum are removed.

Uses the selection settings of selection selNum. If selNum is 0, this is the default selection.

See also getSelection() [p. 406] and selectedText [p. 420].

void QTextEdit::setSelectionAttributes (int selNum, const QColor & back,
bool invertText) [virtual slot]

Sets the background color of selection number selNum to back and specifies whether the text of this selection should
be inverted with invertText.

This only works for \selNum > 0. The default selection (\seINum == 0) gets its attributes from the colorGroup() of
this widget.

void QTextEdit::setStyleSheet (QStyleSheet * styleSheet) [virtual slot]

Sets the stylesheet to use with this text edit to styleSheet. Changes will only take effect for new text added with setText()
or append().

QTextEdit Class Reference 415
See also styleSheet() [p. 416].

void QTextEdit::setTabStopWidth (int ts) [virtual slot]

Sets the tab width used by the text edit to ts.
See also tabStopWidth() [p. 416].

void QTextEdit::setText (const QString & txt) [slot]

Sets the text edit’s text to txt. See the "text" [p. 420] property for details.

void QTextEdit::setText (const QString & text, const QString & context) [virtual slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Changes the text of the text edit to the string text and the context to context. Any previous text is removed.

text may be interpreted either as plain text or as rich text, depending on the textFormat(). The default setting is
AutoText, i.e. the text edit autodetects the format from text.

The optional context is a path which the text edit’'s QMimeSourceFactory uses to resolve the locations of files and
images. (See QTextEdit::QTextEdit().) It is passed to the text edit’s QMimeSourceFactory when quering data.

See also text [p. 420] and textFormat [p. 420].

void QTextEdit::setTextFormat (TextFormat f) [virtual slot]

Sets the text format: rich text, plain text or auto text to f. See the "textFormat" [p. 420] property for details.

void QTextEdit::setUnderline (bool b) [virtual slot]

If b is TRUE sets the current format to underline; otherwise sets the current format to non-underline.

See also underline() [p. 417].

void QTextEdit::setUndoDepth (int d) [virtual slot]

Sets the depth of the undo history to d. See the "undoDepth" [p. 421] property for details.

void QTextEdit::setUndoRedoEnabled (bool b) [virtual slot]

Sets whether undo/redo is enabled to b. See the "undoRedoEnabled" [p. 421] property for details.

void QTextEdit::setVerticalAlignment (VerticalAlignment a) [virtual slot]

Sets the vertical alignment of the current format, i.e. of the text, to a.

QTextEdit Class Reference 416

See also color() [p. 403] and paper [p. 419].

void QTextEdit::setWordWrap (WordWrap mode) [virtual slot]

Sets the word wrap mode to mode. See the "wordWrap" [p. 421] property for details.

void QTextEdit::setWrapColumnOrWidth (int) [virtual slot]

Sets the position (in pixels or columns depending on the wrap mode) where text will be wrapped. See the "wrap-
ColumnOrWidth" [p. 421] property for details.

void QTextEdit::setWrapPolicy (WrapPolicy policy) [virtual slot]

Sets the word wrap policy, at whitespace or anywhere to policy. See the "wrapPolicy" [p. 421] property for details.

QStyleSheet * QTextEdit::styleSheet () const

Returns the QStyleSheet which is currently used in this text edit.
See also setStyleSheet() [p. 4141.

Example: helpviewer/helpwindow.cpp.

int QTextEdit::tabStopWidth () const
Returns the tab width used by the text edit.
See also setTabStopWidth() [p. 415].

QString QTextEdit::text () const

Returns the text edit’s text. See the "text" [p. 420] property for details.

QString QTextEdit::text (int para) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the text of paragraph para.

If textFormat() is RichText the text will contain HTML formatting tags.

void QTextEdit::textChanged () [signal]

This signal is emitted whenever the text in the text edit changes.
See also text [p. 420] and append() [p. 402].
Examples: helpviewer/helpwindow.cpp, qwerty/qwerty.cpp and rot13/rot13.cpp.

QTextEdit Class Reference 417

QTextCursor * QTextEdit::textCursor () const [protected]

Returns the text edit’s text cursor. QTextCursor is not in the public API, but in special circumstances you might wish to
use it.

TextFormat QTextEdit::textFormat () const

Returns the text format: rich text, plain text or auto text. See the "textFormat" [p. 420] property for details.

bool QTextEdit::underline () const

Returns TRUE if the current format is underlined; otherwise returns FALSE.

See also setUnderline() [p. 415].

void QTextEdit::undo () [virtual slot]

Undoes the last operation.
If there is no operation to undo, e.g. there is no undo step in the undo/redo history, nothing happens.
See also undoAvailable() [p. 4171, redo() [p. 411] and undoDepth [p. 421].

void QTextEdit::undoAvailable (bool yes) [signal]

This signal is emitted when the availability of undo changes. If yes is TRUE, then undo() will work until undoAvailable(
FALSE) is next emitted.

See also undo() [p. 417] and undoDepth [p. 421].

int QTextEdit::undoDepth () const

Returns the depth of the undo history. See the "undoDepth" [p. 421] property for details.

void QTextEdit::updateStyles () [protected]

Updates all the rendering styles used to display the text. You will probably want to call this function after calling
setStyleSheet().

WordWrap QTextEdit::wordWrap () const

Returns the word wrap mode. See the "wordWrap" [p. 421] property for details.

QTextEdit Class Reference 418

int QTextEdit::wrapColumnOrWidth () const

Returns the position (in pixels or columns depending on the wrap mode) where text will be wrapped. See the "wrap-
ColumnOrWidth" [p. 421] property for details.

WrapPolicy QTextEdit::wrapPolicy () const

Returns the word wrap policy, at whitespace or anywhere. See the "wrapPolicy" [p. 421] property for details.

void QTextEdit::zoomlIn (int range) [virtual slot]
Zooms in on the text by by making the base font size range points larger and recalculating all font sizes. This does not
change the size of any images.

See also zoomOut() [p. 418].

void QTextEdit::zoomlIn () [virtual slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Zooms in on the text by by making the base font size one point larger and recalculating all font sizes. This does not
change the size of any images.

See also zoomOut() [p. 418].

void QTextEdit::zoomOut (int range) [virtual slot]

Zooms out on the text by making the base font size range points smaller and recalculating all font sizes. This does not
change the size of any images.

See also zoomIn() [p. 418].

void QTextEdit::zoomOut () [virtual slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Zooms out on the text by by making the base font size one point smaller and recalculating all font sizes. This does not
change the size of any images.

See also zoomIn() [p. 418].

void QTextEdit::zoomTo (int size) [virtual slot]

Zooms the text by making the base font size size points and recalculating all font sizes. This does not change the size
of any images.

QTextEdit Class Reference 419

Property Documentation

QString documentTitle

This property holds the title of the document parsed from the text.

For PlainText the title will be an empty string. For RichText the title will be the text between the <title> tags, if
present, otherwise an empty string.

Get this property’s value with documentTitle().

bool hasSelectedText

This property holds whether some text is selected in selection 0.

Get this property’s value with hasSelectedText().

int length

This property holds the number of characters in the text.

Get this property’s value with length().

bool linkUnderline

This property holds whether hypertext links will be underlined.
If TRUE (the default) hypertext links will be displayed underlined. If FALSE links will not be displayed underlined.

Set this property’s value with setLinkUnderline() and get this property’s value with linkUnderline().

bool modified

This property holds whether the document has been modified by the user.

Set this property’s value with setModified() and get this property’s value with isModified ().

bool overwriteMode

This property holds the text edit’s overwrite mode.

If FALSE (the default) characters entered by the user are inserted with any characters to the right being moved out of
the way. If TRUE, the editor is in overwrite mode, i.e. characters entered by the user overwrite any characters to the
right of the cursor position.

Set this property’s value with setOverwriteMode() and get this property’s value with isOverwriteMode().

QBrush paper

This property holds the background (paper) brush.

QTextEdit Class Reference 420

The brush that is currently used to draw the background of the text edit. The initial setting is an empty brush.

Set this property’s value with setPaper() and get this property’s value with paper().

bool readOnly

This property holds whether the text edit is read-only.
In a read-only text edit the user can only navigate through the text and select text; modifying the text is not possible.
This property’s default is FALSE.

Set this property’s value with setReadOnly() and get this property’s value with isReadOnly().

QString selectedText
This property holds the selected text (from selection 0) or an empty string if there is no currently selected text (in
selection 0).

The text is always returned as PlainText regardless of the text format. In a future version of Qt an HTML subset may
be returned depending on the text format.

See also hasSelectedText [p. 419].

Get this property’s value with selectedText().

QString text

This property holds the text edit’s text.
There is no default text.
On setting, any previous text is deleted.

The text may be interpreted either as plain text or as rich text, depending on the textFormat(). The default setting is
AutoText, i.e. the text edit autodetects the format of the text.

See also textFormat [p. 420].

Set this property’s value with setText() and get this property’s value with text().

TextFormat textFormat

This property holds the text format: rich text, plain text or auto text.

The text format is one of the following:

e PlainText - all characters, except newlines, are displayed verbatim, including spaces. Whenever a newline appears
in the text the text edit inserts a hard line break and begins a new paragraph.

e RichText - rich text rendering. The available styles are defined in the default stylesheet
QStyleSheet::defaultSheet().

o AutoText - this is the default. The text edit autodetects which rendering style is best, PlainText or RichText. This
is done by using the QStyleSheet::mightBeRichText() function.

Set this property’s value with setTextFormat() and get this property’s value with textFormat().

QTextEdit Class Reference 421

int undoDepth

This property holds the depth of the undo history.
The maximum number of steps in the undo/redo history. The default is 100.
See also undo() [p. 417] and redo() [p. 4111].

Set this property’s value with setUndoDepth() and get this property’s value with undoDepth().

bool undoRedoEnabled

This property holds whether undo/redo is enabled.
The default is TRUE.

Set this property’s value with setUndoRedoEnabled() and get this property’s value with isUndoRedoEnabled ().

WordWrap wordWrap

This property holds the word wrap mode.

The default mode is WidgetWidth which causes words to be wrapped at the right edge of the text edit. Wrapping
occurs at whitespace, keeping whole words intact. If you want wrapping to occur within words use setWrapPolicy().
If you set a wrap mode of FixedPixelWidth or FixedColumnWidth you should also call setWrapColumnOrWidth() with
the width you want.

See also WordWrap [p. 401], wrapColumnOrWidth [p. 421] and wrapPolicy [p. 421].

Set this property’s value with setWordWrap() and get this property’s value with wordWrap().

int wrapColumnOrWidth

This property holds the position (in pixels or columns depending on the wrap mode) where text will be wrapped.

If the wrap mode is FixedPixelWidth, the value is the number of pixels from the left edge of the text edit at which text
should be wrapped. If the wrap mode is FixedColumnWidth, the value is the column number (in character columns)
from the left edge of the text edit at which text should be wrapped.

See also wordWrap [p. 421].

Set this property’s value with setWrapColumnOrWidth() and get this property’s value with wrapColumnOrWidth().

WrapPolicy wrapPolicy

This property holds the word wrap policy, at whitespace or anywhere.

Defines where text can be wrapped when word wrap mode is not NoWrap. The choices are AtWhiteSpace (the default)
and Anywhere.

See also wordWrap [p. 421].

Set this property’s value with setWrapPolicy() and get this property’s value with wrapPolicy().

QTimeEdit Class Reference

The QTimeEdit class provides a time editor.

#incl ude <gdatetinmeedit.h>

Public Members

m QTimeEdit (QWidget * parent = 0, const char * name = 0)

m QTimeEdit (const QTime & time, QWidget * parent = 0, const char * name = 0)
~QTimeEdit ()

virtual void setTime (const QTime & time)

QTime time () const

virtual void setAutoAdvance (bool advance)

bool autoAdvance () const

m virtual void setMinValue (const QTime & d)

= QTime minValue () const

virtual void setMaxValue (const QTime & d)

QTime maxValue () const

virtual void setRange (const QTime & min, const QTime & max)
QString separator () const

virtual void setSeparator (const QString & s)

Signals

» void valueChanged (const QTime & time)

Properties

m bool autoAdvance — whether the editor automatically advances to the next section
» QTime maxValue — the maximum time value

= QTime minValue — the minimum time value

m QTime time — the time value of the editor

422

QTimeEdit Class Reference 423

Protected Members

m virtual QString sectionFormattedText (int sec)
m virtual void setHour (int h)

m virtual void setMinute (int m)

m virtual void setSecond (int s)

Protected Slots

m void updateButtons ()

Detailed Description

The QTimeEdit class provides a time editor.

QTimeEdit allows the user to edit times by using the keyboard or the arrow keys to increase/decrease time values.
The arrow keys can be used to move from section to section within the QTimeEdit box. The user can automatically be
moved to the next section once they complete a section using setAutoAdvance(). Times appear in hour, minute, second
order. It is recommended that the QTimeEdit be initialised with a time, e.g.

Qlinme tinmeNow = QTime:;currentTime();
QrineEdit *tineEdit = new QTimeEdit(timeNow, this);
tinekEdit->set Range(tineNow, timeNow. addSecs(60 * 60));

Here we've created a QTimeEdit widget set to the current time. We've also set the minimum value to the current time
and the maximum time to one hour from now.

The maximum and minimum values for a time value in the time editor default to the maximum and minimum values
for a QTime. You can change this by calling setMinValue(), setMaxValue() or setRange().

Terminology: A QTimeWidget consists of three sections, one each for the hour, minute and second. You can change the
separator character using setSeparator(), by default the separator is read from the system’s settings.

See also QTime [Additional Functionality with Qt], QDateEdit [p. 48], QDateTimeEdit [p. 54], Advanced Widgets and
Time and Date.

Member Function Documentation

QTimeEdit::QTimeEdit (QWidget * parent = 0, const char * name = 0)

Constructs an empty time edit with parent parent and name name.

QTimeEdit::QTimeEdit (const QTime & time, QWidget * parent = 0, const char * name = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Constructs a time edit with the initial time value, time, parent parent and name name.

QTimeEdit Class Reference 424

QTimeEdit::~QTimeEdit ()

Destroys the object and frees any allocated resources.

bool QTimeEdit::autoAdvance () const

Returns TRUE if the editor automatically advances to the next section; otherwise returns FALSE. See the "autoAdvance"
[p. 425] property for details.

QTime QTimeEdit::maxValue () const

Returns the maximum time value. See the "maxValue" [p. 426] property for details.

QTime QTimeEdit::minValue () const

Returns the minimum time value. See the "minValue" [p. 426] property for details.

QString QTimeEdit::sectionFormattedText (int sec) [virtual protected]

Returns the formatted number for section sec. This will correspond to either the hour, minute or second section,
depending on sec.

QString QTimeEdit::separator () const

Returns the separator for the editor.

void QTimeEdit::setAutoAdvance (bool advance) [virtual]

Sets whether the editor automatically advances to the next section to advance. See the "autoAdvance" [p. 425] property
for details.

void QTimeEdit::setHour (int h) [virtual protected]

Sets the hour to h, which must be a valid hour, i.e. in the range 0..24.

void QTimeEdit::setMaxValue (const QTime & d) [virtual]

Sets the maximum time value to d. See the "maxValue" [p. 426] property for details.

void QTimeEdit::setMinValue (const QTime & d) [virtual]

Sets the minimum time value to d. See the "minValue" [p. 426] property for details.

QTimeEdit Class Reference 425

void QTimeEdit::setMinute (int m) [virtual protected]

Sets the minute to m, which must be a valid minute, i.e. in the range 0..59.

void QTimeEdit::setRange (const QTime & min, const QTime & max) [virtual]

Sets the valid input range for the editor to be from min to max inclusive. If min is invalid no minimum time is set.
Similarly, if max is invalid no maximum time is set.

void QTimeEdit::setSecond (int s) [virtual protected]

Sets the second to s, which must be a valid second, i.e. in the range 0..59.

void QTimeEdit::setSeparator (const QString & s) [virtual]

Sets the separator to s. Note that currently only the first character of s is used.

void QTimeEdit::setTime (const QTime & time) [virtual]

Sets the time value of the editor to time. See the "time" [p. 426] property for details.

QTime QTimeEdit::time () const

Returns the time value of the editor. See the "time" [p. 426] property for details.

void QTimeEdit::updateButtons () [protected slot]

Enables/disables the push buttons according to the min/max time for this widget.

void QTimeEdit::valueChanged (const QTime & time) [signal]

This signal is emitted whenever the editor’s value changes. The time parameter is the new value.

Property Documentation

bool autoAdvance

This property holds whether the editor automatically advances to the next section.

If autoAdvance is TRUE, the editor will automatically advance focus to the next time section if a user has completed a
section. The default is FALSE.

Set this property’s value with setAutoAdvance() and get this property’s value with autoAdvance().

QTimeEdit Class Reference 426

QTime maxValue

This property holds the maximum time value.

Setting the maximum time value is equivalent to calling QTimeEdit::setRange(minValue(), t), where t is the maximum
time. The default maximum time is 23:59:59.

Set this property’s value with setMaxValue() and get this property’s value with maxValue().

QTime minValue

This property holds the minimum time value.

Setting the minimum time value is equivalent to calling QTimeEdit::setRange(t, maxValue()), where t is the minimum
time. The default minimum time is 00:00:00.

Set this property’s value with setMinValue() and get this property’s value with minValue().

QTime time

This property holds the time value of the editor.
When changing the time property, if the time is less than minValue(), or is greater than maxValue(), nothing happens.

Set this property’s value with setTime() and get this property’s value with time().

QVBox Class Reference

The QVBox widget provides vertical geometry management on its children.
#i ncl ude <qvbox. h>

Inherits QHBox [Events, Actions, Layouts and Styles with Qt].

Public Members

m QVBox (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Detailed Description

The QVBox widget provides vertical geometry management on its children.

All its children will be placed vertically and sized according to their sizeHint()s.

(e
Twe

See also QHBox [Events, Actions, Layouts and Styles with Qt], Widget Appearance and Style, Layout Management
and Organizers.

Member Function Documentation

QVBox::QVBox (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a vbox widget with parent parent, name name and widget flags f.

427

QVButtonGroup Class Reference

The QVButtonGroup widget organizes QButton widgets in a vertical column.
#i ncl ude <qvbuttongroup. h>

Inherits QButtonGroup [p. 15].

Public Members

m QVButtonGroup (QWidget * parent = 0, const char * name = 0)
m QVButtonGroup (const QString & title, QWidget * parent = 0, const char * name = 0)
m ~QVButtonGroup ()

Detailed Description

The QVButtonGroup widget organizes QButton widgets in a vertical column.

QVButtonGroup is a convenience class that offers a thin layer on top of QButtonGroup. Think of it as a QVBox that
offers a frame with a title and is specifically designed for buttons.

See also Widget Appearance and Style, Layout Management and Organizers.

Member Function Documentation

QVButtonGroup::QVButtonGroup (QWidget * parent = 0, const char * name = 0)

Constructs a vertical button group with no title.

The parent and name arguments are passed to the QWidget constructor.

QVButtonGroup::QVButtonGroup (const QString & title, QWidget * parent = 0,
const char * name = 0)

Constructs a vertical button group with the title title.

The parent and name arguments are passed to the QWidget constructor.

428

QVButtonGroup Class Reference 429

QVButtonGroup::~QVButtonGroup ()

Destroys the vertical button group, deleting its child widgets.

QVGroupBox Class Reference

The QVGroupBox widget organizes a group of widgets in a vertical column.
#i ncl ude <qvgroupbox. h>

Inherits QGroupBox [p. 81].

Public Members

m QVGroupBox (QWidget * parent = 0, const char * name = 0)
m QVGroupBox (const QString & title, QWidget * parent = 0, const char * name = 0)
m ~QVGroupBox ()

Detailed Description

The QVGroupBox widget organizes a group of widgets in a vertical column.

QVGroupBox is a convenience class that offers a thin layer on top of QGroupBox. Think of it as a QVBox that offers a
frame with a title.

See also Widget Appearance and Style, Layout Management and Organizers.

Member Function Documentation

QVGroupBox::QVGroupBox (QWidget * parent = 0, const char * name = 0)

Constructs a vertical group box with no title.

The parent and name arguments are passed to the QWidget constructor.

QVGroupBox::QVGroupBox (const QString & title, QWidget * parent = 0, const char * name
= O)

Constructs a vertical group box with the title title.

The parent and name arguments are passed to the QWidget constructor.

430

QVGroupBox Class Reference 431

QVGroupBox::~QVGroupBox ()

Destroys the vertical group box, deleting its child widgets.

QWhatsThis Class Reference

The QWhatsThis class provides a simple description of any widget, i.e. answering the question "What’s this?".
#incl ude <gqwhatsthis. h>

Inherits Qt [Additional Functionality with Qt].

Public Members

m QWhatsThis (QWidget * widget)

m virtual ~QWhatsThis ()

m virtual QString text (const QPoint &)

m virtual bool clicked (const QString & href)

Static Public Members

m void add (QWidget * widget, const QString & text)

m void remove (QWidget * widget)

m QString textFor (QWidget * w, const QPoint & pos = QPoint (), bool includeParents = FALSE)

m QToolButton * whatsThisButton (QWidget * parent)

m void enterWhatsThisMode ()

m bool inWhatsThisMode ()

m void leaveWhatsThisMode (const QString & text = QString::null, const QPoint & pos = QCursor::pos (),
QWidget *w = 0)

m void display (const QString & text, const QPoint & pos = QCursor::pos (), QWidget * w = 0)

Detailed Description

The QWhatsThis class provides a simple description of any widget, i.e. answering the question "What’s this?".

"What'’s this?" help is part of an application’s online help system that provides users with information about functional-
ity, usage, background etc. in various levels of detail from short tool tips to full text browsing help windows.

QWhatsThis provides a single window with an explanatory text which pops up when the user asks "What’s this?". The
default way to do this is to focus the relevant widget and press Shift+F1. The help text appears immediately; it goes
away as soon as the user does something else.

(Note that if there is an accelerator for Shift+F1, this mechanism will not work.)

432

QWhatsThis Class Reference 433

To add "What’s this?" text to a widget you simply call QWhatsThis::add () for the widget. For example, to assign text to
a menu item, call QMenuData::setWhatsThis(); for a global accelerator key, call QAccel::setWhatsThis() and If you’re
using actions, use QAction::setWhatsThis().

The text can be either rich text or plain text. If you specify a rich text formatted string, it will be rendered using the
default stylesheet. This makes it possible to embed images. See QStyleSheet::defaultSheet() for details.

non

const char * fileCpenText =
"Click this button to open a new file.
"You can al so select the Open conmand "
“fromthe File nmenu.";
QM neSour ceFact ory:: def aul t Fact ory() - >set Pi xmap("fil eopen”,
fileQpenAction->iconSet (). pixmap());
fileQpenAction->set\WatsThis(fileQpenText);

n

(For further explanation of the above code refer to the Simple Application Walkthrough featuring QAction.)

An alternative way to enter "What’s this?" mode is to use the ready-made tool bar tool button from QWhat-
sThis::whatsThisButton(). By invoking this context help button (in the picture below the first one from the right)
the user switches into "What’s this?" mode. If they now click on a widget the appropriate help text is shown. The mode
is left when help is given or when the user presses Esc.

Document 1 <2

File

EHENR

[Click this hutton to
Open a few i

‘You can also select the
Open command from the
File menu.

If you are using QMainWindow you can also use the QMainWindow::whatsThis() slot to invoke the mode from a menu
item.

For more control you can create a dedicated QWhatsThis object for a special widget. By subclassing and reimplement-
ing QWhatsThis::text() it is possible to have different help texts, depending on the position of the mouse click. By
reimplementing QWhatsThis::clicked () it is possible to have hyperlinks inside the help texts.

If you wish to control the "What’s this?" behavior of a widget manually see QWidget::customWhatsThis().

The What’s This object can be removed using QWhatsThis::remove(), although this is rarely necessary because it is
automatically removed when the widget is destroyed.

See also QToolTip [Dialogs and Windows with Qt] and Help System.

Member Function Documentation

QWhatsThis::QWhatsThis (QWidget * widget)

Constructs a dynamic "What’s this?" object for widget. The object is deleted when the passed widget is destroyed.

When the widget is queried by the user the text() function of this QWhatsThis will be called to provide the appropriate
text, rather than using the text assigned by add().

QWhatsThis Class Reference 434

QWhatsThis::~QWhatsThis () [virtual]

Destroys the object and frees any allocated resources.

void QWhatsThis::add (QWidget * widget, const QString & text) [static]

Adds text as "What's this" help for widget. If the text is rich text formatted (i.e. it contains markup) it will be rendered
with the default stylesheet QStyleSheet::defaultSheet().

The text is destroyed if the widget is later destroyed, so it need not be explicitly removed.

See also remove() [p. 435].

Examples: application/application.cpp and mdi/application.cpp.

bool QWhatsThis::clicked (const QString & href) [virtual]

This virtual function is called when the user clicks inside the "What’s this?" window. href is the link the user clicked on,
or QString::null if there was no link.

If the function returns TRUE (the default), the "What’s this?" window is closed, otherwise it remains visible.

The default implementation ignores href and returns TRUE.

void QWhatsThis::display (const QString & text, const QPoint & pos = QCursor::pos (),
QWidget * w = 0) [static]
Display text in a help window at the global screen position pos.

If widget w is not null and has its own dedicated QWhatsThis object, this object will receive clicked() messages when
the user clicks on hyperlinks inside the help text.

See also QWhatsThis::clicked() [p. 434].

void QWhatsThis::enterWhatsThisMode () [static]

Enters "What’s this?" mode and returns immediately.

Qt will install a special cursor and take over mouse input until the user clicks somewhere. It then shows any help
available and switches out of "What'’s this?" mode. Finally, Qt removes the special cursor and help window and then
restores ordinary event processing, at which point the left mouse button is no longer pressed.

The user can also use the Esc key to leave "What’s this?" mode.

See also inWhatsThisMode() [p. 434] and leaveWhatsThisMode() [p. 435].

bool QWhatsThis::inWhatsThisMode () [static]

Returns TRUE if the application is in "What’s this?" mode; otherwise returns FALSE.

See also enterWhatsThisMode() [p. 434] and leaveWhatsThisMode() [p. 435].

QWhatsThis Class Reference 435

void QWhatsThis::leaveWhatsThisMode (const QString & text = QString::null,
const QPoint & pos = QCursor::pos (), QWidget * w = 0) [static]
Leaves "What’s this?" question mode.

This function is used internally by widgets that support QWidget::customWhatsThis(); applications do not usually call
it. An example of such a widget is QPopupMenu: menus still work normally in "What’s this?" mode but also provide
help texts for individual menu items.

If text is not a null string, a "What's this?" help window is displayed at the global screen position pos. If widget w is not
null and has its own dedicated QWhatsThis object, this object will receive clicked () messages when the user clicks on
hyperlinks inside the help text.

See also inWhatsThisMode() [p. 434], enterWhatsThisMode() [p. 434] and QWhatsThis::clicked() [p. 434].

void QWhatsThis::remove (QWidget * widget) [static]

Removes the "What’s this?" help associated with the widget. This happens automatically if the widget is destroyed.

See also add() [p. 434].

QString QWhatsThis::text (const QPoint &) [virtual]

This virtual function returns the text for position p in the widget that this "What’s this?" object documents. If there is
no "What’s this?" text for a position, QString::null is returned.

The default implementation returns QString::null.
QString QWhatsThis::textFor (QWidget * w, const QPoint & pos = QPoint (),
bool includeParents = FALSE) [static]

Returns the what’s this text for widget w or a null string if there is no "What’s this?" help for the widget. pos contains the
mouse position; this is useful, for example, if you've subclassed to make the text that is displayed position dependent.

If includeParents is TRUE, parent widgets are taken into consideration as well.

See also add() [p. 434].

QToolButton * QWhatsThis::whatsThisButton (QWidget * parent) [static]

Creates a QToolButton preconfigured to enter "What’s this?" mode when clicked. You will often use this with a tool bar
as parent:

(void) QahatsThis::whatsThisButton(ny_hel p_tool bar);

QWidget Class Reference

The QWidget class is the base class of all user interface objects.
#include <qw dget. h>
Inherits QObject [Additional Functionality with Qt] and QPaintDevice [Graphics with Qt].

Inherited by QButton [p. 5], QFrame [p. 67], QDialog [Dialogs and Windows with Qt], QComboBox [p. 33],
QDataBrowser [Databases with Qt], QDataView [Databases with Qt], QDateTimeEdit [p. 54], QDesktopWidget
[Dialogs and Windows with Qt], QDial [p. 571, QDockArea [Dialogs and Windows with Qt], QGLWidget [Graphics
with Qt], QHeader [Additional Functionality with Qt], QMainWindow [Dialogs and Windows with Qt], QNPWidget,
QScrollBar [p. 2671, QSizeGrip [p. 2951, QSlider [p. 302], QSpinBox [p. 312], QStatusBar [p. 329], QTabBar

[p. 336], QTabWidget [p. 380], QWorkspace [Dialogs and Windows with Qt] and QXtWidget [p. 512].

Public Members

m QWidget (QWidget * parent = 0, const char * name = 0, WFlagsf = 0)
m ~QWidget ()

» WId winld () const

m QStyle & style () const

m void setStyle (QStyle * style)

m QStyle * setStyle (const QString & style)

m bool isTopLevel () const

bool isDialog () const

bool isPopup () const

bool isDesktop () const

bool isModal () const

= bool isEnabled () const

m bool isEnabledTo (QWidget * ancestor) const
= bool isEnabledToTIW () const (obsolete)

= QRect frameGeometry () const

const QRect & geometry () const

int x () const

int y () const

QPoint pos () const

QSize frameSize () const

QSize size () const
m int width () const

436

QWidget Class Reference

int height () const

QRect rect () const

QRect childrenRect () const

QRegion childrenRegion () const

QSize minimumsSize () const

QSize maximumsSize () const

int minimumWidth () const

int minimumHeight () const

int maximumWidth () const

int maximumHeight () const

void setMinimumSize (const QSize &)

virtual void setMinimumSize (int minw, int minh)
void setMaximumSize (const QSize &)

virtual void setMaximumSize (int maxw, int maxh)
void setMinimumWidth (int minw)

void setMinimumHeight (int minh)

void setMaximumWidth (int maxw)

void setMaximumHeight (int maxh)

QSize sizeIncrement () const

void setSizeIncrement (const QSize &)

virtual void setSizelncrement (int w, int h)

QSize baseSize () const

void setBaseSize (const QSize &)

void setBaseSize (int basew, int baseh)

void setFixedSize (const QSize & s)

void setFixedSize (int w, int h)

void setFixedWidth (int w)

void setFixedHeight (int h)

QPoint mapToGlobal (const QPoint & pos) const
QPoint mapFromGlobal (const QPoint & pos) const
QPoint mapToParent (const QPoint & pos) const
QPoint mapFromParent (const QPoint & pos) const
QPoint mapTo (QWidget * parent, const QPoint & pos) const
QPoint mapFrom (QWidget * parent, const QPoint & pos) const
QWidget * topLevelWidget () const

BackgroundMode backgroundMode () const

virtual void setBackgroundMode (BackgroundMode)
void setBackgroundMode (BackgroundMode m, BackgroundMode visual)
const QColor & foregroundColor () const

const QColor & eraseColor () const

virtual void setEraseColor (const QColor & color)
const QPixmap * erasePixmap () const

virtual void setErasePixmap (const QPixmap & pixmap)
const QColorGroup & colorGroup () const

const QPalette & palette () const

bool ownPalette () const

437

QWidget Class Reference 438

virtual void setPalette (const QPalette &)

void unsetPalette ()

const QColor & paletteForegroundColor () const

void setPaletteForegroundColor (const QColor &)

const QColor & paletteBackgroundColor () const

virtual void setPaletteBackgroundColor (const QColor &)

m const QPixmap * paletteBackgroundPixmap () const

m virtual void setPaletteBackgroundPixmap (const QPixmap &)

const QBrush & backgroundBrush () const
QFont font () const

bool ownFont () const

virtual void setFont (const QFont &)

void unsetFont ()

QFontMetrics fontMetrics () const

= QFontInfo fontInfo () const

m const QCursor & cursor () const

= bool ownCursor () const

virtual void setCursor (const QCursor &)
virtual void unsetCursor ()

QString caption () const

const QPixmap * icon () const

QString iconText () const

bool hasMouseTracking () const

= bool hasMouse () const

m virtual void setMask (const QBitmap & bitmap)

virtual void setMask (const QRegion & region)

void clearMask ()

const QColor & backgroundColor () const (obsolete)

virtual void setBackgroundColor (const QColor & c) (obsolete)
const QPixmap * backgroundPixmap () const (obsolete)

virtual void setBackgroundPixmap (const QPixmap & pm) (obsolete)

enum FocusPolicy { NoFocus = 0, TabFocus = 0x1, ClickFocus = 0x2, StrongFocus = 0x3, WheelFocus = 0x7 }
= bool isActiveWindow () const

m virtual void setActiveWindow ()

bool isFocusEnabled () const

FocusPolicy focusPolicy () const

virtual void setFocusPolicy (FocusPolicy)

bool hasFocus () const

virtual void setFocusProxy (QWidget * w)

QWidget * focusProxy () const

m void grabMouse ()

m void grabMouse (const QCursor & cursor)
= void releaseMouse ()

m void grabKeyboard ()

m void releaseKeyboard ()

m bool isUpdatesEnabled () const

QWidget Class Reference

virtual bool close (bool alsoDelete)

bool isVisible () const

bool isVisibleTo (QWidget * ancestor) const

bool isVisibleToTLW () const (obsolete)

QRect visibleRect () const

bool isHidden () const

bool isMinimized () const

bool isMaximized () const

virtual QSize sizeHint () const

virtual QSize minimumSizeHint () const

virtual QSizePolicy sizePolicy () const

virtual void setSizePolicy (QSizePolicy)

virtual int heightForWidth (int w) const

virtual void adjustSize ()

QLayout * layout () const

void updateGeometry ()

virtual void reparent (QWidget * parent, WFlags f, const QPoint & p, bool showIt = FALSE)
void reparent (QWidget * parent, const QPoint & p, bool showIt = FALSE)
void recreate (QWidget * parent, WFlags f, const QPoint & p, bool showlIt = FALSE) (obsolete)
void erase ()

void erase (int x, int y, int w, int h)

void erase (const QRect & r)

void erase (const QRegion & reg)

void scroll (int dx, int dy)

void scroll (int dx, int dy, const QRect & r)

void drawText (int x, int y, const QString & str)

void drawText (const QPoint & pos, const QString & str)

QWidget * focusWidget () const

QRect microFocusHint () const

bool acceptDrops () const

virtual void setAcceptDrops (bool on)

virtual void setAutoMask (bool)

bool autoMask () const

enum BackgroundOrigin { WidgetOrigin, ParentOrigin, WindowOrigin }
virtual void setBackgroundOrigin (BackgroundOrigin)
BackgroundOrigin backgroundOrigin () const

virtual bool customWhatsThis () const

QWidget * parentWidget (bool sameWindow = FALSE) const

WFlags testWFlags (WFlags f) const

QWidget * childAt (int x, int y, bool includeThis = FALSE) const
QWidget * childAt (const QPoint & p, bool includeThis = FALSE) const
void setPalette (const QPalette & p, bool) (obsolete)

void setFont (const QFont & f, bool) (obsolete)

439

QWidget Class Reference

Public Slots

virtual void setEnabled (bool)

void setDisabled (bool disable)

virtual void setCaption (const QString &)

virtual void setIcon (const QPixmap &)

virtual void setIconText (const QString &)

virtual void setMouseTracking (bool enable)
virtual void setFocus ()

void clearFocus ()

virtual void setUpdatesEnabled (bool enable)
void update ()

void update (int x, int y, int w, int h)

void update (const QRect & r)

void repaint ()

void repaint (bool erase)

void repaint (int x, int y, int w, int h, bool erase = TRUE)
void repaint (const QRect & 1, bool erase = TRUE)
void repaint (const QRegion & reg, bool erase = TRUE)
virtual void show ()

virtual void hide ()

void iconify () (obsolete)

virtual void showMinimized ()

virtual void showMaximized ()

void showFullScreen ()

virtual void showNormal ()

virtual void polish ()

void constPolish () const

bool close ()

void raise ()

void lower ()

void stackUnder (QWidget * w)

virtual void move (int x, int y)

void move (const QPoint &)

virtual void resize (int w, int h)

void resize (const QSize &)

virtual void setGeometry (int x, int y, int w, int h)
virtual void setGeometry (const QRect &)

Static Public Members

void setTabOrder (QWidget * first, QWidget * second)
QWidget * mouseGrabber ()

QWidget * keyboardGrabber ()

QWidget * find (WId id)

440

QWidget Class Reference 441

Properties

bool acceptDrops — whether drop events are enabled for this widget

bool autoMask — whether the auto mask feature is enabled for the widget

QBrush backgroundBrush — the widget’s background brush (read only)

BackgroundMode backgroundMode — the color role used for painting the background of the widget
BackgroundOrigin backgroundOrigin — the origin of the widget’s background

QSize baseSize — the base size of the widget

QString caption — the window caption (title)

QRect childrenRect — the bounding rectangle of the widget’s children (read only)

QRegion childrenRegion — the combined region occupied by the widget’s children (read only)
QColorGroup colorGroup — the current color group of the widget palette (read only)

QCursor cursor — the cursor shape for this widget

bool customWhatsThis — whether the widget wants to handle What'’s This help manually (read only)
bool enabled — whether the widget is enabled

bool focus — whether this widget (or its focus proxy) has the keyboard input focus (read only)
bool focusEnabled — whether the widget accepts keyboard focus (read only)

FocusPolicy focusPolicy — the way the widget accepts keyboard focus

QFont font — the font currently set for the widget

QRect frameGeometry — geometry of the widget relative to its parent including any window frame (read only)
QSize frameSize — the size of the widget including any window frame (read only)

QRect geometry — the geometry of the widget relative to its parent and excluding the window frame
int height — the height of the widget excluding any window frame (read only)

bool hidden — whether the widget is explicitly hidden (read only)

QPixmap icon — the widget icon pixmap

QString iconText — the widget icon text

bool isActiveWindow — whether this widget is the active window or a child of it (read only)
bool isDesktop — whether the widget is a desktop widget (read only)

bool isDialog — whether the widget is a dialog widget (read only)

bool isModal — whether the widget is a modal widget (read only)

bool isPopup — whether the widget is a popup widget (read only)

bool isTopLevel — whether the widget is a top-level widget (read only)

int maximumHeight — the widget’s maximum height

QSize maximumSize — the widget’s maximum size

int maximumWidth — the widget’s maximum width

QRect microFocusHint — the currently set micro focus hint for this widget (read only)

bool minimized — whether this widget is minimized (iconified) (read only)

int minimumHeight — the widget’s minimum height

QSize minimumSize — the widget’s minimum size

QSize minimumSizeHint — the recommended minimum size for the widget (read only)

int minimumWidth — the widget's minimum width

bool mouseTracking — whether mouse tracking is enabled for this widget

bool ownCursor — whether the widget uses its own cursor (read only)

bool ownFont — whether the widget uses its own font (read only)

bool ownPalette — whether the widget uses its own palette (read only)

QPalette palette — the widget’s palette

QWidget Class Reference 442

m QColor paletteBackgroundColor — the background color of the widget

m QPixmap paletteBackgroundPixmap — the background pixmap of the widget

m QColor paletteForegroundColor — the foreground color of the widget

m QPoint pos — the position of the widget in its parent widget

m QRect rect — the internal geometry of the widget excluding any window frame (read only)

m QSize size — the size of the widget excluding any window frame

m QSize sizeHint — the recommended size for the widget (read only)

m QSize sizeIncrement — the size increment of the widget

m QSizePolicy sizePolicy — the default layout behavior of the widget

m bool underMouse — whether the widget is under the mouse cursor (read only)

» bool updatesEnabled — whether updates are enabled

m bool visible — whether the widget is visible (read only)

m QRect visibleRect — the currently visible rectangle of the widget (read only)

e int width — the width of the widget excluding any window frame (read only)

e int x — the x coordinate of the widget relative to its parent including any window frame (read only)
e int y — the y coordinate of the widget relative to its parent and including any window frame (read only)

Protected Members

virtual bool event (QEvent * e)

virtual void mousePressEvent (QMouseEvent * e)
virtual void mouseReleaseEvent (QMouseEvent * e)
virtual void mouseDoubleClickEvent (QMouseEvent * e)
virtual void mouseMoveEvent (QMouseEvent * e)
virtual void wheelEvent (QWheelEvent * e)

virtual void keyPressEvent (QKeyEvent * e)

m virtual void keyReleaseEvent (QKeyEvent * e)
m virtual void focusInEvent (QFocusEvent *)
virtual void focusOutEvent (QFocusEvent *)
virtual void enterEvent (QEvent *)

virtual void leaveEvent (QEvent *)

virtual void paintEvent (QPaintEvent *)

virtual void moveEvent (QMoveEvent *)

virtual void resizeEvent (QResizeEvent *)

m virtual void closeEvent (QCloseEvent * e)

m virtual void contextMenuEvent (QContextMenuEvent * e)
m virtual void imStartEvent (QIMEvent * e)

virtual void imComposeEvent (QIMEvent * e)
virtual void imEndEvent (QIMEvent * e)

virtual void tabletEvent (QTabletEvent * e)

virtual void dragEnterEvent (QDragEnterEvent *)
virtual void dragMoveEvent (QDragMoveEvent *)
virtual void dragl.eaveEvent (QDragleaveEvent *)
m virtual void dropEvent (QDropEvent *)

m virtual void showEvent (QShowEvent *)

QWidget Class Reference 443

m virtual void hideEvent (QHideEvent *)

m virtual bool winEvent (MSG *)

m virtual bool x11Event (XEvent *)

m virtual void updateMask ()

m virtual void styleChange (QStyle & oldStyle)

m virtual void enabledChange (bool oldEnabled)

virtual void paletteChange (const QPalette & oldPalette)
virtual void fontChange (const QFont & oldFont)

virtual void windowActivationChange (bool oldActive)

virtual int metric (int m) const

void resetInputContext ()

virtual void create (WId window = 0, bool initializeWindow = TRUE, bool destroyOldWindow = TRUE)
virtual void destroy (bool destroyWindow = TRUE, bool destroySubWindows = TRUE)

m WFlags getWFlags () const

m virtual void setWFlags (WFlags f)

m void clearWFlags (WFlags f)

virtual bool focusNextPrevChild (bool next)

QFocusData * focusData ()

virtual void setKeyCompression (bool compress)

virtual void setMicroFocusHint (int x, int y, int width, int height, bool text = TRUE, QFont * f = 0)

Detailed Description

The QWidget class is the base class of all user interface objects.

The widget is the atom of the user interface: it receives mouse, keyboard and other events from the window system,
and paints a representation of itself on the screen. Every widget is rectangular, and they are sorted in a Z-order. A
widget is clipped by its parent and by the widgets in front of it.

A widget that isn’t embedded in a parent widget is called a top-level widget. Usually, top-level widgets are windows
with a frame and a title bar (though it is also possible to create top level widgets without such decoration by the use of
widget flags). In Qt, QMainWindow and the various subclasses of QDialog are the most common top-level windows.

A widget without a parent widget is always a top-level widget.

Non-top-level widgets are child widgets. These are child windows in their parent widgets. You usually cannot distin-
guish a child widget from its parent visually. Most other widgets in Qt are useful only as child widgets. (You can make
a e.g. button into a top-level widget, but most people prefer to put their buttons in e.g. dialogs.)

QWidget has many member functions, but some of them have little direct functionality: for example, QWidget it has
a font property, but never uses this itself. There are many subclasses which provide real functionality, as diverse as
QPushButton, QListBox and QTabDialog.

Groups of functions:

Window functions: show(), hide(), raise(), lower(), close().

Top level windows: caption(), setCaption(), icon(), setIcon(), iconText(), setIlconText(),
isActiveWindow(), setActiveWindow(), showMinimized(). showMaximized(),
showFullScreen(), showNormal().

QWidget Class Reference 444

Window contents: update(), repaint(), erase(), scroll(), updateMask().

Geometry: pos(), size(), rect(), x(), y(), width(), height(), sizePolicy(), setSizePolicy(),
sizeHint(), updateGeometry(), layout(), move(), resize(), setGeometry(), frameGeometry(),
geometry(), childrenRect(), adjustSize(), mapFromGlobal(), mapFromParent()
mapToGlobal(), mapToParent(), maximumsSize(), minimumSize(), sizeIncrement(),
setMaximumsSize(), setMinimumSize(), setSizeIncrement(), setBaseSize(), setFixedSize()

Mode: isVisible(), isVisibleTo(), visibleRect(), isMinimized(), isDesktop(), isEnabled(),
isEnabledTo(), isModal(), isPopup(), isTopLevel(), setEnabled(), hasMouseTracking(),
setMouseTracking(), isUpdatesEnabled(), setUpdatesEnabled(),

Look and feel: style(), setStyle(), cursor(), setCursor() font(), setFont(), palette(),
setPalette(), backgroundMode(), setBackgroundMode(), colorGroup(), fontMetrics(),
fontInfo().

Keyboard focus functions: isFocusEnabled(), setFocusPolicy(), focusPolicy(), hasFocus(),
setFocus(), clearFocus(), setTabOrder(), setFocusProxy().

Mouse and keyboard grabbing: grabMouse(), releaseMouse(), grabKeyboard(),
releaseKeyboard(), mouseGrabber(), keyboardGrabber().

Event handlers: event(), mousePressEvent(), mouseReleaseEvent(),
mouseDoubleClickEvent(), mouseMoveEvent(), keyPressEvent(), keyReleaseEvent(),
focusInEvent(), focusOutEvent(), wheelEvent(), enterEvent(), leaveEvent(), paintEvent(),
moveEvent(), resizeEvent(), closeEvent(), dragEnterEvent(), dragMoveEvent(),
draglLeaveEvent(), dropEvent(), childEvent(), showEvent(), hideEvent(), customEvent().

Change handlers: enabledChange(), fontChange(), paletteChange(), styleChange(),
windowActivationChange().

System functions: parentWidget(), topLevelWidget(), reparent(), polish(), winId(), find(),
metric().

Internal kernel functions: focusNextPrevChild(), wmapper(), clearWFlags(), getWFlags(),
setWFlags(), testWFlags().

What’s this help: customWhatsThis()

Every widget’s constructor accepts two or three standard arguments:

e QN dget *parent = 0 is the parent of the new widget. If it is O (the default), the new widget will be a top-
level window. If not, it will be a child of parent, and be constrained by parent’s geometry (Unless you specify
WType TopLevel as widget flag).

e const char *name = 0 is the widget name of the new widget. You can access it using name(). The widget name
is little used by programmers but is quite useful with GUI builders such as Qt Designer (you can name a widget
in the builder, and connect() to it using the name in your code). The dumpObjectTree() debugging function also
uses it.

e Wl ags f = 0 (where available) sets the widget flags; the default is good for almost all widgets, but to get e.g.
top-level widgets without a window system frame, you must use special flags.

QWidget Class Reference 445

The tictac/tictac.cpp example program is good example of a simple widget. It contains a few event handlers (as all
widgets must), a few custom routines that are peculiar to it (as all useful widgets do), and has a few children and
connections. Everything it does is done in response to an event: this is by far the most common way to design GUI
applications.

You will need to supply the content for your widgets yourself, but here is a brief run-down of the events, starting with
the most common ones:

e paintEvent() - called whenever the widget needs to be repainted. Every widget which displays output must
implement it, and it is wise not to paint on the screen outside paintEvent().

e resizeEvent() - called when the widget has been resized.

e mousePressEvent() - called when a mouse button is pressed. There are six mouse-related events, but mouse press
and mouse release events are by far the most important. A widget receives mouse press events when the widget
is inside it, or when it has grabbed the mouse using grabMouse().

e mouseReleaseEvent() - called when a mouse button is released. A widget receives mouse release events when
it has received the corresponding mouse press event. This means that if the user presses the mouse inside your
widget, then drags the mouse to somewhere else, then releases, your widget receives the release event. There is
one exception, however: if a popup menu appears while the mouse button is held down, that popup steals the
mouse events at once.

e mouseDoubleClickEvent() - not quite as obvious as it might seem. If the user double-clicks, the widget receives
a mouse press event (perhaps a mouse move event or two if they don’t hold the mouse quite steady), a mouse
release event and finally this event. It is not possible to distinguish a click from a double click until you've seen
whether the second click arrives. (This is one reason why most GUI books recommend that double clicks be an
extension of single clicks, rather than trigger a different action.)

If your widget only contains child widgets, you probably do not need to implement any event handlers.

Widgets that accept keyboard input need to reimplement a few more event handlers:

e keyPressEvent() - called whenever a key is pressed, and again when a key has been held down long enough
for it to auto-repeat. Note that the Tab and Shift+Tab keys are only passed to the widget if they are not used
by the focus-change mechanisms. To force those keys to be processed by your widget, you must reimplement
QWidget::event().

e focusInEvent() - called when the widget gains keyboard focus (assuming you have called setFocusPolicy(), of
course). Well written widgets indicate that they own the keyboard focus in a clear but discreet way.

e focusOutEvent() - called when the widget loses keyboard focus.
Some widgets will need to reimplement some more obscure event handlers, too:

e mouseMoveEvent() - called whenever the mouse moves while a button is held down. This is useful for e.g.
dragging. If you call setMouseTracking(TRUE), you get mouse move events even when no buttons are held
down. (Note that applications which make use of mouse tracking are often not very useful on low-bandwidth X
connections.) (See also the drag and drop information.)

e keyReleaseEvent() - called whenever a key is released, and also while it is held down if the key is auto-repeating.
In that case the widget receives a key release event and immediately a key press event for every repeat. Note that
the Tab and Shift+Tab keys are only passed to the widget if they are not used by the focus-change mechanisms.
To force those keys to be processed by your widget, you must reimplement QWidget::event().

e wheelEvent() — called whenever the user turns the mouse wheel while the widget has the focus.

e enterEvent() - called when the mouse enters the widget’s screen space. (This excludes screen space owned by
any children of the widget.)

QWidget Class Reference 446

e leaveEvent() - called when the mouse leaves the widget’s screen space.
e moveEvent() - called when the widget has been moved relative to its parent.

e closeEvent() - called when the user closes the widget (or when close() is called).

There are also some really obscure events. They are listed in gevent.h and you need to reimplement event() to handle
them. The default implementation of event() handles Tab and Shift+Tab (to move the keyboard focus), and passes on
most other events to one of the more specialized handlers above.

When implementing a widget, there are a few more things to look out for.

e In the constructor, be sure to set up your member variables early on, before there’s any chance that you might
receive an event.

e It is almost always useful to reimplement sizeHint() and to set the correct size policy with setSizePolicy(), so
users of your class can set up layout management more easily. A size policy lets you supply good defaults for the
layout management handling, so that other widgets can contain and manage yours easily. sizeHint() indicates a
"good" size for the widget.

e If your widget is a top-level window, setCaption() and setlcon() set the title bar and icon respectively.

See also QEvent [Events, Actions, Layouts and Styles with Qt], QPainter [Graphics with Qt], QGridLayout [Events,
Actions, Layouts and Styles with Qt], QBoxLayout [Events, Actions, Layouts and Styles with Qt] and Abstract Widget
Classes.

Member Type Documentation

QWwidget::BackgroundOrigin

This enum defines the origin used to draw a widget’s background pixmap.

The pixmap is drawn using the:

e QN dget:: Wdget Origin - widget’s coordinate system.
e QN dget:: Parent Origin - parent’s coordinate system.
e QN dget:: WndowOri gin - toplevel window’s coordinate system.

QWidget::FocusPolicy

This enum type defines the various policies a widget can have with respect to acquiring keyboard focus.

The policy can be:

e QN dget: : TabFocus - the widget accepts focus by tabbing.

e QW dget:: CickFocus - the widget accepts focus by clicking.

e QW dget:: StrongFocus - the widget accepts focus by both tabbing and clicking.

e QW dget: : Weel Focus - like StrongFocus plus the widget accepts focus by using the mouse wheel.
e QN dget: : NoFocus - the widget does not accept focus.

QWidget Class Reference 447

Member Function Documentation

QWidget::QWidget (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a widget which is a child of parent, with the name name and widget flags set to f.

If parent is 0, the new widget becomes a top-level window. If parent is another widget, this widget becomes a child
window inside parent. The new widget is deleted when its parent is deleted.

The name is sent to the QObject constructor.

The widget flags argument, f, is normally 0, but it can be set to customize the window frame of a top-level widget (i.e.
parent must be 0). To customize the frame, set the WStyle Customize flag OR’ed with any of the Qt::WidgetFlags.

If you add a child widget to an already visible widget you must explicitly show the child to make it visible.

Note that the X11 version of Qt may not be able to deliver all combinations of style flags on all systems. This is because
on X11, Qt can only ask the window manager, and the window manager can override the application’s settings. On
Windows, Qt can set whatever flags you want.

Example:
Q.abel *spashScreen = new Q.abel (0, "nySpl ashScreen",

Wetyl e_Custonize | Wstyle NoBorder |
Wetyl e_Tool);

QWidget::~QWidget ()

Destroys the widget.

All this widget’s children are deleted first. The application exits if this widget is the main widget.

bool QWidget::acceptDrops () const

Returns TRUE if drop events are enabled for this widget; otherwise returns FALSE. See the "acceptDrops" [p. 485]
property for details.

void QWidget::adjustSize () [virtual]

Adjusts the size of the widget to fit the contents.

Uses sizeHint() if valid (i.e if the size hint’s width and height are equal to or greater than 0), otherwise sets the size to
the children rectangle (the union of all child widget geometries).

See also sizeHint [p. 497] and childrenRect [p. 487].
Example: xform/xform.cpp.

Reimplemented in QMessageBox.

QWidget Class Reference 448

bool QWidget::autoMask () const

Returns TRUE if the auto mask feature is enabled for the widget; otherwise returns FALSE. See the "autoMask" [p. 485]
property for details.

const QBrush & QWidget::backgroundBrush () const

Returns the widget’s background brush. See the "backgroundBrush" [p. 486] property for details.

const QColor & QWidget::backgroundColor () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Use paletteBackgroundColor() or eraseColor() instead.

BackgroundMode QWidget::backgroundMode () const

Returns the color role used for painting the background of the widget. See the "backgroundMode" [p. 486] property
for details.

BackgroundOrigin QWidget::backgroundOrigin () const

Returns the origin of the widget’s background. See the "backgroundOrigin" [p. 486] property for details.

const QPixmap * QWidget::backgroundPixmap () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Use paletteBackgroundPixmap() or erasePixmap() instead.

Examples: themes/metal.cpp and themes/wood.cpp.

QSize QWidget::baseSize () const

Returns the base size of the widget. See the "baseSize" [p. 487] property for details.

QString QWidget::caption () const

Returns the window caption (title). See the "caption" [p. 487] property for details.

QWidget * QWidget::childAt (int x, int y, bool includeThis = FALSE) const

Returns the visible child widget at pixel position (x, y) in the widget’s own coordinate system.

If includeThis is TRUE, and there is no child visible at (x, y), the widget itself is returned.

QWidget Class Reference 449

QWidget * QWidget::childAt (const QPoint & p, bool includeThis = FALSE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the visible child widget at point p in the widget’s own coordinate system.

If includeThis is TRUE, and there is no child visible at p, the widget itself is returned.

QRect QWidget::childrenRect () const

Returns the bounding rectangle of the widget’s children. See the "childrenRect" [p. 487] property for details.

QRegion QWidget::childrenRegion () const

Returns the combined region occupied by the widget’s children. See the "childrenRegion" [p. 487] property for details.

void QWidget::clearFocus () [slot]

Takes keyboard input focus from the widget.
If the widget has active focus, a focus out event is sent to this widget to tell it that it is about to lose the focus.
This widget must enable focus setting in order to get the keyboard input focus, i.e. it must call setFocusPolicy().

See also focus [p. 489], setFocus() [p. 4741, focusInEvent() [p. 454], focusOutEvent() [p. 455], focusPolicy [p. 489]
and QApplication::focusWidget() [Additional Functionality with Qt].

void QWidget::clearMask ()

Removes any mask set by setMask().

See also setMask() [p. 476].

void QWidget::clearWFlags (WFlags f) [protected]

Clears the widget flags f.
Widget flags are a combination of Qt::WidgetFlags.
See also testWFlags() [p. 482], getWFlags() [p. 456] and setWFlags() [p. 479].

bool QWidget::close () [slot]

Closes this widget. Returns TRUE if the widget was closed; otherwise returns FALSE.

First it sends the widget a QCloseEvent. The widget is hidden if it accepts the close event. The default implementation
of QWidget::closeEvent() accepts the close event.

The QApplication::lastWindowClosed () signal is emitted when the last visible top level widget is closed.

Examples: mdi/application.cpp and popup/popup.cpp.

QWidget Class Reference 450

bool QWidget::close (bool alsoDelete) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Closes this widget. Returns TRUE if the widget was closed; otherwise returns FALSE.

If alsoDelete is TRUE or the widget has the WDestructiveClose widget flag, the widget is also deleted. The widget can
prevent itself from being closed by rejecting the QCloseEvent it gets.

The QApplication::lastWindowClosed() signal is emitted when the last visible top level widget is closed.
Note that closing the QApplication::mainWidget() terminates the application.

See also closeEvent() [p. 450], QCloseEvent [Events, Actions, Layouts and Styles with Qt], hide() [p. 458],
QApplication::quit() [Additional Functionality with Qt], QApplication::setMainWidget() [Additional Functionality
with Qt] and QApplication::lastWindowClosed() [Additional Functionality with Qt].

void QWidget::closeEvent (QCloseEvent * e) [virtual protected]

This event handler, for event e, can be reimplemented in a subclass to receive widget close events.

The default implementation calls e->accept(), which hides this widget. See the QCloseEvent [Events, Actions, Layouts
and Styles with Qt] documentation for more details.

See also event() [p. 4541, hide() [p. 4581, close() [p. 449] and QCloseEvent [Events, Actions, Layouts and Styles with
Qtl.

Examples: action/application.cpp, application/application.cpp, i18n/mywidget.cpp, popup/popup.cpp and
qwerty/qwerty.cpp.

const QColorGroup & QWidget::colorGroup () const

Returns the current color group of the widget palette. See the "colorGroup" [p. 487] property for details.

void QWidget::constPolish () const [slot]

Ensures that the widget is properly initialized by calling polish().

Call constPolish() from functions like sizeHint() that depends on the widget being initialized, and that may be called
before show().

Warning: Do not call constPolish() on a widget from inside that widget’s constructor.

See also polish() [p. 468].

void QWidget::contextMenuEvent (QContextMenuEvent * e) [virtual protected]

This event handler, for event e, can be reimplemented in a subclass to receive widget context menu events.

The default implementation calls e->ignore(), which rejects the context event. See the QContextMenuEvent [Events,
Actions, Layouts and Styles with Qt] documentation for more details.

See also event() [p. 454] and QContextMenuEvent [Events, Actions, Layouts and Styles with Qt].

QWidget Class Reference 451

void QWidget::create (WId window = 0, bool initializeWindow = TRUE,
bool destroyOldWindow = TRUE) [virtual protected]

Creates a new widget window if window is null, otherwise sets the widget’s window to window.

Initializes the window (sets the geometry etc.) if initializeWindow is TRUE. If initializeWindow is FALSE, no initialization
is performed. This parameter makes only sense if window is a valid window.

Destroys the old window if destroyOldWindow is TRUE. If destroyOldWindow is FALSE, you are responsible for destroy-
ing the window yourself (using platform native code).

The QWidget constructor calls create(0,TRUE,TRUE) to create a window for this widget.

const QCursor & QWidget::cursor () const

Returns the cursor shape for this widget. See the "cursor" [p. 488] property for details.

bool QWidget::customWhatsThis () const [virtual]

Returns TRUE if the widget wants to handle What’s This help manually; otherwise returns FALSE. See the "customWhat-
sThis" [p. 488] property for details.

void QWidget::destroy (bool destroyWindow = TRUE, bool destroySubWindows =
TRUE) [virtual protected]

Frees up window system resources. Destroys the widget window if destroyWindow is TRUE.

destroy() calls itself recursively for all the child widgets, passing destroySubWindows for the destroyWindow parameter.
To have more control over destruction of subwidgets, destroy subwidgets selectively first.

This function is usually called from the QWidget destructor.

void QWidget::dragEnterEvent (QDragEnterEvent *) [virtual protected]

This event handler is called when a drag is in progress and the mouse enters this widget.

See the Drag-and-drop documentation [Programming with Qt] for an overview of how to provide drag-and-drop in
your application.

See also QTextDrag [Events, Actions, Layouts and Styles with Qt], QImageDrag [Events, Actions, Layouts and Styles
with Qt] and QDragEnterEvent [Events, Actions, Layouts and Styles with Qt].

void QWidget::draglLeaveEvent (QDragLeaveEvent *) [virtual protected]

This event handler is called when a drag is in progress and the mouse leaves this widget.

See the Drag-and-drop documentation [Programming with Qt] for an overview of how to provide drag-and-drop in
your application.

See also QTextDrag [Events, Actions, Layouts and Styles with Qt], QImageDrag [Events, Actions, Layouts and Styles
with Qt] and QDragleaveEvent [Events, Actions, Layouts and Styles with Qt].

QWidget Class Reference 452

void QWidget::dragMoveEvent (QDragMoveEvent *) [virtual protected]
This event handler is called when a drag is in progress and the mouse enters this widget, and whenever it moves within
the widget.

See the Drag-and-drop documentation [Programming with Qt] for an overview of how to provide drag-and-drop in
your application.

See also QTextDrag [Events, Actions, Layouts and Styles with Qt], QImageDrag [Events, Actions, Layouts and Styles
with Qt] and QDragMoveEvent [Events, Actions, Layouts and Styles with Qt].

void QWidget::drawText (int x, int y, const QString & str)

Draws the string str at position (X, y).

The y position is the base line position of the text. The text is drawn using the default font and the default foreground
color.

This function is provided for convenience. You will generally get more flexible results and often higher speed by using
a a painter instead.

See also font [p. 489], foregroundColor() [p. 456] and QPainter::drawText() [Graphics with Qt].

void QWidget::drawText (const QPoint & pos, const QString & str)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the string str at position pos.

void QWidget::dropEvent (QDropEvent *) [virtual protected]

This event handler is called when the drag is dropped on this widget.

See the Drag-and-drop documentation [Programming with Qt] for an overview of how to provide drag-and-drop in
your application.

See also QTextDrag [Events, Actions, Layouts and Styles with Qt], QImageDrag [Events, Actions, Layouts and Styles
with Qt] and QDropEvent [Events, Actions, Layouts and Styles with Qt].

void QWidget::enabledChange (bool oldEnabled) [virtual protected]
This virtual function is called from setEnabled(). oldEnabled is the previous setting; you can get the new setting from
isEnabled().

Reimplement this function if your widget needs to know when it becomes enabled or disabled. You will almost certainly
need to update the widget using update().

The default implementation repaints the visible part of the widget.

See also enabled [p. 488], enabled [p. 488], repaint() [p. 469], update() [p. 483] and visibleRect [p. 499].

QWidget Class Reference 453

void QWidget::enterEvent (QEvent *) [virtual protected]

This event handler can be reimplemented in a subclass to receive widget enter events.
An event is sent to the widget when the mouse cursor enters the widget.

See also leaveEvent() [p. 462], mouseMoveEvent() [p. 465] and event() [p. 4541].

void QWidget::erase (int x, int y, int w;, int h)

Erases the specified area (x, y, w, h) in the widget without generating a paint event.
If w is negative, it is replaced with wi dt h() - x. If h is negative, it is replaced width hei ght () - vy.
Child widgets are not affected.

See also repaint() [p. 469].

void QWidget::erase ()

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This version erases the entire widget.

void QWidget::erase (const QRect & r)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Erases the specified area r in the widget without generating a paint event.

void QWidget::erase (const QRegion & reg)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Erases the area defined by reg, without generating a paint event.

Child widgets are not affected.

const QColor & QWidget::eraseColor () const

Returns the erase color of the widget.

See also setEraseColor() [p. 4731, setErasePixmap() [p. 473] and backgroundColor() [p. 448].

const QPixmap * QWidget::erasePixmap () const

Returns the widget’s erase pixmap.

See also setErasePixmap() [p. 473] and eraseColor() [p. 453].

QWidget Class Reference 454

bool QWidget::event (QEvent * e) [virtual protected]
This is the main event handler; it handles event e. You may reimplement this function in a subclass, but we recommend
using one of the specialized event handlers instead.

The main event handler first passes an event through all event filters that have been installed. If none of the filters
intercept the event, it calls one of the specialized event handlers.

Key press and release events are treated differently from other events. event() checks for Tab and Shift+Tab and tries
to move the focus appropriately. If there is no widget to move the focus to (or the key press is not Tab or Shift+Tab),
event() calls keyPressEvent().

This function returns TRUE if it is able to pass the event over to someone, or FALSE if nobody wanted the event.

See also closeEvent() [p. 450], focusInEvent() [p. 4541, focusOutEvent() [p. 455], enterEvent() [p. 453],
keyPressEvent() [p. 4611, keyReleaseEvent() [p. 462], leaveEvent() [p. 462], mouseDoubleClickEvent() [p. 465],
mouseMoveEvent() [p. 465], mousePressEvent() [p. 465], mouseReleaseEvent() [p. 466], moveEvent() [p. 466],
paintEvent() [p. 466], resizeEvent() [p. 471], QObject::event() [Additional Functionality with Qt] and
QObject::timerEvent() [Additional Functionality with Qt].

Reimplemented from QObject [Additional Functionality with Qt].

QWidget * QWidget::find (WId id) [static]

Returns a pointer to the widget with window identifer/handle id.

The window identifier type depends on the underlying window system, see qwindowdefs.h for the actual definition. If
there is no widget with this identifier, a null pointer is returned.

QFocusData * QWidget::focusData () [protected]

Returns a pointer to the focus data for this widget’s top-level widget.

Focus data always belongs to the top-level widget. The focus data list contains all the widgets in this top-level widget
that can accept focus, in tab order. An iterator points to the current focus widget (focusWidget() returns a pointer to
this widget).

This information is useful for implementing advanced versions of focusNextPrevChild ().

void QWidget::focusInEvent (QFocusEvent *) [virtual protected]

This event handler can be reimplemented in a subclass to receive keyboard focus events (focus received) for the widget.

A widget normally must setFocusPolicy() to something other than NoFocus in order to receive focus events. (Note that
the application programmer can call setFocus() on any widget, even those that do not normally accept focus.)

The default implementation updates the widget if it accepts focus (see focusPolicy()). It also calls setMicroFocusHint(),
hinting any system-specific input tools about the focus of the user’s attention.

See also focusOutEvent() [p. 455], focusPolicy [p. 489], keyPressEvent() [p. 461], keyReleaseEvent() [p. 462],
event() [p. 454] and QFocusEvent [Events, Actions, Layouts and Styles with Qt].

Reimplemented in QtMultiLineEdit.

QWidget Class Reference 455

bool QWidget::focusNextPrevChild (bool next) [virtual protected]

Finds a new widget to give the keyboard focus to, as appropriate for Tab and Shift+Tab, and returns TRUE if is can
find a new widget and FALSE if it can’t,

If next is TRUE, this function searches "forwards", if next is FALSE, it searches "backwards".

Sometimes, you will want to reimplement this function. For example, a web browser might reimplement it to move its
"current active link" forwards or backwards, and call QWidget::focusNextPrevChild() only when it reaches the last or
first link on the "page".

Child widgets call focusNextPrevChild() on their parent widgets, but only the top-level widget decides where to redirect
focus. By overriding this method for an object, you thus gain control of focus traversal for all child widgets.

See also focusData() [p. 454].

void QWidget::focusOutEvent (QFocusEvent *) [virtual protected]

This event handler can be reimplemented in a subclass to receive keyboard focus events (focus lost) for the widget.

A widget normally must setFocusPolicy() to something other than NoFocus in order to receive focus events. (Note that
the application programmer can call setFocus() on any widget, even those that do not normally accept focus.)

The default implementation calls repaint() since the widget’s colorGroup() changes from active to normal, so the
widget probably needs repainting. It also calls setMicroFocusHint(), hinting any system-specific input tools about the
focus of the user’s attention.

See also focusInEvent() [p. 4541, focusPolicy [p. 489], keyPressEvent() [p. 4611, keyReleaseEvent() [p. 462], event()
[p. 454] and QFocusEvent [Events, Actions, Layouts and Styles with Qt].

Example: gqmag/qmag.cpp.

FocusPolicy QWidget::focusPolicy () const

Returns the way the widget accepts keyboard focus. See the "focusPolicy" [p. 489] property for details.

QWidget * QWidget::focusProxy () const

Returns a pointer to the focus proxy, or O if there is no focus proxy.

See also setFocusProxy() [p. 475].

QWidget * QWidget::focusWidget () const

Returns the focus widget in this widget’s window. This is not the same as QApplication::focusWidget(), which returns
the focus widget in the currently active window.

QFont QWidget::font () const

Returns the font currently set for the widget. See the "font" [p. 489] property for details.

QWidget Class Reference 456

void QWidget::fontChange (const QFont & oldFont) [virtual protected]

This virtual function is called from setFont(). oldFont is the previous font; you can get the new font from font().

Reimplement this function if your widget needs to know when its font changes. You will almost certainly need to
update the widget using update().

The default implementation updates the widget including its geometry.

See also font [p. 489], font [p. 489], update() [p. 483] and updateGeometry() [p. 483].

QFontInfo QWidget::fontInfo () const

Returns the font info for the widget’s current font. Equivalent to QFontInto (widget->font()).
See also font [p. 4891, fontMetrics() [p. 456] and font [p. 489].

QFontMetrics QWidget::fontMetrics () const

Returns the font metrics for the widget’s current font. Equivalent to QFontMetrics(widget->font()).
See also font [p. 4891, fontInfo() [p. 456] and font [p. 489].

Examples: drawdemo/drawdemo.cpp and gmag/qmag.cpp.

const QColor & QWidget::foregroundColor () const

Same as paletteForegroundColor()

QRect QWidget::frameGeometry () const

Returns geometry of the widget relative to its parent including any window frame. See the "frameGeometry" [p. 490]
property for details.

QSize QWidget::frameSize () const

Returns the size of the widget including any window frame. See the "frameSize" [p. 490] property for details.

const QRect & QWidget::geometry () const

Returns the geometry of the widget relative to its parent and excluding the window frame. See the "geometry" [p. 490]
property for details.

WFlags QWidget::getWFlags () const [protected]

Returns the widget flags for this this widget.

Widget flags are a combination of Qt::WidgetFlags.

QWidget Class Reference 457

See also testWFlags() [p. 482], setWFlags() [p. 479] and clearWFlags() [p. 449].

void QWidget::grabKeyboard ()

Grabs the keyboard input.

This widget reveives all keyboard events and other widgets none until releaseKeyboard() is called. Mouse events are
not affected. Use grabMouse() if you want to grab that.

The focus widget is not affected, except that it doesn’t receive any keyboard events. setFocus() moves the focus as
usual, but the new focus widget receives keyboard events only after releaseKeyboard() is called.

If a different widget is currently grabbing keyboard input, that widget’s grab is released first.
See also releaseKeyboard() [p. 4681, grabMouse() [p. 4571, releaseMouse() [p. 469] and focusWidget() [p. 455].

void QWidget::grabMouse ()

Grabs the mouse input.

This widget receives all mouse events and other widgets none until releaseMouse() is called. Keyboard events are not
affected. Use grabKeyboard() if you want to grab that.

Warning: Bugs in mouse-grabbing applications very often lock the terminal. Use this function with extreme caution,
and consider using the -nograb command line option while debugging.

It is almost never necessary to grab the mouse when using Qt, as Qt grabs and releases it sensibly. In particular, Qt
grabs the mouse when a mouse button is pressed and keeps it until the last button is released.

Note that only visible widgets can grab mouse input. If isVisible() returns FALSE for a widget, that widget can not call
grabMouse().

See also releaseMouse() [p. 4691, grabKeyboard() [p. 4571, releaseKeyboard() [p. 468], grabKeyboard() [p. 457] and
focuswWidget() [p. 4551.

void QWidget::grabMouse (const QCursor & cursor)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Grabs the mouse input and changes the cursor shape.

The cursor will assume shape cursor (for as long as the mouse focus is grabbed) and this widget will be the only one to
receive mouse events until releaseMouse() is called().

Warning: Grabbing the mouse might lock the terminal.

See also releaseMouse() [p. 469], grabKeyboard() [p. 4571, releaseKeyboard() [p. 468] and cursor [p. 488].

bool QWidget::hasFocus () const

Returns TRUE if this widget (or its focus proxy) has the keyboard input focus; otherwise returns FALSE. See the "focus"
[p. 489] property for details.

QWidget Class Reference 458

bool QWidget::hasMouse () const

Returns TRUE if the widget is under the mouse cursor; otherwise returns FALSE. See the "underMouse" [p. 498]
property for details.

bool QWidge