org.netlib.lapack
Class DTREVC

java.lang.Object
  extended by org.netlib.lapack.DTREVC

public class DTREVC
extends java.lang.Object

DTREVC is a simplified interface to the JLAPACK routine dtrevc.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DTREVC computes some or all of the right and/or left eigenvectors of * a real upper quasi-triangular matrix T. * Matrices of this type are produced by the Schur factorization of * a real general matrix: A = Q*T*Q**T, as computed by DHSEQR. * * The right eigenvector x and the left eigenvector y of T corresponding * to an eigenvalue w are defined by: * * T*x = w*x, (y**H)*T = w*(y**H) * * where y**H denotes the conjugate transpose of y. * The eigenvalues are not input to this routine, but are read directly * from the diagonal blocks of T. * * This routine returns the matrices X and/or Y of right and left * eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an * input matrix. If Q is the orthogonal factor that reduces a matrix * A to Schur form T, then Q*X and Q*Y are the matrices of right and * left eigenvectors of A. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'R': compute right eigenvectors only; * = 'L': compute left eigenvectors only; * = 'B': compute both right and left eigenvectors. * * HOWMNY (input) CHARACTER*1 * = 'A': compute all right and/or left eigenvectors; * = 'B': compute all right and/or left eigenvectors, * backtransformed by the matrices in VR and/or VL; * = 'S': compute selected right and/or left eigenvectors, * as indicated by the logical array SELECT. * * SELECT (input/output) LOGICAL array, dimension (N) * If HOWMNY = 'S', SELECT specifies the eigenvectors to be * computed. * If w(j) is a real eigenvalue, the corresponding real * eigenvector is computed if SELECT(j) is .TRUE.. * If w(j) and w(j+1) are the real and imaginary parts of a * complex eigenvalue, the corresponding complex eigenvector is * computed if either SELECT(j) or SELECT(j+1) is .TRUE., and * on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to * .FALSE.. * Not referenced if HOWMNY = 'A' or 'B'. * * N (input) INTEGER * The order of the matrix T. N >= 0. * * T (input) DOUBLE PRECISION array, dimension (LDT,N) * The upper quasi-triangular matrix T in Schur canonical form. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= max(1,N). * * VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM) * On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must * contain an N-by-N matrix Q (usually the orthogonal matrix Q * of Schur vectors returned by DHSEQR). * On exit, if SIDE = 'L' or 'B', VL contains: * if HOWMNY = 'A', the matrix Y of left eigenvectors of T; * if HOWMNY = 'B', the matrix Q*Y; * if HOWMNY = 'S', the left eigenvectors of T specified by * SELECT, stored consecutively in the columns * of VL, in the same order as their * eigenvalues. * A complex eigenvector corresponding to a complex eigenvalue * is stored in two consecutive columns, the first holding the * real part, and the second the imaginary part. * Not referenced if SIDE = 'R'. * * LDVL (input) INTEGER * The leading dimension of the array VL. LDVL >= 1, and if * SIDE = 'L' or 'B', LDVL >= N. * * VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM) * On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must * contain an N-by-N matrix Q (usually the orthogonal matrix Q * of Schur vectors returned by DHSEQR). * On exit, if SIDE = 'R' or 'B', VR contains: * if HOWMNY = 'A', the matrix X of right eigenvectors of T; * if HOWMNY = 'B', the matrix Q*X; * if HOWMNY = 'S', the right eigenvectors of T specified by * SELECT, stored consecutively in the columns * of VR, in the same order as their * eigenvalues. * A complex eigenvector corresponding to a complex eigenvalue * is stored in two consecutive columns, the first holding the * real part and the second the imaginary part. * Not referenced if SIDE = 'L'. * * LDVR (input) INTEGER * The leading dimension of the array VR. LDVR >= 1, and if * SIDE = 'R' or 'B', LDVR >= N. * * MM (input) INTEGER * The number of columns in the arrays VL and/or VR. MM >= M. * * M (output) INTEGER * The number of columns in the arrays VL and/or VR actually * used to store the eigenvectors. * If HOWMNY = 'A' or 'B', M is set to N. * Each selected real eigenvector occupies one column and each * selected complex eigenvector occupies two columns. * * WORK (workspace) DOUBLE PRECISION array, dimension (3*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * The algorithm used in this program is basically backward (forward) * substitution, with scaling to make the the code robust against * possible overflow. * * Each eigenvector is normalized so that the element of largest * magnitude has magnitude 1; here the magnitude of a complex number * (x,y) is taken to be |x| + |y|. * * ===================================================================== * * .. Parameters ..


Constructor Summary
DTREVC()
           
 
Method Summary
static void DTREVC(java.lang.String side, java.lang.String howmny, boolean[] select, int n, double[][] t, double[][] vl, double[][] vr, int mm, intW m, double[] work, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

DTREVC

public DTREVC()
Method Detail

DTREVC

public static void DTREVC(java.lang.String side,
                          java.lang.String howmny,
                          boolean[] select,
                          int n,
                          double[][] t,
                          double[][] vl,
                          double[][] vr,
                          int mm,
                          intW m,
                          double[] work,
                          intW info)