
Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 1

Introduction to OS/2
Warp Programming

Student Guide

Course Code OS290

by

Les Bell and Associates Pty Ltd

Version 2.9

Date 12 January, 2012

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 2

License
This document is released under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0.
http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 3

Authors
• The original author of this course was Les Bell and Associates Pty Ltd on 1997.
• The content was released by Les Bell and Associates Pty Ltd. under CC license on

January of 2012.
• Martín Itúrbide from OS2World.com transformed the content to a newer format from

Lotus Freelance and Word for OS/2 on January 2012. Martín Itúrbide thanks the
people at #netlabs and Neil Waldhauer that helped to convert the older files.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 4

Les Bell
Les Bell is widely regarded as Australia's leading authority on microcomputers. Following
studies in Cybernetics and Instrument Physics at Reading University in the UK, he has
followed a diverse career within the computer industry. His initial assignment to write about
microcomputers for Electronics Today International magazine in London led to further
editorial postings in Canada and Australia, where he was founding editor of Your Computer,
Australia's leading microcomputer magazine.

In 1981 he founded Les Bell and Associates, a consultancy specialising in software
development and microcomputer evaluation, selection and implementation. Clients include
the Federal and State Governments and major businesses.

As a consulting editor of Your Computer, Les was convenor of the panel which selects the PC
of the Year. He has written several tutorial series on BASIC, dBASE, the C programming
language and other topics. He has also taught Computing and Management to business
students.

Les has presented papers to the Institute of Instrumentation and Control Australia, the
Australian Computer Society, SHARE/Guide and other professional bodies. He is in great
demand as a public speaker and makes frequent radio and TV appearances.

As a software developer, Les has been using the OS/2 Software Development Kit since 1987,
and has wide experience with other multi-user and multi-tasking operating systems. He has
worked with OS/2 2.0 since 1990.

In his spare time, Les is an enthusiastic private pilot with Multi-Engine Command Instrument
Rating and has even logged one hour of air combat time!

Les Bell and Associates Pty Ltd
PO Box 297
Neutral Bay Junction NSW 2089

Tel: (02) 9451 1144
Fax: (02) 9451 1122
Compuserve 71210,104
Internet: lesbell@lesbell.com.au
Home page: http://www.lesbell.com.au

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 5

Table of Contents

License .. 2

Authors .. 3

Les Bell ... 4

Introduction ... 10

The Development Process ... 11
Generating and Using Dynamic Link Libraries .. 12
Presentation Manager Applications .. 13
Prototyping and Rapid Development... 14

VisPro/REXX and VX:REXX.. 15
Visual Age C++ Visual Builder ... 16

Introduction to Tools .. 17
WorkFrame/2 1.1 .. 17
WorkFrame 3.0 ... 17

Dealing with Compile-Time Errors... 20
EPM ... 20
The Visual Age C++ C and C++ Compiler .. 21
LINK386 .. 22
ILINK... 22
IPMD ... 22
Other Tools ... 22
Toolkit ... 22

Intel Processor Architectures .. 24
8086 Real Mode .. 25
80286 Protected Mode ... 26

Protected Mode Features Summary .. 27
OS/2 and the 80386 ... 28

Programming OS/2 Presentation Manager .. 30
Why Message Passing? ... 30
Windows ... 32
Window Procedures .. 36

Basic Window Concepts .. 42
Window Procedure Structure .. 42
Window ID's and Window Handles ... 43
Window Creation .. 44
PM's Message-Passing Architecture ... 46

Packer & Cracker Macros ... 47
Common Useful Messages ... 49
Message Processing - Sending vs Posting .. 51

Menus ... 52
What Is A Menu? ... 52
Resource Compiler Files ... 53
Dealing with Menu Messages .. 55

Window Words ... 57
Setting and Querying Values ... 58

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 6

Parents and Children .. 58
Using Data Structures ... 64

Parent - Child Relationships and Window Ownership ... 66
The Parent/Child Relationship ... 66

Affected Attributes .. 67
Window Ownership .. 68
Dealing with Multiple Windows ... 69

Control Windows ... 79
Scrollbars .. 79
Buttons .. 79

Push Buttons .. 79
Radio Buttons ... 79
Check Buttons .. 79

Entry Fields .. 79
Multiple Line Entry Fields.. 79
List Boxes .. 79
Combo Boxes .. 79
Static Controls .. 80
Notebooks ... 80
Containers ... 80
Value Sets .. 80

Business Forms in OS/2 .. 81
Keyboard Handling ... 83
Dialog Window .. 84
Scroll Bars ... 86
Dialog Window Procedure ... 88

File LAB3.C ... 92
File LAB3.RC: ... 100
File MAINT.DEF: ... 100
File FORMS.H: ... 101
File FORMS.C: .. 102
File PMFORMS.C... 106

The Control Program API .. 109
Calling Conventions .. 112
The Family API .. 112

Dynamic Link Libraries ... 115
Types of Dynamic Linking ... 116
Writing and Compiling DLL's ... 117
Sharing DLL's ... 119
Initialization and Termination ... 119

Compiling under MS C 6.00 ... 120
Compiling under IBM Visual Age C++ .. 120

Example Code .. 121

Memory Management .. 123
Memory Management on the 80286 With OS/2 1.x ... 123
C Library API's - malloc(), etc. ... 123
Intel 80386 Memory Management with OS/2 Warp .. 124
Suballocating Memory and Heap Management ... 127

Process Management .. 129

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 7

Preemptive Multitasking .. 129
Sessions ... 129
Programs ... 130
Processes ... 130

Starting Child Processes ... 130
DosExecPgm() .. 131
system() ... 131

Threads.. 131
Threads vs Processes ... 133
Uses for Threads .. 134
Thread Priorities .. 137
Creating Threads ... 140
Priority Variation ... 142
Resuming / Suspending Threads ... 143
Thread Termination .. 143
Why Threads Are Important.. 143
Thread Types ... 144

Interprocess & Interthread Communication .. 144
Pipes .. 144
Named Pipes .. 145
Shared Memory ... 148
Queues .. 148
Semaphores .. 149

OS/2 File Handling .. 153
Opening Files ... 153

DosOpen() .. 153
DosOpen2() .. 153

Creating Files ... 155
Reading and Writing ... 156

DosRead() ... 156
DosWrite() .. 156
DosReadAsync() .. 156
DosWriteAsync() ... 156
DosChgFilePtr() ... 156
DosBufReset() ... 156

File Handles .. 157
DosSetMaxFH() .. 157
DosSetFHandState() .. 157
DosQFHandState() .. 157
DosDupHandle() ... 157

File Locking and Region Locking .. 157
Access Modes ... 157
Share Modes ... 157
DosFileLock() ... 158

Obtaining Information About a File ... 158
DosQFileInfo() ... 158
DosQFileMode() .. 158
DosQAppType() .. 158

The Model-View-Controller Approach to PM Programming .. 159
Using Queues for Inter-Thread Communication .. 163
Using Object Windows & Message Queues for MVC .. 176

Subclassing .. 185

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 8

Dialog Windows ... 187
Conventions ... 187
Creating a Dialog Window... 188
The Dialog Procedure ... 189
Modality .. 189
Standard Dialogs ... 189

GPI .. 192
Basic GPI Concepts .. 192
GPI Primitives .. 193

Primitives Quick Reference .. 194
Attributes on Primitives ... 195

Setting Attributes Individually .. 196
Segments and Retained Graphics .. 197
Presentation Page Units .. 198

Pels ... 198
Metrics ... 198
Arbitrary ... 199

Coordinate Spaces ... 199
Transforms .. 199
Fonts .. 199

Printing Under OS/2 Presentation Manager .. 201

Introduction to System Object Model .. 212
What is SOM? ... 212
Benefits of SOM ... 213
SOM Class Frameworks ... 214

DSOM .. 214
The Interface Repository Framework ... 215
Replication Framework .. 215
Workplace Shell ... 215
OpenDoc ... 215

How Does SOM Work? ... 216
Acccessing Internal Instance Variables .. 220
Acccessing Parent Class Methods ... 220
Writing a Client Program ... 220

Example: Implementing a Stack Class in SOM ... 221

The Workplace Shell and System Object Model ... 224
What is the Workplace Shell? .. 224

The WPS As a Shell ... 224
The WPS As a Work Place .. 224

Workplace Shell Object Hierarchy .. 225
WPAbstract .. 228
WPFileSystem .. 228
WPTransient ... 228
Implementing New WPS Objects .. 228

The Workplace Shell and Presentation Manager .. 228
The WPS as a PM Program .. 229
Migrating PM Programs to the Workplace Shell .. 229
Using an ASSOCTABLE Statement to Provide New File Types 230

The System Object Model ... 231
Method Resolution .. 231
Classes Supplied With SOM .. 231
How Can I Use SOM? ... 232

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 9

The SOM Runtime Environment ... 232
The Workplace Shell & SOM ... 233

WPObject .. 233
WPS Runtime Environment ... 233

Applications vs Objects .. 233
Design Considerations .. 234
Programming considerations ... 234

Using Objects (an end users view) .. 234
Creating Folders .. 234
Commonly Used Objects .. 234
Using Applications .. 235

The Work Place Shell and REXX ... 235
Registering Objects .. 235
Creating Objects ... 235
Running WPS Objects ... 237

OS/2 Warp Programming Course Lab Exercises ... 238
Lab 1. Introduction to the Programmer's Workbench and a Basic PM
program .. 238
Lab 2: Menus and Messages ... 239
Lab 3: Business Forms ... 239
Lab 4: Memory Management ... 239
Lab 5: Dynamic Link Libraries ... 239
Lab 6: Threads .. 240
Lab 7: Semaphores and Shared Memory .. 240
Lab 8: File Handling .. 240
Lab 9: Multiple windows and instance data .. 240
Lab 10: Dialog windows ... 241
Lab 11: File and Font Dialogs ... 241
Lab 12: GPI Functions ... 241
Lab 13: Fonts ... 242
Lab 14: SOM ... 242
Lab 15: Free Time Lab Exercises .. 242

Common OS/2 & PM Programming Errors ... 243

Key Concepts ... 245

Tests .. 246
Intel Processor Architectures ... 246
Introduction to Presentation Manager Programming .. 248
Basic Window Concepts and Details .. 252
Menus .. 254
Window Words .. 255
OS/2 Control Program API .. 256
Dynamic Link Libraries .. 257
Processes and Threads .. 259
Interprocess Communications ... 261
Dialog Windows .. 263

Index ... 265

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 10

Introduction
This course is intended to provide programmers with a comprehensive overview of the
features and concepts of OS/2 2.1. The course utilises lecture sessions interspersed with
laboratory exercises to cover essential features of both OS/2 Presentation Manager and the
underlying base operating system, or Control Program.

These notes are intended for reference after the course, or for reference use during lab
sessions to reinforce topics introduced during the lectures. The slides used during the lectures
can be found at the rear of the manual, printed four slides to each page, providing space for
your notes and comments.

The course is designed to teach concepts of the OS/2 Control Program and Presentation
Manager, together with specific API's and design techniques, using the C programming
language. The API's documented can be called from C++ code, and the design techniques
documented here can be used with C++ programs, so that the resultant application may use
object-oriented techniques and classes for internal business logic and conventional C calls to
the PM and OS/2 API's.

This course does not cover programming in C++, using the Visual Age C++ Open Class
Library and/or Visual Builder for user interface implementation. However, after completing
this course you will be in a much better position to utilise these tools than the novice with no
PM programming experience. In addition, experience shows that while Open Class can
simplify user interface coding, it does so at considerable cost in run-time performance and
some loss of flexibility.

The reader might be surprised that around one-third of the course is spent on the OS/2 base
operating system. There are two reasons for this:

a) It is the features of the base operating system, such as preemptive multitasking and
multithreading, interprocess protection and interprocess communication, that distinguish
OS/2 applications from Windows applications and

b) Well-written Presentation Manager programs rely heavily on some of the base
operating system features such as threads.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 11

The Development Process
Most programs for OS/2 are written in C, with some development now being undertaken in
C++. The rest is done using high-level tools such as GPF, AME and others, which either
generate executables or C code.

The simplest type of OS/2 program is a simple, single-module C program which uses C
function library calls for I/O and makes no direct use of OS/2 API's. Such a program can be
compiled and linked for OS/2 in much the same way as for DOS.

Figure 1: Simple compilation of a single source code module.

A simple program, which uses C run-time library functions for I/O, can be written as a single
source module, then compiled and linked. The compile command depends upon the
compiler; for 16-bit OS/2 one might use the MS C 6.00 compiler, and the command would be

CL /c abc.c

while for the IBM Visual Age C++ compiler, the command would be

icc /c abc.c

In both cases, the /c option means 'compile only, do not link' - without this, the compiler
would automatically invoke the linker. In these diagrams, the C run-time library has not been
shown, for compactness.

More complex applications, however, typically benefit from having the source code separated
into multiple source modules, both to take advantage of the scoping rules of the language and
also to allow for reuse. In addition, some low-level modules may have to be written in
assembler.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 12

Figure 2: Compiling and linking separate modules.

For OS/2, the choice of assemblers is somewhat restricted. Most developers use Microsoft's
MASM 6.0 - the difficulty here is that this is an old version and, as of MASM 6.01, Microsoft
helpfully removed OS/2 support. Alternatively, Borland's C++ compiler for OS/2 comes with
that company's TASM (Turbo Assembler), though buying an entire compiler just to obtain the
compiler is a lousy deal. Finally, IBM is currently beta testing a new assembler called ALP
(Assembly Language Processor) which can be found on the Developer Connection CD-
ROM's.

Generating and Using Dynamic Link Libraries

So far, nothing is different from running a compiler under DOS, or much different from
UNIX. The major difference comes when using Dynamic Link Libraries. These will be dealt
with in a later chapter of the notes, so only a very abbreviated description will be given here.

A Dynamic Link Library (DLL) is essentially a library of subroutine code which can be loaded
and linked to the program as it loads or even as it runs, as opposed to the normal practice of
statically linking all subroutines at compile/link time. In the example shown here, two
functions, R and S, are to be compiled and linked into a DLL called XYZ.DLL.

The first problem that arises is that when R.OBJ and S.OBJ are linked, the linker assumes that
the target is to be a .EXE file, and consequently complains about the absence of a main()
function and stack segment. In addition, rather than having a single entry point (_main()),
this DLL will have two exported entry points, for the functions R and S. These problems are
dealt with by writing a text file which contains linker options, called a Module Definition File
(.DEF) file.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 13

Figure 3: Compiling and linking both a Dynamic Link Library and a client program.

Now we can link the .DLL file, but when we attempt to link the main .EXE file, the linker will
complain that it cannot link in the functions R and S (the actual error message will be
"Unresolved external reference"). We can deal with that by creating a module definition file
for ABC.EXE, or better still, by using a tool called the Import Librarian to create a .LIB file,
XYZ.LIB, which contains dummy references to the functions R and S. Notice, XYZ.LIB does
not contain the code for R and S - that would be static linking - all it contains are dummy
references which cause the linker to stop complaining and generate appropriate link records
in ABC.EXE which cause the system loader to also load and link XYZ.DLL.

The completed application now comprises two files: ABC.EXE and XYZ.DLL, and the
developer must be careful to ship both and to provide an install program which will create
the appropriate directory structure, copy the files into the right places and optionally edit the
LIBPATH statement in CONFIG.SYS.

Incidentally, all OS/2 applications actually are linked in this fashion. This is because the
operating system API's are accessed through dynamic linking, and every OS/2 program must
be linked with the operating system's import library, which is called OS2386.LIB (16-bit apps
will link with OS2286.LIB). This process is normally transparent to the programmer, however.

Presentation Manager Applications

Presentation Manager programs involve yet another level of complexity. In essence, one can
view PM programs as consisting of elements such as menus, entryfields, pushbuttons, icons,
scrollbars and the like, which are essentially static, together with linking code, written in C or
C++, which provides the behaviour of the application in response to menu choices,
pushbutton clicks, and so on. It is possible to create these interface elements through
procedural calls to API's like WinCreateWindow(), and this is frequently done, but it is also
possible to create them by specifying them in a simple language and running this through a
tool called the Resource Compiler.

Essentially, one could consider the resources to be the nouns of a PM program, while the
procedural code which implements behaviour contains the verbs.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 14

This separation also allows us to put locale-specific elements such as strings, pushbutton text,
menus and the like in separate files from the C source, allowing the creation of multiple
versions for national language support without any modification of the code - indeed,
without recompilation.

The Resource Compiler, rc.exe, is actually run at least twice: once to convert the resource
compiler script file, in this case abc.rc, into a tokenized binary form, and then a second time
with the -r option to bind the binary resources onto the end of the application .EXE file.

Not shown here for simplicity's sake, but quite commonly done, is the binding of resources
onto dynamic link libraries. This allows, for example, common dialogs to be compiled, linked
and bound with their resources and then shared by multiple applications. It also allows
different sets of resources for different languages to be shipped and installed from a single
media set. There are many uses for DLL's containing resources - a final example is font files,
which are actually DLL's with no code or data, just the font resources.

Figure 4: Compiling and linking a Presentation Manager application with resources.

Prototyping and Rapid Development

It is probably worth making clear from the outset that most developers really should not be
painstakingly writing applications from scratch in C. Since programmer productivity, in lines
of code per day, is roughly independent of language, and other languages can do much more,
C is some way from being the ideal language when development time and cost are of prime
important.

However, regardless of the language and code generation tools used, there are times when an
understanding of the underlying operating system API's and principles of operation are
important. This course aims to meet this need. In addition, when an application is going to be
delivered to a large number of users, and robustness, stability and performance rank higher
than low development cost, then C is the language of choice. It deals directly with the API's,
and there is no performance overhead associated with class libraries or large runtimes. In

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 15

addition, any bugs are either in your code or the operating system, whereas complex apps
written using class libraries or code generators often fall foul of bugs in that third-party code.

However, for prototyping there are a number of useful tools on the marketplace:

VisPro/REXX and VX:REXX

The REXX language is a standard feature of OS/2, and is probably the most generally-useful
scripting and prototyping language. All OS/2 developers should have more than passing
familiarity with the REXX language, if not for application development, then because it is
often encountered as the macro language in programming tools, such as the EPM editor,
Visual Age C++'s Project Smarts and others. Plus, it is very useful for writing simple
installation programs.

REXX's strengths:

• Interpreted tokenized code eliminates the compile/link steps for rapid testing and
modification

• Essentially typeless - all variables are strings

• Excellent string handling - ideal for editing CONFIG.SYS and similar files

• REXXUTIL extensions allow access to OS/2 and Workplace Shell API's - can create
objects (great for installs)

• Can be implemented as a macro language in third-party applications

The major limitation of OS/2 standard REXX is the lack of a graphical interface, which is
essential for prototyping PM applications. This lack is addressed by Hockware's
VisPro/REXX and Watcom's VX:REXX, both of which add support for a full range of
graphical elements and an event-driven programming style. Of the two, I prefer VisPro's
support for drag-and-drop programming, together with its tools for accessing DB2/2 and
other databases.

The flexibility of the REXX language makes coding the logic behind VisPro/REXX forms
extremely easy. For some applications, the resultant application is sufficiently powerful, fast
and reliable that it can be delivered and the invoice sent - the ideal situation for the
developer. If not, there are several options.

First, using techniques covered in this course, the developer with both REXX and C skills can
implement his own extensions to REXX to circumvent any restrictions in the language or the
visual programming tools.

Secondly, the REXX application can be used as a specification for a correct implementation in
the C language.

Thirdly, if using VisPro/REXX, the interface design can be migrated to either of the VisPro/C
or VisPro/C++ products, and the logic behind the interface reimplemented in the C or C++
languages. This approach is particularly attractive.

An option which will be available from late 1996 is the use of Object REXX. This updated
implementation of the language allows the implementation of classes in REXX, but even more
interestingly, allows OREXX programs to use SOM classes. In addition, Object REXX is the
Open Scripting Architecture language for OpenDoc implemented on OS/2, which offers
other interesting opportunities for prototyping methodologies.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 16

Visual Age C++ Visual Builder

The Visual Age C++ compiler includes a Visual Builder tool which allows the visual
construction of applications using the Open Class libraries. As previously mentioned,
performance is nowhere near as responsive as pure C code, but for in-house applications
which will have relatively few users, it is probably cheaper to provide high-performance
hardware for those users than it is to employ developers to write lots of low-level optimised
C code.

The Visual Builder is considerably larger and slower than the REXX visual programming
tools described above (and VisPro/C/C++). The Visual Builder works by allowing the
programmer to drag and drop 'parts' from a palette - some parts are visual and form part of
the user interface, while others are non-visual and represent, for example, collection classes.
Unlike the REXX visual programmers, Visual Builder allows the programmer to implement
his own parts in C++, and IBM is encouraging the development of an after-market in parts for
use with VAC++ (this parallels the existing support for Visual Age for Smalltalk).

As mentioned above, while it is possible to write simple to medium-complexity applications
using just the parts provided, sooner or later additional parts will have to be written and at
that point, an understanding of the underlying Presentation Manager and Control Program
API's is vital in order to achieve the correct results with minimal effort.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 17

Introduction to Tools

WorkFrame/2 1.1

The WorkFrame is the integrated development environment which ties all the other tools
together. For standalone development, it is possible to work entirely within the WorkFrame.
However, if you will be using SQLPREP to develop for DB2/2, or developing for SOM, you
will find that the WorkFrame is of less assistance, and in particular, you will have to create
and maintain your own make files.

Points to note about the WorkFrame:

The WorkFrame will automatically generate all the correct options for the compiler and link
command lines, using settings notebooks for Compile Options and Link Options. However,
these options only take effect when they are copied into the make file using the Tools / Make
File Creation menu selection. So, when changing your setup, remember to regenerate the make
file.

WorkFrame 3.0

WorkFrame 2.1 was a slightly problematic product which was not used in this course. It
lacked, for example, support for projects with components in multiple directories and
appropriate support for subprojects. However, with the release of Visual Age C++, the
WorkFrame was significantly enhanced and its object-oriented design cleaned up.

The Visual Age C++ folder contains a template for VisualAge C++ Projects. When opened up
a VA C++ project looks like this:

Figure 1. A VisualAge C++ Project

The top half of the main window area shows the project files, while the lower window shows
the output of any operations, such as makes. The toolbar across the top of the window allows

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 18

the programmer to set up 'Build Smarts', which automatically add support for project
options, customise the tools such as the compiler and linker and get help. The right-hand set
of buttons initiate a project build, run, debug or edit respectively.

There is an important distinction between the terms build and make in Workframe 3.0. By
default, building a project will automatically cause a MakeMake, i.e. regeneration of the make
files. This is a major distinction from earlier versions of the Workframe, and means that you
cannot forget to rebuild the make file after changing compile and link options. However,
since it happens on every build, it can slow you down significantly, and so you might want to
change the 'Build Smarts' so that it does not generate a make file each time:

Figure 2. Build Smarts can add support for various Visual Age C++ tools.

Alternatively, ensure that, rather than clicking on the 'Build' button, you initiate a make
operation by choosing it off the Project menu, or pressing Ctrl-Shift-M. You can also
customise the project toolbar to include a 'Make' button in addition to the 'Build' one.

It is important, before attempting to compile or link a project, that you set up the compiler
and linker options correctly. While this can be done by pressing the 'Tools Setup' button and
then selecting the appropriate tools, a faster way is to choose Options / Compile or Options /
Link off the project menu bar.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 19

Figure 3. Compiler Options, showing the Debugging section

The most important Compiler options to watch for during the course are:

• On the Processing page, check that the target is a DLL if appropriate.

• Under Debugging / Generation, ensure that All is selected, so that the debugger
can display source code and also variables.

• Under Source / Details, check 'Allow use of '//' for comments', as some of the lab
source files have C++-style comments in them.

• Under Object, ensure that the Multithreaded library is selcted if appropriate.

We do not use any of the other options in this course, although we may discuss some of them.

The important Link Options are:

• On the Generation Page, check 'Include debug information', and set the application
type as appropriate: None for a DLL, Window for a character mode application to
run in a window, Full screen for a character mode application which you want to
force to full screen in its own session and PM for Presentation Manager applications.

• On the File Names page, supply the names of any import libraries if the application
uses dynamic link libraries (e.g. Lab 3) and, if building a DLL, provide the name of a
.DEF file.

These are the only link options used in the course.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 20

Remember, after changing options, to either do a makemake or a build to get the options
reflected in the make file.

Dealing with Compile-Time Errors

If there are syntax errors in your source code, the compiler will complain and will produce
error messages. Upon termination, the compiler will set the ERRORLEVEL variable to a non-
zero value and this will cause the nmake utility to terminate.

Selecting a compiler output line that contains a source module name and (row:column)
coordinate for the error and either double-clicking or pressing the 'Errors' button will cause
the editor to be launched with the error highlighted.

Figure 4. The editor (LPEX) can highlight errors and display error messages

Once the editor is open, you can use Ctrl-X to find the next error, and Alt-X to return to the
previous one.

As you can see, the editor parses each line as it is typed in, and will highlight different
syntactical elements of the language in different colours. In addition, it will warn of
unterminated strings and other entry errors.

The editor, LPEX, also supports on-line access to the Toolkit's on-line Programming Guides
and References. To obtain help for an OS/2 API or a C/C++ language statement or library
function, simply place the cursor on the appropriate word and press either F1 or Ctrl-H. On-
line help is also available from the editor's Help menu, including access to the extensive 'How
Do I . .' files which are supplied as part of Visual Age C++.

However, you may prefer to stick with the OS/2 Enhanced Editor, EPM, for reasons of
familiarity, and the WorkFrame can be customised to support this.

EPM

The EPM editor is one of a family of editors written using the E language and editor toolkit,
an IBM internally-developed macro language which has been used to implement a range of
editors.

Some people (like me) figure that life's too short to spend time mastering every nuance of an
editor, as circumstances (like the release of a new operating system) can compel you to switch

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 21

editors at any moment anyway. If that's your philosophy, then EPM will suit you, as it
conforms to the conventions of mouse-driven windowed editors and can be used with
virtually no training.

Others prefer to invest time in mastering an editor, secure in the knowledge that this
investment will be amply repaid in improved productivity. If you feel that way, EPM will
also provide hours of delight as you master its use of both REXX and E as macro languages,
and its hooks to other utilities. Of course, you may also have invested heavily in another
editor, in which case you will welcome EPM's ease of use.

Points to note about EPM for development:

On-line help for the OS/2 2.1 Toolkit and CSet++ are available from within EPM by placing
the text cursor in the function or message name of interest and pressing Ctrl-H. If this does
not work, complaining that EPMKWHLP.NDX cannot be found, then locate that file and edit
CONFIG.SYS, ensuring that its subdirectory is listed in the DPATH.

Good modular programming style (and, in fact, all OS/2 and PM programming) requires that
program source code be distributed through multiple source files, and the programmer needs
to cross-reference between these. In EPM, ensure that you enable the ring by setting Options
/ Preferences / Ring Enabled, and make sure that this saved with the Options /Save options
menu choice.

Opening an editor window creates a new copy of the editor (at little cost in memory, it should
be noted). Each editor window can support a ring of multiple files being edited, and these can
be cycled using the small ring icons at the top right of the titlebar, or using the Ctrl-P
(previous) and Ctrl-N (next) keys.

In the WorkFrame, selecting multiple files and clicking on process will result in the files being
loaded into the ring automatically. To add a file into the ring, press F8 and either type in the
filename, select from the listbox, or use the File list button to invoke the File Open... dialog.

EPM commands can be typed into the command dialog, which is activated with Ctrl-I. To go
to a particular line, invoke the command dialog and type the line number, followed by Enter.

EPM supports automatic expansion of constructs for the C language. This may be turned on
by default, which can give rise to the user being unable to get out of switch statements as the
editor keeps creating more cases. To turn it off, invoke the command dialog and type
'EXPAND OFF''.

After a compilation has produced some errors, double-clicking on the error message lines will
invoke the editor on the relevant file and feed the error messages to it. If the editor is already
running, the error line can be 'dragged' onto the editor window. Now errors can be searched
for and looked up using the 'Compiler' pull-down menu.

The Visual Age C++ C and C++ Compiler

This compiler is a high-quality C and C++ compiler from IBM's Toronto labs. In this course,
we shall not be using C++, for the simple reason that virtually all complex high-performance
OS/2 applications and most of the samples are written in C, and the API's are designed to be
called from C. After completing this course, the student should find migration to C++ to be
fairly straightforward.

However, use of the Open Class Libraries, and particularly of the Visual Builder tools will
result in applications which are significantly larger and slower than equivalent 'straight' PM
code. Depending on the programmer's familiarity with PM, the applications will however be

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 22

written faster, and this may be an over-riding consideration for corporate developers. In any
case, optimal use of the class libraries will still require an understanding of the underlying
PM API's and concepts.

Hints on using VA C++:

Although most applications can be developed entirely within the WorkFrame's dialogs and
notebooks for compile options setup, you would be well advised to learn some of the
command line options from the on-line help. This is because diagnostic messages often
suggest turning on or off different command-line options, and in addition, use of SOM or
SQLPREP may require hand-construction of make files. After a while, you will get to know
the most common command-line options from seeing them as the compiler runs.

The compiler has some options which cause it to remain resident in memory for (typically)
ten minutes after a compilation. This avoids subsequent load-time for recompiles.

LINK386

This is an enhanced version of the traditional Microsoft/IBM linker and generates flat-model
32-bit executables. Generally, its options are set up from the dialogs and notebooks in the
WorkFrame, and also from a project's .DEF file.

ILINK

The ILINK linker replaces LINK386 in Visual Age C++. This new linker is much faster and
has new options for generating packed code and data, as well as linking C++ executables
which use templates.

IPMD

The IPMD debugger is a Presentation Manager application which supports multiple views of
source code modules, with animation, breakpoints, stepping through or over functions and
all the usual debugger functions. It is of general applicability, except for debugging
Workplace Shell applications; as they run as part of the shell the programmer will have to
invoke the debugger from within CONFIG.SYS and run PMSHELL.EXE from within the
debugger. The Toolkit also includes a kernel debugger which is run over a serial port using
an attached terminal.

Other Tools

The Visual Age C++ package contains a number of other utilities which are beyond the scope
of this course. These include the Performance Analyzer, which can be used to instrument an
application to see where it is spending most of its time to aid with optimization, the Visual
Builder, which allows drag-and-drop construction of applications with almost no coding, and
the Data Access Builder, which is able to generate C++ code to access DB2/2 databases. This
course is intended to provide a basic framework which will allow students to investigate
these tools later.

Toolkit

The Toolkit comprises the miscellaneous utilities used in OS/2 development, such as the
Resource Compiler, Font Editor and Dialog Editor, together with several help files which
document the API's, messages, types and structures, and the header files which implement or
prototype them. It also includes a number of programming examples.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 23

The Toolkit is supplied as part of the Visual Age C++ package; however, developers are
advised that frequent updates to the Toolkit are distributed on the Developers Connection
CD-ROMs, which all developers should obtain as a matter of course. Recent DevCon CD's for
example, have added information and header files on DIVE, BRender and other new features.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 24

Intel Processor Architectures
Before examining the details of the internals of OS/2, and why it works the way it does, it is
necessary to understand how the Intel 8086family of processors works, as this has a
fundamental bearing on why OS/2 is needed and why it does some of the things it does.

The first of the Intel 16-bit processors, the 8086, was designed with both an eye to the future
and a bridge to the past. The earlier 8080/8085 family of eight-bit processors had acquired a
considerable library of software, in both dedicated, or embedded, applications as well as in
the emerging personal computer marketplace.

Accordingly, the design team at Intel designed the 8086 processor to be a superset of the 8080
processor. Although the 8080 is an 8-bit processor, its registers can be paired up to act as a
'pseudo' 16-bit register set.

With its sixteen-bit register pairs, and in particular a sixteen-bit stack pointer and program
counter, the 8080 was able to address a maximum of 64 Kbytes of memory (because 216 =
65536 = 64 Kbytes). In order to maintain compatibility, a way had to be found to allow a
processor to address more memory - say, a megabyte - but still use 16-bit registers for
addresses.

And so the segmented architecture was born.

One way to think of this is as a machine which implements a number of virtual 8080
processors. It splits up its megabyte of memory so that at any time, only 64 Kbytes is
accessible, and then runs an 8080 program in that segment of memory. By switching to
another segment of memory, we can now run another 8080 program somewhere in the same
megabyte of memory, and if we can switch between segments very quickly, we now have a
multi-tasking system.

Figure 1. Simple example of a segmented architecture emulates multiple virtual 8080's.

Once this basic concept had been worked out, more refinements began to suggest themselves.
For example, if we want to have two copies of the same program executing simultaneously, it

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 25

makes no sense to have two complete copies of the program in memory simultaneously; one
will do. But we must have two separate data areas; one for each process1.

And if we have separate data areas, we should also have the ability to create separate stacks
also.

Now we have the basic idea of the 8086 processor. This chip actually contains two major logic
elements: the Execution Unit(EU) and the Bus Interface Unit(BIU). The execution unit is very
similar to the old 8080: all the registers are primarily sixteen-bit, but can be split into their
eight-bit halves for character handling, and there are more of them, together with more
instructions to manipulate them, but that's all. A programmer trained on the 8080 would find
the 8086 EU very familiar.

The BIU is actually a memory management unit more than being anything to do with
interfacing to the external bus circuitry. It provides four registers which address the different
segments of memory within which our virtual 8080 programs will execute. These registers
are:

Data Segment DS

Extra Segment ES Yet another data segment

Stack Segment SS Used for temporary values, return addresses

Code Segment CS Where the instructions are stored

Of course, the master control program which is responsible for loading programs into
memory and managing the multitasking must know of the existence of the segment registers,
but each individual program need know nothing of their existence. A program which knows
nothing about the segment registers can be relocated in memory with virtually no effort; just
load it somewhere else and stick the corresponding values into the segment registers, and off
it goes. (Such programs are typified by MS-DOS .COM files).

The 8086 processor is a little more complex than this, but not by much.

8086 Real Mode

The most complex aspect of the segmented architecture relates to the construction of
addresses in main memory (and indeed this is the main reason for the existence of OS/2). All
the processor registers are sixteen-bit in size, but as we have already seen, this allows a
program to address at most 64 Kbytes of memory. How, then, can the 8086 address 1 Mbyte
of memory, which will actually require 20-bit addresses to access?

Put simply, the value of a segment register is multiplied by 16 before being used as a pointer
to the appropriate segment of memory. This means that each segment must start at an
address which is a multiple of 16 (not a severe limitation). Such an address is called a
paragraph boundary.

Another way of looking at this is that the BIU constructs addresses which are sent to the
outside world by taking the value in a segment register, multiplying it by 16, and then adding
on the value in one of the EU registers. For example, if we were about to execute a program

1A process is an executing copy of a program in memory; technically, the process is not the code, but
the processor registers and associated data in memory which describes the current status of this copy of
the program.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 26

starting at location 80100H (if this doesn't make sense to you, read the section on hexadecimal
numbering), the registers will contain the following values:

 CS = 8000 x 16 = 80000H

 IP = 0100H

 80100H

The Code Segment register addresses the base of the code segment in memory, while the IP
register specifies an offset within that segment. Because all the 8086 registers are 16 bits in
size, segments are restricted in size to 64 Kbytes.

This is the only mode of operation of the 8086 processor, and it is the mode in which the
80286 and 80386 processors start operation following a reset or power-up. On these
processors, it is known asReal Mode .

80286 Protected Mode

However, the 80286 and 80386 processors also support other modes of operation which are
more powerful and provide additional features such as interprocess memory protection and
virtual memory. The simplest of these is 80286 Virtual Memory Protected Mode, usually
known as just Protected Mode.

In Protected Mode, the Segment Registers of the processor do not contain the paragraph
addresses of the various segments. Instead, the segment addresses are stored in a table called
a segment descriptor tablealong with other segment-related information, and the segment
register contents (called a segment selector) identifies a particular entry in the table.

So, to construct an address, the 80286 uses the contents of the segment register as an index
into either a Global or Local Descriptor Table, and from the corresponding entry , it picks up
the segment address and adds the appropriate offset in order to construct the actual address.
See the diagram for an illustration of how this is done.

Figure 2: The 80286 processor uses entries in a segment descriptor table to add another level of
indirection to the addressing scheme.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 27

Notice that, as well as the segment base address, the segment descriptor also contains some
other information. The segment limitfield contains the offset of the last byte of the segment;
any attempt to access an address beyond this limit causes suspension of the instruction and
generation of an interrupt which vectors into the operating system. Similarly, the Access
Rightsfield specifies whether the segment is read-only, execute-only and so on. Attempts to
write to a read-only segment would similarly cause an exception. These features prevent a
program from accessing any segments other than its own.

Incidentally, the extra address translation does not cause significantly slower operation, since
the processor loads the segment entry from the LDT or GDT into an internal cache whenever
a segment register is modified. The only overhead occurs when a segment register is
reloaded.

Protected Mode Features Summary

The major benefits of protected mode are as follows:

Selector-based addressing: all addresses are constructed from entries in tables. There are three
such table types: the Global Descriptor Table (GDT) which is the base for the operating
system, one or more Local Descriptor Tables (LDT) for individual processes, and one or more
Interrupt Descriptor Tables (IDT), which contain the interrupt vectors for processes.

The segment descriptors contain: the base address of each segment and the segment limit(i.e.
the offset of the last byte of the segment), thus ensuring that only bytes within the segment
are accessed. Also in the descriptor entry are the access rights, which contain the descriptor
privilege level and segment type: Read/Write or Read Only (for data segments), and
Execute/Read, or Execute Only (for code segments). A process can access data stored only at
the same or a lower level segment, while a process can call services only at the same or a
higher level. This is the basic principle of ring-based operating systems which assures
security.

The IOPL, stored in the processor flags, similarly permits I/O instructions if it is greater than
the Descriptor Privilege Level.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 28

Figure 3: There are separate stacks for each privilege level, and the processor automatically copies
parameters between the stacks.

Multi-tasking support - task state segments

Virtual memory support -

 Page/segment faults

 Restartable instructions

 Recoverable stack faults

OS/2 and the 80386

The 80386 is a 32-bit processor which offers compatibility with the earlier 8086 and 80286
processors. The later 486, Pentium and Pentium Pro processors are based on the same
architecture, and comments made here apply equally to those processors.

While OS/2 1.x runs on the 80386, it does not take advantage of many of its advanced
features. In particular, when context switching, OS/2 1.x does not save and restore the upper
halves of the 80386's 32-bit registers. For this reason, 32-bit code should not be run under
OS/2 1.x.

The 80386 does have an instruction which will switch the processor from protected to real
modes, so that it is not reliant on the kind of trickery which OS/2 perpetrates on 80286's. This
means that some compatibility problems which affect 80286-based clones should not affect
80386-based machines.

OS/2 1.x does not take advantage of the 8086 Virtual Machine Mode of the 80386 in order to
implement multiple DOS compatibility boxes. These features are used by OS/2 2.X, to run
DOS and Windows programs.

For example, if a DOS program attempts to access video memory, the processor will look up
the constructed 20-bit offset (a real-mode address) in its page translation table and discover
that the page has not been allocated. This will force a trap to the operating system, which will
then perform the equivalent function, probably putting the character in a window on the
screen (or the equivalent in graphics mode). Likewise, attempts by terminal emulation
programs to perform input/output instructions will be trapped because the virtual machine
is running in ring three and does not have I/O privilege level.

These features collectively constitute the 386's 8086 Virtual Machine Mode, which is used by
OS/2 2.x and Warp to multitask DOS and Windows applications.

For OS/2 application developers, the principal benefit of the 32-bit architecture is that now
the offset within a segment comes from a 32-bit register. The general-purpose registers of the
286 - AX, BX, CX, DX, SI, DI, BP, IP - are extended to 32 bits in size and renamed EAX
(Extended AX), EBX, ECX . . EIP. Because the registers are 32-bit, the maximum offset is 2 ^ 32
- 1, and the maximum segment size is therefore 4 GB.

This makes it possible for all application code and data to be placed in a single segment, so
that the programmer need no longer worry about the complications of memory models
(small, medium, compact, large) and near/far pointers. In effect, application code is always
small model - it's just that it's a bloody huge small model!

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 29

Since all code & data is in a single segment, the programmer deals only with 32-bit offsets,
and ignores the segment selectors, which might as well be zero. Accordingly, this
programming model is referred to as the 0:32 model, while the OS/2 1.x scheme in which far
pointers consist of a 16-bit selector and 16-bit offset is referred to as 16:16.

The support for a flat 32-bit address space makes it relatively easy to port applications which
were written for the UNIX operating system, and developers who are familiar with this
environment can choose from a wide variety of free and shareware utilities.

The 80386 processor has six separate modules organised in a pipelined architecture to improve
performance.

The 386 provides virtual memory in a different way from the 286. The segment unit generates
addresses by combining the segment base address derived from a segment selector with an
offset from the execution unit, in the same way as for a 286. The only difference is that while
selectors are still 16-bit, offsets can be 32-bit. The address output from the segment unit is
called a linear address. This is passed to the paging unit, which parses the linear address into
three fields: a 10-bit page directory index, a 10-bit table index, and a 12-bit displacement.

The directory index is used to access an entry in the page directory in order to specify which
page table should be used. The table index is used to specify which entry in the page table
should be used. From this entry, the processor obtains a 20-bit value which is the high-order
20 bits of the resultant physical address - this is the address of the page. Finally, the 12-bit
displacement is concatenated to this to produce a 32-bit physical address. You could think of
the displacement as being like an offset within the 4 Kbyte page.

The system now swaps pages rather than segments. Since the pages are fixed in size (4 KB in
current processors) the swap file is simply an array of 4 KB buckets, and any page can fit in
any bucket, eliminating the swap file fragmentation which degrades performance on OS/2
1.x. In addition, the pages are much smaller than the swapper's buffers, so performance is
further enhanced.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 30

Programming OS/2 Presentation Manager
The OS/2 base operating system is fairly traditional in design. Although it offers many new
features to the programmer who hitherto has been limited to DOS, these are mostly
unremarkable. Apart from functions which have always been in DOS, though extended in
some cases, the new API comprises functions for setting process priorities, memory
management, I/O and the like, and are very similar to those found in systems like UNIX and
VMS. The most interesting additions concern multi-threading and dynamic link libraries.

But there is one area where OS/2 is quite different from DOS, and this is the Presentation
Manager graphical user interface. Corporate developers who have previously put together
applications for DOS are in for a shock when they first encounter PM, as its complexity,
structure and design are quite different from almost anything they will have seen before.

There is one exception: Presentation Manager is similar - at least in its window management
and program structure - to Microsoft Windows. There are two differences: Windows is non-
preemptive and so the programmer has to be careful to keep yielding the CPU so that other
programs get a chance to run (OS/2 does this automatically) and OS/2 has many high-level
graphics functions in a layer called the GPI, which Windows does not have.

Presentation Manager is a message-driven operating system within an operating system. The
OS/2 base operating system, which provides the underlying services, consists of a library of
functions which are called directly from application programs. PM, by contrast, is an object-
oriented system in which different objects - termed windows - send each other messages,
although there are still lots of functions. The first obstacle the beginning PM programmer will
encounter is learning the various functions and messages, so as to select the right ones in
different situations. Unfortunately there is no easy way to do this; it comes down to
experience.

Why Message Passing?

Like other graphical environments, PM supports multiple forms of input to an application
program. At least keyboard and mouse are usually present, but pen input is a distinct
possibility for the future. Now, consider what might happen if a program - operating in a
preemptive multitasking environment like OS/2 - performed its own input processing with
two sets of logic for keyboard and mouse. Keyboard processing is relatively simple: just do a
table lookup on the input keystroke and branch to the appropriate subroutine. But mouse
input is much more complex. We have to deal with selection of objects like blocks of text or
even possibly graphics, as well as pull-down menu selections.

It's quite possible that a user might use the mouse to pull down a menu option to save a file,
and then immediately press Alt-F4 to quit the application. If the keystroke processing is much
faster, then the application might quit before saving the file. Result? One irate user. Of course,
most apps would be smart enough to ask the user whether the file should be saved before
quitting, but the result would still be annoying and more dangerous problems would likely
result.

As a consequence, PM applications have to deal with external events in the order in which
they are generated, and to do this PM uses a message-passing architecture. Events, such as
mouse movement and button actions, keystrokes and the like, generate messages, which are
dispatched to Presentation Manager.

What's a message? Here's how it's defined in the PMWIN.H file:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 31

/* QMSG structure */

typedef struct _QMSG { /* qmsg */
 HWND hwnd;
 ULONG msg;
 MPARAM mp1;
 MPARAM mp2;
 ULONG time;
 POINTL ptl;
 ULONG reserved;
} QMSG;

The various members of the structure have the following meanings: hwnd is the handle of the
target window. Now, in DOS the only objects which have handles are files, but in OS/2 most
things have handles: pipes, queues, semaphores and of course windows. PM will
automatically send the message to the appropriate window procedure based upon this value. Of
course, that window may in turn hand off the message to another window.

The msg field specifies just what the message is. The OS/2 Presentation Manager
Programmer's Toolkit header files define several hundred messages. Typical examples would
include:

WM_PAINT Tells the target window that it should repaint its contents on the screen
as a result of being opened, brought to the foreground or some other
circumstance

WM_COMMAND The user has chosen a menu option on the application's menu bar or
pressed a button.

WM_CONTROL Something happened to a control window, such as a text-entry field.
Just what can be found from the other parts of the message and can
range from a user selecting the field with the mouse to typing
something into the control.

WM_CHAR A keystroke.

WM_CLOSE User is closing the window.

The next two components of the message are MPARAMs. An MPARAM is a 32-bit value
which is essentially typeless: it could contain two sixteen-bit values or four eight-bit values or
a 32-bit far pointer or almost anything. Generally, programmers break apart an MPARAM,
using special macros such as SHORT1FROMMP(), to get at the components. For example, the
WM_COMMAND message simply means that the user did something with a menu or some
other window component; exactly what is found out by looking at the low word of mp1.

Following the MPARAMS is an unsigned long timestamp which plays a key role in resolving
the problem described above. It is the timestamp which keeps messages from being processed
in the wrong order. Most applications don't care about the timestamp on a message, and in
fact, as you'll see, don't receive the timestamp; as long as the messages are processed in the
correct sequence, that's the most important thing.

Lastly, there's a POINTL structure, which contains the x- and y-coordinates of the mouse at
the time the message was generated. Again, most programs don't use this use and don't
automatically receive it; but it (like the timestamp) can easily be retrieved.

Notice that keystrokes appear to the program as WM_CHAR messages. In fact, PM programs
do not read input via C library functions such as gets() and scanf(). Nor do they produce

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 32

output with puts() or printf(). Instead, all input comes through a message queue and all
output is produced by calling PM functions, while the stdin and stdout streams are redirected
to the NUL device.

In actual fact, there are two different types of messages: queue messages, which are posted by
the system to the application's message queue, and window messages, which are passed as
parameters when the system invokes a window procedure. Window messages do not contain
the timestamp or mouse position fields.

The main procedure of a PM program will generally receive messages through an input
queue, so one of the first things it must do is to create that queue. It will then probably create
a window on the screen (not all PM programs do this).

Windows

The application will produce output and receive input through a window. However, not all
windows are visible - it is possible to create an 'object window' which will respond to
messages and update related data structures without ever appearing on the screen. This
corresponds with the idea of an object class in languages like Smalltalk.

In fact, what most users would consider the screen is actually a window - the desktop
window (there's also a desktop object window). Windows have relationships in two senses:
relative positioning (one window within/on top of another, or behind another) and
ownership (one window coordinates the behaviour of another by sending it messages and
receiving messages back about the owned window's state). The desktop window is generally
the parent for application windows.

The application window the user sees is actually composed of several other windows. In the
background is the frame window, which provides a 'base' for several frame controls and the
client window area. The frame controls are things like the border, system menu, title bar,
minimize/maximize buttons, application menu, icon and scroll bars (if specified) and these
are all windows in their own right. These windows are predefined - the code for them is in
the operating system itself. The client window is the (usually white) central area where the
application displays its output, and the code for this must be written by the programmer.

The frame window coordinates the actions of all the other windows so that they behave
according to the OS/2 user-interface guidelines. Move the frame window by dragging the
titlebar, and all the other components redraw in the correct locations, for example.

There are other kinds of windows, too. For example, dialog windows are usually used to
interact with the user - say, to fill out a form or create a new file - and these windows in turn
will contain other control windows such as entry fields, list boxes or pushbuttons. In many
cases, the buttons are predefined public classes, although the dialog windows, like client
windows, have to be coded by the programmer.

Let's look at a simple OS/2 Presentation Manager application. You'll all be familiar with
every C programmer's first C program:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 33

#include <stdio.h>

void main()
{
 printf("Hello World\n");
}

Now, the same code can be compiled and run under OS/2, but it would run as a full-screen
or windowed character-kernel application. We want the graphical version.

The first job is to include all the definitions of constants and prototypes for the window-
manager functions from the Presentation Manager Programmer's Toolkit. Generally, this is
done with the preprocessor directive

#include <os2.h>

but before this, we specify which subsections of the header files we want by defining some
constants such as INCL_BASE, INCL_GPIERRORS and so on. This is much faster than
including all the definitions, which are quite massive.

Next, we need some handles to refer to the various windows. DOS uses handles to identify
open files; in OS/2 there are handles for all kinds of objects - files, pipes, queues, and of
course, windows. A handle is probably a pointer to some kind of data structure, but you don't
need to know - and don't want to know, in case you start to rely on knowledge of the
structure and thereby write non-portable code.

Most special types used by PM are typedef'ed in the header files, and PM programmers use
these types, even in place of standard C types. The reason is this: in OS/2 1.x, running on a
16-bit processor, an integer is 16 bits in size; but on OS/2 2.x, which runs on 32-bit processors,
an integer is 32 bits in size. This is why a message is declared as ULONG above; if we
declared it as int then it would be different sizes to different compilers, but a ULONG is
always 32-bit.

You'll also notice that OS/2 programmers use Hungarian notation for variable naming. This
prefixes the variable name with its type, so that hwndClient is pretty obviously a handle to a
window, while szClassName is a string terminated with a zero byte.

HWND hwndFrame;
HWND hwndClient;
static char szClassName[] = "Hello";

Likewise, hab is a handle to an anchor block, while hmq is a handle to a message queue, and
ulFrameFlags is an unsigned long.

The first thing the program must do is register with Presentation Manager. This will cause
PM to allocate memory to store graphics images and workspace on behalf of the application.
This is done by calling the WinInitialize() function, which returns a handle to an anchor
block. Nowhere does the PM documentation define an anchor block, but my guess is that it is
an instance data segment created by the PM dynamic link library functions. In any case, we
don't want to know. From now on, the hab is used as the first parameter for many PM
function calls.

Next, the app must create a message queue so that it can read messages. Again, this is a single
function call to WinCreateMsgQueue(), which returns a handle to the queue. Incidentally,
it is this function call which defines a Presentation Manager application. If the program
makes this call, it is a PM program; if it does not, it is not, and cannot call most PM functions.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 34

Once this has been done, we can now register a private window class. It's called a class
because this one window definition can handle multiple windows, so really a window is an
object while the code is a class. Basically, what we are doing is associating a window class
name (an English word) with a procedure which will perform input and output processing
for all windows of that class. So the parameters to the WinRegisterClass() function call
are basically the handle to the anchor block, the classname string and a pointer to the window
procedure (which is lower in the program code). We also pass some flags which specify class
styles, such as redrawing the entire window whenever it is resized. The last parameter is the
size of the window data. This is not used in simple applications, but becomes important when
an app has multiple windows of the same class. Because a single window procedure must
perform processing for multiple windows, it must be reentrant. This means no static
variables, and therefore we get the system to reserve a few bytes of memory for each window,
and either store each window's private variables along with the window, or store a pointer to
a data structure in the window.

Having set all of this up, we can now go ahead and create a window on the screen.
Applications can create any type of window with the WinCreateWindow() function call,
but this requires many parameters and a lot of setting up. In this case, we simply want to
create a standard application window, and let the system worry about its size, where on the
screen it is placed, and so on.

The WinCreateStdWindow() function actually creates (at least) two windows: a frame
window and a client window. The client window is the (usually white) area in the center of
the application window where work actually gets done. The frame window - only the border
of which is visible - is the parent of the client window and other related windows, such as the
title bar, system menu, application menu, any scroll bars and so on. The frame window serves
to coordinate their bahaviour and paint them in the correct relative positions.

The first thing to do is to specify which component parts we want: border, titlebar, menu, and
other on-screen real estate. This is done by setting the component bits of a 32-bit unsigned
long. In this case, we want a standard window, except no menu, no accelerator table and no
icon:

 ulFrameFlags = FCF_STANDARD & ~FCF_MENU & ~FCF_ACCELTABLE &
~FCF_ICON;

We could also have OR'ed in bits for FCF_VERTSCROLL and FCF_HORZSCROLL, if we
wanted them. Now comes the actual function call which creates the window.
WinCreateStdWindow() takes lots of parameters, but fewer than WinCreateWindow()!
These include the handle of the parent window (in this case, the desktop), the window style,
the frame creation flags, the classname, titlebar text and the address of the variable which will
receive the client window handle.

The window styles can include:

WS_CLIPCHILDREN Prevents a window from over-painting its children

WS_CLIPSIBLINGS Prevents a window from over-painting its siblings

WS_DISABLED Disables mouse and keyboard input to the window.

WS_MAXIMIZED Enlarges the window to maximum size

WS_MINIMIZED Reduces the window to smallest (iconized) size

WS_PARENTCLIP Prevents a window from over-painting its parent

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 35

WS_SAVEBITS Saves the image in the window as a bitmap, so that if the
window is moved or un-hidden, the system can restore the
window contents by copying the bitmap without requiring
the application to repaint it

WS_SYNCPAINT Causes the system to send a WM_PAINT message to the
window whenever any part of it becomes invalid. Without
this style, the system accumulates invalid regions and send
one WM_PAINT message when no other messages are
pending

WS_VISIBLE Makes the window visible (unless it is totally obscured by
other windows). Windows without this style are hidden.

WS_ANIMATE Enables a zooming effect on this window (disabled if turned
off in the System object in System Setup).

WinCreateStdWindow() actually has two parameters of this type: the first specifies the
style of the frame window, while the second specifies the style of the client. A frame window
can have some additional style flags:

FS_ACCELTABLE Creates an accelerator table

FS_BORDER Creates a window that has an inner border the same color as
the titlebar. This style is used by dialog windows

FS_DLGBORDER Creates a window with a single line border (again, a dialog
window)

FS_ICON Creates a window with an icon

FS_MOUSEALIGN Creates a window which is positioned relative to the current
mouse coordinates. Sometimes used by dialog windows

FS_NOBYTEALIGN Creates a window which is not aligned on a byte boundary in
video memory. This will degrade drawing performance.

FS_SCREENALIGN Creates a window which is aligned to the screen (dialog
windows)

FS_SHELLPOSITION Allows PM to size the window and place it in a position
cascaded from the previously started application window

FS_SIZEBORDER Creates a size border

FS_SYSMODAL Creates a system modal window

FS_TASKLIST Adds the window title to the Window List

FS_STANDARD Combination of FS_ICON, FS_ACCELTABLE,
FS_SHELLPOSITION and FS_TASKLIST

At this point in the program, the window gets created and should pop onto the screen. As the
window is created, PM sends it various messages, such as WM_CREATE, WM_SIZE and
WM_PAINT, to allow the window to initialize, resize itself to the correct size and paint its
contents. Of course, the user can also interact with the window, with either the mouse or

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 36

keyboard (this simple app has almost no keyboard support), and this will cause input to be
sent to the app.

As messages arrive on the input queue, we must read these messages and then direct them to
the correct window. This is done by the event loop:

 while(WinGetMsg(hab, &qmsg, 0, 0, 0))
 WinDispatchMsg(hab, &qmsg);

This reads each message in turn, and dispatches it to the correct window. The process
continues until WinGetMsg() gets a WM_QUIT message, which causes it to return FALSE and
exit the while loop.

After this, it is all over bar the cleanup, which destroys the window and message queue and
releases the anchor block. But where does the actual work get done? We haven't seen any
code which prints the message "Hello World".

Window Procedures

Most of the work of PM applications gets done in window procedures, or winprocs, which
contain the code which responds to the various messages. A winproc is declared to be of type
MRESULT EXPENTRY, which means that it returns a 32-bit result code and is called using the
_system calling convention. This is because it will be called directly by the operating system,
not by the application itself (which may use C or OptLink calling conventions). The
parameters to the winproc are, of course, the target window handle, the message and its
parameters.

The code of most winprocs reduces to a case statement, to handle the different messages, and
this one is no exception. Apart from a couple of trivial stubs to handle specific messages, we
are really only concerned with one message, WM_PAINT. This message is sent whenever the
window is created, when it is resized, when it is maximized or brought to the foreground
from a partially obscured background position. A really smart application will only redraw
that part of its window which was previously invalidated, and it finds that out from the
parameters to the WM_ERASEBACKGROUND message. This is faster for some applications.
However, for simplicity our example ignores WM_ERASEBACKGROUND messages and simply
redraws the entire window whenever it receives the WM_PAINT message.

Here's how it does it:

 hps = WinBeginPaint(hwnd, 0, &rc);

The WinBeginPaint() function call obtains a Presentation Space (PS) and returns a handle
to it. Calls to the Presentation Manager GPI (Graphics Programming Interface) functions - and
there are hundreds of these - will cause a graphics image to be painted on the screen. One of
the nice things about a Presentation Space is that the graphics image can be retained within it
and can be output on multiple Device Contexts - that is, a screen window, a printer, a plotter
and so on. In this case, the function call obtains a cached micro-PS which is smaller and faster,
but can only be used with one Device Context, in this case the screen window. One of the
parameters passed to the function is the address of a RECTL (rectangle) structure, rc, which it
obligingly fills in with the window coordinates.

Next, we put our message in the window:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 37

 WinDrawText(hps, -1, szMessage, &rc, CLR_NEUTRAL,
CLR_BACKGROUND,
 DT_CENTER | DT_VCENTER | DT_ERASERECT);

WinDrawText() will draw a single line of text in a rectangle in a PS. One of the parameters
passed is the address of the RECTL structure containing the rectangle coordinates which we
obtained from the WinBeginPaint() call. Others include a pointer to the message string,
foreground and background colours and flags to control centering and background erase.
Finally

 WinEndPaint(hps);

ends the painting and releases the PS. That's it.

There are lots of other ways of doing the same thing. For example, I could have used
WinFillRect() to paint the window white, and then GpiCharStringAt to output the
message to the window. And for good measure, I could have added some lines to query the
fonts on the system and changed to Times Rmn New, for example.

Of course, other messages also find their way to the winproc, but we don't care about them,
so we let the WinDefWindowProc() function call PM to perform default message
processing.

The complete application is listed below, and includes a few other little twists for error
handling.

Real-world apps are of course more complex, but they follow the same basic structure. Bear in
mind that because of the need to process messages in strict sequence as described above, the
winproc must complete processing one message before it can start another. For this reason,
time-consuming message-processing code in one winproc would freeze the system until it
was completed. To get around this problem, PM applications will typically start a thread to
perform time-consuming tasks such as loading files, while the main thread resumes message
processing. This option is not available in Windows, and is the reason why the hourglass icon
is so often displayed.

Having seen the amount of code required for this trivial application, you might be asking
yourself how much more is involved in a real application. The answer is, not as much as you
might think. And if you play with this program, you'll discover it does quite a lot for so few
lines of code: it can be moved around the screen, resized, maximized, minimized, sent to the
background, brought to the foreground and it has a system menu that allows you to do the
same things from the keyboard. It wouldn't be too difficult to turn it into a program that
displays a text file, for example. And from there, adding font support and other fancy
features is simply a matter of calling the appropriate functions.

And bear in mind that these functions and messages can do a lot. For example, call
WinCreateWindow() a few times to create some entry-field controls and you have an on-
screen form with text editing. Or call WinCreateWindow() to create an MLE window: this is
a Multiple Line Entryfield which provides all the capabilities of a simple text editor, including
cut, copy, paste, wordwrap, tab stops and undo.

One intriguing capability of PM is subclassing windows. This means redefining some of the
message-processing characteristics of a window or adding new capabilities while leaving
others unchanged. In essence, it means creating a new class of window which inherits some
of the properties of its 'parent', in line with the object-oriented programming concept of
inheritance.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 38

For a good example of this, take a look at the standard OS/2 system editor, E.EXE. This is
simply an MLE field which has been subclassed to add features such as font and color
selection, as well as file open and save. It contains embarrassingly few lines of code, although
I take my hat off to the programmer for being smart enough to do it this way!

Programming PM tends to be frustrating initially, but becomes more and more rewarding as
you master the various function calls and build yourself a library of reuseable routines.
Program design is quite different from conventional procedural code in languages such as C,
Pascal or dBASE, as there is no neat hierarchy of functions being called from menus and
submenus, nor is there a conventional hierarchical input-process-output organisation. A
programmer needs to be disciplined to employ good modular coding techniques, hide data
behind windows and avoid globals and statics like the plague.

But once the basic concepts are mastered, the result can be some very slick applications
indeed.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 39

Listing 1.

#define INCL_WIN /* This includes the window manager function
prototypes, */
 /* constants, etc. */
#include <os2.h> /* This is the main OS/2 definitions include file
*/

/* Prototype for the applications window procedure */
MRESULT EXPENTRY HelloWndProc(HWND hwnd, ULONG ulMessage, MPARAM mp1,
MPARAM mp2);

/* We need handles for both the frame window and the client window */
HWND hwndFrame;
HWND hwndClient;
/* Multiple windows can be maintained by one wndproc, so it's a
class, rather
than an object. The class is registered by name with the system */
static char szClassName[] = "Hello";

void main()
{
 HAB hab; /* Handle to an 'anchor block' */
 HMQ hmq; /* Handle to the input message queue */
 QMSG qmsg; /* Queue message structure to hold the incoming
message */
 ULONG ulFrameFlags; /* Frame creation flags */

 /* First, register with PM to get services. This returns a handle
to an anchor block */
 hab = WinInitialize(0);
 /* Next, create a message queue */
 hmq = WinCreateMsgQueue(hab, 0);
 /* Now register a window class for the application */
 if(!WinRegisterClass(hab,
 (PCH)szClassName,
 (PFNWP)HelloWndProc, /* Pointer to winproc function */
 CS_SYNCPAINT | CS_SIZEREDRAW, /* Flags to force redraw
when resized, etc. */
 0)) /* Number of bytes in 'window words' */
 DosExit(EXIT_PROCESS, 1);

 /* We want a regular window, but without a menu, accelerator
table and icon */
 ulFrameFlags = FCF_STANDARD & ~FCF_MENU & ~FCF_ACCELTABLE &
~FCF_ICON;

 /* Now go ahead and create the window */
 /* This function call returns the frame window handle and also
sets the client window handle */
 hwndFrame = WinCreateStdWindow(HWND_DESKTOP, /* Parent window
*/
 WS_VISIBLE, /* Window style visible */
 &ulFrameFlags, /* pointer to frame flags */
 (PCH)szClassName, /* Registered class name */
 "Hello", /* Text for title bar */
 WS_VISIBLE, /* Client window style */
 (HMODULE)NULL, /* Pointer to resource module */
 0, /* Resource ID within module */
 (HWND *)&hwndClient); /* Pointer to client window
handle */

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 40

 if(hwndFrame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

 /* Now loop around processing events. This is called the 'event
loop' */
 /* WinGetMsg returns FALSE when it gets the WM_QUIT message */
 while(WinGetMsg(hab, &qmsg, 0, 0, 0)) /* Get a message */
 WinDispatchMsg(hab, &qmsg); /* Dispatch it to the
window */

 /* Lastly, clean up */
 WinDestroyWindow(hwndFrame);
 WinDestroyMsgQueue(hmq);
 WinTerminate(hab);
}

/* The client window procedure. Gets called with message components
as parameters */
MRESULT EXPENTRY HelloWndProc(HWND hwnd, ULONG ulMessage, MPARAM mp1,
MPARAM mp2)
{
 HPS hps; /* Handle to a presentation space. This is where a
PM program 'draws' */
 RECTL rc; /* A rectangle structure, used to store the window
coordinates */
 CHAR szMessage[] = "Hello World!"; /* The message we'll
display */

 switch(ulMessage) {

 case WM_CREATE: /* process this message by returning FALSE.
This lets the */
 return (MRESULT)FALSE; /* system continue creating the
window */
 break;

 case WM_ERASEBACKGROUND: /* Let the frame window procedure
redraw the background */
 return (MRESULT)TRUE; /* in SYSCLR_WINDOW (usually white)
*/
 break;

 case WM_PAINT: /* The 'guts' of the application */
 hps = WinBeginPaint(hwnd, 0, &rc); /* Get a presentation
space */
 WinQueryWindowRect(hwnd, &rc);
 /* Draw the message, in rectangle rc, coloured CLR_NEUTRAL
(black) on
 CLR_BACKGROUND (white), centered, over-writing the entire
rectangle */
 WinDrawText(hps, -1, szMessage, &rc, CLR_NEUTRAL,
CLR_BACKGROUND,
 DT_CENTER | DT_VCENTER | DT_ERASERECT);
 WinEndPaint(hps); /* Release the presentation space */
 break;

 case WM_CLOSE: /* User chose CLOSE on system menu or double-
clicked */

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 41

 WinPostMsg(hwnd, WM_QUIT, 0, 0); /* So send back WM_QUIT,
causing */
 break; /* WinGetMsg to return FALSE and exit
the event loop */

 default: /* Let the system handle messages we don't */
 return WinDefWindowProc(hwnd, ulMessage, mp1, mp2);
 break;
 }
 return 0L;
}

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 42

Basic Window Concepts
In this section, I want to introduce more detail on some of the ideas previously introduced
and emphasise some basic concepts.

Window Procedure Structure

In almost all cases, the window procedure is basically a gigantic switch() statement. Not
always, however: in the simple example above, I could actually have written it as an if()
statement. This is because the default window procedure WinDefWindowProc() actually
provides exactly the behaviour I wrote for WM_CREATE, WM_ERASEBACKGROUND and
WM_CLOSE. So actually, I could have written:

if (ulMessage == WM_PAINT) {
 /* Do the painting here */
}
else return WinDefWindowProc(hwnd, ulMessage, mp1, mp2);

However, that wouldn't have been a particularly representative-looking window procedure,
which would have defeated the point of the exercise.

In many programs, we take advantage of the scoping features of the C language to define
variables in the stubs of the switch() statement:

case WM_PAINT: {
 HPS hps;
 RECTL rc;

 hps = WinBeginPaint(hwnd, 0, &rc);
 .
 /* (etc) */
 .
 WinEndPaint(hps);
 return (MRESULT) FALSE;
}

In more complex programs, the stubs of the switch() statement become quite long, and so to
avoid losing track of what belongs where, as well as indenting code off the right-hand side of
the page, we instead call functions:

case WM_PAINT:
 return paint(hwnd);

In this example, the only parameter passed to the paint() function is the hwnd. This is because
there is no point in passing the message - we already know it was WM_PAINT or we
wouldn't be calling the paint() function - and the WM_PAINT message passes no other
information in the MPARAMs.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 43

The paint() function would look like this:

MRESULT paint(HWND hwnd)
{
 HPS hps;
 RECTL rc;

 hps = WinBeginPaint(hwnd, 0, &rc);
 .
 /* (etc) */
 return (MRESULT) FALSE;
}

Notice that its return type is the same as the window procedure.

This layout helps to keep the window procedure down to a manageable size so that we can
see its overall logic, and all the messages handled, on a single page or screen.

More complex structures are possible, such as making message despatching be table-driven
or even implementing a finite-state machine, but these approaches are rarely justified.

Generally, a window procedure is prototyped in the following canonical form:

MRESULT EXPENTRY wpType(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM mp2)

Why is the window handle, HWND hwnd, passed in as a parameter? The answer is that a
single window procedure or winproc can operate on behalf of more than one window. For
example, look at your screen right now - there are several application windows open, each
with a sizeborder (visible part of the frame), titlebar, sysmenu, minmax and so on. Now, it
would be very inefficient to have a separate window procedure for every titlebar, so one
winproc does them all. However, when it is called, it needs to know which titlebar it should
change the text in, or highlight, or repaint, or whatever.

Inside the window procedure, you should read the variable hwnd as this window. It's a bit
like the this pointer in C++ programming, or like SOMself-> in SOM programming.

Window ID's and Window Handles

What is a handle? Good question - sometimes a handle is a pointer to some kind of control
structure. Sometimes it is an index into an array of pointers to control structures (that's what
DOS file handles are). But the correct answer to this question is 'who knows? - and better yet,
who cares?'.

Different systems (operating systems, language compilers and even hardware architectures)
implement handles in different ways, and we don't want to know what a handle is, as this
may trap us into writing non-portable code. However, there is one thing we can say for sure
about handles: they are run-time values which are allocated by the operating system from
internal tables or other structures. Right now, the frame window of my word processor has a
particular window handle value. If I exit it and restart it, it will have a different frame
window handle.

We cannot know handle values at compile time, so as we write our code we cannot simply
make them up. Handles are always assigned by the system, as the returned value of API's like
WinCreateWindow(), WinCreateStdWindow(), DosOpen() and others.

But how, then, can we distinguish between different windows? We know the client window
handle, and we know the frame window handle. But what if our application client window

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 44

then displays two static controls, two entryfields and three pushbuttons - how can we
manipulate those windows if we do not know their handles? Virtually all of the PM API's use
window handles to identify the control being dealt with.

The answer lies in window ID's. These are integral values, which we identify by symbolic
constants. For example, in an application shared header (.H) file, we might write:

#define IDEF_HEXVALUE 0x0501
#define IDEF_DECVALUE 0x0502
#define IDSS_HEXPROMPT 0x0503
#define IDSS_DECPROMPT 0x0504
#define IDPB_CONVERT 0x0505
#define IDPB_CLEAR 0x0506
#define IDPB_CANCEL 0x0507

In this case, I use a naming convention: ID (for ID, obviously); EF for entryfield, SS for static
control and PB for pushbutton, followed by the symbolic name of the control.

Now, when I want to get the window handle, I can call an API: WinWindowFromID(). This
API takes two arguments: the parent window handle and the window ID of the child. Since it
is generally used inside a window procedure to get the handle of an immediate child of this
window, the invocation would typically look like:

hwndEFHex = WinWindowFromID(hwnd, IDEF_HEXVALUE);

Remember, in a window procedure, hwnd is read as this window.

Another useful API is WinQueryWindow() which is used when you know the handle of one
window (like hwnd) and want the handle of a window which is related to it in some way -
like a parent, or owner, or previous or next in the screen Z-order. An example might be

hwndMyParent = WinQueryWindow(hwnd, QW_PARENT);

As a general rule, it is best to work out window handles from the window relationships at
runtime, rather than using global variables with names like hwndMainWindow or
hwndParentForm. This technique allows for better modularity and code reuse. Your goal
should be to write completely independent window classes which can be reused in different
applications.

Window Creation

It is important to realise that almost everything that exhibits any kind of behaviour in
Presentation Manager is a window. Pushbuttons, menus, containers, notebooks, static
controls, scrollbars, entryfields, MLE's, valuesets - they're all windows. They all have a
window procedure (or window class) provided in the operating system, and they are all
created in the same way.

Window creation is done by the WinCreateWindow() API. A typical call, showing the
parameters passed to it might be:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 45

hwndFrame = WinCreateWindow(
 HWND_DESKTOP, /* Parent window */
 WC_FRAME, /* Window Class */
 (PSZ)NULL, /* Window Text */
 0L, /* Window Styles */
 0, /* Bottom Left x */
 0, /* Bottom Left y */
 0, /* Width */
 0, /* Height */
 (HWND) 0, /* Owner window handle */
 HWND_TOP, /* Z-order */
 ID_MAIN, /* Window ID */
 &fcData, /* Creation Data */
 NULL); /* PRES PARAMS */

Running through this call from top to bottom:

The returned value of the call is the new window handle.

The first parameter is the handle of its parent. Windows are always positioned relative to the
botton-left corner (0,0) of their parents, and they are generally clipped to appear within their
parents, too. Parentage controls on-screen positioning and appearance.

The next parameter is the window class - in other words, what type of window this will be.

Next comes the window text, if there is any. Titlebars, static text controls and entryfields all
display text; some other classes do not.

Then come the window style bits, which have been discussed before.

The next four parameters set the window's initial position (x, y) and size (cx, cy). In the
example above, the position and size are all zero, and the window does not have style
WS_VISIBLE. This is because it is a frame window, and in the application logic, the next
thing that will happen is creation of the client window, and it it turn will create its children
(statics, entryfields, pushbuttons, etc). If this is done with the windows visible, the result will
be that the user will see the assembly of the application window and the resizing of the
controls, particularly on a slow machine. A better way to do things is to create and size the
windows from top to bottom, and then make them all visible. Voila!

Next we have the owner window handle. Ownership (and parentage) are discussed in a later
section - for now, suffice it to say that ownership is a way of specifying which window
coordinates and responds to the actions of this window. In this case, since this is a frame
window, it does not have - and does not need - an owner window.

Next, the Z-order. If left-right is the x dimension and up-down is y, then the Z-axis is front-to-
back overlaying of windows on the screen. Since this is a new application window which the
user has just launched, it had better be in front so the user can start using it immediately,
hence the value of HWND_TOP.

Next, the window ID, as discussed above.

Second-to-last, we pass in the address of a creation structure. Just what this structure is
depends upon the class of the window being created. In this case, it is a FRAMECDATA
structure, which allows us to specify the frame creation flags, the DLL module handle from
which to obtain resources and the default resource ID.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 46

Creation of a different window class would require a different creation structure. And if you
are creating your own window classes (and you are!), the creation data structure is a great
window of passing initialisation data, or parameters, to your window, rather like passing
parameters to a function. Remember, PM programming involves decomposition of the
application into windows, not functional decomposition.

Lastly, we pass in a pointer to a PRESPARAM structure. Presentation parameters allow the
programmer to over-ride the default colours and fonts for a window and the windows it
owns.

PM's Message-Passing Architecture

As we now know, Presentation Manager is a message-passing system. It is designed that way
in order to provide consistent type-ahead and a predictable sequence of processing for input.
Take a look at Figure 1.

Figure 1. Message flow through the Presentation Manager architecture

All input, whether from keyboard, mouse or other input devices such as touch-sensitive
screens and digitizers, is passed from the physical device driver to the PMDD.SYS device
driver, which converts it into a message. This includes mouse movement, mouse button
actions (down, up) and key events (key down, key up). These messages are placed on the
system input queue.

From there, the PM router places the messages on the corresponding application queues. For
simple applications, which are usually single-threaded, there is a single queue per
application. However, more sophisticated applications are often multithreaded, and in that
case will have a message queue for many of those threads (but not necessarily all - a thread
does not have to have a message queue and in some circumstances it is a positive drawback).

The application/thread message queues are not embedded in the system; rather they are
created in the anchor block for each thread, by calling the WinCreateMsgQueue() API.
Messages are picked off the queues by the threads calling WinGetMsg(), and usually (but not
always) then dispatched to the corresponding winproc by calling WinDispatchMsg().

It is important to distinguish conceptually between two types of messages:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 47

• the messages which are sent to your window procedure by the system, perhaps
as a result of the user manipulating a window or as a response to some system
event. These messages must be dealt with in your window procedure, and

• the messages which you send to yourself or other windows in order to make
them perform some function.

A good example might be the WM_QUIT and WM_CLOSE messages, which often cause
confusion for novice PM programmers. WM_CLOSE is an example of the first type of message:
it is sent by the system (actually, the frame window) when the user double-clicks on the
system menu or otherwise closes the window. In response to this message, a typical strategy
is to use the WinMessageBox() API to ask the user if he really wants to quit or wants to save
work, and then perform termination processing. This processing will usually end with the
winproc posting WM_QUIT back to itself in order to terminate the event loop. The confusion
arises because, if WM_CLOSE is not explicitly handled, it passes through the default stub and is
dealt with by WinDefWindowProc(), which posts WM_QUIT back to the window anyway.

Packer & Cracker Macros

A window procedure is called by the PM Dispatcher to handle a message for a window, and
is passed four parameters: the window handle, the message itself, and two MPARAMs, which
contain message parameters. Just what these message parameters represent depends upon
the message. In some circumstances, an MPARAM might contain a pointer to a structure, at
other times it might contain a window handle, the index of an item in a listbox, two unsigned
shorts which represent indexes, window ID's or even four unsigned char fields which are
bitfields containing status information.

We need some way of pulling apart an MPARAM. Furthermore, it is unwise to simply attack
the MPARAM by left- or right-shifting and ANDing to mask out the bits we want - this
approach will fail when we port our code to other architectures, due to variations in word
size, little- or big-endedness of the processor and other factors.

For this reason, the header files - actually, PMWIN.H - provide a number of macros which
will implement the desired functionality on different platforms. These macros are commonly
known as the 'packer and cracker' macros.

First, the crackers. Inside a winproc, you are passed two MPARAMs and need to pull them
apart. The macros which do that are:

PVOIDFROMMP(mp)
HWNDFROMMP(mp)
CHAR1FROMMP(mp)
CHAR2FROMMP(mp)
CHAR3FROMMP(mp)
CHAR4FROMMP(mp)
SHORT1FROMMP(mp)
SHORT2FROMMP(mp)
LONGFROMMP(mp)

So, for example, in processing a WM_COMMAND message, you wanto to know what the menu
choice is. The online help tells you that mp1 contains a USHORT which is the command, so to
extract it, you could write

usMenuChoice = SHORT1FROMMP(mp1);

Then you might want to know whether it was produced by a menuitem, a pushbutton or an
accelerator table. This information is in short 1 of mp2, so

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 48

usCmdSrc = SHORT1FROMMP(mp2);

gets that information. Or suppose you receive a WM_CONTROL message in a dialog. You need
to work out, first what control it came from, and then, what the event was. The window ID of
the control is in short 1 of mp1, while the notification code that tells you what happened is in
short 2 of mp1. Thus:

case WM_COMMAND: {
 switch(SHORT1FROMMP(mp1)) { /* Identify the control */
 case IDEF_TITLE:
 switch (SHORT2FROMMP(mp1)) {
 case EN_KILLFOCUS: // User moved off control, read it
 .
 break;
 case EN_CHANGED: // Field is dirty
 .
 break;
 }
 case IDEF_FIRST:
 switch (SHORT2FROMMP(mp1)) {
 case EN_KILLFOCUS: // User moved off control, read it
 .
 break;
 case EN_CHANGED: // Field is dirty
 .
 break;
 }
 }
}

In this case, I've chosen to switch on the control ID first, and then the notification code. But if
you have lots of identical controls - e.g. a form with lots of entryfields, all with identical
behaviour, you may rearrange the logic to switch on the notification code, and then switch on
the control ID or use it as an index into an array of structures which represent the data behind
the form.

There's another set of crackers which are useful. These are used when you send a message to
another window and want to make sense of the returned value, which is an MRESULT
(message result):

PVOIDFROMMR(mr)
SHORT1FROMMR(mr)
SHORT2FROMMR(mr)
LONGFROMMR(mr)

For example, suppose you have written a window class which plots items at certain x/y
coordinates, and you have defined a message to which the window responds with the x and y
coordinates, given the item number:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 49

MRESULT coord;
USHORT itemnumber;
for(itemnumber = 0; itemnumber < 5; itemnumber++) {
 coord = WinSendMsg(hwndGraph, UM_QUERYCOORDS, itemnumber, 0L);
 x[itemnumber] = SHORT1FROMMR(coord);
 y[itemnumber] = SHORT2FROMMR(coord);
}

Now, to the packers. How could the window procedure in this example have packed the x
and y coordinates into a single returned value? The packer macros which generate a message
result are:

MRFROMP(p)
MRFROMSHORT(s)
MRFROM2SHORT(s1, s2)
MRFROMLONG(l)

So, in the code for this hypothetical window class, the UM_QUERYCOORDS message
processing stub would end with:

 return MRFROM2SHORT(x,y);
 break;

Similarly, there are packers for assembling MPARAMs:

MPFROMP(p)
MPFROMHWND(hwnd)
MPFROMCHAR(ch)
MPFROMSHORT(s)
MPFROM2SHORT(s1, s2)
MPFROMSH2CH(s, uch1, uch2)
MPFROMLONG(l)

Common Useful Messages

WM_CREATE

WM_DESTROY

WM_QUIT

WM_PAINT

WM_COMMAND

WM_CONTROL

WM_SIZE

WM_CHAR

The WM_CHAR message is used to send a keystroke to a window. Notice that this is quite an
unusual circumstance in most business applications, as generally the client window owns a
number of entryfields and similar controls and one of these has focus and receives keystrokes
so that the client window procedure never sees them. However, an entryfield will process

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 50

most keystrokes but not, for example, tab, backtab, enter and others. Internally, the entryfield
passes unprocessed WM_CHAR messages to WinDefWindowProc(), which will pass them to
the entryfield's owner, so that in this case, the client window will see these keystrokes as
WM_CHAR messages.

If the entryfield's parent is a dialog window, the dialog window procedure will automatically
(via WinDefDlgProc()) process the tab key by setting the keyboard focus to the next control
which has WS_TABSTOP windowstyle.

The system generates WM_CHAR messages for keyboard state changes, so that for a user
keystroke, at least two WM_CHAR messages will be generated: one for key down, and one for
key up. If the user holds the key down so that the key auto-repeats, then it will generate
multiple WM_CHAR messages for the key-down event, and if this occurs faster than the
thread can read the messages from its input queue, then the system will combine multiple
WM_CHAR messages into a single message with a count byte set to greater than one.

The WM_CHAR message is decoded by examining the status bits in short 1 of mp1

The simplest way to extract the various fields from the two MPARAMs of a WM_CHAR
message is to use the CHARMSG(&msg) macro. Warning: this macro relies for its operation on
the fact that the four parameters passed to a window procedure are adjacent to each other in a
certain order on the stack. This may change on other architectures, so flag any code that uses
this macro as a possible target for trouble when porting. Having said that, we were warned in
the days of OS/2 1.x 16-bit code that it could prove troublesome in future releases, yet we're
still using it in Warp.

The CHRMSG struct and the CHARMSG() macro are defined as follows (in PMWIN.H):

 typedef struct _CHARMSG /* charmsg */
 {
 USHORT fs; /* mp1 */
 UCHAR cRepeat;
 UCHAR scancode;
 USHORT chr; /* mp2 */
 USHORT vkey;
 } CHRMSG;
 typedef CHRMSG *PCHRMSG;

 #define CHARMSG(pmsg) \
 ((PCHRMSG)((PBYTE)pmsg + sizeof(MPARAM)))

Notice that the argument to the CHARMSG() macro is the address of the msg parameter
passed to the winproc. Here is an example of its use to ignore key releases:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 51

 case WM_CHAR:
 if(CHARMSG(&ulMessage)->fs & KC_KEYUP) // Ignore key releases
 return (MRESULT) FALSE;
 break;
 switch(CHARMSG(&ulMessage)->vkey) {
 case VK_TAB: // Move to next entryfield
 .
 break;
 case VK_BACKTAB: // Move to previous entryfield
 .
 break;
 }
 return (MRESULT) TRUE; // Indicate keystroke processed
 break;

This little fragment also shows the processing of virtual key codes. Virtual keys are the keys
on the PC keyboard that do not generate an ANSI (ASCII) code, such as F1 - F24, NumLock,
Insert, PageUp, SysRq and so on. The VK_ keys also include tab, backtab, Ctrl, shift, newline
and some others.

The CHARMSG(&msg)->fs status bits include KC_ALT (Alt key was pressed when the
message was generated), KC_SHIFT (Shift key was down), KC_CTRL (Ctrl key was down),
KC_CHAR (the message contains a valid character code, usually ASCII), KC_VIRTUALKEY
(message contains a valid virtual key code) and KC_TOGGLE (which toggles on and off for
keys like NumLock). Some of the other status bits are used in connection with composition of
characters with diacritical marks

Message Processing - Sending vs Posting

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 52

Menus
Usually the first capability we need to add to simple programs for user interaction is menu
support.

In a conventional procedural programming environment, using a language like xBase,
COBOL or whatever, we would code a simple full-screen menu like this:

main procedure:
 more = true
 do while more
 clear screen and display menu choices
 getkeystroke into choice
 select on choice
 case 1: call proc1
 case 2: call proc2
 case 3: call proc3
 case Q: more = false
 end select
 end do

or similar. Of course, any of the subprocedures 1, 2 or 3 could equally well display a menu in
the same manner, allowing for a more sophisticated tree of submenus.

The major problem with this scheme is that it is limiting for the user. At any moment, the user
can only choose from the menu that is before him. In effect, we are forcing the program logic
to restrict the choices available to the user, and the result is that the user feels the program is
not flexible enough, or not powerful enough. It is frustrating and not at all empowering.

In addition, the menus can take up quite a lot of screen area, and it becomes difficult to
display lots of options.

Under OS/2 Presentation Manager, menu display is quite different. The application contains
little, or more often, no code relating to menu display. Instead, all that is taken care of by
Presentation Manager internally. The application only contains code to respond to the user's
menu selections.

What Is A Menu?

A menu is actually a tree of menus, submenus and related menuitems, and each menuitem is
actually a window. The menuitems are not normally visible; in fact the system hides them
until they are needed by making them children of HWND_OBJECT, and then reveals them by
switching the parent to be the menu.

The simplest way to create a menu is by defining it as an application resource. This is done by
writing a resource compiler script and running it through the resource compiler, RC.EXE.

The Resouce Compiler, and its script language, introduces a new set of required skills for the
Presentation Manager programmer. It is no longer enough to write procedural code; now the
application consists of a tree of related components, mostly windows, which are displayed
on-screen, with procedural code to define their interactions. However, the simplest way to
create the components is not through C code, but instead by loading them as resources.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 53

In short, you could think of the C code you write as being the verbs of your program, and the
resources as the nouns. The resources are entities such as windows, dialogs, strings and
messages, bitmaps, icons and menus. The C code breathes life into them.

There are a number of benefits to this separation. The first is that it takes a lot of the effort out
of coding. Laying out a complex dialog, for example, will involve a lot of code to create the
various windows and controls and lay them out correctly, whereas the Dialog Editor and
Resource Compiler reduce this to a kindergarten painting-by-numbers exercise.

Secondly, the elimination of all button text, menu text and other strings from the executable
source makes the program easier to port for international markets. Separate resource files can
be generated for English, French, German, Italian and other national-language versions, and
the executables generated without altering the source code. Unfortunately, support for
double-byte character sets is not so easy to add, so that the vast S.E. Asian markets might as
well be on the moon as far as many developers are concerned.

Resource Compiler Files

Here is a simple example of a resource script which includes an icon, four bitmaps and a
menu:

#define INCL_WIN
#include <os2.h>

#include "draw.h"

ICON ID_DRAW "draw.ico"

BITMAP ID_BRUSH brush.bmp
BITMAP ID_LINE line.bmp
BITMAP ID_SQUARE square.bmp
BITMAP ID_CIRCLE circle.bmp

MENU ID_DRAW PRELOAD
BEGIN
 SUBMENU "~File", IDM_FILE
 BEGIN
 MENUITEM "~New", IDM_NEW
 MENUITEM "~Open", IDM_OPEN
 MENUITEM "~Save", IDM_SAVE
 MENUITEM "Save ~As", IDM_SAVEAS
 MENUITEM SEPARATOR
 MENUITEM "E~xit", IDM_EXIT
 END
 SUBMENU "~Edit", IDM_EDIT
 BEGIN
 MENUITEM "~Cut", IDM_CUT
 MENUITEM "C~opy", IDM_COPY
 MENUITEM "~Paste", IDM_PASTE
 END
END

The first thing you will notice is that it starts by #defining INCL_WIN and then
#includes <os2.h>. This is because the resource compiler is able to apply certain
menuitem styles and attributes (as well as more general window styles), and these are
defined as constants in the system header files, so that if they are not included, the result will
be a compile-time error.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 54

In addition, it #includes the project header file, in this case "draw.h". This is because the
menuitems are actually windows, and their window ID is sent as part of the WM_COMMAND
message which signals to the window procedure that a menuitem has been chosen. In
response to the WM_COMMAND message, the window procedure runs a switch statement, in
which each case stub corresponds to a menuitem ID. Since the two files must agree on what
the ID's are, the ID's are defined in a shared header file, and included into the various source
(.C, .RC) files which need it. Here is an extract from the .H file:

#define WC_DRAW "Draw"
#define WC_CANVAS "Canvas"

#define APP_TITLE "Draw"

#define ID_DRAW 0x0100

#define IDM_FILE 0x0101
#define IDM_OPEN 0x0102
#define IDM_NEW 0x0103
#define IDM_SAVE 0x0104
#define IDM_SAVEAS 0x0105
#define IDM_EDIT 0x0106
#define IDM_CUT 0x0107
#define IDM_COPY 0x0108
#define IDM_PASTE 0x0109
#define IDM_EXIT 0x010A

#define ID_TOOLBAR 0x0200

#define ID_BRUSH 0x0001
#define ID_LINE 0x0002
#define ID_SQUARE 0x0003
#define ID_CIRCLE 0x0004

Notice that window (and menu) ID's are simply integers, but we give them symbolic names
to make it easier to keep track of them in our code. Now, returning to the resource compiler
script, it starts with:

MENU ID_DRAW PRELOAD

This line starts the menu definition, and specifies the menu ID. This is important. When the
application frame window is created, if the Frame Creation Flags specify FCF_MENU then the
WinCreateStdWindow() function call will create a frame and that frame will want to load
the application menu from the resources, but the question is - which menu? There can be
several menus in the resources. Of course, they are distinguished by their ID's, and the
answer is that the ID of the default menu must match the resource ID passed as an argument
to WinCreateStdWindow(). A further complication is that the Frame Creation Flags may
also call for a default icon and a default accelerator table, and these must all have the same
ID.

Following the menu ID, we can specify some options, such as when we want the menu
loaded; this can be PRELOAD (load when the application starts) or LOADONCALL (load
when the application calls WinLoadMenu() - this is the default).

The menu definition itself is enclosed within the following BEGIN and END statements. If you
prefer, these can be replaced by curly braces.

Now comes the definition of each submenu. Each SUBMENU statement is followed by the
submenu text, in quotes, and the submenu ID. A tilde (~) before a character causes it to be

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 55

underscored, and the user can now select that submenu by using the Alt key and appropriate
character. This works for menuitems also.

The submenu definition is also bracketed by BEGIN and END statements. Submenus can
include other submenus - the menus just cascade out sideways when selected, but sooner or
later you must end up with some MENUITEM statements. The basic reason for this is that only
when the user finally selects a MENUITEM does the system send a WM_COMMAND message to
the owner window, thereby causing something to happen. Your application window
procedures will never see a WM_COMMAND message with a window ID for the MENU or
SUBMENU items as they can never be selected by the user (actually, other messages relating to
advanced menu operation are sent by the menu and submenus, but they are dealt with in the
course OS291 - Advanced OS/2 Warp & Presentation Manager Programming).

Each menuitem, and also each submenu, can additionally have menuitem styles applied to it.
These allow the programmer to define a menuitem as being a bitmap rather than text, as
being a help menuitem (so it sends WM_HELP rather than WM_COMMAND), as being a system
menu item (generates WM_SYSCOMMAND) and so on. In addition, menuitems can also have
menuitem attributes, such as being checked, being disabled and so on. (These are also dealt
with in OS291 - Advanced OS/2 Warp & PM Programming).

Dealing with Menu Messages

When the menu is displayed at runtime, it is managed entirely by Presentation Manager.
Some messages relating to advanced options are sent to your application's client window
procedure, but if you choose to ignore them WinDefWindowProc() will automatically
provide default behaviour. The only message you need deal with is WM_COMMAND, which
indicates that the user has made a menu selection.

The WM_COMMAND message has three arguments which are packed into its two MPARAMs,
and we must use the cracker macros, or casting, to extract them. The most important is the
window ID (a.k.a. the menuitem ID) of the menuitem selected, which is short 1 in mp1. For
most applications, that is all we care about. We don't care whether the user used the mouse or
keyboard, or used a Ctrl-key accelerator. So, the WM_COMMAND processing typically looks like
this:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 56

switch(msg) {
 case WM_CREATE: /* Blah blah */
 return (MRESULT) FALSE;
 break;
 /* Other message cases go here */
 case WM_COMMAND:
 switch(SHORT1FROMMP(mp1)) {
 case IDM_NEW:
 /* do the 'new document' stuff */
 return (MRESULT) FALSE;
 break;
 case IDM_OPEN:
 /* display file open dialog and load file */
 return (MRESULT) FALSE;
 break;
 case IDM_SAVE:
 /* save the file */
 return (MRESULT) FALSE;
 break;
 case IDM_SAVEAS:
 /* display 'save as' dialog and save file */
 return (MRESULT) FALSE;
 break;
 /* Other menuitem cases go here */
 default:
 /* Don't know what's going on here */
 WinMessageBox(HWND_DESKTOP, HWND_DESKTOP, "Unexpected
command", "Error!", 100, MB_EXCLAMATION);
 return (MRESULT) FALSE;
 break;
 }
 /* Other message cases go here */
 default:
 return WinDefWindowProc(hwnd, msg, mp1, mp2);
 break;
}

Notice that there is no other hierarchical organization of the menu-processing code in the
application. Essentially, any menu selection can occur at any time, so if certain selections are
inappropriate, it is up to the programmer to disable them (using menuitem attribute
MIA_DISABLED).

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 57

Window Words
Beginning Presentation Manager programmers often wonder about the terminology and style
of PM programs. Why, for example, does a program have to register a window class before
creating a standard window? You often read comments about creating a window using the
window's registered class - what does that mean? And does this relate to the use of classes in
object-oriented programming?

It's possible to create quite complex programs in PM without dealing with these problems
directly. However, sooner or later, they have to be confronted. And that's what this article is
about.

As you run multiple applications under PM, you'll notice that certain window components
appear all over your screen. There are multiple title bars, for example, and
minimise/maximise icons, and menu bars, and system menu icons. At any one time, a dialog
window might display multiple text entry fields, multiple list boxes and multiple push
buttons.

Think about this for a moment. As you may know, the different window components and
controls in OS/2 are in fact windows in their own right (unlike in Windows!). That means
that they must have their own winprocs, right?

Now, take a look at some of your own winprocs. Or, take a look at some of the examples in
the Petzold book. Notice anything about the variables used in the winproc code? A lot of
them are static, which means that the winproc is not reentrant - it can only be used by a single
window. For example, suppose the window colour was stored in a static variable in the
winproc (as it is in some of Petzold's code). Then, if two windows of the same type were
created, they would both have the same colour, and if it was changed for one, it would also
change for the other - which may or may not be the intended effect. Much worse effects are
likely - they're called bugs.

Clearly, the various different title bars currently on your screen have different coordinates,
sizes, colours, text and so on. Those attributes cannot be stored in static variables in the
winproc, so where are they? The answer lies in window words, also known as instance data.

The WinRegisterClass() function call takes five parameters: the anchor block handle,
pointer to the window class name, pointer to the winproc, a class style and the number of
bytes of storage reserved in each window of this class. It is this last parameter that is of most
interest to us.

Once the window class has been registered, whenever a program calls
WinCreateStdWindow() to create a new window of this class, the system creates the
appropriate data structure internally which represents this window. Just what is in this
structure is private to the system, and writing applications which depend upon a knowledge
of the structure is asking for trouble in the form of future portability problems. However, an
application is able to access any of the following fields:

pointer to window-class data structure WinQueryClassName(),
WinQueryClassInfo()

pointer to window procedure WinQueryWindowPtr(hwnd,QWP_PFNWP)
parent-window handle WinQueryWindow(hwnd,QW_PARENT,flock)
owner-window handle WinQueryWindow(hwnd,QW_OWNER, flock)
owner of this window's frame

 WinQueryWindow(hwnd,QW_FRAMEOWNER,
flock)

handle of the topmost child window WinQueryWindow(hwnd,QW_TOP,flock)
handle of the bottom child window WinQueryWindow(hwnd,QW_BOTTOM,flock)

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 58

handle of the next sibling window WinQueryWindow(hwnd,QW_NEXTTOP,flock)
handle of the previous sibling window WinQueryWindow(hwnd,QW_PREVTOP,flock)
handle of the window below in z order WinQueryWindow(hwnd,QW_NEXT,flock)
handle of the window above in z order WinQueryWindow(hwnd,QW_PREV,flock)
window size and position (as _SWP structure) WinQueryWindowPos()
window size and position (as _RECTL structure) WinQueryWindowRect
lock count WinQueryLockCount()
window style WinQueryWindowULong(hwnd,QWL_STYLE)
update-region handle WinQueryUpdateRect(),

WinQueryUpdateRegion()

The flock parameter is required in OS/2 1.x (where it is ignored in 1.2 and later), but is not
required in OS/2 2.x.

When a non-zero value is specified for that last parameter to WinRegisterClass() subsequent
calls to WinCreateWindow or WinCreateStdWindow will not only create the usual window
structure, but also append the specified number of bytes into the end of the structure, for use
by the application programmer. Notice that this data structure is created for each window.

Setting and Querying Values

The programmer can now use these bytes - which are referred to as window words - to store
value that are associated with that particular window in the window structure. The winproc
relates to a class, while the window structure relates to an object. Speaking informally, we'd
say that we are storing values in the window.

The window words can be used to store 16-bit USHORT values, 32-bit ULONGs or a 32-bit
far pointer, with the following functions:

BOOL WinSetWindowUShort(HWND hwnd, SHORT index, USHORT us);
BOOL WinSetWindowULong(HWND hwnd, SHORT index, ULONG ul);
BOOL WinSetWindowPtr(HWND hwnd, SHORT index, PVOID p);

In each case, index is the zero-based byte offset of the desired data item. For example, if there
are three pointers stored in the window words, then the offset of the third pointer would be
eight. Values can be retrieved with the following functions:

USHORT WinQueryWindowUShort(HWND hwnd, SHORT index);
ULONG WinQueryWindowULong(HWND hwnd, SHORT index);
PVOID WinQueryWindowPtr(HWND hwnd, SHORT index);

Now we have a way of storing values which are specific to a window, rather than the class.
The most common technique used is to create a data structure which corresponds to the
window, and then store a pointer to that structure in the window words.

Parents and Children

An earlier chapter showed a simple sample program which prints "Hello World!" in a single
window. Let's expand that example to include two child windows which each contain
different messages:

The major structural difference is that we will now need two winprocs: one for the main
client window area, as before, plus a new one for the child windows. Notice, one winproc for
two child windows, even though they will contain two different messages.

Other things to look for will include the amended WinRegisterClass() function call for the
child window class, with the last parameter being the number of bytes of window words to
be reserved.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 59

#define INCL_WIN /* This includes the window manager function
prototypes, */
 /* constants, etc. */
#include <os2.h> /* This is the main OS/2 definitions include file
*/

Now we declare the window procedures: a main winproc and a winproc for the children:

/* Prototype for the applications window procedure */
MRESULT EXPENTRY HelloWndProc(HWND hwnd, USHORT usMessage, MPARAM
mp1, MPARAM mp2);
MRESULT EXPENTRY HelloChildWndProc(HWND hwnd, USHORT usMessage,
MPARAM mp1, MPARAM mp2);

Next, more handles for the various parent and child frame and client windows:

/* We need handles for both the frame window and the client window */
HWND hwndParentFrame, hwndParentClient;
HWND hwndC1Frame, hwndC2Frame, hwndC1Client, hwndC2Client;

And for the strings to be displayed:

char *pszParentString = "I'm a main window!";
char *pszC1String = "I'm child number one!";
char *pszC2String = "I'm the second child!";

An extra classname will be needed, so we declare a static char for it as well as the main
classname:

/* Multiple windows can be maintained by one wndproc, so it's a
class, rather
than an object. The class is registered by name with the system */
static char szClassName[] = "Hello";
static char szChildClassName[] = "HelloChild";

Our program starts off in exactly the same way as the single window version:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 60

void main(int argc, char **argv)
{
 HAB hab; /* Handle to an 'anchor block' */
 HMQ hmq; /* Handle to the input message queue */
 QMSG qmsg; /* Queue message structure to hold the incoming
message */
 ULONG ulFrameFlags; /* Frame creation flags */

 /* First, register with PM to get services. This returns a handle
to an anchor block */
 hab = WinInitialize(0);
 /* Next, create a message queue */
 hmq = WinCreateMsgQueue(hab, 0);
 /* Now register a window class for the application parent window
*/
 if(!WinRegisterClass(hab,
 (PCH)szClassName,
 (PFNWP)HelloWndProc, /* Pointer to winproc function */
 CS_SYNCPAINT | CS_SIZEREDRAW, /* Flags to force redraw
when resized, etc. */
 sizeof(char *))) /* Number of bytes in
'window words' */
 DosExit(EXIT_PROCESS, 1);

Until we register a class for the child windows. Note the use of the sizeof operator; a more
complex program might use sizeof(struct _MyWindowData *) or
sizeof(PPLANWINDATA) or some such construction:

 /* Now register a window class for the application child windows
*/
 if(!WinRegisterClass(hab,
 (PCH)szChildClassName,
 (PFNWP)HelloChildWndProc, /* Pointer to winproc function
*/
 /* CS_SYNCPAINT | */ CS_SIZEREDRAW, /* Flags to force
redraw when resized, etc. */
 sizeof(char *))) /* Number of bytes in
'window words' */
 DosExit(EXIT_PROCESS, 1);

Again, the code looks the same as the single-windowed version:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 61

 /* We want a regular window, but without a menu, accelerator
table and icon */
 ulFrameFlags = FCF_STANDARD & ~FCF_MENU & ~FCF_ACCELTABLE &
~FCF_ICON;

 /* Now go ahead and create the window */
 /* This function call returns the frame window handle and also
sets the client window handle */
 hwndParentFrame = WinCreateStdWindow(HWND_DESKTOP, /* Parent
window */
 WS_VISIBLE, /* Window style visible */
 &ulFrameFlags, /* pointer to frame flags */
 (PCH)szClassName, /* Registered class name */
 "Hello", /* Text for title bar */
 WS_VISIBLE, /* Client window style */
 (HMODULE)NULL, /* Pointer to resource module */
 0, /* Resource ID within module */
 (HWND FAR *)&hwndParentClient); /* Pointer to
client window handle */

 if(hwndParentFrame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

Until we come to the creation of the child windows:

 hwndC1Frame = WinCreateStdWindow(hwndParentClient,
 WS_VISIBLE,
 &ulFrameFlags,
 (PCH)szChildClassName,
 "Hello Child 1",
 WS_VISIBLE,
 (HMODULE)NULL,
 0,
 (HWND FAR *)&hwndC1Client);
 if(hwndC1Frame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

 hwndC2Frame = WinCreateStdWindow(hwndParentClient,
 WS_VISIBLE,
 &ulFrameFlags,
 (PCH)szChildClassName,
 "Hello Child 2",
 WS_VISIBLE,
 (HMODULE)NULL,
 0,
 (HWND FAR *)&hwndC2Client);
 if(hwndC2Frame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

An alternative design approach I might have used - and do on more complex applications -
would be to put the code for the child window creation into the main window's winproc, in
the processing of the WM_CREATE message.

Now, we set the window words to point to the appropriate strings:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 62

 WinSetWindowPtr(hwndParentClient, QWL_USER, pszParentString);
 WinSetWindowPtr(hwndC1Client, QWL_USER, pszC1String);
 WinSetWindowPtr(hwndC2Client, QWL_USER, pszC2String);

It's business as usual from this point, at least until the winproc for the child windows:

 /* Now loop around processing events. This is called the 'event
loop' */
 /* WinGetMsg returns FALSE when it gets the WM_QUIT message */
 while(WinGetMsg(hab, &qmsg, 0, 0, 0)) /* Get a message */
 WinDispatchMsg(hab, &qmsg); /* Dispatch it to the
window */

 /* Lastly, clean up */
 WinDestroyWindow(hwndParentFrame);
 WinDestroyMsgQueue(hmq);
 WinTerminate(hab);
}

/* The client window procedure. Gets called with message components
as parameters */
MRESULT EXPENTRY HelloWndProc(HWND hwnd, USHORT usMessage, MPARAM
mp1, MPARAM mp2)
{
 HPS hps; /* Handle to a presentation space. This is where a
PM program 'draws' */
 RECTL rc; /* A rectangle structure, used to store the window
coordinates */

 switch(usMessage) {

 case WM_CREATE: /* process this message by returning FALSE.
This lets the */
 return (MRESULT)FALSE; /* system continue creating the
window */
 break;

 case WM_ERASEBACKGROUND: /* Let the frame window procedure
redraw the background */
 return (MRESULT)TRUE; /* in SYSCLR_WINDOW (usually white)
*/
 break;

The processing of the WM_PAINT message has to be modified slightly from the single-window
version of the program, in two important respects. First, the address of the string to be
printed is no longer a static variable (though it could be in this example: there is only one
parent window) and so we must use the WinQueryWindowPtr() function call to extract it
from the window words.

The second modification is less obvious. When one of the child windows is moved or
minimised, thereby revealing a previously hidden part of the parent window, the system will
invalidate that part (or parts) of the window and send WM_PAINT messages to the window.
By default, when we call WinBeginPaint(), the micro-cached presentation space returned
is the size of just the invalidated region. If we went ahead and called WinDrawText() to
paint some text, it would appear centred in the invalidated region where the child window
used to be, rather than centred in the client window area.

For this simple application, the extra overhead of totally repainting the client window area is
neither here nor there, and an extra call to WinQueryWindowRect() fixes the problem:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 63

 case WM_PAINT: /* The 'guts' of the application */
 hps = WinBeginPaint(hwnd, 0, NULL); /* Get a presentation
space */
 WinQueryWindowRect(hwnd, &rc); /* Get the window
dimensions */
 /* Draw the message, in rectangle rc, coloured CLR_NEUTRAL
(black) on
 CLR_BACKGROUND (white), centered, over-writing the entire
rectangle */
 WinDrawText(hps, -1, WinQueryWindowPtr(hwnd, QWL_USER), &rc,
CLR_NEUTRAL, CLR_BACKGROUND,
 DT_CENTER | DT_VCENTER | DT_ERASERECT);
 WinEndPaint(hps); /* Release the presentation space */
 break;

 case WM_CLOSE: /* User chose CLOSE on system menu or double-
clicked */
 WinPostMsg(hwnd, WM_QUIT, 0, 0); /* So send back WM_QUIT,
causing */
 break; /* WinGetMsg to return FALSE and exit
the event loop */

 default: /* Let the system handle messages we don't */
 return WinDefWindowProc(hwnd, usMessage, mp1, mp2);
 break;
 }
 return 0L;
}

The child window is basically the same, except for changed WM_CLOSE processing to destroy
just this window, rather than exit the application.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 64

/* The child window procedure. Gets called with message components as
parameters */
MRESULT EXPENTRY HelloChildWndProc(HWND hwnd, USHORT usMessage,
MPARAM mp1, MPARAM mp2)
{
 HPS hps; /* Handle to a presentation space. This is where a
PM program 'draws' */
 RECTL rc; /* A rectangle structure, used to store the window
coordinates */

 switch(usMessage) {

 case WM_CREATE: /* process this message by returning FALSE.
This lets the */
 return (MRESULT)FALSE; /* system continue creating the
window */
 break;

 case WM_ERASEBACKGROUND: /* Let the frame window procedure
redraw the background */
 return (MRESULT)TRUE; /* in SYSCLR_WINDOW (usually white)
*/
 break;

 case WM_PAINT: /* The 'guts' of the application */
 hps = WinBeginPaint(hwnd, 0, &rc); /* Get a presentation
space */
 WinQueryWindowRect(hwnd, &rc); /* Get the window
dimensions */
 /* Draw the message, in rectangle rc, coloured CLR_NEUTRAL
(black) on
 CLR_BACKGROUND (white), centered, over-writing the entire
rectangle */
 WinDrawText(hps, -1, WinQueryWindowPtr(hwnd, QWL_USER), &rc,
CLR_NEUTRAL, CLR_BACKGROUND,
 DT_CENTER | DT_VCENTER | DT_ERASERECT);
 WinEndPaint(hps); /* Release the presentation space */
 break;

 case WM_CLOSE: /* User chose CLOSE on system menu or double-
clicked */
 WinDestroyWindow(WinQueryWindow(hwnd, QW_PARENT));
 break;

 default: /* Let the system handle messages we don't */
 return WinDefWindowProc(hwnd, usMessage, mp1, mp2);
 break;
 }
 return 0L;
}

Using Data Structures

More complex examples typically define data structures to store the data items represented
by the window. In some cases, these are simple flat structures or possible arrays of structures;
in others, the initial data structure contains the head of a linked list of data items, or possible
a more complex structure such as a tree.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 65

Here's a more complex example, taken from a real-world application (a flight planning
program). Among the other data structures associated with a window is this one, defined in
the application's main header file:

typedef struct _DATAVIEW {
 NPDATAFILE npDataFile;
 struct _waypoint *buffer;
 LONG recno;
 BOOL RecordChanged;
 struct field *CurrentField;
 struct _DATAVIEW *npdataviewNext;
} DATAVIEW;

Because the memory for this structure is allocated and freed as required, we will almost
always refer to it via a pointer, and so a pointer to a dataview structure is typedef'ed:

typedef DATAVIEW NEAR *NPDATAVIEW;

(The near pointer distinction obviously does not apply in OS/2 2.x). Now, rather than keep
typing out the WinQueryWindowPtr() function call longhand again and again, we use a
macro to extract a near pointer to the DATAVIEW structure from the client window, given its
handle:

#define NPDATAVIEWFROMCLIENT(hwndClient)
((NPDATAVIEW)WinQueryWindowPtr(\
 hwndClient, QWS_USER))

The window procedure for one of the windows which uses this data structure looks very
familiar (I won't show it all here - it's much too large!). The basic structure is to extract the
pointer to the data structure right at the beginning of the function, since almost every
message to be processed will involve the data in the underlying structure:

MRESULT EXPENTRY FplFormWndProc(HWND hwnd, USHORT usMessage, MPARAM
mp1, MPARAM mp2)
{

 HPS hps;
 RECTL rcl;

 int field_id;
 NPDATAFILE pdf;
 NPDATAVIEW pdv;

 pdf = NPDATAFILEFROMCLIENT(hwnd);
 pdv = NPDATAVIEWFROMCLIENT(hwnd);

Later in the winproc, the variables are accessed by dereferencing through the appropriate
pointer. For example, to skip to the next record in the nav waypoint database:

 pdv->recno++;

and so on.

Window words are an extremely powerful tool; almost any non-trivial program will require
the ability to display multiple windows of a single class and keep their data separate yet
associated with the appropriate display window. Even when writing almost trivial programs
these days, I've taken to defining the appropriate data structures and setting up pointers to
them in a window. Subsequent program enhancements become much easier!

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 66

Parent - Child Relationships and Window Ownership
In developing Presentation Manager applications, the internal consistency of the system is of
enormous value in simplifying the programmer's task. Remember, in PM, almost everything
is a window. What the user conceives of as the application's window is, in fact, multiple
windows:

Title Bar
System Menu Icon
Minimize & Maximize Buttons
Application Menu Bar
Scroll Bars
Frame Window (and border)
Client Window

As the user interacts with the application, and new 'windows' appear, they also really are
windows:

Dialog windows
Static text (yes, this really is a window!)
Text-entry fields
List boxes
Combo boxes (a text-entry field and list box combined)
Multiple-line entry fields
Pushbuttons
Checkbuttons
Radio buttons

OS/2 2.0 introduced even more sophisticated window types, which add value for both the
programmer and the user:

Slider controls
Value set controls
Notebook controls
Container controls

All windows behave in the same way: they are created using WinCreateWindow() (or
WinCreateStdWindow()), and their interaction is managed using messages or functions
such as WinSetWindowPos(), WinSetWindowText(), and so on. This makes Presentation
Manager much more powerful, yet easier to work with, than competing GUI's.

The Parent/Child Relationship

The various windows which make up an application - and indeed, make up the entire system
as the user currently sees it on his desktop - are linked together in parent/child relationships.

All family trees have to start somewhere, and in the case of Presentation Manager, this is with
the desktop itself. The desktop is a window which occupies the full screen, and which
remains in the background, with application windows partially obscuring it. On some
systems, the desktop is a flat grey; on others, the user has personalized it with a bitmap.

On OS/2 2.X, the desktop is actually replaced with a folder called the Desktop Folder, and
you might notice as the system boots up that after the initial device driver messages a plain

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 67

grey screen appears, with the mouse pointer in the center. This is the desktop window. A few
seconds later, a zoom effect can be seen as the Desktop Folder is opened in front of it.

So, OS/2 2.1 has two desktops, but from a PM programmer's standpoint, you can ignore the
Desktop Folder; it will keep out of our way and we deal only with the original desktop.

If you want to see the desktop window, press Ctrl-Esc to bring up the window list, then press
the Shift key as you double-click on the entry for 'Desktop - Icon View' (Shift double-click on
a Window List entry will minimise that window - it should be disabled for the desktop, but as
you can see, it is not!). You can restore the desktop folder window by Ctrl-double-clicking on
its Window List entry.

Windows have handles and ID's; you can refer to the desktop with the manifest constant
handle HWND_DESKTOP. Window ID's are compile-time constants defined by the
programmer, usually in a header file. Window handles are more useful, but are run-time
values allocated by Presentation Manager. However, given a window's ID, and the handle of
its parent, you can get its handle by using:

hwndTarget = WinWindowFromID(hwndParent, IDTarget);

Usually, it is the parent window that needs to know the handles of its children so it can send
messages to them, and of course, within a window procedure, that window handle is hwnd.
And of course, the programmer knows the ID, since he allocated it.

You should also check out WinQueryWindow(), which is used to find the window handle of
a given window's parent, owner, previous, next and so on.

Generally, application frame windows are top-level children of the desktop. So, when you
call WinCreateWindow() or WinCreateStdWindow() to create an application frame, the
first parameter - the parent window handle - will be HWND_DESKTOP.

Obviously, any window can have multiple children, which will be called siblings. However,
each window can have only one parent.

Affected Attributes

Position

The significance of the parent/child relationship is that a child window is positioned relative
to its parent. For example, if the x,y coordinates of a child are 50,100, then the child will be
drawn 50 pixels to the right and 100 pixels up from the bottom left-hand corner of its parent.
If the parent window is moved, then the child moves along with it. So an application window
(a top-level window) will be drawn relative to the bottom left-hand corner of the screen
(HWND_DESKTOP).

Z-order

Sibling windows can overlap; for example, multiple application windows are often visible
simultaneously. The overlapping gives the appearance of depth to the screen. This is referred
to as the Z-order; each window has a Z-order position which controls where it lies in the
layers of windows. The parent window is always at the bottom of the Z-order stack; in other
words, children always appear in front of their parents.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 68

Clipping

However, a child is clipped to its parent. That is, no part of the child - even though it may be
larger than the parent, or positioned so that it extends beyond the edges of the parent - will be
drawn outside the parent window. This helps to avoid confusion for a user. Generally, all the
windows that relate to an application will appear within that application's top-level window,
and if a window appears outside that area, then it must be related to some other application.

Of course, it is possible to create dialog windows and other windows which are not clipped to
the application's window; just create the window with HWND_DESKTOP as its parent. But
care should be taken to ensure that it is clear from context that the window belongs to your
application, just to avoid user confusion.

A window can also be prevented from painting over its children by specifying a window
style of WS_CLIPCHILDREN, and from painting over its siblings by specifying a window
style of WS_CLIPSIBLINGS. These styles clip the window to its children or siblings.

Destruction

Pretty clearly, a child cannot be redrawn relative to a window that no longer exists. Unlike
real life, children of PM windows do not outlive their parents. As a convenience to the
programmer, when the system destroys a window, it also destroys all its children.

Window Ownership

Window ownership is a completely separate issue from parentage. Often, the parent of a
window will also be its owner - but not always.

Ownership relates particularly to a category of windows called control windows. These are
the windows that the user interacts with, such as scrollbars, list boxes, text entry fields and so
on. These windows mostly take care of their own behaviour; typing text into a text entry field
is dealt with by the entryfield code, for example. However, user activity should often be
notified back to the application's main window code, in order to control application-specific
behaviour - for example, if you press a scroll bar: the scroll bar will update its own
appearance automatically, but then must notify its owner, in order to have the application
scroll down a document.

When a significant event occurs to a control window, it will send a WM_CONTROL message
to its owner. The mp1 parameter will contain a notification code which specifies the event.
Here's a subtle complication of PM programming: some events are considered important
enough to have their own messages, while others just fall under WM_COMMAND (menu
choices and button selections) or WM_CONTROL (events from other window types).

Another subtle point to bear in mind: frame windows have special default behaviour. When a
scroll bar, which is owned by a frame window, sends a WM_CONTROL message to that
frame to signal some user-initiated event, the frame window has no way of dealing with
message. How does the frame know how to scroll your application's window? So instead of
doing anything, it passes the message down to the window which has window ID
FID_CLIENT, which is, of course, your application's client window. And it does know how to
scroll the user's view of the underlying document - or at least, it will, once you've written that
part of the code!

In general, messages sent to a frame window, which don't make sense to a frame, are
redirected to the appropriate child window. For example, if you send
WM_SETWINDOWPARAMS (or use WinSetWindowText()) to set the text in a frame
window, it will simply pass that on to the title bar window, changing its text.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 69

Generally, client windows don't have an owner. There is no point in telling anyone else when
something happens to a client window - the entire purpose of client windows is to implement
application-specific behaviour. And this is why control windows send WM_CONTROL
messages to their owners - control windows are, by design, very general and do not
implement application-specific behaviour, so they have to send a message to a window that
can. So owner windows are usually client or dialog windows, and control windows are
owned.

Dealing with Multiple Windows

Most real-world applications have multiple levels of windows. Even the simplest application
which produces what the user sees as only one window, really has two levels: the frame and
the client.

More complex applications will have other children, such as dialog windows and they in turn
will have children in the form of control windows such as entry fields, MLE's, push-buttons
and others. The most sophisticated applications will typically have a top-level application
window and one or more document windows, allowing the user to deal with several tasks
simultaneously.

In this example program, I show one technique for dealing with multiple windows. This is an
extension of an earlier program which displayed text in two child windows - in this case, the
problem is one of ensuring that the windows are correctly sized and that menu choices go to
the correct child window.

In this example, the parentage tree looks like this:

hwndParentFrame
 |
 FID_SYSMENU
 |
 FID_TITLEBAR
 |
 FID_MINMAX
 |
 FID_MENU
 |
 hwndParentClient
 |
 hwndC1Frame (FID_SYSMENU, FID_TITLEBAR, FID_MINMAX)
 | |
 | hwndC1Client
 |
 hwndC2Frame (FID_SYSMENU, FID_TITLEBAR, FID_MINMAX)
 |
 hwndC2Client

Note that each window may be known by its handle at run-time (like hwndParent and
hwndClient), while others are not (FID_MENU, FID_TITLEBAR) and the handles for these
must be found out using the WinWindowFromID() function call.

Notice in the diagram above, that the application's menu is owned by hwndParentFrame,
which obligingly relays menu messages down to hwndParentClient - yet many of the menu
choices in an application are intended to affect a child window. How can this be dealt with?

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 70

The basic philosophy which I subscribe to is that a window should know only what is
necessary to get its job done. In essence, this is the idea of encapsulation. So, in this example,
the child windows should process messages that set the foreground and background colors,
set the quote, etc. The parent window should only do those things that it has to do (in this
case, exit) and every other WM_COMMAND (or other appropriate) message should be passed
down the window tree to the active child window.

The code that does that (the WM_COMMAND processing in the parent window) looks like
this:

 case WM_COMMAND:
 switch (SHORT1FROMMP(mp1)) {
 case IDM_EXIT:
 WinPostMsg(hwnd, WM_QUIT, mp1, mp2);
 break;
 default:
 WinSendMsg(hwndActive, WM_COMMAND, mp1, mp2);
 break;
 }
 break;

Notice that the default behaviour, for any unidentified menu choice, is to pass it down to the
active child window. This means that other menu choices can be added to them, without
rewriting the parent window procedure. However, remember that the menu resource is
attached to the parent window, so that the isolation is less complete than one might desire.

How do we know which is the active window? There are two basic techniques. The simplest
is to ask the system, using the WinQueryActiveWindow() function. This being a
demonstration program, I've shown another technique, which is to process the WM_ACTIVATE
messages received by the child windows, and use them to set a global hwndActive variable.
While this works, it uses a global variable, something I prefer to avoid, and it introduces yet
another interdependence between parent and child. Generally, I'd use
WinQueryActiveWindow().

Yet another problem relates to the initial sizing and placement of the child windows. If the
programmer does nothing expilicitly about this, the system will draw them in the lower left
corner of their parent, and too big to be useable.

If you create both the parent and children windows in the main() function, then you can
query the parent's size and then use WinSetWindowPos() to position the children.
However, it's my philosophy that the main function should create only the top-level window,
and then it, in turn, should create the children. Otherwise, how will you handle the File New
menu option?

But if you create a child window from within the WM_CREATE processing of its parent, you'll
find that you can't size it properly. The reason is that WM_CREATE is sent to the window as it is
being created and before it is visible, so that a WinQueryWindowRect() call at this time
returns a zero size. Using the RECTL from this to size the children results in them having to
size.

One fix is to process the WM_SIZE message in the parent wndproc and use it to
WinSetWindowPos() the children. The trouble with this is that every time you resize the
parent, it will rearrange the children, which may not be what the user wants. It's a pity the
system does not provide a message which is sent to windows just before they are made
visible, in order to initially size any children.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 71

Failing the provision of a system message, you can send your own. In this little application,
the last thing the parent's WM_CREATE processing does is to WinPostMsg() a user-defined
message to itself. This message won't get read until the window has been created, at which
point it uses this message to initially size the child windows.

There are a number of other interesting techniques in this little program, building upon the
window words explained in a previous article. For the novice PM programmer, it can serve as
the basis of some further exercises, such as adding menu options to allow creation of more
child windows (an array of hwnd's? a linked list?), tiling and cascading of the children and
full compliance with the Microsoft MDI (Multiple Document Interface) or IBM CUA '91.
Other interesting exercises can include allowing the children to add their own options to the
parent menu.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 72

/* Program demonstrates use of window words, sending menu messages to
 submenus, use of stringtables
 Version 1.0 for OS/2 2.1
*/
#define INCL_WIN /* This includes the window manager function
prototypes, */
 /* constants, etc. */
#include <os2.h> /* This is the main OS/2 definitions include file
*/
#include "malloc.h"
#include <string.h>

#include "quotes.h"

/* Prototype for the applications window procedure */
MRESULT EXPENTRY QuotesWndProc(HWND hwnd, ULONG usMessage, MPARAM
mp1, MPARAM mp2);
MRESULT EXPENTRY QuotesChildWndProc(HWND hwnd, ULONG usMessage,
MPARAM mp1, MPARAM mp2);

/* We need handles for both the frame window and the client window */
HWND hwndParentFrame, hwndParentClient;
HWND hwndC1Frame, hwndC2Frame, hwndC1Client, hwndC2Client;
HWND hwndActive;

/* Multiple windows can be maintained by one wndproc, so it's a
class, rather
than an object. The class is registered by name with the system */
static char szClassName[] = "Quotes";
static char szChildClassName[] = "QuotesChild";

HAB hab; /* Handle to an 'anchor block' */

void main(int argc, char **argv)
{
 HMQ hmq; /* Handle to the input message queue */
 QMSG qmsg; /* Queue message structure to hold the incoming
message */
 ULONG ulFrameFlags; /* Frame creation flags */

 /* First, register with PM to get services. This returns a handle
to an anchor block */
 hab = WinInitialize(0);
 /* Next, create a message queue */
 hmq = WinCreateMsgQueue(hab, 0);
 /* Now register a window class for the application parent window
*/
 if(!WinRegisterClass(hab,
 (PCH)szClassName,
 (PFNWP)QuotesWndProc, /* Pointer to winproc function */
 CS_SYNCPAINT | CS_SIZEREDRAW, /* Flags to force redraw
when resized, etc. */
 sizeof(char *))) /* Number of bytes in
'window words' */
 DosExit(EXIT_PROCESS, 1);

 /* Now register a window class for the application child windows
*/
 if(!WinRegisterClass(hab,
 (PCH)szChildClassName,

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 73

 (PFNWP)QuotesChildWndProc, /* Pointer to winproc function
*/
 CS_SYNCPAINT | CS_SIZEREDRAW, /* Flags to force redraw
when resized, etc. */
 sizeof(PSTRCLR))) /* Number of bytes in
'window words' */
 DosExit(EXIT_PROCESS, 1);

 /* We want a regular window, but without an accelerator table and
icon */
 ulFrameFlags = FCF_STANDARD & ~FCF_ACCELTABLE & ~FCF_ICON;

 /* Now go ahead and create the window */
 /* This function call returns the frame window handle and also
sets the client window handle */
 hwndParentFrame = WinCreateStdWindow(HWND_DESKTOP, /* Parent
window */
 WS_VISIBLE, /* Window style visible */
 &ulFrameFlags, /* pointer to frame flags */
 (PCH)szClassName, /* Registered class name */
 "Quotable Quotes", /* Text for title bar
*/
 WS_VISIBLE, /* Client window style */
 (HMODULE)NULL, /* Pointer to resource module */
 ID_quotes, /* Resource ID within
module */
 (HWND *)&hwndParentClient); /* Pointer to client
window handle */

 if(hwndParentFrame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

 /* Now loop around processing events. This is called the 'event
loop' */
 /* WinGetMsg returns FALSE when it gets the WM_QUIT message */
 while(WinGetMsg(hab, &qmsg, 0, 0, 0)) /* Get a message */
 WinDispatchMsg(hab, &qmsg); /* Dispatch it to the
window */

 /* Lastly, clean up */
 WinDestroyWindow(hwndParentFrame);
 WinDestroyMsgQueue(hmq);
 WinTerminate(hab);
}

/* The client window procedure. Gets called with message components
as parameters */
MRESULT EXPENTRY QuotesWndProc(HWND hwnd, ULONG usMessage, MPARAM
mp1, MPARAM mp2)
{
 HPS hps; /* Handle to a presentation space. This is where
a PM program 'draws' */
 RECTL rc; /* A rectangle structure, used to store the
window coordinates */
 ULONG ulFrameFlags = FCF_STANDARD & ~FCF_MENU & ~FCF_ICON &
~FCF_ACCELTABLE; /* Frame creation flags */
 USHORT cxNew, cyNew;

 switch(usMessage) {

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 74

 case WM_CREATE: /* process this message by returning
FALSE. */

 hwndC1Frame = WinCreateStdWindow(hwnd,
 WS_VISIBLE,
 &ulFrameFlags,
 (PCH)szChildClassName,
 " Child 1",
 WS_VISIBLE,
 (HMODULE)NULL,
 0,
 (HWND *)&hwndC1Client);
 if(hwndC1Frame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

 hwndC2Frame = WinCreateStdWindow(hwnd,
 WS_VISIBLE,
 &ulFrameFlags,
 (PCH)szChildClassName,
 " Child 2",
 WS_VISIBLE,
 (HMODULE)NULL,
 0,
 (HWND *)&hwndC2Client);
 if(hwndC2Frame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

 WinSetWindowPtr(hwnd,0, "This is the background window");

 WinPostMsg(hwnd, UM_INITSIZE, 0L, 0L);

 return (MRESULT)FALSE;
 break;

 case UM_INITSIZE:

 WinQueryWindowRect(hwnd, &rc);
 cxNew = rc.xRight;
 cyNew = rc.yTop;

 WinSetWindowPos(hwndC1Frame,
 HWND_TOP,
 cxNew / 16,
 cyNew / 8,
 cxNew * 3 / 4,
 cyNew * 3 / 4,
 SWP_SIZE | SWP_MOVE);

 WinSetWindowPos(hwndC2Frame,
 HWND_TOP,
 cxNew/8,
 cyNew/16,
 cxNew * 3 / 4,
 cyNew * 3 / 4,

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 75

 SWP_SIZE | SWP_MOVE);
 break;

 case WM_COMMAND:
 switch (SHORT1FROMMP(mp1)) {
 case IDM_EXIT:
 WinPostMsg(hwnd, WM_QUIT, mp1, mp2);
 break;
 default:
 WinSendMsg(hwndActive, WM_COMMAND, mp1, mp2);
 break;
 }
 break;

 case WM_ERASEBACKGROUND: /* Let the frame window procedure
redraw the background */
 return (MRESULT)TRUE; /* in SYSCLR_WINDOW (usually
white) */
 break;

 case WM_PAINT: /* The 'guts' of the application */
 hps = WinBeginPaint(hwnd, 0, NULL); /* Get a
presentation space */
 WinQueryWindowRect(hwnd, &rc); /* Get the window
dimensions */
 /* Draw the message, in rectangle rc, coloured
CLR_NEUTRAL (black) on
 CLR_BACKGROUND (white), centered, over-writing the entire
rectangle */
 WinDrawText(hps, -1, WinQueryWindowPtr(hwnd, QWL_USER),
&rc, CLR_NEUTRAL, CLR_BACKGROUND,
 DT_CENTER | DT_VCENTER | DT_ERASERECT);
 WinEndPaint(hps); /* Release the presentation
space */
 break;

 case WM_DESTROY:
 WinDestroyWindow(hwndC1Frame);
 WinDestroyWindow(hwndC2Frame);
 return (MRESULT) 0;
 break;

 case WM_CLOSE: /* User chose CLOSE on system menu or double-
clicked */
 WinPostMsg(hwnd, WM_QUIT, 0, 0); /* So send back
WM_QUIT, causing */
 break; /* WinGetMsg to return FALSE and exit
the event loop */

 default: /* Let the system handle messages we don't */
 return WinDefWindowProc(hwnd, usMessage, mp1, mp2);
 break;
 }
 return 0L;
}

/* The child window procedure. Gets called with message components as
parameters */
MRESULT EXPENTRY QuotesChildWndProc(HWND hwnd, ULONG usMessage,
MPARAM mp1, MPARAM mp2)
{

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 76

 HPS hps; /* Handle to a presentation space. This is where a
PM program 'draws' */
 RECTL rc; /* A rectangle structure, used to store the window
coordinates */
 PSTRCLR p;

 p = PSCFROMHWND(hwnd);

 switch(usMessage) {

 case WM_CREATE: /* process this message by returning
FALSE. This lets the */
 p = (PSTRCLR) malloc(sizeof(STRCLR));
 WinSetWindowPtr(hwnd,0,(PVOID)p);
 p->ulFColor = CLR_NEUTRAL;
 p->ulBColor = CLR_BACKGROUND;
 strcpy(p->quote, "A suitable quote goes here");
 return (MRESULT)FALSE; /* system continue creating the
window */
 break;

 case WM_DESTROY:
 free(p);
 return (MRESULT) 0;

 case WM_ACTIVATE:
 if (SHORT1FROMMP(mp1) == TRUE)
 hwndActive = hwnd;
 break;

 case WM_COMMAND:
 switch(SHORT1FROMMP(mp1)) {
 case IDM_TWAIN:
 WinLoadString(hab, (HMODULE)0, IDS_TWAIN, MAXSTR,
p->quote);
 break;
 case IDM_IBSEN:
 WinLoadString(hab, (HMODULE)0, IDS_IBSEN, MAXSTR,
p->quote);
 break;
 case IDM_GATES:
 WinLoadString(hab, (HMODULE)0, IDS_GATES, MAXSTR,
p->quote);
 break;
 case IDMF_RED: p->ulFColor = CLR_RED; break;
 case IDMF_GREEN: p->ulFColor = CLR_GREEN; break;
 case IDMF_BLUE: p->ulFColor = CLR_BLUE; break;
 case IDMB_RED: p->ulBColor = CLR_RED; break;
 case IDMB_GREEN: p->ulBColor = CLR_GREEN; break;
 case IDMB_BLUE: p->ulBColor = CLR_BLUE; break;
 }
 WinInvalidateRect(hwnd, NULL, 0);
 return (MRESULT)0;
 break;

 case WM_ERASEBACKGROUND: /*Don't let the frame window
procedure redraw the background */
 WinInvalidateRect(hwnd, NULL, FALSE);
 return (MRESULT)FALSE; /* in SYSCLR_WINDOW (usually
white) */

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 77

 break;

 case WM_PAINT: /* The 'guts' of the application */
 hps = WinBeginPaint(hwnd, 0, &rc); /* Get a
presentation space */
 WinQueryWindowRect(hwnd, &rc); /* Get the window
dimensions */
 /* Draw the message, in rectangle rc, coloured
CLR_NEUTRAL (black) on
 CLR_BACKGROUND (white), centered, over-writing the entire
rectangle */
 WinDrawText(hps, -1, p->quote, &rc, p->ulFColor, p-
>ulBColor,
 DT_CENTER | DT_VCENTER | DT_ERASERECT);
 WinEndPaint(hps); /* Release the presentation
space */
 break;

 case WM_CLOSE: /* User chose CLOSE on system menu or double-
clicked */
 WinDestroyWindow(WinQueryWindow(hwnd, QW_PARENT));
 break; /* WinGetMsg to return FALSE and exit
the event loop */

 default: /* Let the system handle messages we don't */
 return WinDefWindowProc(hwnd, usMessage, mp1, mp2);
 break;
 }
 return 0L;
}

/* quotes.rc */

#include "quotes.h"

MENU ID_quotes PRELOAD
BEGIN
 SUBMENU "~File", IDM_FILE
 BEGIN
 MENUITEM "~New" , IDM_NEW
 MENUITEM "~Open...", IDM_OPEN
 MENUITEM SEPARATOR
 MENUITEM "E~xit", IDM_EXIT
 END
 SUBMENU "~Options", IDM_OPTIONS
 BEGIN
 SUBMENU "~Text", IDM_TEXT
 BEGIN
 MENUITEM "~Twain", IDM_TWAIN
 MENUITEM "~Ibsen", IDM_IBSEN
 MENUITEM "~Gates", IDM_GATES
 END
 SUBMENU "~Color", IDM_COLOR
 BEGIN
 SUBMENU "~Foreground", IDM_FOREGROUND
 BEGIN
 MENUITEM "~Red", IDMF_RED
 MENUITEM "~Green", IDMF_GREEN
 MENUITEM "~Blue", IDMF_BLUE
 END
 SUBMENU "~Background", IDM_BACKGROUND

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 78

 BEGIN
 MENUITEM "~Red", IDMB_RED
 MENUITEM "~Green", IDMB_GREEN
 MENUITEM "~Blue", IDMB_BLUE
 END
 END
 END
END

STRINGTABLE
BEGIN
 IDS_TWAIN "Thunder is good, thunder is impressive; but it is
lightning that does the work."
 IDS_IBSEN "I hold that man is in the right who is most closely in
league with the future."
 IDS_GATES "After mid-1990, we will ship PM applications at the
same time or before Windows versions."
END

/* QUOTES.H */

#define MAXSTR 128

#define ID_quotes 0x0100
#define IDM_FILE 0x0101
#define IDM_NEW 0x0102
#define IDM_OPEN 0x0103
#define IDM_EXIT 0x0104
#define IDM_OPTIONS 0x0105
#define IDM_TEXT 0x0106
#define IDM_TWAIN 0x0107
#define IDM_IBSEN 0x0108
#define IDM_GATES 0x0109

#define IDS_TWAIN IDM_TWAIN + 256
#define IDS_IBSEN IDM_IBSEN + 256
#define IDS_GATES IDM_GATES + 256

#define IDM_COLOR 0x0300
#define IDM_FOREGROUND 0x0301
#define IDMF_RED 0x0302
#define IDMF_GREEN 0x0303
#define IDMF_BLUE 0x0304
#define IDM_BACKGROUND 0x0305
#define IDMB_RED 0x0306
#define IDMB_GREEN 0x0307
#define IDMB_BLUE 0x0308

#define UM_INITSIZE WM_USER

typedef struct _STRCLR {
 ULONG ulFColor;
 ULONG ulBColor;
 char quote[MAXSTR];
} STRCLR;

typedef STRCLR *PSTRCLR;

#define PSCFROMHWND(hwnd) ((PSTRCLR)WinQueryWindowPtr(hwnd,0))

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 79

Control Windows
These are windows which the user uses to control an application. In the same way as the
dashboard of a car is covered with controls, so the windows of an application also comprises
many controls.

Scrollbars

Scrollbars are very common in applications such as word processors and spreadsheets, which
often have to display a document which is larger than their window area, and therefore treat
the window as a scrollable viewport on a larger document.

Many scrollbars are created automatically as part of the frame/client combination, using
WinCreateStdWindow() with the appropriate frame creation flags - FCF_VERTSCROLL for a
vertical scroll bar and FCF_HORZSCROLL for a horizontal one. Alternatively, the application
may not display scroll bars until the programmer determines that they are necessary, in
which case, the WinCreateWindow() function call will be used to create them.

Buttons

There are several types of buttons in Presentation Manager:

Push Buttons

Radio Buttons

Check Buttons

Entry Fields

Entryfield controls are used for free-format text entry. They support drag-through selection,
insertion, deletion, cutting, pasting and destructive backspacing. This relives the programmer
of considerable work. However, they have no application-driven editing or masking facilities,
and this must be added by the application programmer, typically by subclassing.

Multiple Line Entry Fields

The MLE implements a full text editor 'in a box'. It supports word-wrapping, display of text
in any font, clipboard operations, word counting and many other operations.

List Boxes

Used to display a list for user selection, these controls are usually vertical, although
horizontal list boxes are possible.

Combo Boxes

A combo box is a single control which coordinates the behaviour of both an entry-field and a
listbox.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 80

Static Controls

This is a control which displays some static text or a bitmap. It does not generate any
WM_CONTROL messages, but its text can be set with the WinSetWindowText() function
call.

Notebooks

The notebook control is one of the advanced CUA '91 controls which offers a very
considerable amount of functionality. Essentially, the notebook coordinates a number of
dialog windows using tabs to 'turn' the pages of a notebook, and is extremely useful for
reducing complex dialogs to manageable proportions.

Containers

The container control is the most powerful control in OS/2 2.1. It is seen by users as the
'folder' object in the Workplace Shell, and can display data records in iconic, detailed, list, tree
or free-format views. Programming containers could be the subject of a course all by itself.

Value Sets

The value-set control provides an array of icons or text buttons ideal for use as a 'toolbar' on a
window. Bear in mind, however, that the value-set 'buttons' are not real buttons in that only
the first click on them will register.

The last three controls are beyond the scope of this course; however, they are covered in the
Advanced OS/2 Programming course.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 81

Business Forms in OS/2
While there are several books around on OS/2 programming, they tend to concentrate on the
creation of dialog windows, graphics and games. Nowhere can you find some example code
that shows how to create, for example, a simple data entry screen.

Now, it must be said from the outset that if all you want to do is to create a simple business
application that will support data entry,some decision making and some report printing,
there are much easier ways to do it. Easel, Application Manager, Case:PM and ObjectVision
are all tools which make life easier for the application programmer and can create generally-
useful PM applications at much lower cost than individually-tailored, made-to-measure and
hand-stitched C code.

Nonetheless, there are times when you just have to to some low-level coding because that's
the way the rest of the application is written and your data entry routine must integrate
seamlessly, for example. Plus, the techniques used are of value in other situations. So, with no
further apology, here's some code examples that can be used for forms handling.

The example code which follows is a stripped-down version of a full application which is in
production. Many features have been removed to protect the copyright-holder (?) but the
code as shown will compile and work. For example, the full version is an MDI-compliant
version with multiple windows using window words, which tends to obscure the points we
are trying to examine here. It contains the minimum necessary to demonstrate a working
model.

The features and techniques demonstrated here include:

• A realistically-complex winproc

• Use of child windows (in this case, entry-field controls)

• Dialog windows

• Use of control windows (in this case, buttons and scroll-bar controls)

This application really centres on the definition of a data structure which contains
information about a field on the screen. A linked list of such structures constitutes a form.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 82

struct field {
 int id; /* Field id on screen */
 int row; /* Screen coordinates */
 int col;
 int prow; /* Prompt coordinates */
 int pcol;
 SHORT type; /* SQL Server types */
 int length; /* Field length */
 char *name; /* Field name - will double as prompt for simple
apps */
 unsigned char attrib; /* Screen attributes, not currently used
in PM */
 int colsize; /* SQL Server variable size */
 void *value; /* SQL Server value, as SQL Server type */
 char *content; /* Current record value, as char string */
 char *prompt;
 HWND hwndParent; /* Handle of parent client window */
 HWND hwndPrompt; /* Handle of prompt static control */
 HWND hwndField; /* Handle to entry control */
 struct field *prev; /* Pointers to previous and next fields */
 struct field *next; /* used for cursor movement in form-filling
*/
} ;

The structure contains some fields which are not relevant to the current application, because
it is also used by full-screen OS/2 VIO and DOS versions of the forms subsystem. Some
datatypes are defined using SQL Server data types, because the forms subsystem is also used
in developing SQL Server applications. Notice the use of both forward and backwards
pointers to adjacent fields, in order to support both tabbing and back-tabbing between fields.

A static array of field structures is declared just prior to the main routine; this provides the
field coordinates and prompts for the actual form used in the application. Also included into
the man file is the file FORMS.H, which declares the above field structure and also provides
prototypes of the various functions used to manipulate and display the form.

The main routine is relatively straightforward and uninteresting. It creates a frame window
with the standard controls plus a vertical scroll bar:

 ULONG ctldata = FCF_STANDARD | FCF_VERTSCROLL;

 hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
 WS_VISIBLE | FS_STANDARD,
 &ctldata,
 (PCH)szClassName,
 "Flight Plan Navaid Maintenance",
 0L,
 (HMODULE)0,
 ID_RESOURCE,
 &hwndClient);

then proceeds to calculate the number of entries in its default database file:

 NumWaypoints = statbuf.st_size / sizeof(struct _waypoint);

The vertical scroll bar will be used to scroll through the data file, so the next task is to scale
the scroll bar so that it reaches the bottom of its shaft just as the user reaches the last record in
the database:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 83

 hwndScroll = WinWindowFromID(WinQueryWindow(hwndClient,
QW_PARENT), FID_VERTSCROLL);

 WinSendMsg(hwndScroll, SBM_SETSCROLLBAR,
 MPFROM2SHORT(0,0),
 MPFROM2SHORT(0,NumWaypoints-1));

Notice the use of WinQueryWindow() to get the handle of the client window's parent (in this
case it is the frame) and then WinWindowFromID() to get the handle of the standard vertical
scroll bar. We then send a message to set the scroll bar scale.

After opening the database, the next task is to read the first record and display it:

 FpReadRecord(0L);

 f[0].value = buffer.name;
 f[1].value = buffer.state;
 f[2].value = buffer.abbrev;
 f[3].value = buffer.lat;
 f[4].value = buffer.lng;
 f[5].value = buffer.elev;
 f[6].value = buffer.atis;
 f[7].value = buffer.afis;
 f[8].value = buffer.pal;
 f[9].value = buffer.vor;
 f[10].value = buffer.dmei;
 f[11].value = buffer.dme;
 f[12].value = buffer.ndb;
 f[13].value = buffer.bcst;
 f[14].value = buffer.rwinfo;

 disp_form(f);
 fv2c(f);
 refreshform(f);
 RecordChanged = FALSE;

This forms technique distinguishes between the value of a field (be it int, float, char or
whatever) and the content, expressed as a character string. So, after initialising the field value
pointers to point to the fields of the database buffer, disp_form() displays the form and
fv2c() fills in the contents fields with the string equivalents of the values. Finally
refreshform() copies the contents into the entry fields on screen. From this point onwards,
the main routine is straightforward. Things start to get insteresting again with the winproc.

Keyboard Handling

First, we take care of keyboard handling. We ignore key releases; we are interested only in
key depressions. Next, we deal with the Up-arrow, Down-arrown, PgUp and PgDn keys by
simply sending them to the scroll bar, which conveniently responds to these messages as well
as its own.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 84

 case WM_CHAR:
 if(CHARMSG(&usMessage)->fs & KC_KEYUP)
 break;;
 switch(CHARMSG(&usMessage)->vkey) {
 case VK_UP:
 case VK_DOWN:
 case VK_PAGEUP:
 case VK_PAGEDOWN:
 return WinSendMsg(hwndScroll, usMessage, mp1, mp2);
 break;

The tab and back-tab keys are dealt with by setting the current_field pointer to the next or
previous field and setting the keyboard focus to that field. Finally we return true to indicate
that the keystroke has been dealt with.

 case VK_TAB:
 if(current_field->next != NULL)
 current_field = current_field->next;
 WinSetFocus(HWND_DESKTOP,current_field->hwndField);
 break;
 case VK_BACKTAB:
 if(current_field->prev != NULL)
 current_field = current_field->prev;
 WinSetFocus(HWND_DESKTOP, current_field->hwndField);
 break;
 }
 return (MRESULT)TRUE;

Next, we process the various menu command (WM_COMMAND) messages. Most are pretty
straightforward, until we get to the Search... dialog box:

 case IDM_SEARCH:
 if(RecordChanged) {
 FpAskAndWrite(hwnd);
 /* Dealt with the problem, record now OK */
 RecordChanged = FALSE;
 }
 WinDlgBox(HWND_DESKTOP, hwndFrame, Search, (HMODULE)0,
 ID_SRCH_DLG, NULL);
 FpReadRecord(recno);
 WinSendMsg(hwndScroll, SBM_SETPOS,
 MPFROMSHORT((USHORT) recno),
 MPFROMSHORT(0));
 fv2c(f);
 refreshform(f);
 RecordChanged = FALSE;
 break;

Dialog Window

If the current record has been changed, we invoke the FpAskAndWrite routine which will
write the modified record out or abandon it. We then invoke a dialog window: the various
parameters to the WinDlgBox() call are

HWND_DESKTOP The parent of the dialog window; the window on top of
which and within which this window will be drawn

hwndFrame The owner of the dialog window; the window which will
receive notification messages from this window

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 85

Search The name (address) of the winproc for the dialog window

(HMODULE)0 Resource module handle; this dialog is a resource in the .EXE
file

ID_SRCH_DLG The ID of the search dialog template

NULL pointer to any data (structure) being passed to the dialog
window

The WinDlgBox() function does not return until the dialog window has been dismissed
with the WinDismissDlg() function. It then reads the new record, converts its value to
form contents, refreshes the form and sets the RecordChanged flag.

The WM_COMMAND:ID_PBABANDON message is sent if the user presses the "Abandon"
push-button while appending a record. It destroys the various pushbuttons currently on the
screen, and then rereads and redisplays the current record:

 case ID_PBABANDON:
 WinDestroyWindow(hwndButton1);
 WinDestroyWindow(hwndButton2);
 WinDestroyWindow(hwndButton3);
 FpReadRecord(recno);
 fv2c(f);
 refreshform(f);
 RecordChanged = FALSE;
 return(0L);
 break;

The various entry-field controls (i.e. text-entry fields) on the screen will send WM_CONTROL
messages to their owner (which is, of course, the main client window area). There are really
only two cases to consider: EN_SETFOCUS, which means the user has tabbed onto, or clicked
the mouse on, a new field, and EN_CHANGE, which means the user has typed something into
an entry-field control. In the former case, we extract the entry-field ID from the message and
divide by two to get the logical field ID (each entry field has a matching prompt field, which
is a static control), check we haven't gone out of bounds, and then set focus on the
appropriate field. For EN_CHANGE, we simply flag the record as dirty; it will get written out
(or not) by the FplAskAndWrite routine when we move off the field.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 86

 case WM_CONTROL:
 switch (SHORT2FROMMP(mp1)) {
 case EN_SETFOCUS: /* New field got focus */
 field_id = SHORT1FROMMP(mp1) / 2;
 if (field_id < current_field->id)
 while (field_id < current_field->id)
 current_field = current_field->prev;
 if (field_id > current_field->id)
 while (field_id > current_field->id)
 current_field = current_field->next;
 WinSetFocus(HWND_DESKTOP, current_field->hwndField);
 break;
 case EN_CHANGE:
 RecordChanged = TRUE;
 break;
 default:
 return WinDefWindowProc(hwnd, usMessage, mp1, mp2);
 }
 break;

The WM_PAINT message is processed by repainting the background and then redrawing the
form on top of it:

 case WM_PAINT:
 hps = WinBeginPaint(hwnd, NULL, &rcl);
 WinFillRect(hps, &rcl, CLR_WHITE);
 WinEndPaint(hps);

 WinQueryWindowRect(hwndClient,&ClientSize);
 SetFormPos(f);

 break;

Scroll Bars

Scroll bar controls are scaled with SBM_ messages, as we saw earlier, and they send
WM_VSCROLL (or WM_HSCROLL) messages to their owner windows. The second half of
the message's mp2 parameter contains the specific scroll-bar data, which is extracted using
the SHORT2FROMMP cracker macro. The result can be any of several values:

SB_LINEUP User clicked in the up-arrow

SB_LINEDOWN User clicked in the down-arrow

SB_PAGEUP User clicked in the top part of the scroll-bar shaft

SB_PAGEDOWN User clicked in the lower part of the scroll-bar shaft

SB_SLIDERTRACK User is dragging the slider. The application must be able to
redraw the window quickly in order to keep up with a
barrage of these messages. If it can't, then wait for a

SB_SLIDERPOSITION User released the slider after dragging it

SB_ENDSCROLL User released the mouse after pressing an arrow or the shaft.
No action necessary

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 87

The first thing that we must do in processing a scroll message is check to see if the current
record is dirty, and if it is, deal with it:

 if(RecordChanged) {
 FpAskAndWrite(hwnd);
 /* Dealt with the problem, record now OK */
 RecordChanged = FALSE;
 }

Next, we crack out the mp2 parameter and work out what the user is doing with the scrollbar.
We either scroll by one record, or by one-twentieth of the file length (in other words, twenty
clicks gets the user through the entire database):

 switch (SHORT2FROMMP(mp2)) {
 case SB_LINEDOWN:
 recno++;
 break;
 case SB_LINEUP:
 recno--;
 break;
 case SB_PAGEDOWN:
 recno += NumWaypoints / 20;
 break;
 case SB_PAGEUP:
 recno -= NumWaypoints / 20;
 break;

If the message is either SB_SLIDERPOSITION or SB_SLIDERTRACK, then we crack the
position from mp2:

 case SB_SLIDERPOSITION:
 recno = SHORT1FROMMP(mp2);
 break;
 case SB_SLIDERTRACK:
 recno = SHORT1FROMMP(mp2);
 break;
 default:
 break;
 }

Finally, we check to make sure we haven't run off the end of the database, then read the
record, set the position of the slider and redisplay the form:

 if (recno < 0)
 recno = 0;
 if (recno > NumWaypoints - 1)
 recno = NumWaypoints - 1;
 FpReadRecord(recno);
 WinSendMsg(hwndScroll, SBM_SETPOS,
 MPFROMSHORT((USHORT) recno),
 MPFROMSHORT(0));
 fv2c(f);
 refreshform(f);
 current_field = f;
 RecordChanged = FALSE;
 break;

If the user has chosen Append, then the client window will have received
WM_COMMAND:IDM_APPENDD and subsequently called the Append() function. This sets the

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 88

file pointer to the end of the file, overwrites the buffer with blanks, redisplays the form and
appends three pushbuttons at the bottom of the screen using the WinCreateWindow()
function call:

 DosChgFilePtr(infile, 0, FILE_END, &ulNewPtr);
 memset(&buffer, ' ',sizeof(struct _waypoint));
 fv2c(f);
 refreshform(f);
 RecordChanged = FALSE;
 current_field = f;
 WinSetFocus(HWND_DESKTOP,current_field->hwndField);

 hwndButton1 = WinCreateWindow(hwndClient,
 WC_BUTTON,
 "OK",
 WS_VISIBLE | BS_PUSHBUTTON | BS_DEFAULT,
 100,10,
 75,38,
 hwndClient,
 HWND_TOP,
 ID_PBOK,
 NULL,
 NULL);

The FpReadRecord() and FpWriteRecord() functions are very conventional. The only PM
function they call is WinMsgBox() in case of a problem.

Dialog Window Procedure

We now come to the winproc for the Search... dialog box. This is mostly a conventional
window procedure, consisting of a switch statement on the message. The only things a user
can do to the dialog box are typing in the text fields (handled by their code) or pressing the
buttons, which will send WM_COMMAND messages with mp1 containing the button ID. If the
user presses OK, then we use the WinQueryDlgItemText() to extract the text from either
the name or abbreviation entry-fields and call a function to do a binary or linear search on the
file.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 89

 switch (usMessage) {
 case WM_COMMAND:
 switch(SHORT1FROMMP(mp1)) {
 case ID_SRCH_OK:
 WinQueryDlgItemText(hwnd,ID_SRCH_NAME, 25,target);
 if(strlen(target) > 0) {
 temp = FpLocateByName(target);
 if (temp == -1)
 dbuginfo(hwnd,"FpLocateByName failed");
 else
 recno = temp;
 }
 else {
 WinQueryDlgItemText(hwnd, ID_SRCH_ABBREV, 5, target);
 if(strlen(target) > 0) {
 temp = FpLocateByAbbrev(target);
 if(temp == -1)
 dbuginfo(hwnd,"FpLocateByAbbrev failed");
 else
 recno = temp;
 }
 }
 WinDismissDlg(hwnd,0);
 break;

If the user presses the Cancel button, then we need do nothing - just dismiss the dialog.

 case ID_SRCH_CANCEL:
 WinDismissDlg(hwnd,0);
 break;

The Help button is a special case and sends a WM_HELP, rather than WM_COMMAND, message.
In any case, the help for this program has not yet been implemented, so we call a stub
function, fnyi() (function not yet implemented), which will pop up a message box. This is a
convenient technique, as PM applications must be coded top-down in order to allow testing.

 case WM_HELP:
 fnyi(hwnd);

Unlike a conventional window procedure, the default handling for a dialog window is a call
to WinDefDlgProc():

 default:
 return WinDefDlgProc(hwnd, usMessage, mp1, mp2);

The remaining functions in the application source file are miscellaneous routines for locating
records, displaying message boxes for "Function Not Yet Implemented" and debugging
messages and general housekeeping.

The file FORMS.C contains the various functions required to refresh the form on screen,
convert from field values to contents and vice versa, add fields to a form and delete them and
generally maintain forms. There is nothing in these functions of particular interest to the
OS/2 PM programmer - they function equally well under OS/2 VIO and DOS environments -
but they are included here as part of the complete application.

The PMFORMS.C file, on the other hand, is PM-specific, and contains the low-level functions
for creating, reading and writing, PM fields which actually consist of static controls for the
prompts and entry-field controls for the fields themselves.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 90

Placing a field on the screen is done by the disp_field() function. The coordinates used in
the form structure are expressed in row,column pairs from 0,0 at top left to 23,79 at bottom
left. This function does some simple arithmetic to create a WC_STATIC control for the
prompt and a WC_ENTRYFIELD control for the field proper in the correct positions relative to
the top left of the window. The WC_ENTRYFIELD window, in particular, must be passed an
ENTRYFDATA structure filled in with the maximum number of characters it may contain as
well as the minimum and maximum selectable number of characters.

/**** Display a field f on screen *****/

unsigned int disp_field(struct field *f)
{
 ENTRYFDATA efd;

 WinQueryWindowRect(f->hwndParent, &ClientSize);

 f->hwndPrompt = WinCreateWindow(f->hwndParent,
 WC_STATIC,
 f->prompt,
 WS_VISIBLE | SS_TEXT | DT_RIGHT,
 FIELD_X * (f->pcol),(short) ClientSize.yTop - TOP_MARGIN - (f-
>prow * FIELD_Y),
 FIELD_X * strlen(f->prompt), FIELD_HEIGHT,
 f->hwndParent,
 HWND_TOP,
 2 * f->id + 1,
 (PVOID) NULL,
 (PVOID) NULL);

 efd.cb = 1;
 efd.cchEditLimit = (USHORT)f->colsize;
 efd.ichMinSel = 0;
 efd.ichMaxSel = (USHORT)f->colsize;

 f->hwndField = WinCreateWindow(f->hwndParent,
 WC_ENTRYFIELD,
 f->content,
 WS_VISIBLE | ES_AUTOSCROLL| ES_MARGIN,
 FIELD_X * f->col, (short) ClientSize.yTop - TOP_MARGIN + 10 -
(f->row * FIELD_Y),
 f->length >10 ? (FIELD_X-2) * f->length : FIELD_X * f-
>length,FIELD_HEIGHT - 10,
 f->hwndParent,
 HWND_TOP,
 2 * f->id,
 &efd,
 (PVOID) NULL);

 return 0;
}

The SetFieldPos() function operates by calling the WinSetWindowPos() functions for
each of the two controls that represent a field, while the field's contents are written
(refreshed) and read by calls to WinSetWindowText() and WinQueryWindowText()
respectively.

No attempt has been made in this simple application to provide validation or formatting of
either input or output, but this can be achieved relatively easily, by including a pointer to a
validation function in the field structure and subclassing the entry-field control.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 91

No claims are made that this application demonstrates the best way to implement forms-
handling in the PM environment, but it does work and demonstrates a number of interesting
techniques.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 92

File LAB3.C

/**
Flight Planning Database Maintenance Program
by Les Bell 13/8/91
**/

#define INCL_WIN

#include <os2.h>
#include <process.h>
#define OS21

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys\types.h>

#include "..\forms\forms.h"
#include "..\forms\pmforms.h"
#include "lab3.h"
#include "search.h"
#include "fplan.h"

/* Forward Definitions */
MRESULT EXPENTRY fpmaintWndProc(HWND hwnd, ULONG ulMessage, MPARAM
mp1, MPARAM mp2);
void Append(void);
void FpReadRecord(long recno);
void FpWriteRecord(long recno);
MRESULT EXPENTRY Search(HWND hwnd, ULONG ulMessage, MPARAM mp1,
MPARAM mp2);
void fnyi(HWND owner);
void dbuginfo(HWND owner, PSZ info);
long FpLocateByName(char *id);
long FpLocateByAbbrev(char *abbrev);
void FpAskAndWrite(HWND);

HAB hab;
HMQ hmq;

CHAR szClassName[] = "LBAFPM";

HWND hwndClient;
RECTL ClientSize;
HWND hwndFrame;
HWND hwndScroll;

HWND hwndSelect;
HWND hwndButton1, hwndButton2, hwndButton3;

HFILE infile;
long recno = 0;
long NumWaypoints;
struct _waypoint buffer;
BOOL RecordChanged = FALSE;
APIRET retcode;

/* On-screen form */
struct field f[] =

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 93

 {{0,1, 6,1, 1,FLS,25,"name", 0,25,NULL,NULL,"Name",
NULLHANDLE,NULLHANDLE, NULLHANDLE,NULL,f+1},
 {1,1,32,1,26,FLS, 4,"state", 0, 3,NULL,NULL,"State",
NULLHANDLE,NULLHANDLE, NULLHANDLE,f,f+2},
 {2,1,42,1,35,FLS, 4,"abbrev",0, 4,NULL,NULL,"Abbrev",NULLHANDLE,
NULLHANDLE,NULLHANDLE,f+1,f+3},
 {3,2, 6,2, 1,FLS,10,"lat", 0,10,NULL,NULL,"Lat.",
NULLHANDLE, NULLHANDLE,NULLHANDLE,f+2,f+4},
 {4,2,22,2,16,FLS,10,"lng", 0,10,NULL,NULL,"Long.",
NULLHANDLE,NULLHANDLE, NULLHANDLE,f+3,f+5},
 {5,2,39,2,33,FLS, 4,"elev", 0, 4,NULL,NULL,"Elev.",
NULLHANDLE,NULLHANDLE, NULLHANDLE,f+4,f+6},
 {6,3, 6,3, 1,FLS, 5,"atis", 0, 5,NULL,NULL,"ATIS",
NULLHANDLE,NULLHANDLE, NULLHANDLE,f+5,f+7},
 {7,3,20,3,14,FLS, 5,"afis", 0, 5,NULL,NULL,"AFIS", NULLHANDLE,
NULLHANDLE, NULLHANDLE,f+6,f+8},
 {8,3,35,3,30,FLS, 5, "pal", 0, 5,NULL,NULL,"PAL", NULLHANDLE,
NULLHANDLE, NULLHANDLE,f+7,f+9},
 {9,4, 6,4, 2,FLS, 5, "vor", 0, 5,NULL,NULL,"VOR", NULLHANDLE,
NULLHANDLE, NULLHANDLE,f+8,f+10},
 {10,4,20,4,14,FLS,5,"dmei", 0,
5,NULL,NULL,"DMEI",NULLHANDLE,NULLHANDLE, NULLHANDLE,f+9,f+11},
 {11,4,35,4,30,FLS,2,"dme", 0,
2,NULL,NULL,"DME",NULLHANDLE,NULLHANDLE, NULLHANDLE,f+10,f+12},
 {12,5,6,5, 2,FLS,3,"ndb", 0,
3,NULL,NULL,"NDB",NULLHANDLE,NULLHANDLE, NULLHANDLE,f+11,f+13},
 {13,5,20,5,14,FLS,4,"bcst", 0,
4,NULL,NULL,"Bcst",NULLHANDLE,NULLHANDLE, NULLHANDLE,f+12,f+14},
 {14,6, 6,6, 2,FLS,30,"rwinfo",0,30,NULL,NULL,"Rwy",
NULLHANDLE,NULLHANDLE, NULLHANDLE,f+13,NULL}};

struct field *current_field = f;

/* Main function */

int main(int argc, char *argv[], char *envp[]) {

 ULONG ctldata = FCF_STANDARD | FCF_VERTSCROLL;

 QMSG qmsg;

 hab = WinInitialize(0);
 hmq = WinCreateMsgQueue(hab,0);

 if(!WinRegisterClass(hab,
 (PCH)szClassName,
 (PFNWP)fpmaintWndProc,
 CS_SIZEREDRAW | CS_SYNCPAINT,
 0))
 return(1);

 hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
 WS_VISIBLE | FS_STANDARD,
 &ctldata,
 (PCH)szClassName,
 "Flight Plan Navaid Maintenance",
 0L,
 (HMODULE)0,
 ID_RESOURCE,
 &hwndClient);

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 94

 if(hwndFrame == NULLHANDLE)
 return(1);

 while(WinGetMsg(hab,&qmsg, NULLHANDLE, 0, 0))
 WinDispatchMsg(hab, &qmsg);

 DosClose(infile);
 WinDestroyWindow(hwndFrame);
 WinDestroyMsgQueue(hmq);
 WinTerminate(hab);
 return(0);
}

MRESULT EXPENTRY fpmaintWndProc(HWND hwnd, ULONG ulMessage, MPARAM
mp1, MPARAM mp2)
{

 HPS hps;
 RECTL rcl;

 ENTRYFDATA efd;

 USHORT usResult;
 int field_id;
 char msgbuf[64];
 struct field *p;
 ULONG usAction;
 FILESTATUS3 *fs;

 switch(ulMessage) {

 case WM_CHAR:
 if(CHARMSG(&ulMessage)->fs & KC_KEYUP) /* Ignore key releases
*/
 break;;
 switch(CHARMSG(&ulMessage)->vkey) {
 case VK_UP:
 case VK_DOWN:
 case VK_PAGEUP:
 case VK_PAGEDOWN:
 /* Take care of arrow, PgUp, PgDn keys */
 return WinSendMsg(hwndScroll, ulMessage, mp1, mp2);
 break;
 case VK_TAB:
 /* Move to next field */
 if(current_field->next != NULL)
 current_field = current_field->next;
 WinSetFocus(HWND_DESKTOP,current_field->hwndField);
 break;
 case VK_BACKTAB:
 /* Move to previous field */
 if(current_field->prev != NULL)
 current_field = current_field->prev;
 WinSetFocus(HWND_DESKTOP, current_field->hwndField);
 break;
 }
 return (MRESULT)TRUE;
 break;

 case WM_COMMAND:
 switch (SHORT1FROMMP(mp1)) {

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 95

 case IDM_OPEN: /* Open... dialog call */
 break;

 case IDM_SAVE: /* Save As... dialog call */
 break;

 case IDM_QUIT:
 WinPostMsg(hwnd, WM_QUIT, 0L, 0L);
 break;

 case IDM_APPEND:
 Append();
 break;

 case IDM_SEARCH:
 fnyi(hwnd);
 break;

 case ID_PBABANDON:
 WinDestroyWindow(hwndButton1);
 WinDestroyWindow(hwndButton2);
 WinDestroyWindow(hwndButton3);
 FpReadRecord(recno);
 fv2c(f);
 refreshform(f);
 RecordChanged = FALSE;
 return(0L);
 break;

 case ID_PBOK:
 read_form(f);
 fc2v(f);
 NumWaypoints++;

 default:
 WinDefWindowProc(hwnd,ulMessage, mp1, mp2);
 }
 break;

 case WM_CONTROL:
 switch (SHORT2FROMMP(mp1)) {
 case EN_SETFOCUS: /* New field got focus */
 field_id = SHORT1FROMMP(mp1) / 2;
 if (field_id < current_field->id)
 while (field_id < current_field->id)
 current_field = current_field->prev;
 if (field_id > current_field->id)
 while (field_id > current_field->id)
 current_field = current_field->next;
 WinSetFocus(HWND_DESKTOP, current_field->hwndField);
 break;
 case EN_CHANGE:
 RecordChanged = TRUE;
 break;
 default:
 return WinDefWindowProc(hwnd, ulMessage, mp1, mp2);
 }
 break;

 case WM_CREATE:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 96

 fs = malloc(sizeof(FILESTATUS3));

 retcode = DosOpen("FPLAN.DAT",
 &infile,
 &usAction,
 0,
 FILE_NORMAL,
 FILE_OPEN,
 OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE,
 0);

 retcode = DosQueryFileInfo(infile,FIL_STANDARD,fs,
sizeof(FILESTATUS3));
 NumWaypoints = fs->cbFile / sizeof(struct _waypoint);
 free(fs);
 /* Obtain the scroll bar handle */
 hwndScroll = WinWindowFromID(WinQueryWindow(hwnd, QW_PARENT),
FID_VERTSCROLL);

 /* And set its range */
 WinSendMsg(hwndScroll, SBM_SETSCROLLBAR,
 MPFROM2SHORT(0,0),
 MPFROM2SHORT(0,NumWaypoints-1));

 WinQueryWindowRect(hwndClient,&ClientSize);

 f[0].value = buffer.name;
 f[1].value = buffer.state;
 f[2].value = buffer.abbrev;
 f[3].value = buffer.lat;
 f[4].value = buffer.lng;
 f[5].value = buffer.elev;
 f[6].value = buffer.atis;
 f[7].value = buffer.afis;
 f[8].value = buffer.pal;
 f[9].value = buffer.vor;
 f[10].value = buffer.dmei;
 f[11].value = buffer.dme;
 f[12].value = buffer.ndb;
 f[13].value = buffer.bcst;
 f[14].value = buffer.rwinfo;

 p = f;
 while (p) {
 p->hwndParent = hwnd;
 p = p->next;
 }

 FpReadRecord(0L);

 disp_form(f);
 fv2c(f);
 refreshform(f);
 RecordChanged = FALSE;
 return (MRESULT)FALSE;
 break;

 case WM_CLOSE:
 WinPostMsg(hwnd, WM_QUIT, mp1, mp2);
 break;

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 97

 case WM_SIZE:
 WinQueryWindowRect(hwnd, &ClientSize);
 SetFormPos(f);
 return (MRESULT) 0;
 break;

 case WM_PAINT:
 hps = WinBeginPaint(hwnd, 0L, &rcl);
 WinFillRect(hps, &rcl, CLR_WHITE);
 WinEndPaint(hps);
 return (MRESULT) 0;
 break;

 case WM_VSCROLL:
 /* Before scrolling, check for record having been edited */

 if(SHORT2FROMMP(mp2) == SB_ENDSCROLL) break;

 if(RecordChanged) {
 FpAskAndWrite(hwnd);
 /* Dealt with the problem, record now OK */
 RecordChanged = FALSE;
 }
 /* Deal with scroll bar messages (SB_LINEDOWN, SB_LINEUP,
SB_PAGEDOWN */
 /* SB_PAGEUP, SB_SLIDERPOSITION, SB_SLIDERTRACK */
 switch (SHORT2FROMMP(mp2)) {
 case SB_LINEDOWN:
 recno++;
 break;
 case SB_LINEUP:
 recno--;
 break;
 case SB_PAGEDOWN:
 recno += NumWaypoints / 20;
 break;
 case SB_PAGEUP:
 recno -= NumWaypoints / 20;
 break;
 case SB_SLIDERPOSITION:
 recno = SHORT1FROMMP(mp2);
 break;
 case SB_SLIDERTRACK:
 recno = SHORT1FROMMP(mp2);
 break;
 default:
 sprintf(msgbuf,"Unknown usCmd value:
%04x",SHORT2FROMMP(mp2));
 dbuginfo(hwnd,msgbuf);
 break;
 }
 if (recno < 0)
 recno = 0;
 if (recno > NumWaypoints - 1)
 recno = NumWaypoints - 1;
 FpReadRecord(recno);
 WinSendMsg(hwndScroll, SBM_SETPOS,
 MPFROMSHORT((USHORT) recno),
 MPFROMSHORT(0));
 fv2c(f);
 refreshform(f);

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 98

 current_field = f;
 RecordChanged = FALSE;
 break;

 default:
 return(WinDefWindowProc(hwnd, ulMessage, mp1, mp2));
 break;
 }
 return 0L;
}

void Append()
{
 ULONG ulNewPtr;

 DosChgFilePtr(infile, 0, FILE_END, &ulNewPtr);
 memset(&buffer, ' ',sizeof(struct _waypoint));
 fv2c(f);
 refreshform(f);
 RecordChanged = FALSE;
 current_field = f;
 WinSetFocus(HWND_DESKTOP,current_field->hwndField);

 hwndButton1 = WinCreateWindow(hwndClient,
 WC_BUTTON,
 "OK",
 WS_VISIBLE | BS_PUSHBUTTON | BS_DEFAULT,
 100,10,
 75,38,
 hwndClient,
 HWND_TOP,
 ID_PBOK,
 NULL,
 NULL);

 hwndButton2 = WinCreateWindow(hwndClient,
 WC_BUTTON,
 "Cancel",
 WS_VISIBLE | BS_PUSHBUTTON,
 200,10,
 75,38,
 hwndClient,
 HWND_TOP,
 ID_PBCANCEL,
 NULL,
 NULL);

 hwndButton3 = WinCreateWindow(hwndClient,
 WC_BUTTON,
 "Abandon",
 WS_VISIBLE | BS_PUSHBUTTON,
 300,10,
 75,38,
 hwndClient,
 HWND_TOP,
 ID_PBABANDON,
 NULL,
 NULL);
}

void FpReadRecord(long recno)

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 99

{
 ULONG ulNewPtr;
 ULONG cbBytesRead;

 DosChgFilePtr(infile, (long)recno * sizeof(struct
_waypoint),FILE_BEGIN,&ulNewPtr);
 retcode = DosRead(infile,&buffer, sizeof(struct _waypoint),
&cbBytesRead);
 if(cbBytesRead != sizeof(struct _waypoint)) {
 WinMessageBox(HWND_DESKTOP,
 hwndClient,
 "Could not read record",
 "File Error",
 IDMB_FILEERROR,
 MB_OK | MB_ICONEXCLAMATION);
 DosExit(EXIT_PROCESS,1);
 }
}

void FpWriteRecord(long recno)
{
 ULONG ulNewPtr;
 ULONG cbBytesWritten;

 DosChgFilePtr(infile, (long)recno * sizeof(struct _waypoint),
FILE_BEGIN, &ulNewPtr);
 retcode = DosWrite(infile, &buffer, sizeof(struct _waypoint),
&cbBytesWritten);
 if(cbBytesWritten != sizeof(struct _waypoint)) {
 WinMessageBox(HWND_DESKTOP,
 hwndClient,
 "Could not write record",
 "File Error",
 IDMB_FILEERROR,
 MB_OK | MB_ICONEXCLAMATION);
 DosExit(EXIT_PROCESS,1);
 }
}

void fnyi(HWND owner)
{
 WinMessageBox(HWND_DESKTOP,
 owner,
 "Feature Not Yet Implemented",
 "FP Maintenance",
 ID_FNYI,
 MB_CANCEL | MB_ICONEXCLAMATION);
}

void dbuginfo(HWND owner, PSZ info)
{
 WinMessageBox(HWND_DESKTOP,
 owner,
 info,
 "Debug Info",
 ID_DBGI,
 MB_OK | MB_ICONHAND);
}

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 100

void FpAskAndWrite(HWND hwnd)
{
 USHORT usResult;

 usResult = WinMessageBox(HWND_DESKTOP,
 hwnd,
 (PSZ)"Save this record?",
 (PSZ)"Record Has Been Changed",
 IDMB_SAVE,
 MB_YESNO | MB_ICONQUESTION);
 if(usResult == MBID_YES) {
 read_form(f);
 fc2v(f);
 /* Write back the record */
 FpWriteRecord(recno);
 }
}

File LAB3.RC:

/* LAB3.RC - File Maintenance Resources */

#include <os2.h>

#include "lab3.h"
#include "search.h"

POINTER ID_RESOURCE "lab3.ico"

ACCELTABLE ID_RESOURCE
BEGIN
"N",IDM_NEW,CONTROL
END

MENU ID_RESOURCE
BEGIN
 SUBMENU "~File", IDM_FILE
 BEGIN
 MENUITEM "~New", IDM_NEW
 MENUITEM "~Open",IDM_OPEN
 MENUITEM "~Save", IDM_SAVE
 MENUITEM SEPARATOR
 MENUITEM "E~xit", IDM_QUIT
 END
 SUBMENU "~Edit", IDM_EDIT
 BEGIN
 MENUITEM "~Undo",IDM_UNDO
 MENUITEM SEPARATOR
 MENUITEM "~Cut", IDM_CUT
 MENUITEM "C~opy", IDM_COPY
 MENUITEM "~Paste", IDM_PASTE
 MENUITEM SEPARATOR
 MENUITEM "~Append",IDM_APPEND
 END
END

File MAINT.DEF:

; MAINT definition file
; Created by Les Bell and Associates Pty Ltd, 1991

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 101

;
NAME MAINT WINDOWAPI

DESCRIPTION 'Flight Planner, Copyright (C) 1991 Les Bell and
Associates Pty Ltd'

STUB 'OS2STUB.EXE'

CODE MOVEABLE
DATA MOVEABLE MULTIPLE

HEAPSIZE 16384
STACKSIZE 8192

File FORMS.H:

#pragma pack(1)

struct field {
 int id; /* Field id on screen */
 int row; /* Screen coordinates */
 int col;
 int prow;
 int pcol;
 DBTINYINT type; /* SQL Server types */
 int length; /* Field length */
 char *name; /* Field name - will double as prompt for simple
apps */
 unsigned char attrib; /* Screen attributes, not currently used
in PM */
 DBINT colsize; /* SQL Server variable size */
 void *value; /* SQL Server value, as SQL Server type */
 char *content; /* Current record value, as char string */
 char *prompt;
 HWND hwndParent;
 HWND hwndPrompt;
 HWND hwndField; /* Handle to entry control */
 struct field *prev; /* Pointers to previous and next fields */
 struct field *next; /* - used for cursor movement in form-
filling */
} ;

extern struct field *add_field(struct field *where,struct field *p);
extern struct field *make_field(char *name,int prow, int pcol, int
row,int col,int length, unsigned char type,
 DBINT colsize, unsigned char attrib, char *content, char
*prompt);
extern void set_field_char(struct field *which,char *what);
extern void set_field_far_char(struct field *which,char far
*what);
extern void set_field_int(struct field *which,int i);
extern void set_field_hex(struct field *which,int i);
extern unsigned int disp_form(struct field *h);
extern void release_field(struct field *where);
extern void unlink_field(struct field *where);
extern void release_form(struct field *where);
extern struct field *append_field(struct field *where,struct field
*p);
extern void clear_rd(int row, int col);
extern void set_field_ver_no(struct field *which, unsigned int i);

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 102

extern void set_field_flstr(struct field *which, char *pbuf, DBINT
len);
extern void v2c(struct field *f); /* field value to content
conversion */
extern void fv2c(struct field *f); /* Convert _all_ values to
contents */
extern void refreshform(struct field *f);
extern void read_form(struct field * f);
extern void fc2v(struct field *f) /* Convert all form contents to
values */;
extern void c2v(struct field *f);
extern void set_flstr_field(struct field *f, char *dest, DBINT
length);

/* Field types */
#define FLS 0x01

File FORMS.C:

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include <graph.h>
#include <string.h>

#define INCL_WIN
#include <os2.h>

#define DBMSOS2
#include <sqlfront.h>
#include <sqldb.h>
#include <stdlib.h>

#include "forms.h"

extern unsigned int disp_field(struct field *f);

/**************** Functions for creating and managing field list
**************/

/********* Add field p into form behind field where ********/

struct field *add_field(struct field *where, struct field *p)
{
 p->prev = where;
 p->next = where->next;
 where->next = p;
 if(p->next != NULL)
 p->next->prev = p;
 return p;
}

/********* Create field and initialize with name, row, col, length,
attrib and content */

struct field * make_field(char *name, int prow, int pcol, int row,
int col, int length,
 unsigned char type, DBINT colsize, unsigned char attrib,
 char *content, char *prompt)
{

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 103

 struct field *new;

 if((new = malloc(sizeof(struct field))) == NULL) return NULL;
 if((new->name = malloc(32)) == NULL) return NULL;
 strcpy(new->name,name);
 new->colsize = colsize;
 if((new->value = (void *)malloc((size_t)colsize)) == NULL) return
NULL;
 new->prow = prow;
 new->pcol = pcol;
 new->row = row;
 new->col = col;
 new->length = length;
 new->type = type;
 new->attrib = attrib;
 new->content = content;
 if((new->prompt = malloc(32)) == NULL) return NULL;
 strcpy(new->prompt,prompt);
 new->next = NULL;
 new->prev = NULL;
 return new;
}

/**** Fill field which content from near char string what *****/

void set_field_char(struct field *which, char *what)
{
 if(which->content == NULL)
 which->content = malloc(which->length);
 strcpy(which->content,what);
}

/**** Fill field which content from far char string what *****/
/**** Used e.g. to access strings in ROM BIOS *****/

void set_field_far_char(struct field *which, char far *what)
{
 char *t, far *f;
 if(which->content == NULL)
 which->content = malloc(which->length);
 /* t = which->content;
 f = what;
 while(f < what + which->length)
 *t++ = *f++; */
 for(t=which->content,f=what;f<what+which->length;*t++=*f++);

}

/**** Fill field which content to decimal from integer i *****/

void set_field_int(struct field *which, int i)
{
 if(which->content == NULL)
 which->content = malloc(which->length);
 itoa(i,which->content, 10);
}

/**** Fill field which content to hex from integer i *****/

void set_field_hex(struct field *which, int i)
{

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 104

 if(which->content == NULL)
 which->content = malloc(which->length);
 itoa(i,which->content, 16);
}

/**** Fill field which content with version number from unsigned int
i *****/

void set_field_ver_no(struct field *which, unsigned int i)
{
 if(which->content == NULL)
 which->content = malloc(which->length);
 itoa((i & 0x00f0) >> 4,which->content,10);
 which->content[1] = '.';
 itoa((i & 0x000f), which->content+2, 10);
 which->content[3] = '\0';
}

/***** Display a form (list of fields) with head h on screen ******/

unsigned int disp_form(struct field *h)
{
 while(h != NULL) {
 disp_field(h);
 h = h->next;
 }
 return 0;
}

/***** Release field memory and unlink it from form list ****/

void release_field(struct field *where)
{
 if(where->content != NULL && where->length != 0)
 free(where->content);
 if(where->name != NULL)
 free(where->name);
 unlink_field(where);
 free(where);
}

void unlink_field(struct field *where)
{
 if(where->prev != NULL)
 where->prev->next = where->next;
 if(where->next != NULL)
 where->next->prev = where->prev;
}

/**** Release form memory *******/

void release_form(struct field *where)
{
 struct field *temp;

 while(where->next != NULL) {
 temp = where->next;
 release_field(where);
 where = temp;
 }
}

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 105

/****** Append a field onto end of form *****/

struct field *append_field(struct field *where, struct field *p)
{
 while(where->next != NULL)
 where = where->next; /* Get to bottom of list */
 return add_field(where,p);
}

void set_field_flstr(struct field *which, char *pbuf, DBINT len)
{
 char *p, *q;

 if(which->content == NULL)
 which->content = malloc(which->length +1);

 q = which->content;
 p = pbuf + len - 1;
 while (*p == ' ' && p >= pbuf)
 p--;
 while(pbuf <= p)
 *q++ = *pbuf++;
 *q = '\0';
}

void v2c(struct field *f) /* field value to content conversion */
{
 switch(f->type) {
 case FLS:
 set_field_flstr(f, f->value,f->colsize);
 break;
 default:
 break;
 }
}

void fv2c(struct field *f) /* Convert _all_ values to contents */
{
 while (f != NULL) {
 v2c(f);
 f = f->next;
 }
}

extern void refreshfield(struct field *f);

void refreshform(struct field *f)
{
 while(f != NULL) {
 refreshfield(f);
 f = f->next;
 }
}

extern void read_field(struct field *f);

void read_form(struct field * f)
{
 while(f != NULL) {
 read_field(f);

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 106

 f = f->next;
 }
}

void fc2v(struct field *f) /* Convert all form contents to values */
{
 while (f != NULL) {
 c2v(f);
 f = f->next;
 }
}

void c2v(struct field *f)
{
 switch(f->type) {
 case FLS:
 set_flstr_field(f, f->value,f->colsize);
 break;
 default:
 break;
 }
}

void set_flstr_field(struct field *f, char *dest, DBINT length)
{
 char *s;

 s = f->content;

 while(*s && length) {
 *dest++ = *s++;
 length--;
 }

 while(length) {
 *dest++ = ' ';
 length--;
 }
}

File PMFORMS.C

#define INCL_WIN
#include <os2.h>

#include <string.h>

#define DBMSOS2
#include <sqlfront.h>
#include <sqldb.h>

#include "e:\develop\sql\forms.h"
#include "e:\develop\sql\pmforms.h"

RECTL ClientSize;

/**** Field positioning and dimension constants */
#define FIELD_HEIGHT 26
#define FIELD_X 10 /* Field horizontal spacing */
#define FIELD_Y (FIELD_HEIGHT + 4) /* Field vertical spacing */

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 107

#define TOP_MARGIN 10 /* Margin from top of client window area */

/**** Display a field f on screen *****/

unsigned int disp_field(struct field *f)
{
 ENTRYFDATA efd;

 WinQueryWindowRect(f->hwndParent, &ClientSize);

 f->hwndPrompt = WinCreateWindow(f->hwndParent,
 WC_STATIC,
 f->prompt,
 WS_VISIBLE | SS_TEXT | DT_RIGHT,
 FIELD_X * (f->pcol),(short) ClientSize.yTop - TOP_MARGIN - (f-
>prow * FIELD_Y),
 FIELD_X * strlen(f->prompt), FIELD_HEIGHT,
 f->hwndParent,
 HWND_TOP,
 2 * f->id + 1,
 (PVOID) NULL,
 (PVOID) NULL);

 efd.cb = 1;
 efd.cchEditLimit = (USHORT)f->colsize;
 efd.ichMinSel = 0;
 efd.ichMaxSel = (USHORT)f->colsize;

 f->hwndField = WinCreateWindow(f->hwndParent,
 WC_ENTRYFIELD,
 f->content,
 WS_VISIBLE | ES_AUTOSCROLL| ES_MARGIN,
 FIELD_X * f->col, (short) ClientSize.yTop - TOP_MARGIN + 10 -
(f->row * FIELD_Y),
 f->length >10 ? (FIELD_X-2) * f->length : FIELD_X * f-
>length,FIELD_HEIGHT - 10,
 f->hwndParent,
 HWND_TOP,
 2 * f->id,
 &efd,
 (PVOID) NULL);

 return 0;
}

void SetFieldPos(struct field *f)
{
 WinQueryWindowRect(f->hwndParent, &ClientSize);

 WinSetWindowPos(f->hwndPrompt,
 NULL,
 FIELD_X * f->pcol,(short) ClientSize.yTop - TOP_MARGIN - (f-
>prow * FIELD_Y),
 FIELD_X * strlen(f->prompt), FIELD_HEIGHT,
 SWP_MOVE);

 WinSetWindowPos(f->hwndField,
 NULL,
 FIELD_X * f->col, (short) ClientSize.yTop - TOP_MARGIN + 10 -
(f->row * FIELD_Y),
 FIELD_X * f->length,FIELD_HEIGHT - 10,

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 108

 SWP_MOVE);
}

void SetFormPos(struct field *f)
{
 while(f != NULL) {
 SetFieldPos(f);
 f = f->next;
 }
}

void refreshfield(struct field *f)
{
 WinSetWindowText(f->hwndField,f->content);
}

void read_field(struct field *f)
{ /* f->colsize +1 to allow for trailing null */
 WinQueryWindowText(f->hwndField,(short)f->colsize+1,f->content);
}

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 109

The Control Program API
The OS/2 Control Program (also known as the Base Operating System, or the kernel)
provides system services for

• Memory management

• Process management (multitasking)

• Thread management (multithreading)

• File system access (I/O)

• Dynamic linking

• Miscellaneous system services (date/time, etc)

These services are accessed through an API (Application Programming Interface). The API
used by MS-DOS and PC DOS, for example, consists of

• placing a function number in the AH processor register, and possibly a sub-function
in AL

• putting any parameters in DX or ES:BX

• executing a software interrupt instruction (INT 21H). This enters the DOS kernel
which then jumps to the appropriate routine

So, for example, to print a string:

STR1: DB 'Error message$'

 .
 .
 MOV AH, 9
 MOV DX, byte offset STR1
 INT 21H
 .

This technique cannot be used in OS/2 (other than in a Virtual DOS Machine), since software
interrupts are not supported in protected mode. Therefore, the OS/2 API works by direct call
to the target function. This offers several benefits:

• no overhead in the OS as it works out the adress of the target function and then
dispatches to it

• directly supported by high level languages. All HLL's can generate a CALL
instruction, but cannot generate an INT 21H, other by calling a supplied subroutine (more
overhead)

• this technique will work in both real and protected modes (although DOS cannot be
CALLed, but this objection can be overcome by a binding layer of code)

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 110

The only problem to be overcome is this: what is the address of the target function?Right
now, on this machine, the DosOpen() API resides at a particular address, say ABCDEFH, but
on a different machine with a different configuration or different kernel revision, or on the
same machine tomorrow with a different set of device drivers, it will be different. How do we
know the address to be used?

The answer is, of course, dynamic linking, which is dealt with in another section of this
course. The system is able to 'plug in' the correct addresses of the API's as a program loads, so
that by the time it starts executing, all addresses (or at least, most of them - see later) are
known.

The Control Program API's follow the OS/2 naming conventions, and are all prefixed Dos-,
such as DosOpen(), DosQueryProcAddr(), DosExitList(), and so on. Furthermore, the
API is extremely orthogonal (unlike Presentation Manager). All the DOS API's return an error
code, of type APIRET, which is zero on success or an error code on failure.

Of course, this is often not the desired result of the API, for example, when calling
DosAllocMem() to allocate a memory object, what the programmer wants is a pointer to the
memory object - he only wants to know about error codes in the unlikely event of failure.
How then is the pointer returned? In the C language, a function can only return a single value
of a single type. A structure could be returned, but this is comparatively inefficient. What we
need is to pass a reference to the desired variable, and since C does not directly support call
by reference, we instead pass a pointer to the variable, i.e. the address of the variable.

At first glance, this can be somewhat confusing for the newcomer. The basic steps and rules to
remember are:

• Before using any API look up its definition in the online help. Because the help does
not let you cut and paste just part of the window, write the parameters down on a piece of
paper. Notice that in the list of parameters, the last one is not a passed parameter (in the
formal argument list of the API) but is the returned value.

• Look up the parameters help, and notice whether a parameter is input, output or
input/output. If it is input, you will pass its value. If it is output or input/output, you will
pass the address of (a pointer to) a variable.

• Look at the type of any output or input/output parameters. They will typically be
PTYPE param. However, in your code, you should not declare a variable of type PTYPE
(pointer to TYPE) and pass this variable to the API. Instead, you should declare a variable of
type TYPE, and pass the address of this variable to the API.

For example, here's the definition of a hypothetical API, which is used to obtain a handle for a
leg, given an elephant handle and leg number:

HELEPHANT hel; /* Input */
ULONG uLegNumber; /* Inout */
PHLEG phLeg; /* Output */
APIRET rc; /* Return code */

rc = DosQueryElephantLeg(hel, uLegNumber, phLeg);

Here's how you would use this in your code:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 111

HELEPHANT hJumbo;
ULONG uLegNumber;
HLEG hLeg;
APIRET rc;

.
.
rc = DosQueryElephantLeg(hJumbo, 1, &hLeg);
if (rc) {
 /* Deal with the error here */
}
/* Now go on to do stuff with the leg hLeg */

This can become confusing when pointers are involved, as in the memory management API's.
For example, the Control Program Reference documents DosAllocMem thusly:

 #define INCL_DOSMEMMGR
 #include <os2.h>

 PPVOID ppb; /* A pointer to a variable that will receive the
base address of the allocated private memory object. */
 ULONG cb; /* Size, in bytes, of the private memory object to
allocate. */
 ULONG flag; /* Allocate attribute and desired access
protection flags. */
 APIRET ulrc; /* Return Code. */

 ulrc = DosAllocMem(ppb, cb, flag);

 You would not declare a PPVOID - in fact your application code would probably require a
typed pointer such as PCUSTOMERRECORD or some such. You would write this as follows:

PCUSTOMERRECORD pc;
APIRET rc;

rc = DosAllocMem((PPVOID)&pc, sizeof(PCUSTOMERRECORD), PAG_READ |
PAG_WRITE | PAG_COMMIT);
if (rc) {
 /* Deal with error here */
}

Notice that &pc is of type PCUSTOMERRECORD * or PPCUSTOMERRECORD, and this must be
cast to a PPVOID to keep the compiler quiet at higher warning levels.

In fact, this whole area even confused whoever wrote the Control Program Reference,
because if you check the documentation for event sempahores, you'll discover that it refers to
a PPHEV, which is a pointer to a pointer to a handle for an event semaphore, whereas
actually, what is required is just a pointer to a handle for an event semaphore, or PHEV. One
can forgive the author under the circumstances, I think!

Notice that I have always shown an if statement to check the value of the return code from
the API. It's good practice to always check return codes, and you should always do this in
your code. Throughout this course, I may not show error checking in code fragments and in
some of the lab exercises as it tends to obscure the underlying structure, but in real-world
programs error checking is mandatory, both during development and at run-time in
production systems.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 112

Calling Conventions

OS/2 1.x uses the _Pascal calling convention for its API's. This convention is distinguished by
the following characteristics

• Parameters are pushed onto the stack from left to right

• The calling function must rebalance the stack upon resuming execution after the call.

Of course, OS/2 1.x API's will pass 16-bit parameters on the stack, and the pointers passed
must be 32-bit (16:16) FAR pointers.

This means that a line of code like

 DosBeep(440,1000);

will compile to

 PUSH 440
 PUSH 1000
 CALL DOSBEEP
 POP BX
 POP BX

By contrast, OS/2 2.0 and later passes parameters using the _System calling convention,
which is similar to the C calling convention:

• Parameters are pushed onto the stack from right to left

• The called function rebalances the stack upon returning

and so the example above would compile to

 PUSH 1000
 PUSH 440
 CALL DosBeep

The _Pascal calling convention is faster, which was important in the days of 8 MHz 80286
processors, but the _System calling convention allows for variable numbers of arguments,
since we know that the first argument is at the bottom of the stack frame, immediately above
the return address. Notice also that the CALL instruction in the 16-bit code is a FAR CALL to
another segment, whereas for 32-bit OS/2 2.x/Warp code it is a NEAR CALL. These
distinctions become significant when a 32-bit version of OS/2 is running a 16-bit application
or subsystem, and vital when writing mixed-model code.

In both cases, the API will return an error code in AX or EAX - zero indicating success - and
this becomes the returned value of the function.

The Family API

During the development of OS/2 1.0, Microsoft made a design decision that the API's
supported by OS/2 should be a superset of those in DOS. This made possible, or at least
easier, two things:

• support for the DOS Compatibility Box, which allows DOS applications to run under
OS/2 (and later, OS/2 2.0's MVDM's)

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 113

• easy porting of DOS source code to OS/2, so that quickly, thousands of applications
would be available

From there, it was a short step to identify a superset of DOS functions and subset of the OS/2
API which could be supported in both environments, together with some memory
management rules that would make it possible for a single executable to load and run in both
real mode DOS and protected mode OS/2 environments. This API set is referred to as the
Family API, and the resultant applications are known as FAPI applications, or bound
executables.

The FAPI includes obvious DOS functions such as open/close/read/write files, get/set
date/time and so on, but also includes OS/2 functions such as DosBeep() which beeps the PC
speaker.

Translation of the OS/2 version of a call such as DosOpen() to the corresponding DOS INT
21H function is done by a layer of code known as bindings. This library also contains code to
implement extensions such as DosBeep(), by directly driving the hardware.

The application is written as straight OS/2 code, taking care only to use family API calls, and
then compiled and linked in the normal way. However, after linking, an extra bind step is
performed, which appends the bindings and a short stub loader onto the end of the .EXE file
and also modifies its header.

A 16-bit OS/2 .EXE file actually has two headers. The first is a conventional DOS .EXE file
header, but its segment table and entry point cause it to load and run, not the actual program,
but a short stub which follows it. Any program can be used here, but the default stub is
simply a program which prints "This program cannot be run in real mode" or "This program
requires OS/2 Presentation Manager" or similar. The second header is the proper OS/2
header - the OS/2 loader skips over the DOS header and reads this header to load and
dynamic link the OS/2 code normally.

In the case of a FAPI application, the DOS header causes the stub loader to load and run, and
this in turn loads the application segments, replacing all unresolved references to OS/2 API's
with calls to routines in the bindings. Once this is done, the application starts and runs as a
conventional DOS program.

Notice the limitations of this technique:

• Since DOS only supports 16-bit code, this can only be done with 16-bit applications

• Only supported by 16-bit compilers, e.g. MS C 6.00 and Watcom C - not VAC++

• Restricted to the Family API - no multithreading, IPC, PM, etc.

However, by querying at run-time which mode it is running in, and then branching
appropriately, a FAPI application can contain code which specifically calls BIOS functions in
real mode or Vio/Kbd/Mou API's in protected (OS/2) mode, and which can call OS/2-
specific API's in that environment.

The astute reader will by now have realised that many of the OS/2 command-line commands
must be written this way, since they can execute at both an OS/2 command prompt and a
DOS command prompt. And indeed XCOPY, REPLACE, SORT, FIND, FORMAT and other
commands are 16-bit code. CHKDSK.EXE is a good example - it provides all of the DOS
functionality for checking FAT drives and reporting memory use, but when running in an
OS/2 session it does not report memory and even supports HPFS format drives.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 114

Finally, the dual headers on an EXE file can be used to bind together two completely different
versions of the same (or hypothetically different) program, one for DOS and one for OS/2.
This technique can be used, for example, to bind together a single-threaded character mode
DOS version of a program and a 32-bit multithreaded graphical (PM) version for OS/2 - both
in the same .EXE file. In fact, because Windows has yet another .EXE header, I have heard
tales of people putting DOS, Windows and OS/2 versions of a program in the same file with
two bind steps, although I have never tried this personally!

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 115

Dynamic Link Libraries
Microsoft and IBM operating systems and applications make extensive use of a type of file
called a Dynamic Link Library (DLL). Most users know little about these, other than that
applications won't work without them, or crash if the DLL's are in the wrong places. But
DLL's are one of the most significant features of both Windows2 and OS/2, and well-
constructed apps which make use of them will integrate well with others. Here's why,
together with a brief overview for new developers.

Most people are familiar with the process of compiling and linking an application using a
compiled language under DOS. The various source code modules are separately compiled to
produce .OBJ files which contain the machine code for their various functions.

However, when an application is constructed this way, all functions must be linked into the
resulting single .EXE file. This is the case, whether the function is always required or
infrequently used, and can give rise to a situation where the .EXE file is very large -
sometimes too large to allow the program to load. This is particularly a problem when the
subsystems in the .EXE are rarely invoked simultaneously, such as a help subsystem which
will not be used at the same time as a comms subsystem.

By compiling and linking these subsystems as dynamic link libraries, they can be left on disk
until required, when they are loaded and linked into the main program. This reduces the size
of the main .EXE file, and allows subsystems to be loaded only when required.

While OS/2 does not suffer from limited memory like DOS does, there are other benefits
which derive from the use of DLL's. First, when multiple copies of an application are
invoked, they can all share the initial module which was loaded earlier. This saves memory
and also reduces program load time.

Even more importantly, multiple applications can share a common subsystem. Let's look at a
more concrete example. Suppose you are in the business of writing accounting software.
Everyone knows that in today's PC market, you can score a major selling point over your
competitors if you can persuade other software companies to make their applications
interoperate with yours. So, you convince a friend who is writing project management
software that he ought to make his application able to import data from your ledger files in
order to produce project management reports.

The first way you could solve this problem would be to write out the file formats used by
your accounting software, and pass this documentation to your project management
programmer friend to write his own routines to access them. If you're feeling particularly
generous, you might give him source code for your file-handling routines - though handing
out your source code is a commercially dangerous practice. Or you might just give him a .LIB
file, containing the compiled file-access routines.

Both parties now link the same (or similar) file-handling routines into their .EXE files, wasting
space on the user's disk. But a more serious problem now looms. After both companies have
been distributing the software for some months, you discover a bug in your file-handling
routines: as the files grow, the B+ trees in your index files aren't being rotated correctly, and
in fact, the file structure needs to be changed. You'd also like to update the file structure to
add some new features to your software. But if you change anything, it's also going to require

2 Much of the discussion which follows does not apply to Windows DLL's, which are very restricted in
functionality when compared to those of OS/2. Windows NT provides similar functionality to OS/2.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 116

your friend to rewrite his project management software and offer his customers an upgrade.
You are not going to be popular! Here's the smart way to do things:

Isolate the file-handling routines in a layer of code - in this case, a DLL. Do not allow the
higher layers of the application to have any knowledge of the structure of the data files, other
than their own record layout. All details of the internal operation of the file handlers - such as
whether it uses B+ trees, VSAM, hashing or whatever - to be known to the application.
Design a set of file-handling primitives: MyOpenFile(), MyLocateRecord(), MyReadRecord(),
MyWriteRecord(), and so on, which will be the only way in which the application gets data.

Now you write the file-handling layer and compile and link its functions into a DLL. The only
functions which are exported are the top-level file-handling primitives, which are quite
general. Write the application to use these calls, and debug it.

You can now pass the .DLL with accompanying documentation and header files across to
your business partner, who writes the project management software to use the same file-
handling primitives. You ship your accounting software with the .DLL file to manage the
accounts files, while the project management software ships with instructions on how to link
to your software through the .DLL if required.

Benefits? Only one set of file-handling routines exist on disk, to be shared by both application
programs. But most importantly, should you wish to fix bugs in the file-handling code, you
need only supply an updated .DLL and both applications are now fixed! Similarly, should the
file format have to be changed, then a file format conversion utility and revised .DLL file will
provide improved functionality and both applications will still work!

For many years, smart programmers have expounded the principles of data hiding - not
allowing higher-layer modules of code to know anything about how lower-level modules
represent and manipulate their data internally. This technique leads to good modular design,
with fewer bugs and increased re-usability of code. And dynamic link libraries implement the
technique beautifully!

More recently, the same concepts have evolved into object-oriented languages and
technologies such as C++ and SOM. Stretching the metaphor somewhat, our accounting files
represent objects, while the code in the DLL represents the methods which manipulate the
objects. In fact, because a single DLL can manipulate multiple objects for its clients, it could be
said to represent a class. And now you see what the OS/2 2.0 System Object Model is at least
partially about: it provides a standardised mechanism by which new objects can be made
known to the operating system. The Workplace Shell and through it, the user, and the
methods which manipulate the object can be loaded from their DLL and called by both the
parent application and the system.

Types of Dynamic Linking

OS/2 supports two types of dynamic linking. In the first, and easiest to use, the system reads
the .EXE file segments as it loads a program, and detects entries which call for dynamic link
libraries to be loaded. The DLL's are therefore loaded in turn, and since a .DLL file is
structurally similar to a .EXE file, should the DLL reference other DLL's, they will in turn also
be loaded, and so the load proceeds, recursively. This is referred to as "load-time" dynamic
linking.

This technique has its advantages: it is simple and requires little, if any, modification of
source code. However, it has serious drawbacks: all DLL's are loaded at program load-time,
consuming memory, and if any of them is missing, the load will fail, with (in OS/2 1.X at
least) the cryptic message "The system cannot find the file .". This is appropriate in the case of

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 117

a missing essential subsystem, but if all that is missing is an optional module or perhaps on-
line help, an experienced user could still go ahead and use the program.

Run-time dynamic linking postpones resolution of these subroutine references until the
program has loaded and is actually running. In fact, the program can generate the name of a
DLL as it runs, then call for the DLL to be loaded and the address of a specific function
returned.

This technique has several benefits: first, it can be used to provide a specific pathname for a
DLL, allowing loading of a DLL which is not in the LIBPATH (pathnames for DLL's can be
stored in .INI files). Second, it allows the application to deal with the situation which arises
when a DLL cannot be found, and perhaps continue execution with some options not
available. And perhaps most importantly, it allows substitution of DLL's, so that, for example,
an application can be developed with a library of DLL's to support import/export of foreign
file formats. New DLL's can be added quite simply; the developer need only ensure that the
new DLL provides the standard functions (a common .H file can be used to ensure this) and
the user need only copy the new DLL to disk and then run a program to update a list of file
formats.

Functions of interest:

DosQueryModuleHandle() (DosGetModHandle in OS/2 1.x) Retrieves the handle
of a DLL module. Typically used to check whether a
DLL has already been loaded.

DosLoadModule() Loads a DLL and returns a module handle, or returns
an error code and the name of the DLL which failed to
load.

DosQueryProcAddr() (DosGetProcAddr in OS/2 1.x) Takes a module handle
and function name, and returns the function address.

DosFreeModule() Takes a module handle and frees the module. The
module is only removed from system memory when
all client processes have freed it.

Writing and Compiling DLL's

DLL's are supported in both OS/2 1.x and OS/2 2.x, though the two environments use
different software development tools. OS/2 1.x developers usually use either IBM C/2 or
more commonly Microsoft C 6.00b. Developers for 2.x are almost always using IBM's C Set/2.

Code written to run in a DLL is written in C and assembler and is written in the conventional
manner, although there are a few restrictions. First, all functions which are exported must be
declared extern rather than static (extern is the default). Static functions cannot be
exported.

The source code file for a DLL is compiled in the usual way, but when the linker is run
against the .OBJ file, it will run into difficulty as it cannot locate the main() function. The
linker thinks it is to produce a .EXE file, rather than a DLL.

This is fixed by providing a .DEF (module-definition) file for the linker. A .DEF file usually
begins with either a NAME statement (for a program .EXE file) or a LIBRARY statement (to
produce a DLL). Other statements are used to specify, for example, whether code and data
segments are preloaded or loaded only when called, stack and heap sizes, and most

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 118

importantly for a DLL, which functions are exported from the DLL. This last function is
achieved with the EXPORTS statement. Here's an example:

LIBRARY FORMS
DESCRIPTION 'Forms Handler (C) 1991 Les Bell and Associates Pty Ltd'
PROTMODE
DATA MULTIPLE READWRITE LOADONCALL
CODE LOADONCALL
EXPORTS
 add_field @1
 make_field @2
 set_field_char @3
 set_field_far_char @4
 set_field_int @5
 set_field_hex @6
 disp_form @7
 release_field @8
 unlink_field @9
 release_form @10
 append_field @11

This .DEF file will cause the linker to create a DLL, rather than an .EXE file. The two are very
similar; a DOS .EXE file has only one entry point, where the program starts execution with C
runtime initialization, whereas an OS/2 DLL has multiple entry points. So do many OS/2
.EXE files: the main() function plus various winprocs. It will also insert a copyright statement
into the module, tag the code and data segments with various attributes and define the
multiple entry points. Now the linker stops squawking!

When a program which uses a DLL is compiled and linked, some problems arise. The
compile will go OK, but the link will fail with "Unresolved external reference" messages as
the compiler cannot locate the functions from the DLL. This difficulty can be resolved in
several ways.

The first approach is to 'compile' the DLL's DEF file using a tool called the import librarian
(implib.exe). This will generate a .LIB file with the same name as the DLL but which does
not contain any of the actual code of the DLL. Rather it contains some stubs which cause the
linker to write the appropriate dynlink records into the resultant .EXE file and postpone
linking of the actual code.

An alternative approach is to include an IMPORTS statement in the main module's .DEF file,
specifying which modules and functions are loaded from DLL's. The result might look
something like this:

NAME MyApp WINDOWAPI
PROTMODE
IMPORTS
 FORMS.add_field
 FORMS.make_field
 FORMS.set_field_char
 FORMS.set_field_far_char
 FORMS.set_field_int
 FORMS.set_field_hex
 FORMS.disp_form
 FORMS.release_field
 (. . etc . .)

Obviously, at run-time, only the function and module names are known, and there is no run-
time protection against passing of bad parameters. This should be dealt with at compile time

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 119

by creating a .h header file which includes the prototypes of the various functions in the DLL
and including it into both the DLL and the main module sources at compile time.

Sharing DLL's

What happens when the power user who has bought both the accounting software and
project management program tries to run both together? Now there are two client programs
trying to use the file-access routines in a single DLL. Leaving aside the problems of providing
file and record locking, how is this dealt with?

DLL code has to be written to be reentrant. Although this sounds difficult, it is actually fairly
easy. Remember that in the Intel X86 environment, code segments are either execute-only or
execute-and-read; since they cannot be written to, code cannot be self-modifying so that
source of difficulty is gone. There is no great problem with clients sharing code segments.

Data is a different matter. We have to arrange that the DLL provides a separate data segment
for each client process. Such segments are referred to as instance data segments, as they are
provided for each instance of the DLL.

By default, a DLL has a single automatic data segment - that is, heap and stack - for all its
clients. We can create instance data segments by specifying the MULTIPLE attribute on the
DLL's data segments, using the DATA MULTIPLE statement in the .DEF file. Now each client
process has its own stack and heap for the DLL.

A DLL can also have a single global data segment, which is used for common data. For
example, in the case of a multi-client file-handling DLL, there will be some data common to
all clients to control file locking and record locking. This will be in a global data segment.
Such segments are commonly used by DLL's which manage shared resources such as files,
I/O ports and the screen.

Now, in reentrant code, it is a good idea to avoid static and global data as much as possible,
as such data is prone to accidental overwrites. In particular, certain sequences of code must be
atomic. Examples would include testing, and if clear setting, flags and even simple operations
such as incrementing 32-bit long variables on a 16-bit CPU, which requires two machine-code
instructions. What can happen if this thread is preempted half-way through incrementing
that variable? A second thread might now run and attempt to update the same variable, with
disastrous consequences.

Such operations must either be accomplished by calling non-preemptible operating system
functions, such as those provided for manipulating semaphores, or by writing critical sections
of code, using the OS/2 DosEnterCritSec() and DosExitCritSec() function calls.
While a thread is in a critical section, it cannot be preempted by other threads of the same
process, avoiding these problems. Don't crash in a critical section!

Initialization and Termination

When the DLL is loaded, the operating system will call a function to perform any required
initialization. By default, an initialization function is provided which will initialize the C run-
time data, allowing the DLL code to call C run-time functions. Initialization can be performed
on a global or per-instance basis.

This function can be replaced in order to provide customised start-up procedures such as
allocating system resources (memory, pipe, queues, etc) or initialising hardware (default
screen appearance, for example). However, the initialization must still call the C run-time
initialization routine if C functions will be called.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 120

Detailed documentation on writing a replacement initialization routine can be found in the
Microsoft and IBM documentation.

Termination code is established by the initialization routine. As each client calls the DLL and
it initializes, the routine can call the operating system through the DosExitList() function
call to register up to 32 routines which will be called when the client process terminates. This
allows a DLL to free up resources on the death of a client.

Compiling under MS C 6.00

The segmented memory model used by the 286 processor and OS/2 1.x causes some
complications when writing apps which use DLL's. For example, when a thread enters a DLL,
the DS register points to the calling application's data segment. In order to access the DLL's
data segment, the DS register must be reloaded. In order to achieve this, exported functions
(and only exported functions) should be declared with the _loadds keyword, causing some
prolog code to be prepended to the function code.

Of course, this can give rise to a secondary problem. Since I have warned you to avoid static
data, you'll probably have written many simple DLL functions to use only automatic (i.e.
stack) variables. In that case, your DLL does not have a data segment, and when you link it,
the linker will issue segment fixup errors. In that case, get rid of the _loadds keywords or add
a single static variable somewhere as a quick fix.

The selection and setup of memory models also gets complicated. Giving the client
application access to the DLL data segments (not a good idea - remember my comments
about data hiding) will require far pointers, as will the reverse, allowing the DLL access to the
client's data segments.

Use the /sfu or /sfw memory model. The w (/Aw) option sets up separate data and stack
segments but does not cause reloading of the DS register so that exported functions must be
declared with the _loadds keyword. The u (/Au) option will cause DS to be reloaded on
every function call, reducing performance.

Declare exported functions with _export _far _pascal, as the functions are, of course, in a
different segment from the caller.

Compiling under IBM Visual Age C++

Compiling for the flat memory model of OS/2 2.0 and later using the IBM Visual Age C++
compiler is much simpler.

Compiler options to be used:

/Ge- Do not generate .EXE file

/Gd- Statically linked, or

/Gd+ Dynamically linked to C run-time functions.

Visual Age C++ also supports the development of subsystems, which are DLL's that can be
shared by multiple processes and which do not use the C run-time environment.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 121

Example Code

Here is an extremely simple example of a DLL. It is a function which is passed three pointers
to integers and which returns the sum of the first two integers at the address pointed to by
the third pointer.

#include <os2.h>

#include "dlldll.h"

void EXPENTRY dlladder(int *a, int *b, int *c)
{
 *c = *a + *b;
}

The file dlldll.h simply contains the prototype of the function(s) in the DLL:

void EXPENTRY dlladder(int *a, int *b, int *c);

The source code file dlldll.c is compiled and linked using the following .DEF file:

LIBRARY DLLDLL INITINSTANCE
DATA SINGLE SHARED
EXPORTS DLLADDER

The makefile for the dynamic link library shows that as well as compiling and linking the
DLL, we also run the Import Librarian to create a DLLDLL.LIB file which will be used to link
with the main program:

IBM Developer's Workframe/2 Make File Creation run at 15:48:36 on
07/07/92

Make File Creation run in directory:
C:\DEVELOP\QUICKIES;

.SUFFIXES:

.SUFFIXES: .c

dlldll.dll: \
 dlldll.OBJ \
 dlldll.def \
 DLLDLL.MAK
 @REM @<<DLLDLL.@0
 dlldll.OBJ
 dlldll.dll

 dlldll.def;
<<
 LINK386.EXE @DLLDLL.@0
 IMPLIB dlldll.LIB dlldll.def

{.}.c.obj:
 ICC.EXE /Ge- /C .\$*.c

!include DLLDLL.DEP

The main program which calls this DLL functionis also extremely simple:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 122

/* DLL Test Main Program */
#include <os2.h>

#include <stdio.h>

#include "dlldll.h"

main(int argc, char *argv[], char *envp[])
{
 int a = 1,b = 2,c = 0;

 printf("a = %d, b = %d, c = %d\n", a, b, c);
 dlladder(&a, &b, &c);
 printf("a = %d, b = %d, c = %d\n", a, b, c);
 getchar();
}

IBM Developer's Workframe/2 Make File Creation run at 15:50:02 on
07/07/92

Make File Creation run in directory:
C:\DEVELOP\QUICKIES;

.SUFFIXES:

.SUFFIXES: .c

dllmain.exe: \
 dlldll.LIB \
 dllmain.OBJ \
 DLLMAIN.MAK
 @REM @<<DLLMAIN.@0
 /CO /ST:8192 /PM:VIO +
 dlldll.LIB +
 dllmain.OBJ
 dllmain.exe

 ;
<<
 LINK386.EXE @DLLMAIN.@0

{.}.c.obj:
 ICC.EXE /C .\$*.c

!include DLLMAIN.DEP

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 123

Memory Management

Memory Management on the 80286 With OS/2 1.x

OS/2 Version 1.x was designed specifically to run on the Intel 80286 processor, and
accordingly its memory management features reflected the segmented architecture of that
machine.

The 286 processor generates addresses by combining the values in two 16-bit registers. A
segment selector is used to look up the base address of a segment of memory and then an
offset is added from one of the general purpose registers.

Each time one of the segment registers is reloaded, there is some delay as the processor reads
in the corresponding segment descriptor, and so there is a slight performance penalty
associatedwith FAR CALLs and _far pointers.

When a program starts running, any C static variables will have been allocated storage in the
default heap, while automatic variables are allocated on the stack. In the former case, DS
already points to the appropriate segment, while in the later SS is correctly set, and so both
are accessed as near.

The C runtime library functions such as malloc(), calloc(), etc. will allocate memory
from the default data segment, so again, in small model, such accesses are near and involve
no reloading of the segment registers. However, the default data segment can be at most 64
KB in size and so non-trivial applications usually need additional memory to be allocated by
the operating system.

This is done using the DosAllocSeg() function call. DosAllocSeg(), being a Control
Program API, returns a success or failure code, so we must pass a reference to the variable to
be set, as a parameter. Furthermore, DosAllocSeg() allocates a segment of memory, which
is referred to via a selector, and so does not 'return' a pointer as we might wish.

DosAllocSeg() takes three parameters: the size of the required segment, the address of a
selector to be filled in, and a flags variable which sets segment attributes. After we have
obtained a selector, we can convert it into a _far pointer (N.B. this is not the default data
segment, so the pointer must be _far) by using the MAKEP macro, which combines a
selector and offset combination to create a pointer.

SEL sel;
PCH pch;
APIRET rc;

rc = DosAllocSeg(size, &sel, SEG_NONSHARED);
pch = MAKEP(sel, 0);

Notice that, by definition, the type PCH is a _far pointer to char.

C Library API's - malloc(), etc.

The simplest and most portable technique for memory management is to use the ANSI C
function library API's such as malloc(), calloc() and free(). The malloc() function
simply attempts to buy memory from the operating system in bulk and then sell it cheaply in
smaller quantities. It is simple and it is supported by all C compilers on a huge number of
platforms, but it has its problems. Principal amongst these is that the quality of

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 124

implementation varies widely between compilers, and even between different versions of the
same compiler.

malloc() will allocate memory from a default heap, with some overhead for a structure
called a memory arena which keeps track of the size of this memory block and the offset to
the next block.

In the case of 16-bit code, malloc() can only allocate memory from the default data
segment or heap, the size of which is set by the linker but can never exceed 64 KBytes.
Programs which require larger allocations will have to use the underlying operating system
functions to allocate segments.

Intel 80386 Memory Management with OS/2 Warp

The segmentation unit of the 386 processor outputs a 32-bit address which is known as a
linear address. This is passed to the paging unit, which splits it into three fields. The most
significant ten bits provide an index into the page directory, from which the system gets the
twenty high-order bits of the page table's physical address. The next ten bits of the linear
address are used to index into the page table, and from here the processor obtains the twenty
high-order bits of the page frame, i.e. the most significant bits of the physical address, the
page number. The remaining 12 bits of the linear address provide the offset of a byte within
the page.

In the 386 architecture (and the 486, Pentium and Pentium Pro follow this) pages are fixed in
size at 4 KBytes. However, the programmer should not assume this, but should rather use the
DosQuerySysInfo() API with the QSV_PAGE_SIZE parameter to find out for sure.

Each page has attributes such as being readable, writable, committed, and so on, and so OS/2
provides API's for setting and querying these attributes.

OS/2 2.x has been designed to allow for future portability, and so does not follow the
segmented model. Nonetheless segmentation is still taking place; but because each segment
can be up to 4 GB in size, the program fits entirely within one sgegment and the programmer
deals only with offsets, which he can treat as flat addresses within a 4 GB virtual machine.

32-bit OS/2 provides applications with a 512 MB flat address space. The 512 MB limitation
comes about because of the need to provide address translation between 32-bit flat-model
code and 16-bit segmented-model applications and subsystems (even in Warp, 16-bit code is
still used in file system drivers as well as (of course) the DOS/WIN-OS/2 subsystems). The
16-bit code can theoretically have up to 8192 segment descriptors, and if each of these is
mapped to a separate 64 KB block of memory, the total address space is 512 MB. Translation
between the different models is done by a thunk layer which uses patented translation
algorithms.

The operating system kernel actually resides outside the application address space, in fact
appearing just below the 4 GB theoretical maximum 32-bit segment limit. However, most of
the memory below this - down to 512 MB, in fact - is off-limits to applications, and is only
used for system tables.

Within the 512 MB application address space, applications grow upwards from location
00010000H (64KB). The range from 00000000H to 00010000H is an invalid address range,
while each application typically starts at 00010000H in its own segment. By contrast, shared
memory and dynamic link library memory is allocated from 1FFFFFFFH downwards.
Initially, the private address space ends at 03FFFFFFH and this is followed by the 'expansion
region'; however the private address space boundary can be moved upwards as required.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 125

Similarly the shared address space area expands downwards; its initial limit is 1BFFFFFFH
but it will move downwards into the expansion region as required.

When the system loads an EXE or DLL file, it will allocate memory for the static objects in the
file. Once the process starts running, however, the programmer may need to dynamically
allocate memory for large structures, linked lists, trees, etc. OS/2 allocates memory objects
which can be up to 512 MB in size, using the DosAllocMem() API.

The first thing to bear in mind about OS/2 32-bit memory management is that there is a
distinct difference between allocation of a memory object and commitment of memory.
Allocation of memory causes entries to be made in internal system tables granting an
application access to a range of memory. Commitment, by contrast, causes pages of memory
to be actually utilised, with consequent reduction in the free memory in the system and
possible growth in the system swap file.

Because under the 0:32 memory model, memory objects are not relocatable or resizable in the
way that 16:16 segments were, the appropriate strategy for the programmer faced with wide
variation in the dynamic memory requirements of his application is to allocate a little more
memory than he expects to need, and then only commit it as required. However, caution
should be employed - although the memory may never be committed and therefore the swap
file may barely grow, the address space itself is a finite resource, and large systems are
already running out of address space due to the cumulative effect of several applications
which allocate much more memory than they are actually committing or using.

The primary API for memory allocation is DosAllocMem(). The syntax is:

 #define INCL_DOSMEMMGR
 #include <os2.h>

 PPVOID ppb; /* A pointer to a variable that will receive the
base address of the allocated private memory object. */
 ULONG cb; /* Size, in bytes, of the private memory object to
allocate. */
 ULONG flags; /* Allocate attribute and desired access
protection flags. */
 APIRET rc; /* Return Code. */

 rc = DosAllocMem(ppb, cb, flag);

 Notice that the first parameter is an output parameter, that is, we'd like the API to return a
PVOID, but since it returns an APIRET error code, we pass it the address of a PVOID (i.e. a
PPVOID) which it then fills in.

The primary possibilities for the flags parameter is a combination of the following:

PAG_READ All pages in the object are readable

PAG_WRITE All pages in the object are writable

PAG_COMMIT All pages in the object are committed

Write access actually implies read access, and on the Intel family of processors, PAG_READ
and PAG_EXECUTE (pages contain executable code) are also equivalent.

Because the DosAllocMem() API maps to the underlying hardware memory management, it
always allocates an integral number of pages, which on current Intel processors, are 4 KB in
size. Consequently, allocation and committment of a memory object 6 KB in size will result in

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 126

the allocation of two pages in memory. Accesses within the first 6 KB are treated as expected;
however, attempts to access memory beyond the end of the object and within the last page
will not trigger an exception as you might expect.

Memory is freed using the DosFreeMem() API. The syntax for DosFreeMem() is:

 #define INCL_DOSMEMMGR
 #include <os2.h>

 PVOID pb; /* The base virtual address of the private or
shared memory object whose reference is to be freed. */
 APIRET rc; /* Return Code. */

 rc = DosFreeMem(pb);

Within a memory object, it is possible to use the allocation flags to commit and decommit, or
change the other flags to protect data, on a page-by-page basis. This is done using the
DosQueryMem() and DosSetMem() API's:

 #define INCL_DOSMEMMGR
 #include <os2.h>

 PVOID pb; /* The base address of the range of pages to be
queried. */
 PULONG pcb; /* A pointer to the ULONG that contains the size
of the range of pages. */
 PULONG pFlag; /* A pointer to the ULONG in which a set of
attribute flags describing the type of allocation and access
protection for the specified range of pages is returned. */
 APIRET ulrc; /* Return Code. */

 ulrc = DosQueryMem(pb, pcb, pFlag);

 #define INCL_DOSMEMMGR
 #include <os2.h>

 PVOID pb; /* The base address of the range of pages whose
attributes are to be changed. */
 ULONG cb; /* A value specifying the size, in bytes, of the
region whose attributes are to be changed. */
 ULONG flag; /* A set of flags specifying commitment or
decommitment, and desired access protection, for the specified range
of pages. */
 APIRET ulrc; /* Return Code. */

 ulrc = DosSetMem(pb, cb, flag);

Note that the last parameter in both cases, the flags, is an output parameter in the query API,
and so passed by reference, and an input parameter in the set API, and so passed by value.
There are no API's which can change an individual flag, so to make memory read-only, for
example, without altering its writable and/or committed status, one must use
DosQueryMem() to obtain the flags value, AND out the PAG_WRITE attribute and then use
DosSetMem() to write the attributes back again.

In addition, the size of the range of pages to be queried is an input/output parameter. On
input, it contains a size (number of bytes) for the page(s) to be queried. The function then
determines the state of the first page in the range, and then scans upwards as long as the state
of successive pages remains the same. It will stop on encountering a page with different

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 127

attributes or the end of the object, and set the ULONG pointed to by pcb to contain the
number of bytes in the pages for which the attributes are returned.

Suballocating Memory and Heap Management

Because DosAllocMem() always rounds up object sizes to a multiple of the page size (at
least 4 KB), it is not an efficient API to use when allocating memory for lots of small objects. I
have often seen posts in forums like Compuserve's OS2DF1 asking: "Why am I running out of
swap space? I'm only allocating 100 bytes at a time, maybe 2 or 3 thousand times". Of course,
upon enquiry the poster turns out to be using DosAllocMem() so that they are actually
allocating (and committing) around 8 or 12 MBytes.

This is where heaps enter the picture. A heap is a pool of memory from which allocation
requests are met. Under the covers, this is how malloc() works, for example. A heap is
basically a linked list of memory arenas

Here's how it works: there are four phases to heap usage:

• Heap Initialization: Allocation of memory for the heap, and creation of the heap
data structures

• Suballocation: acquisition of memory from the heap - repeat as required

• Freeing the suballocations - repeat as required

• Heap cleanup - removal of data structures and freeing of memory

Let's take the example of an application which needs to allocate memory for an unknown
number of graphics objects. Each is between 16 bytes and 512 bytes, and not more than 512
KB in total will be required.

Here's the way this code could be written. First we need a function to initialize the heap. In
this case, I've made it a little more generic than required (code reuse, don'tcha know):

PVOID MemoryInit(ULONG heapsize)
{
 APIRET rc;
 PVOID pheap = NULL;

 rc = DosAllocMem(&pheap, heapsize, PAG_READ | PAG_WRITE |
PAG_COMMIT);
 pmassert(hab, rc == NO_ERROR);

 rc = DosSubSetMem(pheap, DOSSUB_INIT, heapsize);
 pmassert(hab, rc == NO_ERROR);

 return pheap;
}

Next, we need an allocation function. Here's one way it could be done:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 128

PVOID MemoryAlloc(PVOID pheap, ULONG objsize)
{
 APIRET rc;
 PVOID pobj = NULL;

 rc = DosSubAllocMem(pheap, &pobj, objsize);
 pmassert(hab, rc == NO_ERROR);
 return pobj;
}

To free a block from the heap:

VOID MemoryFree(PVOID pheap, PVOID pobj, ULONG objsize)
{
 APIRET rc;

 rc = DosSubFreeMem(pheap, pobj, objsize);
}

and finally to destroy the heap:

VOID MemoryRelease(PVOID pheap)
{
 DosFreeMem(pheap);
}

These examples are about as simple as you can get away with. More comprehensive versions
would add some checking and debugging facilities.

When using the C library heap management functions (malloc(), etc.) remember the
_dump_allocated() and _heap_check() functions. Also compile your program with the
/Tm option.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 129

Process Management
In this section, we shall examine OS/2’s multitasking facilities and API’s.

Preemptive Multitasking

The first thing we need to understand is the nature of the multitasking model used by OS/2.
Simpler, and less reliable, systemsoften make use of non-preemptive, or so-called cooperative
multitasking. This relies upon each running program doing a little bit of work, then yielding
control back to the system, doing a little more work, then yielding, and so on. Each time the
application yields and returns control back to the system, it can decide what should run next -
the same program or a different one.

This model works acceptably for a totally event-driven system. For example, in a message-
passing system, each application will have a loop in which it reads a message and then
processes it in some way, and the GetMessage() API is the opportunity for the system to
wrest control away from the application. But what if processing a task will take a
considerable elapsed time? What if, for example, the user chooses File / Open ... and selects a
huge document file to be loaded, parsed and displayed? While the application is doing that, it
is not calling GetMessage() and so the system never regains control - and so no other
applications run. The multitasking has just collapsed. This will occur with events that take
some time to process (initiating remote sessions, client-server exchanges, etc.), background
tasks (printing, etc.) as well as badly written or plain buggy applications which get a message,
call a function to process it and never return, thereby crashing the entire system.

It is possible for the application programmer to program his way around this by, for example,
periodically peeking the message queue, but heck, you can program your way around the
limitations in DOS by the same techniques. The operating system is supposed to be providing
multitasking services, right?

By contrast, OS/2 provides preemptive multitasking. In this case, it does not depend upon
the program yielding the CPU; instead, the hardware of the machine generates a periodic
interrupt which allows the processor to suspend the currently running process, regardless of
what it is doing, save its status, work out what should run next and then resume the next
task. The programmer need not make any special allowances for running in a multitasking
environment, need not divide up a task and periodically yield - in fact, he can just recompile a
DOS program with minimal modification and get an OS/2 program which multitasks quite
happily.

Sessions

In the OS/2 model, the top-level entities are sessions (also called screen groups in OS/2 1.x).
Essentially, each time a full-screen program is launched, OS/2 creates a session for it. A
session comprises a virtual video buffer, virtual keyboard and virtual mouse and the one or
more processes in the session.

The foreground session, which occupies the screen, has its virtual devices mapped to the
physical devices, so that, for example, cursor positioning has a visible effect. Moving the
cursor in a background session will have no effect until the session is brought to the
foreground, at which time the curor will be correctly updated.

To start a session, the programmer must initialize a STARTDATA structure and then call the
DosStartSession() API. The principal elements of the STARTDATA structure are:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 130

 Related - flag to indicate whether the new session has a parent-child relationship with
this one
• FgBg - flag to indicate whether the session should start in the foreground
• PgmTitle - pointer to the program title string
• PgmName - the pathname of the program file (may be NULL)
• PgmInputs - command line arguments
• Environment - environment strings

• SessionType - full-screen, windowable, DOS VDM, etc.

The DosStartSession() API has many other options, including the ability to start a
program from a handle obtained using an API called WinAddProgram(), which is no longer
supported. Ignore any references to the PgmHandle member in STARTDATA. Care needs to be
given to the parent-child relationship between sessions, especially when debugging.

The basic DosStartSession() call looks like this:

STARTDATA sd;
ULONG idSession; /* The ‘returned’ session ID */
PID pid; /* The ‘returned’ process ID */

rc = DosStartSession(&sd, &idSession, &pid);

Programs

A program is a static entity on disk. For DOS, the definition of a program is easy: it is a .COM
or .EXE file. In the OS/2 world, the issue is complicated by the existence of code in dynamic
link libraries, but the concept is the same: a program is a static list of code and data stored on
disk. It has no life; it does not do anything until the program is invoked, by loading it into
memory and running it, at which time it becomes a process.

Processes

When the user issues a command at an OS/2 prompt (or invokes a program from an icon),
the operating system loader reads the program's file header and loads the various segments
into memory, fixing up address references as it does so. In the process of doing this, it also
loads and links in any dynamic link libraries which required, recursively repeating the
process with them.

The system also builds up tables of resources allocated to this process, such as memory
(allocated during load or later), files, queues and so on. This data is recorded in linked lists,
the head of which is in a data structure generically called a process descriptor, and referred to
in OS/2 as a Per-Task Data Area.

Starting Child Processes

In the UNIX world, child processes are started by the fork()/exec() function call pair. Life
under OS/2 is a little simpler and less mystifying. A single function call, DosExecPgm(),
does it all.

OS/2 has a strong concept of hierarchical inheritance amongst processes. A child process will
inherit its parent’s environment (environment strings, file handles, current drive, current
directories, etc.) It can change its own environment, and subsequently-created children will
inherit the modified environment, but it has no other way of affecting other processes. In

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 131

addition, a parent process can modify its childrens’ thread priorities, but cannot modify
priorities in its peers or ancestors.

Another important consequence of this design philosophy is that when a process is
terminated or killed by the system, its children will go with it. This is reasonable; often the
only reason why the children exist is to perform some service for the parent, and now that it
is no longer around, the children have no purpose. Killing the children will avoid deadlocks
and free resources (files, semaphores, etc.) for reuse. Programmers should be careful in
designing the parent-child relationships for shell programs for this reason. If the shell
program is the parent for several critical processes, a trivial bug in the user-interface code of
the shell could cause the termination of all the children.

You should use PSTAT|MORE or a graphical process monitor such as PMPS to examine the
system process hierarchy. You will notice that there are two copies of PMSHELL.EXE. Why?

Everyone assumes that the Workplace Shell is the parent process for user applications, but a
little thought will reveal that this cannot be so, otherwise when the Workplace Shell crashes -
which it does disturbingly frequently, especially on developers’ machines - it would crash all
applications the user has invoked from within it. In practice, therefore, the PROTSHELL=
statement in CONFIG.SYS starts a ‘master’ copy of PMSHELL.EXE which maintains the task
list and is the true parent. It then reads the RUNWORKPLACE environment variable and starts a
second copy of PMSHELL.EXE which is the user interface. When the user double-clicks on a
program reference object to invoke a program, the UI commnicates some parameters to the
‘master’ shell which then invokes the program. Should the Workplace Shell UI crash, it would
only bring down its children, but a look at the process hierarchy will reveal that it has none!

DosExecPgm()

The main API used to kick off programs is DosExecPgm().

system()

The VAC++ compiler continues to support the system() library function, which will invoke
the command processor (CMD.EXE) to run the command passed. For example:

int rc;
rc = system(“DIR >DIR.TXT”);

Threads

The OS/2 control program scheduler schedules threads, not processes. A thread is something
like a coroutine - a subroutine that executes while its parent, calling, routine continues to
execute.

We are all familiar with the concept of subroutines - in fact, most programmers use them with
so little conscous thought that we are hardly aware of them!

Figure 1, below, shows subroutine execution, first, from a ‘flow of control’ viewpoint, and
then from an elapsed time perspective. Notice that the main routine is suspended while the
subroutine runs.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 132

Figure 1. Execution of a subroutine.

But what if we could have the main routine continue while the subroutine runs? This is
exactly what OS/2’s threads allow you to do. Figure 2 shows a ‘subroutine’ started by means
of the OS/2 DosBeginThread() API. Notice that the subroutine starts but the main routine
continues to run in parallel with it.

Figure 2. A thread executes in parallel with its 'caller'.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 133

Of course, you know that really, at any instant only one instruction is being executed. The
processor is time-slicing, switching very rapidly back and forth between the main routine and
the subroutine. However, in OS/2 you must never attempt to use this ‘fact’ in your coding.
The reasons are twofold. First, OS/2 is a preemptive multitasking system; this means that you
cannot predict when it is going to suspend one thread and resume another. You can make
some general statements about the system behaviour, but not specific ones - rather like being
unable to chart the random path of an air molecule in a room, while still being able to give
useful information about the particle behaviour by stating the air temperature.

Secondly, it’s not a ‘fact’: there are versions of OS/2 which support symmetric multiprocessor
hardware, so that the two threads may in fact be executing on two processors so that two
instructions do in fact execute at precisely the same instant.

Accordingly, you cannot guarantee (without using system-provided facilities like
semaphores) that the two sequences of instructions in two threads will interleave in a
particular way. Statements like ‘It stands to reason that the first few lines of this thread here
will execute before these lines further down the main thread, here’ are really a way of asking
for trouble.

Threads vs Processes

Why are threads important? Other operating systems like UNIX, seem to get by without
them.

The answer is that threads are useful when an application has to do two or more things
simultaneously. The classic example is word processing. Way back in 1980, running under the
eight-bit CP/M operating system, WordStar version 2.0 was able to print in the background
while the user continued to edit a document. Now, it did this by having a loop which polled
the keyboard and, if there was no keystroke pending, grabbed another character from the
print file and stuffed it out to the printer port. It was done by slightly tricky coding, and
certainly not by using any operating system features.

Now, under UNIX, the simultaneous edit and print problem is easily dealt with - just make
editing and print formatting separate programs. Those who have used UNIX and its tortuous
editors, emacs and vi, together with print formatters like nroff, troff and ditroff will know
what I mean. But real-world end users, God Bless Them, think that word processing should
be One Program, with menu options for printing. OK, no problem - make the editor program
a shell, and it can use fork()/exec() or DosExecPgm() to invoke a print formatter
program ‘under the covers’. But look at the overhead here - every time you want to print, the
OS has to allocate memory for system structures, load and parse an executable file (and
possibly DLL’s as well), allocate more memory and so on - all the overhead that goes with
process creation.

Threads provide lightweight multitasking. Here’s why - and there are a couple of important
definitions to bear in mind:

• The process is the OS/2 instance of program execution. It is also the unit of
resource ownership.

• A thread is a dispatchable entity. It is the OS/2 unit of execution.

In other words, processes own things. Threads do not. Let me just repeat that:

Processes own things. Threads do not.

What sort of things do processes own? They can own:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 134

• Files

• Semaphores

• Pipes

• Queues

• Windows (though there are some complicating factors here in PM)

• Memory

In short, anything that has a handle or an address. Notice that, although memory allocation
may be done by a thread, the memory does not belong to the thread, but to the process. All
threads in a process enjoy equal access to the memory and other resources owned by the
process. In other words, OS/2 implements inter-process protection, so that processes cannot
(by default) screw around with each others’ memory, but there is no inter-thread protection.
Similar considerations apply to files: the DosOpen() API may be called by a thread, but the
file belongs to the process.

A thread really only ‘owns’ two things: its priority and its state as represented by the
processor registers. The thread has a stack where it pushes automatic variables and return
addresses, but it does not ‘own’ that stack and other threads could overwrite it - for example,
with a rogue pointer.

Notice also that the dispatcher works on threads, not processes. In other words, if two
processes are running, and one of them comprises a single thread while the other has nine
threads, then - all else being equal, which it never is, and assuming all threads are able to run
- out of every ten timeslices, the first process would get one while the second process would
get nine.

Now, don’t get all excited and start to dream of making your applications run amazingly fast
by putting a dozen threads to work where your competitors only have one. It just doesn’t
work that way. In addition, users will notice that while your application may be fast, it is
making everything else run slowly - and they’ll dump your app in favour of one that has less
impact on the rest of the system. Life is full of compromises.

So, coming back to the example of background printing: an OS/2 programmer would put
print formatting into a thread rather than a separate process. The print formatting code could
already be loaded, ready to run. The app would simply snapshot the data to be printed and
then turn the print thread loose to run in the background while the main thread continues
editing or whatever.

To summarise: threads are much cheaper than using separate processes, but you trade off
some protection. It’s no big deal, and even if you sometimes do use a separate process, at least
you had the option.

Uses for Threads

What else can we do with threads? All kinds of stuff. Background printing is just the start.
How about recalculation in spreadsheets? Rather than have to write some tricky code that
checks the keyboard for a keystroke, and if there’s nothing there, does a bit more of the
recalculation, then comes back to check the keyboard status again, why not just put
recalculation in a separate thread?

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 135

Now, of course, some complications start to emerge. What if the user edits a cell while a
recalculation is in progress? After the value has already been used? There are two approaches
here: one is to use a semaphore or some other mechanism to lock out user changes to
spreadsheet values while recalculation is in progress. Another is to use some form of inter-
thread communication to signal the recalc thread to go back and recalc as far as necessary
when a cell is changed. Similar concerns apply when printing.

In fact, thinking about spreadsheets, here are some more ideas: how about allowing macros to
run on ‘background’ threads while the main spreadsheet interface remains active? Of course,
now you’d have to provide some mechanism for ‘cell locking’ so that a user can’t update a
cell while a macro is using it. Or how about allowing multiple macros to run simultaneously?

Other uses for threads relate to making the system more responsive (generally, threads can’t
be used to provide straight-out speed improvements. If a calculation takes 100 million
instructions, that’s what it takes, even if you could dice it up ten ways). Here are some
examples:

• Reading records in advance from a mainframe, while letting the user start editing the
first

• Keyword indexing a document database while the user reads the first document

• Write-behind caching: letting the user edit the next record while still writing the
previous to disk, remote host or whatever

• Filling a list box in the background while the user types into an entry-field (just in
case the user needs to pick from the list)

• Painting complex graphics windows in the background while the user interaces with
other parts of the application e.g. print format dialogs

• Memory management and garbage collection without holding up the user.

And so on, and so on. There’s no real limit to what you can do with threads and a little
imagination. And once you’ve got the basics nailed down, they’re not hard to use.

A favourite example of how threads can actually simplify designs comes from the world of
comms and networking - an area where OS/2 excels, and now you’ll see why.

Take a look at Figure 3. This shows the basic architecture of a terminal emulation program for
a single-threaded environment.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 136

Figure 3. A traditional single-threaded terminal emulation program.

There are several problems with this design. The major one is that the program consists of a
single loop with two functions - one for sending keystrokes out the modem and one for
receiving and displaying characters. It’s not possible to, for example, wait for a keystroke
from the user, because if the program stops and waits, it will no longer be monitoring the
serial port for incoming characters.

Now think about what happens when the program is idling - nothing being typed at the
keyboard, no incoming characters from the modem. What is happening? Right - the program
is spinning its wheels, going around and around that main loop but not actually doing
anyhing but slurping up CPU cycles and wasting them. That may be OK in a DOS
environment, where there’s nothing else running anyway, but in a multitasking environment
it will degrade the performance of everything else that’s running.

There are some other, lesser problems with the design: first, there’s too tight coupling
between the send and receive sides of the program; secondly, there’s no provision for
interpretation of escape sequences and adding that will be messy due to the aforementioned
coupling; thirdly, there’s no provision for buffering keystrokes should the user be able to type
faster than they can be sent or should the host be able to send faster than they can be
displayed.

Now, here’s the multi-threaded approach used in OS/2. Take a look at figure 4. The first
thread is the main thread, which will go on to process user commands (from menus, Alt-key
options, or whatever). All it has to do is to create a transmit thread and a receive thread.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 137

Figure 4. A multithreaded terminal emulator design.

The transmit thread only has to get a keystroke, and then send it. Notice, it will call an OS
function to get a keystroke, and wait until it has got it. Only then does it resume execution
and send it. Similarly, the receive thread will call the OS to get a character from the serial
port, and then display it. Since the two threads operate independently, either can block,
waiting for an event, without holding up the other. Notice that now, when the system is
idling, no CPU cycles are being used: the main thread is blocked waiting for user commands,
the transmit thread is blocked waiting for a keystroke and the receive thread is blocked
waiting for an incoming character. Result: minimal load on the system and no degradation of
other applications.

In addition, this design is easy to 'open up' and extend, for example, to add double-buffering.
Figure 5 shows an emhanced design.

Figure 5. A terminal emulator with double-buffering.

Thread Priorities

OS/2 is a priority-driven multithreaded system. Each system tick, it runs a scheduler which
decides which thread to run next, and a dispatcher which actually puts that thread on the
CPU. The scheduler maintains two lists of threads. The first list is of threads which are
blocked - that is, they cannot run because they are waiting for some event (a semaphore to
post, a sector to arrive off disk, etc.). This is the majority of threads. The other list is of threads

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 138

which are able to run - that is, if they were placed on the processor right now, they could
execute without waiting for some event.

The list of ready threads is sort into priority order. When the system timeslices, the scheduler
checks for events which might cause threads to unblock, and if so moves the unblocked
threads into the ready list at the correct position in the list. Once that has been done, it takes
the highest-priority thread off the top of the list and dispatches it.

Notice that if one particular thread is the highest priority and is always able to run, then the
system runs it - again and again. It doesn't matter if it’s at priority 27 and there’s a thread at
priority 26 just below it; it gets all the CPU time it needs until it blocks, terminates or drops its
priority. However, if there are two threads at priority 27, then the system will round-robin
between them.

Priority Classes

There are four priority classes. Each class has 32 levels, ranging from zero to 31.

The top priority class is Time Critical Class. Threads in time-critical class are used to respond
in urgent situations. You might think that if you use a time-critical class thread in your
application that it will run to the exclusion of everything else in the system, but of course,
time-critical class threads spend most of their time blocked and very rarely, if ever, run.
However, if a time-critical class thread is say, blocked waiting on a semaphore, you can pretty
well guarantee that when that semaphore posts, the thread will run on the very next
timeslice, as it will be the highest priority in the system.

Please don’t create a time-critical class thread with priority 31 - nothing else could ever get
above it, which could cause problems for other programmers. Similarly, priority zero should
be avoided.

The next class down is Fixed-High Priority Class, also known as Server Class. This is meant to
be used by application code which should run at a higher priority than regular user
applications. For example, consider a bank branch. Each teller has a machine running various
retail banking applications, but in addition, the end machine is doing double duty: it is
running both teller applications and also an SNA gateway, with the other teller machines
linked to it via token ring and it in turn providing an SDLC line to a mainframe.

Now, in this scenario, you don’t want the teller at the end machine to cause everyone else to
wait for mainframe access while he quotes the repayments on a mortgage. So, the SNA
gateway would be written to use Fixed-High Priority Class for much of its functionality.

Then come Regular Class threads. This class is where most application threads reside.
However, Regular Class is different in one important respect: dynamic priority variation.

The OS/2 ‘design religion’ (as it was termed at Microsoft) strongly differentiates OS/2 from
earlier minicomputer operating systems (read UNIX, VMS, etc). Those OS’s were designed for
a multiuser environment with the goals of maximising throughput and fairness. OS/2, by
contrast, is a single-user system, and so the accent is on maximising utility to the user and
responsiveness. As a consequence, OS/2 gives a priority boost to the threads of the
foreground process, so that if it has ready threads, they will run. After all, the foreground
process is the one the user is interacting with and he presumably does not care if something
in the background takes a relative priority hit.

As a consequence, OS/2 does not divide CPU time fairly amongst processes or threads. But it
does provide responsiveness similar to the DOS environment. On occasions when I have been
able to test applications which have the same code base on both OS/2 and DOS (Lotus 1-2-3

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 139

3.0 is a good example) the OS/2 version has provided responsiveness similar to the DOS
version, almost regardless of what is running in the background.

The scheduler will also give a priority boost to threads that are doing a lot of device I/O but
are not using much CPU time to do it (e.g. the spooler). Boosting these threads will hammer a
peripheral device that much harder but will have negligible impact on other applications.

But there are pitfalls to this approach. For example, what if the user hits the recalc key with a
large spreadsheet application in the foreground (a friend of mine tells tales of spreadsheets
which take 48 hours to recalculate! These are goal-seeking spreadshets which attempt to
minimise tax on large capital projects). Because the spreadsheet is the foreground application,
it gets a priority boost. Because recalculation involves no I/O (paging excepted) the recalc
thread will never block and will always be ready to run. As a result, whenever the scheduler
timeslices, it will be the highest priority and will always run, to the exclusion of all other
regular class threads!

In order to get round this problem, the system uses the CONFIG.SYS parameter MAXWAIT.
With MAXWAIT set to the default of 3, a thread which is undergoing starvation (i.e. not able to
run because another thread is getting a priority boost) will itself receive a boost after three
seconds, will briefly run and then be dropped back to its previous priority. So background
application threads will at least crawl towards completion. Perhaps more importantly, this
mechanism will break any deadlocks which might arise between threads in a foreground and
background application (though such a deadlock is difficult to conceive, stranger things have
happened).

An alternative mechanism, for certain situations, would be to disable the dynamic priority
variation, with the CONFIG.SYS line PRIORITY=ABSOLUTE. This would only be used in
dedicated systems, however.

Finally, there is Idle-Time Class. Idle-time class threads are used for low-priority background
tasks. For example, way back in the early eighties, I used to run a program to generate
Mandelbrot sets, which, without the aid of a maths coprocessor, required five days to run.
Being unwilling to dedicate a machine to this program, I ran it under Concurrent CP/M, at a
low priority. All the real work on the machine ran at a higher priority and always got the
processor as required, but when the system was idling (probably 95% of the time during
office hours and 100% overnight) the Mandelbrot program ran.

More serious applications for idle-time threads include running background diagnostics, for
example memory testing. OS/2 is being used on larger and larger machines, for mission-
critical applications. For example, the machine I am typing this on has 64 MBytes of RAM and
also runs DB2/2 maintaining customer accounts details - a crash on this or a similar server
can be very expensive.

One project I’ve been meaning to write since OS/2 1.0 appeared (I already had it under
MP/M and Concurrent CP/M) is a background memory tester. This would grab a 64 KByte
segment of memory (using the PhysToVirt device driver helper function) and test it
thoroughly - walking bit tests, address line inversion, checkerboard tests and so on. If the
segment passes the tests, it is released and the program marches on; but if it fails, the memory
is locked down so that it cannot be used by another process, a log entry on disk is generated
and a popup window warns the user to call a technician. So many good ideas, and so little
time ! - but with the advent of Pentium system boards with no parity checking on the SIMMs,
maybe I ought to bump the priority on this little utility.

Have you ever wondered how the Pulse utility works? There is no widely-documented API
for extracting CPU time versus real time as on UNIX (although they do exist and are used by
the IBM SPM/2 utility), so the information must be deduced. Utilities like pulse.exe work by

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 140

having two threads running. The first runs at a low priority in idle-time class, incrementing a
counter. That’s all it does, just loops around, incrementing a counter. The main thread, which
is regular class, hangs off a timer, and once a second or so it samples the counter and
subtracts the previous value.

Now, if the system is heavily loaded (100% CPU utilisation) the idle-time class thread will not
have run, and so the difference between samples will be zero. So the main thread draws a
graph at 100%. If the system has nothing else running, there will be a huge difference
between samples - the graph shows 0%. And if the system is somewhere in between, the idle-
time class thread will have run some of the time, and the graph will be somewhere in
between also.

Actually, it’s a little more complex, with the counter thread being run at a high priority briefly
on startup to establish just how fast the counter will go with no higher-priority threads
preempting it. But you get the idea.

Creating Threads

Threads are created using one of several API’s. Both OS/2 1.x and 2.x provide the
DosCreateThread() API’s, although they differ considerably in parameters and
functionality. In addition, all OS/2 compilers (should?) provide the _beginthread() library
function.

DosCreateThread()

The OS/2 1.x version of this API looks like this:

BYTE abStack[4096];
TID tidThread;
VOID main() {
 DosCreateThread(ThreadFunc, &tidThread, abStack +
sizeof(abStack));
 .
 .
}
VOID FAR ThreadFunc(VOID)
{
 VioWrtTTY(“Message from new thread\n\n”, 25, 0);
}

There are several important things to notice about this API. The first parameter is the thread
function (actually, the address of the thread function), while the second is the address of a
variable which will receive the thread ID. Finally, we pass in the initial value of the thread’s
stack pointer. Notice that since stacks grow downwards in Intel processors, the stack pointer
is initialized to point to the top end of the stack (which was earlier defined as BYTE
abStack[4096]). The stack must be explicitly allocated in our code somewhere; the system
does not take care of it automatically.

More importantly, now look at the thread function itself. First, its return type is VOID. Why?
Because it never returns, of course - it’s a thread, not a function, and the caller does not wait
for a returned value! Secondly, it’s FAR. Why? Surely it’s compiled in the same segment as
the main function? Yes, but it’s not called from the main function. Instead, it’s called from the
operating system, so it must be defined as FAR. Finally, notice that we cannot pass any
parameters. At least not officially, but there is a little trick - you could define it as taking some
parameter (a pointer is safest) and then stick the parameter at the top end of the stack and
initialise the stack pointer as abStack + sizeof(abStack) - sizeof(passed type). Tricky, but it can
be done.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 141

OS/2 2.x and Warp make life a lot easier. Here’s the newer version of the
DosCreateThread() API:

TID tidThread;
struct _threadarg{ . . .} threadarg;
ULONG ThreadFlags;
VOID main() {
 .
 DosCreateThread(&tidThread, ThreadFunc, &threadarg,
ulThreadFlags, STACKSIZE);
 .
}
VOID ThreadFunc(VOID *)
{
 WinSetWindowText(hwnd,”Message from new thread”);
}

A number of improvements have been made. First, note the reordering of the parameters: the
address of the thread ID is passed in first, then the thread function. There’s a new parameter
allowing a pointer to a user-defined structure to be passed in, thereby allowing parameters to
be passed to the thread function. ulThreadFlags really only has two bits of interest: the least
significant bit, when set, starts the thread in a suspended state, while its neighbour, if reset,
makes the system perform committment of the thread’s stack (if set, the stack is
precommitted). Finally, we can pass in a stack size, and the system will automatically manage
the thread stack for us.

The thread function itself is still VOID, since it doesn’t return, but it’s no longer FAR, and we
can pass it a parameter, defined as VOID *.

This version of DosCreateThread() is much easier to use and more versatile.

_beginthread()

Then there’s the _beginthread() library function. It basically looks like this:

_beginthread(ThreadFunc, pStack, usStackSize, pParms);

which at first glance is somewhere between the OS/2 1.x and 2.x versions of
DosCreateThread(). It allows passing in a NULL pointer to a stack, so that the system will
automatically allocate and free the stack, and allows passing of a parameter structure.

_beginthread() is supported in OS/2 1.x, by Microsoft C and other compilers, and is
popular in OS/2 1.x code because of its additional functionality over that provided by
DosCreateThread(). However, it is frequently used in OS/2 2.x and Warp code, too. Why
does the compiler library provide similar functionality to the OS API?

I think I’m right in saying that all compilers for OS/2 provide two sets of runtime libraries.
One set is for use with single-threaded programs while the other set is for multithreaded. You
see, multithreaded systems require that functions be reentrant, that is, capable of being
entered by two threads simultaneously with no ill effects. Take a look at this short snippet:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 142

1: int badfunc(int a, int b)
2: {
3: static fubar;
4:
5: fubar = 2 * a;
6: return fubar / b;
7: }

OK, it’s a stupid function, but I’m trying to make a point here, right? Suppose that thread 1
calls this function, passing in a = 5 and b = 7. Line 5 sets fubar to 10, but just then the system
timeslices, and another thread runs. Now, thread 2 calls fubar, with a = 45 and b = 3. It sets
fubar to 90 - but notice that because this fubar is static, it’s the same fubar as thread 1 was
using, and it loses the previous value. Thread 2 now calculates a return value of 30 (correct)
and carries on its merry way. Some time later, the system timeslices again and resumes thread
1, which returns a value of fubar=90 / 7 or 12 (wrong! should be fubar = 10 / 7 or 1).

The introduction of statics is a sure-fire way to make a function non-reentrant. If only
automatic variables are used, then all values are on the stack, and each thread has its own
stack, so no problem, right?

Well, only one problem - performance. Sometimes using statics can simplify and speed up
code. So, for performance reasons, the compiler vendors do one library, in which some
functions are non-reentrant and therefore only safe in single-threaded processes. But they also
do a second library using reentrant code so that the functions are thread-safe, albeit with
some performance degradation. The functions affected are usually the more complex ones
like printf() and scanf() and the various file-handling functions. Often, functions like
strcpy() and strcat() are so simple that they are written in assembler using purely
registers and the stack and so are reentrant anyway. Consequently, if you know what you are
doing, with the aid of your compiler run-time library documentation, you can sometimes use
the single-threaded library functions in a multi-threaded program.

But you won’t be able to use _beginthread() in that case, because it is only found in the
multi-threaded libraries. There’s another gotcha. The runtime library has to perform error-
handling on a per-thread basis, and this requires certain variables and system structures to be
initialised on a per-thread basis. This is done by _beginthread(), and obviously
DosCreateThread() cannot do it, since the system has no idea which C runtime library
your program was compiled with.

In general, use _beginthread() when your program is going to be performing I/O using
the C library functions. If your application is written to PM, and your file-handling is done
through the DosRead()/DosWrite() API’s, then you are safe to use
DosCreateThread(), since the operating system is obviously thread-safe.

Priority Variation

Threads are normally created with an initial priority of 15 in the regular class. From there,
they can be varied by using the DosSetPriority() API:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 143

#define INCL_DOSPROCESS
#include <os2.h>

ULONG scope; /* The extent of the priority change. */
ULONG ulClass; /* Priority class of a process. */
LONG delta; /* Change to apply to the current base priority
level of the process. */
ULONG PorTid; /* A process identifier (scope == PRTYS_PROCESS
or PRTYS_PROCESSTREE) or a thread identifier (scope ==
PRTYS_THREAD).*/
APIRET ulrc; /* Return Code. */

ulrc = DosSetPriority(scope, ulClass, delta,
 PorTid);

Notice the scope parameter, which allows the programmer to change the priority of a single
thread in the current process, all threads in the current process, or all threads in the children
of the current process. You cannot change the priority of a single thread in a child process -
the programmer of that program set the relative priorities of his threads to work correctly and
you should not be changing them. The priority class is a symbolic constant
(PRTYC_NOCHANGE (0), PRTYC_IDLETIME (1), PRTYC_REGULAR (2), PRTYC_TIMECRITICAL
(3) or PRTYC_FOREGROUNDSERVER (4)). Notice also the delta - a signed LONG value. Thread
priority is not set absolutely, but as a delta relative to the current value.

Resuming / Suspending Threads

Thread Termination

Why Threads Are Important

Presentation Manager is a message-passing system. There are multiple queues, but their
operation is synchronous - the system will not read the next message until a winproc has
returned from processing the previous one. If that winproc does not return, other windows
will not get any messages.

This is what happens under Windows, and causes display of the hourglass mouse pointer.
However, under OS/2 programmers are advised that if processing a message will take more
than 1/10th second, they should do the processing in a second thread, and let the main thread
return from the winproc so that more messages can be dealt with.

Actually the famous one-tenth second rule was relaxed in the early days, as a 20 MHz 386
required more than one-tenth of a second to do anything. However, it was reinstituted a few
years later, and at the ColoradOS/2 Conference in 1993 most developers agreed it should be
amended to be one twentieth of a second to reflect more modern expectations of performance
and responsiveness.

Note also that even on modestly powerful machines (486/33) even _beginthread() takes more
than a twentieth of a second!

To see the difference compare the Windows and OS/2 versions of an application which has
been correctly written to use multiple threads under OS/2 (DeScribe or PageMaker, for
example). The Windows version will often display the infamous hourglass pointer, and at
that point, other windows become unresponsive. The OS/2 version will do this less often,
and even when the hourglass (SYSPTR_WAIT) is being displayed, other windows will remain
responsive and other applications can be used.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 144

Thread Types

Finally, some notes on thread types in the Presentation Manager environment. Conceptually,
there are two types of threads: message queue threads and non-message queue threads.

Message queue threads are any threads which create a message queue. A message queue is
necessary if a thread is going to create a window. However, once a thread has a message
queue it is bound by the one-tenth second rule.

Non-message queue threads do not create a message queue. However, they now cannot
create windows (since they have no queue to read messages for the window). But such a
thread can paint in a window, using WinBeginPaint(), WinDrawText() and various Gpi
calls (note, however, that the thread must call WinInitialize() before doing so). A non-
message queue thread also cannot call WinSendMsg(), but it can call WinPostMsg(), for
example to signal completion of a task (like painting a window). See the section of these notes
on the Model-View-Controller paradigm for more information on using a secondary thread to
paint a window.

Non-message queue threads are free from the one-tenth second rule, since they do not have a
message queue.

There is one other exception to the one-tenth second rule, in the form of object windows. A
thread which creates and runs an object window is exempt from the rule, since the object
window plays no part in the PM user interface - the only system-generated messages it will
receive are WM_CREATE, WM_DESTROY and WM_QUIT. All other messages are user-defined.

Interprocess & Interthread Communication

The OS/2 control program goes to great lengths to isolate processes and provide inter-
process protection. However, much of the value of a multitasking system comes through the
ability to assemble program systems, in which multiple programs cooperate and the whole is
greater than the sum of the parts. This will require formal mechanisms for communicating
over the inter-process firewalls while still providing protection.

OS/2 therefore provides a rich array of inter-process communications mechanisms. It is often
said that the problem for an OS/2 programmer is not finding a way to do something, it is
selecting one of the three alternative ways the system provides, and nowhere is this more true
than in IPC.

Pipes

Anonymous pipes are typically used from the command line. For example, the command

DIR | SORT | MORE

connects the output (stdout) of the DIR command to the input (stdin) of the SORT command,
and SORT’s stdout to the stdin of MORE. DOS fakes this through temporary files, but OS/2
uses genuine in-memory buffers to link the processes together.

The natural record to pass through an anonymous pipe is a line of text, but binary transfers
are possible (although unusual with filter programs).

Although command line redirection is the most common technique, it is also possible
to use anonymous pipes programmatically. Remember that a child process inherits its
parent’s environment, including file handles, so that it is possible for a parent process to

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 145

redirect stdin and stdout, use DosExecPgm() to spawn a child and then redirect stdin and
stdout again so as to feed data to the child and get it back again.

The relevant API’s to investigate are DosCreatePipe(), DosOpen() (check out the
OPEN_FLAGS_NOINHERIT flag, which stops a child from inheriting a file handle),
DosDupHandle(), DosSetFHState(), and DosQueryFHState().

Named Pipes

Named pipes were originally developed by Microsoft as a client-server communications
protocol in MS LAN Manager 1.0. IBM wanted nothing to do with named pipes, preferring to
promote SNA LU6.2 APPC (Advanced Program - Program Communication) as a platform-
independent client-server API. The problem was, the Communications Manager required for
APPC provided no file or print sharing services for PC workgroups and was horrendously
slow as well, so that IBM was forced to licence MS LAN Manager and remarket it, with
additions, as IBM LAN Server. However, they still refused to document the named pipes API,
although they did not remove it from the code.

In order to do an end-run around IBM, Microsoft moved the named pipe code out of LAN
Manager and into the OS/2 kernel with OS/2 1.1, so that IBM was forced to support the API.
(The plot thickens: Microsoft subsequently dumped named pipes in favour of sockets and
RPC, but poor old IBM is still supporting a protocol that was forced on them rather than
inconvenience their customers. That’s life, as they say.)

Named pipes actually provide quite a neat and useful protocol, which is easy to write to and
gives good performance. Essentially, named pipes allow pipes to be named and extended
across the network, although they do work standalone in a single machine. Network
operation requires a LAN Server or similar server, however. Whether a pipe is local or remote
is pretty much transparent as far as the coding is concerned; remote pipes will be accessed
using a UNC-name which as the server name as the first part, whereas local pipes just use the
pipe name.

Named pipes can be inbound, outbound or full duplex, in which case they provide a virtual
circuit abstraction. A single named pipe can be used and reused by multiple clients, and
multiple pipes can be pooled under a single name. On a network, access to a server pipe is
subject to user logon permissions, so that security is implemented.

For the most part, pipes are dealt with as though they are some kind of interactive file - they
use the same handles (DosQueryFHState() can distinguish whether a handle is for a pipe,
a file or a device) and the same open, read, write and close calls.

Here is the skeleton of a named pipe server, to be run at a server called \\NETPC:

DosCreateNPipe(“\\PIPE\\DBMS”, &hpipe);
while(more) {
 DosConnectNPipe(hpipe); /* await client*/
 DosRead(hpipe, &req); /* read request */
 . /* process request */
 DosWrite(hpipe, &resp); /* send response */
 DosDisconnectNPipe(hpipe); /* close client */
}
DosClose(hpipe);

Notice that in this case, the server disconnects from the pipe after each transaction so that a
difference client can attach to it and reuse it. Not all parameters have been shown here - I’m
concentrating on the overall logic.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 146

At the client, the code will look something like this:

DosOpen(“\\\\NETPC\\PIPE\\DBMS”, &hpipe, . .);
DosWrite(hpipe, &req);
DosRead(hpipe, &resp);
DosClose();

or like this:

DosOpen(“\\\\NETPC\\PIPE\\DBMS”, &hpipe, . .);
DosTransactNPipe(hpipe, &resp,. ., &req, . . .);
DosClose(hpipe);

or even like this:

DosCallNPipe(“\\\\NETPC\\PIPE\\DBMS”,&resp, . ., &req, . .);

Now do you see what I mean about OS/2 RPC being an embarrassment of riches?

The first technique allows an unbalanced number of requests and responses. For example, an
SQL query could be sent to a server, followed by a number of reads to get back table rows
until a ‘no more data’ response is encountered. The other techniques require a matched pair
of request/response. The second technique is probably more efficient than the third in the
case where a client is going to attach to a server and perform a number of transactions, at
least in terms of CPU cycles. However, it may not be as efficient in terms of network packets,
another important consideration. On a NETBIOS LAN, the first client will require twelve
packets across the LAN, the second will require four and the third technique will require two
packets only.

There's another important distinguishing factor in the first approach. Can you see what it is?

The answer is that it uses no OS/2 or named-pipe-specific API’s. In other words, it can be
used with any programming language or application that can open a file, read and write it,
and close it. This includes DOS applications - the DOS LAN requester in MS LAN Manager
and IBM LAN Server is able to deal with named pipes. The second and third techniques use
named pipe calls, which are supported by the appropriate network developers’ kits, but of
course are linkable from C code or languages which can support the C calling convention
only, which rules out interpreted BASIC programs, Lotus 1-2-3 and Excel macros, and so on.
The first technique, however, will always work.

Now, this is really useful when you are called upon to perform some systems integration,
linking DOS and Windows programs together. With a little ingenuity you can construct an
OS/2 named pipe server in C code, and then write application code to link together multiple
DOS and Windows applications on a single OS/2 machine (or even a network). This can even
be done using REXX code, if you want something quick and a little dirty.

The syntax for DosCreateNPipe is:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 147

 #define INCL_DOSNMPIPES
 #include <os2.h>

 PSZ pszName; /* The ASCIIZ name of the pipe to be opened.
*/
 PHPIPE pHpipe; /* A pointer to the variable in which the
system returns the handle of the pipe that is created. */
 ULONG openmode; /* A set of flags defining the mode in which
to open the pipe. */
 ULONG pipemode; /* A set of flags defining the mode of the
pipe. */
 ULONG cbOutbuf; /* The number of bytes to allocate for the
outbound (server to client) buffer. */
 ULONG cbInbuf; /* The number of bytes to allocate for the
inbound (client to server) buffer. */
 ULONG msec; /* The maximum time, in milliseconds, to wait
for a named-pipe instance to become available. */
 APIRET ulrc; /* Return Code. */

 ulrc = DosCreateNPipe(pszName, pHpipe, openmode,
 pipemode, cbOutbuf, cbInbuf, msec);

The openmode parameter allows the programmer to specify inbound/outbound/full duplex,
will the pipe be inherited by children, and enable write-through cacheing. The pipemode
parameter controls blocking (does e.g. DosRead() block if no data is available or return
immediately)and sets the pipe mode to be either byte mode (read or writes a stream of bytes)
or message mode (read or write a message, with the message length in the first two bytes of
the message). The low-order eight bits of this parameter is used to specify an instance count
for a pipe pool.

Other pipe-related functions include:

• DosCreateNPipe()

• DosConnectNPipe()

• DosDisConnectNPipe()

• DosTransactNPipe()

• DosCallNPipe()

• DosPeekNPipe()

• DosQueryNPHState()

• DosQueryNPipeInfo()

• DosQueryNPipeSemState()

• DosSetNPHState()

• DosSetNPipeSem()

• DosWaitNPipe()

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 148

Shared Memory

OS/2 supports two primary forms of shared memory: ‘giveaway’ shared memory and named
shared memory. The two are distinguished by the referent passed between processes in order
to gain access to the shared memory. In the case of giveaway shared memory this is a pointer
(in 1.x, a selector) - but this causes a chicken-and-egg situation to arise. Pointers and selectors
are runtime entities and their values cannot be known at compile time, so that they must be
passed between the processes at runtime using some other form of interprocess
communications.

An obvious candidate for this is Presentation Manager user-defined messages - just define a
message and pass the pointer or selector in one of the mparams. Of course, this requires that
the target window handle must be known in advance, possibly by identifying the target
process from its entry in the switch list, and . . .

Named shared memory, by contrast, is referred to by name, and the name can be agreed on at
compile time, possibly defined as a symbolic constant in a shared header file.

Remember, what two consenting adult processes do in shared memory is entirely their
business! You may need to protect data structures in shared memory with a semaphore to
ensure correct updating, and rigidly enforce protocols as to who allocates and who frees
memory and data structures such as linked lists.

Giveaway Shared Memory

Giveaway shared memory can further be subdivided into two types: giveable and gettable.
The two differ only in the sequence of API’s used. Both are created using
DosAllocSharedMem() with either the OBJ_GIVEABLE or OBJ_GETTABLE flags.

To allocate and use gettable memory:

DosAllocSharedMem(&pv, NULL, size, OBJ_GETTABLE);

Pass pointer to other process

Other process calls DosGetSharedMem() to validate memory object address

To use giveable shared memory, here’s the sequence:

DosAllocSharedMem(&pv, NULL, size, OBJ_GIVEABLE);
DosGiveSharedMem(pv, pidTarget, flags);

then pass pv to Target process, which need not call DosGetSharedMem() to validate before
using

Named Shared Memory

Named shared memory is also allocated using DosAllocSharedMem(), except that now a
pointer to a name is specified as the second parameter. The second process gets access to the
memory using DosGetNamedSharedMem().

Queues

Queues can be thought of as ‘structured pipes’. Queues exist in the filesystem namespace as
‘\QUEUES\NAME’. Any process can write to a queue, but the only process that can read a
queue is the process that created it. The reader can read the queue in FIFO or LIFO sequence

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 149

(queue or dequeue / stack), or in priority sequence. It can also peek in the queue, and
perform a non-destructive read of any element.

Queues are high performance: the reason is that large blocks of data are not really passed
through the queue. Instead, the data to be passed is actually established in shared memory,
and then a pointer to the data is passed, as part of a small structure, through the queue. This
avoids the overhead of copying large data structures onto and off the queue, thus improving
performance. In essence, therefore, the queue is actually a linked list of up to 3192 items.

Beware: OS/2 1.x and 2.x/Warp support almost identical queue API’s. One might be tempted
to port a pair of 1.x applications which use a queue to communicate, by porting first one of
the pair, and using the 1.x server to test the prototype 2.x client. This will not work, as the 16-
bit queues and 32-bit queues are not compatible and in fact occupy different namespaces.

The queue API’s of interest are:

• DosCreateQueue()

• DosOpenQueue()

• DosReadQueue()

• DosWriteQueue()

• DosPurgeQueue()

• DosCloseQueue()

• DosQueryQueue()

• DosPeekQueue()

Semaphores

Semaphores have been implemented with two quite different architectures in OS/2 1.x and
2.x/Warp. We shall deal first of all with the OS/2 1.x semaphore mechanism, as a means of
intriducing some of the concepts and also to assist 1.x developers and those who will have to
port 1.x code, and then progress to 2.x semaphores.

OS/2 1.0 had two types of semaphores: RAM sempahores and system semaphores. The RAM
sempahores exist in memory inside a process, and are therefore only of use for intra- (not
inter-)process communications. Why might a process want to communicate with itself?
Answer: threads.

OK, if two threads need to communicate, why not just define a shared variable and let them
use it to signal what they are up to? It won’t work. Let’s see why.

Take a hypothetical application which has several threads, each of which might send
something to the printer. But the printer is a serially reusable resource - only one thread
should be able to print at a time, otherwise the output will be jumbled (of course, at the
application level the spooler subsystem solves the problem).

OK, so we define a shared variable, ULONG ulPrinterInUse = 0x00000000; if a thread
is printing it must set the variable to 0xffffffff and then reset it to 0x00000000
afterwards. Of course, before starting to print, the thread must test the value of the
ulPrinterInUse variable. So, here’s what can happen in the compiled machine code:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 150

Thread x needs to print something. It moves the value of ulPrinterInUse into a processor
register and then executes a JZ (jump if zero instruction). The printer is not currently in use,
so it jumps to a subroutine which will DECrement the value in the register (to 0xFFFFFFFF)
and then write this new value back - but before it can do so, the system timeslices. Remember,
OS/2 is a preemptive multitasking system!

Now, thread y comes along and does the same thing: it tests the value of ulPrinterInUse
by means of a JZ instruction, finds it is zero and branches accordingly, then decrements the
value, writes it back and starts printing. A little later, thread y is preempted, the system
timeslices and thread x is back on the machine. It resumes where it left off, decrementing the
register and writing back 0xFFFFFFFF, then starting to print. Ouch!

The use of a shared variable has not protected us against simultaneous use of a resource,
because the act of testing, and if clear setting, a flag variable must be atomic - that is,
indivisible or uninterruptible. Conventional code is not.

We could deal with this problem by making these few lines of code into a critical section; we
only need to add DosEnterCritSec() and DosExitCritSec() API calls around the
code. When a thread enters a critical section, all other threads in the same process are
suspended until it exits again. In other words, a critical section suspends multithreading
within a process. Warning! Don’t crash inside a critical section - it gets really ugly, really
quickly! Critical sections should only be used after extensive testing - if there’s an easier
alternative, use it.

Another problem is, what will you do if your thread discovers a resource is not available?
Loop around, polling the value of the shared variable, until it does become available? I don’t
think so. We’re already agreed that polling is A Very Bad Thing in a multitasking
environment; what we really need is a way for the system to suspend the thread until such
time as the resource becomes available and the ‘shared variable’ is reset.

And so, RAM semaphores were born. The provision of RAM semaphores in the system
eliminates the need for messy and potentially fatal critical sections, and since the system
knows about them, looping and polling in application threads is also not necessary. The
system can block a thread until such time as a resource becomes available. However, you
should note that RAM semaphores remain words of memory in an application’s address
space, and are therefore subject to the usual concerns of being overwritten by rogue pointers
or other bad programming practices.

System semaphores, by contrast, exist outside any application’s address space. They are
therefore safer, and are suitable for inter-process communications. They are also named:
remember, resources that are referred to by a handle require some other form of IPC to pass
the handle around in a kind of chicken-and-egg puzzle, while names are known at compile-
time, making coding a lot easier.

However, system semaphores are inevitably slower than RAM sempahores.

So, in OS/2 1.2, so-called fast-safe semaphores were introduced. These combine the speed of
RAM sempahores with the safety of system semaphores.

In OS/2 2.x and Warp, the semaphore architecture was changed substantially, and looks
more like the macros used for the purpose in the VM and MVS operating systems. There are
three types of semaphores, basically categorised according to their purpose, and each of these
can be private or shared (rather like RAM or System) and can be unnamed or named.

Event semaphores are used to signal the occurrence or completion of some event. Typically,
one thread creates a semaphore and resets it. A second semaphore then opens the semaphore

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 151

and waits on it. The first thread posts the semaphore and the second thread then unblocks
and resumes execution.

Mutex semaphores are used for mutual exclusion - that is, protecting some resource against
simultaneous access by two or more threads (or processes). Typically, thread one creates the
mutex semaphore to protect some resource. Other threads then request the mutex; the first
one to do so will own the resource and return from the request, while others will block. Once
the first thread releases the mutex, another will unblock and can use the resource, and so on.

Finally, muxwait semaphores are compound semaphores which consist of up to 64 event or
mutex sempahores (the types cannot be mixed). A muxwait can be set up to resume a thread
when any one of n resources becomes available, or when all n resources are available, or
when events occur, and so on.

Let’s look at that again, this time in slow motion. See Figure 6. In this example, the first
thread, on the left, creates an event semaphore (the process that creates an event semaphore
does not need to open it - it already has its handle). It then resets the semaphore; a reset
semaphore is like a red traffic light - threads which encounter it will stop and wait, as can be
seen in the three threads at right. Each of them opens the semaphore (not necessary if they are
part of the same process) and then waits on the event semaphore. They all block until the
main thread calls DosPostEventSem(), at which point they are all released and resume
execution.

Figure 6. Operation of an event sempahore.

Now, let’s look at a mutex semaphore. See Figure 7. Here, thread one creates a mutex
semaphore and immediately requests it. Of course, the request succeeds, and it now owns the
associated resources, which it proceeds to manipulate. Meanwhile, thread 2 opens the mutex
and then requests the mutex (or more properly, the resource the mutex protects). Of course, it
blocks in the request call and so the thread blocks until such time as thread one calls
DosReleaseMutexSem(), at which point thread 2 resumes and can now manipulate the
resource. Meanwhile, back at the farm, thread three has also opened the mutex and called
DosRequestMutexSem(), so it blocks until such time as thread two is finished with the
resource and calls DosReleaseMutexSem().

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 152

Figure 7. Operation of a mutex semaphore.

It’s quite straightforward really.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 153

OS/2 File Handling
OS/2, like UNIX, has no knowledge of the internal structure of files, nor does it care
particularly about file types, with a couple of exceptions: command (program) files must have
a filetype of .COM, .EXE or .CMD. The latter type is a batch file or REXX procedure.

The operating system regards a file as simply a stream of bytes, located on a serial or random
access device. The file can be opened read and written, and any number of bytes may be read
or written, up to the limits of the medium or the ultimate limits of the operating system (e.g. 2
GB max file size). OS/2 does not understand the difference between, say, text files and binary
database files or spreadsheet files; it has no concept of records and fields or rows and
columns. These are the domain of the application software.

Files are distinguished by their names, which must be unique within a directory (that is to
say, it is possible to have identically-named files in two different subdirectories or on two
drives). Different file systems (FAT, HPFS, CDFS) have different file-naming conventions,
and it is important that programs should be written to be as portable as possible. For this
reason, OS/2 programs which ask the user for filenames should allocate or otherwise reserve
a buffer of at least 255 bytes in size for the filename, rather than the 64 bytes used by DOS.

The file name is only used to open the file; from that time on it is referenced by a file handle
(a variable which is typedef'ed to be of type HFILE). Ultimately, of course, a file handle must
resolved to one of the C scalar types such as int or pointer to structure, but the programmer
should consciously avoid knowing what a HFILE really is, in order to avoid making
assumptions which lead to non-portable code. For this reason, handles are also referred to at
Microsoft as 'magic cookies', since no-one knows what they are, either.

Opening Files

There are two major function calls in OS/2 1.X for opening files.

DosOpen()

USHORT DosOpen(pszFileName, phf, pusAction, ulFileSize, usAttribute,
usOpenFlags, usOpenMode, ulReserved)

is the basic function call. OS/2 1.2 introduced

DosOpen2()

USHORT DosOpen2(pszFileName, phf, pusAction, ulFileSize, usAttribute,
usOpenFlags, ulOpenMode, peaop, ulReserved)

which supports the use of extended attributes. In OS/2 2.0 and later, the function is called
DosOpen(), but it takes the formal parameter list of DosOpen2() above.

Let's examine the major parameters.

First, remember that in OS/2, many parameters passed to the function are not just input to
the function, but may also be outputs or 'returned' values. Since C passes parameters by value
(i.e. it copies the contents of variables onto the stack and then works with these copies of the
original data) any changes to parameters in a function do not affect the original variables and
therefore values cannot be 'returned'. Consequently, such variables are not passed directly -
instead, a pointer to the variable is passed and these are commonly prototyped as pointers to
variables. However, although the parameter is prototyped as a pointer, that does not mean

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 154

that the corresponding variable is a pointer. For example, take the file handle for these
function calls. It would actually be declared as a file handle, and then its address taken to
create a 'pointer constant', like this:

HFILE infile;
USHORT rc;

rc = DosOpen(argv[1], &infile, . . .);

Now, back to the parameters:

pszFileName is a pointer to the null-terminated string that specifies an existing file or will
create a new file. Wildcards are not permitted, obviously.

phf is the address of the variable which will receive the file handle 'returned' by the function.

pusAction is the address of a variable which will be set to indicate the action the function
took. If the function fails, it has no meaning, but if it succeeds, it will be set to one of the
following values:

FILE_CREATED File was created.

FILE_EXISTED File already existed.

FILE_TRUNCATED The file existed and was truncated to the specified size.

ulFileSize is the new size of the file. This parameter applies only when a file is created or
truncated.

usAttribute specifies the file attributes. This can be a combination of the following values:

FILE_NORMAL File can be read and written.

FILE_READ_ONLY File can be read but not written.

FILE_HIDDEN File is hidden and does not appear in directory listings.

FILE_SYSTEM File is a system file.

FILE_ARCHIVED File has been archived.

These attributes are changed only if the file is being created.

usOpenFlags specifies the actions to take in the case of the file existing or not. It can be one
of the following values:

FILE_CREATE Create a new file; fail if it already exists.

FILE_OPEN Open an existing file, fail if it does not exist.

FILE_OPEN | FILE_CREATE Open an existing file or create a new one

FILE_TRUNCATE Open an existing file and change its size.

FILE_TRUNCATE | FILE_CREATE Open an existing file and change its size ot
create a new file of that size.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 155

ulOpenMode specifies the combination of an access mode and a share mode, plus certain
other modes. See below for access and share modes. The other possible values are:

OPEN_FLAGS_DASD Opens a physical drive for direct access. This can be used
with the DosDevIOCtl() function to bypass the file system an
access sectors directly, e.g. for defragmentation.

OPEN_FLAGS_FAIL_ON_ERROR * Bypasses the system critical-error handler, so
that the user never sees error pop-ups when there are file
system errors such as bad sectors or drive door open. The
application must deal with all errors.

OPEN_FLAGS_NOINHERIT * The file handle is not available to any children.
Default behaviour is for children to inherit their parents file
handles.

OPEN_FLAGS_WRITE_THROUGH * If this flags is specified, then the system will
write data to the device before returning. Without it, data
may be cached in the OS buffers and written later.

OPEN_FLAGS_NO_LOCALITY There is no specific information regarding the
locality of reference (i.e. the degree of randomness with
which the file is accessed).

OPEN_FLAGS_SEQUENTIAL The file is accessed sequentially.

OPEN_FLAGS_RANDOM The file is accessed randomly.

OPEN_FLAGS_RANDOMSEQUENTIAL The file is accessed randomly, but with a
degree of sequential access within that, such as reading or
writing large blocks of data randomly.

OPEN_FLAGS_NO_CACHE The disk driver should not cache data in I/O operations on
this file.

* These flags can also be modified and queried using the DosSetFHandState() and
DosQFHandState() functions.

peaop is a pointer to an EAOP structure which defines extended attributes for the file. This
parameter only applies to the DosOpen2() function call.

ulReserved is a reserved value and must be set to zero.

The DosOpen and DosOpen2 functions return zero upon success, or an error code in case of
failure.

Creating Files

Files are created by opening them with the FILE_CREATE value for the fsOpenFlags
parameter.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 156

Reading and Writing

DosRead()

USHORT DosRead(hf, pvBuf, cbBuf, pcbBytesRead)
HFILE hf; /* File to read */
PVOID pvBuf; /* address of buffer */
USHORT cbBuf; /* count of bytes in (size of) buffer */
PUSHORT pcbBytesRead; /* count of bytes actually read */

This function reads up to the specified number of bytes into a buffer, and returns zero upon
success or an error code.

DosWrite()

USHORT DosWrite(hf, pvBuf, cbBuf, pcbBytesWritten)
HFILE hf; /* File to write */
PVOID pvBuf; /* address of buffer */
USHORT cbBuf; /* count of bytes in (size of) buffer */
PUSHORT pcbBytesWritten; /* count of bytes actually written */

DosReadAsync()

DosWriteAsync()

These OS/2 1.X functions perform reading or writing in a secondary thread in the kernel,
allowing your program to continue performing other processing. DO NOT USE THEM! They
are non-portable to OS/2 2.X, their operation is quite specific and limited in value. The same
effect, in a more general and versatile form, can be achieved by simply creating a thread
which calls DosRead() or DosWrite().

DosChgFilePtr()

This function moves the file's read/write pointer. This points to the next byte to be read or
written.

USHORT DosChgFilePtr(hf, lDistance, fMethod, pulNewPtr)
HFILE hf;
LONG lDistance;
USHORT fMethod;
PULONG pulNewPtr;

The parameter fMethod specifies the location to which lDistance will be relative. It will be one
of the following values:

FILE_BEGIN Start move at the beginning of the file

FILE_CURRENT Move relative to the current position

FILE_END Move relative to the end of the file.

The parameter lDistance is signed. Positive values move forward, negative values backward
through the file.

DosBufReset()

This function flushes the buffers for the specified file, writes to disk and updates the file's
directory entry. The file remains open.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 157

File Handles

DosSetMaxFH()

By default, an OS/2 process can open up to twenty file handles. However, five handles are
automatically opened for stdin, stdout, stderr, stdprn and stdaux. In addition, file handles are
also used for module (DLL) handles. Many applications will therefore have to exceed the
limit of twenty. This is done by using the DosSetMaxFH() function.

USHORT DosSetMaxFH(usHandles)
USHORT usHandles;

DosSetFHandState()

DosQFHandState()

These functions can be used to set and query a file's inheritance, fail-on-error and write-
through flags (see the DosOpen function for details).

DosDupHandle()

Unless the OPEN_FLAGS_NOINHERIT flag is turned on, a child process will inherit its parents
handles. This is a useful facility, but it does have one drawback: if the child closes the handle
as it terminates, it closes it for the parent, too. It is therefore common practice for the parent to
create a duplicate handle for a file, then pass the duplicate to the child through (typically)
shared memory. The child can manipulate the duplicate handle without affecting the parent.

File Locking and Region Locking

Although OS/2 is often implemented as a single-user standalone system, even a single user
may - intentionally or deliberately - invoke an application twice and attempt multiple
operations on a single file. When implemented multi-user or on a network workstation, the
likelihood of concurrent access to a single file increases further. In order to ensure data
integrity, it is important that access to either entire files, or sections of files, is restricted
according to some simple rules.

Access Modes

The DosOpen() and DosOpen2() function calls' ulOpenFlags parameter should incorporate
one of the following access modes:

OPEN_ACCESS_READONLY Program can only read from file, not write.

OPEN_ACCESS_READWRITE Program can read and write the file.

OPEN_ACCESS_WRITEONLY Program can write to the file, but not read.

Share Modes

The DosOpen() and DosOpen2() function calls' ulOpenFlags parameter should incorporate
one of the following share modes:

OPEN_SHARE_DENYNONE Other processes can open the file for any access mode (read-
only, write-only or read-write)

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 158

OPEN_SHARE_DENYREAD Other processes can open the file for write-only access but
they cannot open if for read-only or read-write access.

OPEN_SHARE_DENYREADWRITE The current process has exclusive access to the file.
The file cannot be opened by any process.

OPEN_SHARE_DENYWRITE Other processes can open the file for read-only
access but they cannot open it for write-only or read-write
access.

A process that is writing a log file, for example, might open the log in
OPEN_ACCESS_WRITEONLY access mode and OPEN_SHARE_DENYNONE share mode,
so that other processes can write to the log file and a monitor process can read it.

DosFileLock()

This function unlocks and locks a region in an open file. It takes, as arguments, a pair of
pointers to FILELOCK structures:

typedef struct _FILELOCK {
 LONG lOffset;
 LONG lRange;
} FILELOCK;

The region is specified as a number of bytes (lRange) starting at position lOffset within the
file.

USHORT DosFileLocks(hf, pfUnlock, pfLock)
HFILE hf;
PFILELOCK pfUnlock;
PFILELOCK pfLock;

If a NULL is passed instead of either of the PFILELOCKs, then the parameter is ignored.

The function will return zero if successful or one of two error codes:
ERROR_INVALID_HANDLE or ERROR_LOCK_VIOLATION.

Obtaining Information About a File

DosQFileInfo()

DosQFileMode()

DosQAppType()

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 159

The Model-View-Controller Approach to PM
Programming
A common question that gets asked in OS/2 programming forums and conferences relates to
the use of multiple threads to update windows. Programmers who try this often find that
they are getting PM resource interlock errors, SYS3175's and other problems.

Another set of problems relate to the timing of when to paint in a PS/window: some
programmers will write code like this:

case WM_COMMAND:
 switch(SHORT1FROMMP(mp1)) { // What does the user want done?
 case IDM_UPDATESTUFF:
 // recalculate some stuff
 .
 .
 // Now update the screen
 hps = WinGetPS(hwnd);
 GpiCharString(hps,. . .);
 GpiCharString(hps, . . .);
 // etc
 WinReleasePS(hps);
 return (MRESULT) FALSE;
 break;
 //more of the same follows
 } // end of switch in WM_COMMAND

However, as the application becomes more complex, problems start to arise and the code
becomes progressively more difficult to enhance or even maintain.

Howver, there is a simple approach to application (and indeed, window) design which will
keep you on the right track. This technique is borrowed from object-oriented programming in
Smalltalk, which implemented one of the earliest graphical windowing systems on Xerox
workstations.

This approach breaks the application into three components, and is called the Model-View-
Controller approach.

The Model is the business logic and internal representation of the application. In the case of
our simple Lab 2 exercise, it is simply the character array which contains the string to be
displayed on the window. In more complex applications, it may be a structure of some
complexity, such as a base structure which in turn contains the root of a linked list of other
structures (representing lines in a list, spreadsheet cells or graphical objects).

The View is the on-screen representation of the model. In the case of Presentation Manager, it
is the on-screen bitmap which occupies the client window area. The way in which we update
this is by painting in a presentation space, and the PS therefore forms part of the View, as
well.

The Controller is the code which is responsible for updating the View in response to
notification of events from the model, and in the context of PM programming, is obviously
the Window Procedure - specifically, the code which paints in the presentation space.

How do we apply this to PM program design?

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 160

The first thing to note is that presentation spaces are non-reentrant. That is, it is not possible
for two threads to paint in or otherwise manipulate a presentation space at the same time.
The reason for this is that a presentation space is a static entity. Furthermore, it is modal - at
all times, it maintains attributes for the various primitives, such as the current font, current
position, current linewidth and so on. It is not possible for two threads to try, for example, to
write character strings in two different fonts at the same time.

Consequently, we need to arrange things so that the PS is protected against access by multiple
threads simultaneously. The first approach we might try is to use a mutex (mutual exclusion)
semaphore to control access to the PS. This will work, and is initially attractive, but again,
complexity tends to multiply and a simpler approach is desirable.

The second approach - the MVC approach - is simply to have a single block of code (in more
sophisticated designs, a single thread) which access the PS. In other words, only paint the
window in one single place. And where should that be? Answer: in the WM_PAINT stub of
the window procedure.

The WM_PAINT message is sent to the window whenever any part of the window is invalid,
for whatever reason: the window is brought to the foreground, enlarged, restored,
maximised, a menu which was obscuring it is dismissed, whatever. Whenever part (or all) of
a window was obscured by something else, but is now visible, it will become invalid and will
need to be repainted.

As parts of the screen become invalid, the system accumulates them into the 'invalid region'
(a region is simply a collection of intersecting rectangles). With the default class style of
asynchronous painting, it will wait until the application queue is empty of higher-priority
messages (and they almost all are) and then generate a WM_PAINT message.

When, in response to the WM_PAINT message, the application issues a
WinBeginPaint(hwnd, hps, &rectl) call, PM fills in the supplied RECTL structure
with the bounding rectangle of the invalid region, and so the application now knows just
what area of the window needs to be repainted.

(In the simple applications used here, we simply repaint the entire window, so that the text is
remains centered in the window, rather than centered in the invalid rectangle. You might try
commenting out the WinQueryWindowRect(hwnd, &rc) call from Lab 1 or Lab 2 to see
the difference. However, more complex applications can take some time to repaint an entire
window, so it is worth while working out exactly what needs to be repainted and just doing
that).

The WinBeginPaint() function call also causes the system to reset the invalid region to
null.

So, it doesn't matter whether the entire window needs to be repainted, perhaps because it was
just created, or only a small part of it needs to be updated, perhaps because one corner which
was in the background has just come to the foreground. The WM_PAINT logic should always
be written to repaint the required area of the window as efficiently as possible.

Given that the WM_PAINT processing can repaint any or all of the window, we now have the
bulk of the view logic implemented.

Now, how to deal with changes in the model? In the simple Lab 2 example, the internal
representation is a string, which the user can change by selecting a famous (or infamous!)
person from the menu, which of course, generates a WM_COMMAND menu.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 161

Now, is there anything to stop the programmer from writing code which immediately paints
the window with the new quote? No, nothing, other than the dire warnings issued in this
article.

Instead, the smart programmer will think of the MVC approach. Having structured the
WM_PAINT processing to update the view, the question becomes, how do we get the
WM_PAINT code to run?

The first impulse of most beginning PM programmers is to post or send themselves a
WM_PAINT message. However, this will not work - the code does run, but because the system
has not added any part of the window to the invalid region, the WinBeginPaint() function
call returns a null rectangle in the supplied RECTL structure, so nothing gets painted. The
trick is to get PM to add the window (or the desired part of it, for efficiency) to the invalid
region. A quick look through the Win API's will reveal the WinInvalidateRect()
function.

To get the entire window to repaint, you can use WinInvalidateRect(hwnd, NULL,
FALSE) or WinUpdateWindow(hwnd). To update just part of the window, first work out
the invalid rectangle, then call WinInvalidateRect(hwnd, &rectl, FALSE). Another
useful function is WinInvalidateRegion().

All of these functions add the window, or part of it, to the invalid region. What happens next
depends upon the class style or window style of the window. If the window has class style
CS_SYNCPAINT or window style WS_SYNPAINT, then it is a synchronous window, and a
WM_PAINT message will be generated immediately. The window will be redrawn before the
WinInvalidateRect() function returns. However, if the window does not have these
styles, then it is an asynchronous window. The system waits until the message queue is
empty before generating a WM_PAINT message. This effectively means that repainting a
window is a low-priority task which will not be done as long as the application is busy with
other tasks. It also means that multiple invalidations are dealt with by a single WM_PAINT
message, which is more efficient.

This is reasonable: as long as the user has not noticed that part of the window is invalid it is
more important to deal with input. If the user notices and stops typing or mousing around,
then the input queue will empty and there will be time to update the window.

Regardless of whether the window is synchronous or not, the result is shown in the attached
figure. User actions cause WM_COMMAND messages, which update the internal representation
(model), and then perform a WinInvalidateRect(), causing the system to generate a
WM_PAINT and updating the window (view).

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 162

Figure 1. The Model-View-Controller approach to a PM program.

The beauty of this approach is that it allows easy extension into a multithreaded model. As
mentioned above, presentation spaces are non-reentrant, so that two threads cannot write to
the PS at the same time. But since there is only one place in this winproc where it writes to the
presentation space, it is safe to extract this code and turn it into another thread.

So, in response to WM_PAINT, rather than working directly on the PS, which could take some
time, the main thread would delegate another thread to do the repaint, and would
immediately return from the winproc, so as to keep the system responsive (remember,
because of PM's synchronous input queue model, the next message will not be read by any
thread until this winproc returns, making the system non-responsive).

Now, the approach which many textbooks and courses take at this point is to have the
WM_PAINT processing kick off another thread, using the _beginthread() or
DosCreateThread() API's. However, there are two problems with this approach:

First, while threads provide a lightweight, cheap, form of multitasking when compared with
spawning off another process, they are not free. It takes time to start another thread
(allocation and initialisation of thread control blocks, allocation of a stack, and more), and this
will cause a slight delay every time the window is to be drawn.

Secondly, what happens if two WM_PAINT messages are generated near-simultaneously, as
might happen with a synchronous window? Now, two threads could be created and try to
access the same ps simultaneously - precisely the situation we are trying to avoid.

Now, the latter situation can be avoided by using a mutex semaphore to protect the PS.
However, we are trying to avoid this approach as well, although less strenuously.

A better technique would be to create a worker thread to handle the WM_PAINT processing
before it is needed, either in the mainline of the program, or better still, in the WM_CREATE
processing of the window. Before the thread is created, the creator code would have reset the

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 163

event semaphore, so that when the thread starts running and calls DosWaitEventSem() it
blocks immediately.

Now, when the WM_PAINT code runs, all it does is to post the event sem, which releases the
painting thread to go off and paint in the PS, while the main thread returns. After the
painting thread has finished with the PS, it resets the event semaphore and loops around to
DosWaitEventSem() again.

Obviously, there's a little more to it than that, but you get the basic idea. The programmer
must also provide a shared flag which the main thread can set to indicate that the painting
thread should clean up and terminate; it's never a good idea to abruptly choke the life out of a
thread with DosKillThread() - that API is for emergency use only.

The MVC approach to application and window implementation helps to keep things simple
as the application increases in complexity.

Using Queues for Inter-Thread Communication

In the previous article, we discussed the MVC paradigm for development of PM programs
and briefly discussed the possibility of allowing painting of a window to be done
asynchronously, in a secondary thread. In this article, we shall examine the various
techniques which can be used to set up a secondary thread to paint a window, with particular
emphasis on mechanisms for communication between the threads.

The primary mechanism for inter-thread communication is one that is rarely mentioned in
books on OS/2 programming, perhaps because it is so obvious. As a consequence, after
immersion in OS/2 technical manuals, it is easy to overlook it as your mind reels with notions
of pipes, queues, semaphores and the like. The mysterious technique? Simply sharing
variables in memory!

Remember that processes own resources like memory, not threads. Consequently all the
threads of a process enjoy equal access to memory, and can use variables to indicate state
information.

There is therefore no fundamental objection to using variables in memory as flags or more
sophisticated mechanisms for inter-thread synchronization or communication. However,
there is one difficulty. Take, for example, a situation where two threads might attempt to
print simultaneously (or paint in a window, come to that). We might decide to use a dword in
memory as a 'printer in use' flag: if it is zero, then the printer is available, but once a thread
starts printing, it should set the flag to -1 (FFFFFFFFH).

Now suppose that somehow, two threads decide to print near-simultaneously. The first
thread executes some code which loads the value of the 'printer in use' flag into a processor
register and then does a JZ (Jump on Zero) to its print routine. But before it can decrement the
register to -1 and write it back, the system timeslices, and now a second thread does the same
thing. It loads the flag into a register, does a JZ and then decrements it to -1, writes it back and
starts to print. Several milliseconds later, the system timeslices again and eventually the first
thread runs, writes back -1 and also starts to print, resulting in garbage output.

The basic problem is that the act of testing, and if clear, setting, a flag should be atomic and
indivisible, i.e. it may not be interrupted part-way through. Now, in fact, we can arrange that
under OS/2 by using critical sections, which are blocks of code which may not be interrupted
by other threads in the same process. Calling DosEnterCritSec() causes other threads in
this process to be suspended until a matching DosExitCritSec() API call is made.
However, one should be aware that there are some restrictions on what can be done in a

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 164

critical section, and that they are dangerous. Crashing while in a critical section can get really
ugly.

For this reason, the OS provides a number of semaphore functions which provide the
required functionality and more. Internally, they operate using critical sections in an
extensively debugged and safe manner, and they also provide more generality.

Are variables in memory of any use, then? The answer is yes. A typical scenario is where the
primary user interface thread of an application requires a thread to start a task, such as filling
a list box, which might never be required to complete (the user might type the desired entry
into the entry-field of a combo-box without needing to pick from the listbox component, for
example).

Since the semaphore API's are organised to allow blocking of a thread until an event occurs or
a resource becomes available, they are not appropriate here; rather we want the thread to
continue running until an event occurs. A shared variable is ideal for this task. Simply call it
BOOL bcontinue, set bcontinue = TRUE to start, and then if the background thread is to
be stopped, set bcontinue = FALSE.

The background thread, of course, will loop around doing its stuff, using a construct of the
form while (bcontinue) { . . . }. Following this, will be its termination and
cleanup code.

This technique is also good for terminating general-purpose worker threads. While the
system provides a DosKillThread() API, it should not be used, except as a last resort. DO
NOT RELY ON DosKillThread() AS A WAY TO TERMINATE THREADS!! This API
cannot always kill threads which are running at a low priority, or which are currently in K-
mode, and it will not allow threads to perform termination and cleanup processing - for
example to allow a thread started with _beginthread() to clean up the C run-time library.
Instead, use a variable, as shown above.

Another structure which is useful for communicating with worker threads is the queue. OS/2
supports two different kinds of queues, and it is important not to get the two confused: PM
message queues are created with WinCreateMsgQueue() and then read with
WinGetMsg(), while the Control Program queues are create with DosCreateQueue() and
read with DosReadQueue().

We can certainly use PM message queues to communicate amongst threads, but remember
the dreaded One-Tenth-Second Rule: if a thread creates a message queue, then it must return
from each message within 1/10th second. If it can't do this, then the usual work-around is to
create another thread, but how will we communicate with it? The way out of this circular
circumstance is to create an Object Window, but that will have to wait for a later article.

Control program queues do not suffer from this restriction. They furthermore have some
useful properties: they are fast, they can be used for interprocess communications (as can PM
queues), they can be used in non-PM applications and subsystems, and they can be read in
FIFO, LIFO, priority or arbitrary order.

One restriction on queues is that the only process which can read from a queue is its creator.
This does not pose an architectural problem in inter-thread communication, however; it is
perfectly permissible for several threads in a single process to read from a queue, in addition
to the thread that originally created it.

In the following example, I have contrived an application which takes some time to paint a
sine wave in its window, by the simple expedient of adding a loop:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 165

for (j = 0; j < 100000; j++); // Slow down and suck up CPU cycles

between each pixel of the drawn sine wave. Depending upon the window size, it can take
several seconds to repaint the window, during which time a single-threaded version of the
program can noticeably make the system unresponsive - menus won't pull down,
background windows can't be brought to the foreground and the system is to all intents and
purposes dead for a few seconds.

The source code starts off by defining the usual stuff and including the usual header files. A
preprocessor macro is used to support writing of a debug log for instructional purposes.

/* Queued multithreaded paint example */
#define DEBUG
/* We need to include symbolic constants, function prototypes,
structures and types for the system */
#define INCL_BASE
#define INCL_DOSQUEUES
#define INCL_WIN
#include <os2.h>

#include <stdio.h>
#include <malloc.h>
#include <math.h>

#include "\os290\lab15\pmassert.h"

Now we define the client window class and some messages which will allow the window-
painting thread to 'talk back' to the main thread via its PM message queue:

/* A window class has a name, used in several places through the
source, so we define it here */
#define WC_HELLO "Hello"
#define UM_PAINTTITLE WM_USER
#define UM_NORMALTITLE WM_USER+1

Then come the usual forward reference for the winproc, and global variables (not a good idea,
but hardly harmful in such a small program):

/* Forward reference for the window procedure */
MRESULT EXPENTRY SineWndProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2);

/* We need variables for a frame window and a client window */
HWND hwndFrame, hwndClient;
HAB hab; // Handle to an anchor block

In order to create a queue, we'll need a handle to refer to it (DosCreateQueue() will
initialise this). We also need a structure which will be used to pass commands and
parameters to the window-painting thread. For example, the handle of the window to be
painted, the handle of the presentation space to paint in and the invalid rectangle are all
obtained by the main thread when it calls WinBeginPaint() (which it must do in order not
to be bombarded with more WM_PAINT messages). We also include a command field, so that
we can tell the paint thread to either paint or to terminate itself (or do something else).

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 166

HQUEUE hq;

// Structure for inter-thread communication
typedef struct _PaintCommand {
 enum {T2PAINT, T2END } command;
 HWND hwndPaint;
 HPS hpsPaint;
 RECTL rclPaint;
} PAINTCOMMAND, *PPAINTCOMMAND;

The thread function must be correctly prototyped so that DosCreateThread() can be
called. Note the use of _System linkage. We also need a thread ID variable.

/* Forward reference to thread function */
VOID _System PaintThread(ULONG ulParam);
TID tid;

The start of the main function is unremarkable, save for conditionally-compiled call to
freopen() which allows us to use printf() calls to write to a log file.

int main(int argc, char *argv[], char *envp[])
{
 APIRET rc; // Base OS return code
 HMQ hmq; // Handle for a message queue
 QMSG qmsg; // Queue message structure
 ULONG ulFrameFlags; // Frame creation flags - allow for frame
components
 PPAINTCOMMAND pcmd;

#ifdef DEBUG
 // Set up a debug log file
 freopen("LOG.TXT" , "w", stdout);
#endif

Now we need to create the queue. Note that the thread is created to be read in priority
sequence. This means that we can make a T2END command 'leapfrog' over any pending
T2PAINT commands, so that the user is not forced to watch the window repaint several times
after he has chosen to quit. If there are multiple elements of equal priority in the queue, then
they will be read in FIFO sequence anyway.

 /* Create the inter-thread communications queue */
 rc = DosCreateQueue(&hq, QUE_PRIORITY, "\\queues\\paint.que"); /*
Will read in FIFO order if equal priority */
 if (rc != 0) {
 printf("Failed to create queue, rc = %d\n", rc);
fflush(stdout);
 }

Next, we create the secondary thread:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 167

 /* Create the secondary thread */
 rc = DosCreateThread(&tid, PaintThread, 0L, STACK_SPARSE, 80000);
#ifdef DEBUG
 if(rc) {
 printf("Failed to create secondary thread, rc = %d\n", rc);
fflush(stdout);
 }
#endif

From here, the code reads like a conventional PM program until we get to the termination
code, where we have to kill the paint thread. We do this by allocating memory for a 'paint
request' packet, and inserting the T2END command into it:

 /* Kill the paint thread */
 // Assemble a paint request packet
 pcmd = (PPAINTCOMMAND)malloc(sizeof(PAINTCOMMAND));
 pmassert(hab, pcmd);
 pcmd->hpsPaint = 0L;
 pcmd->hwndPaint = 0L;
 pcmd->command = T2END;

And then posting it to the queue:

 rc = DosWriteQueue(hq,
 0,
 sizeof(PAINTCOMMAND),
 (PVOID)pcmd,
 15); // Priority higher than normal to preempt any
pending paints

Having done this, we must now wait until the paint thread terminates before destroying the
window and destroying the queue:

 DosWaitThread(&tid, DCWW_WAIT);
 /* Destroying the frame automatically destroys all its children
*/
 WinDestroyWindow(hwndFrame);
 WinDestroyMsgQueue(hmq);
 WinTerminate(hab);
 rc = DosCloseQueue(hq);
 return 0;
}

Of course, as with most PM programs, the bulk of the work is done in the window procedure,
which is mostly conventional:

MRESULT EXPENTRY SineWndProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2)
{
 APIRET rc;
 PPAINTCOMMAND pcmd;

Until we come to the WM_PAINT processing, that is. Here, the first order of business is to
assemble a paint request packed, first malloc'ing memory for it - note the consistent protocol
that the sender mallocs, while the recipient thread frees.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 168

 case WM_PAINT:
 // Assemble a paint request packet
 pcmd = (PPAINTCOMMAND)malloc(sizeof(PAINTCOMMAND));
 pmassert(hab, pcmd);

If we don't call WinBeginPaint() in order to clear the invalid rectangle before returning
from the WM_PAINT message, the system will bombard us with WM_PAINT messages. So we
can't just post off a packet to the paint thread and let it call WinBeginPaint() to get an hps
and the invalid rectangle - we've got to do that here and pass those parameters in the packet:

 pcmd->hpsPaint = WinBeginPaint(hwnd, 0, &pcmd->rclPaint);
// Get a presentation space to paint in
 pcmd->hwndPaint = hwnd;
 pcmd->command = T2PAINT;

And now we write this packet to the queue:

 rc = DosWriteQueue(hq,
 0,
 sizeof(PAINTCOMMAND),
 (PVOID)pcmd,
 8);

While the paint thread is repainting the window, we want to signal that fact in the titlebar. So
we arrange for the thread to post us a UM_PAINTTITLE message, and in response to this we
change the titlebar text:

 case UM_PAINTTITLE:
 WinSetWindowText(WinWindowFromID(hwndFrame,FID_TITLEBAR),
"Eight Pi - Repainting");
 return (MRESULT) FALSE;
 break;

And do the reverse when the paint thread has finished:

 case UM_NORMALTITLE:
 WinSetWindowText(WinWindowFromID(WinQueryWindow(hwnd,
QW_PARENT), FID_TITLEBAR), "Eight Pi");
 return (MRESULT) FALSE;
 break;

The rest of the window procedure code is conventional. The paint thread starts off with the
usual data definitions:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 169

VOID _System PaintThread(ULONG ulParam)
{
 PPAINTCOMMAND pcmd;
 static ULONG ulCommandCounter = 1;
 HAB hab;
 REQUESTDATA request;
 ULONG uldatalength;
 BYTE ucPriority;
 RECTL rclWindow;
 APIRET rc;
 INT j;
 BOOL brc;
 POINTL ptl;
 LONG lScaleFactor, xaxis;
 double theta;

The first order of business is to call WinInitialize so as to obtain access to PM resources and
then set the priority of the thread lower than a regular application thread, so that painting is
not done at the expense of other system activities:

 hab = WinInitialize(0L);
 rc = DosSetPriority(PRTYS_THREAD, PRTYC_IDLETIME, 4, 0);

Then comes the loop which reads commands off the queue and processes them. First, we read
a command:

 for(;;) {
 /* Read a command off the queue */
 rc = DosReadQueue(hq, // Queue handle
 &request, // request (not used)
 &uldatalength, // length of queue element
(not used)
 (PPVOID)&pcmd, // Passed data
 0, // Element code - read from
front of queue
 DCWW_WAIT, // Wait (opp. DCWW_NOWAIT)
 &ucPriority, // Priority (not used)
 0L); // Semaphore handle (not
used since synchronous)

And then, if it is a T2END command, we exit the loop, otherwise paint the window:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 170

 if(pcmd->command == T2END) break; // We're outa here
 WinQueryWindowRect(pcmd->hwndPaint, &rclWindow);
 // Set the title bar to show we're painting
 WinPostMsg(pcmd->hwndPaint, UM_PAINTTITLE, 0L, 0L);
 pmassert(hab, brc);
 WinFillRect(pcmd->hpsPaint, &pcmd->rclPaint, CLR_WHITE);
 lScaleFactor = (rclWindow.yTop - rclWindow.yBottom) / 2;
 xaxis = (LONG) rclWindow.yBottom + lScaleFactor;

 for(ptl.x = pcmd->rclPaint.xLeft-1; ptl.x < pcmd-
>rclPaint.xRight; ptl.x++) { // For every pixel column across the
invalid rect
 theta = 4 * (ptl.x - rclWindow.xLeft) * 2 * 3.141592654 /
(rclWindow.xRight - rclWindow.xLeft);
 ptl.y = xaxis + (LONG)(sin(theta) * lScaleFactor);
 // if (ptl.y > pcmd->rclPaint.yTop || ptl.y < pcmd-
>rclPaint.yBottom) continue;
 GpiLine(pcmd->hpsPaint, &ptl);
 for (j = 0; j < 100000; j++); // Slow down and suck up
CPU cycles
 }
 brc = WinEndPaint(pcmd->hpsPaint); //
Release the presentation space

After painting the window, we let the main thread know we've finished, so it change the
titlebar back, free the command packet memory, and then loop around to do it all over again:

 WinPostMsg(pcmd->hwndPaint, UM_NORMALTITLE, 0L, 0L);
 free(pcmd);
 } // Do it all over again
 DosExit(EXIT_THREAD, 0);
}

Here is the full program:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 171

/* Queued multithreaded paint example */
#define DEBUG
/* We need to include symbolic constants, function prototypes,
structures and types for the system */
#define INCL_BASE
#define INCL_DOSQUEUES
#define INCL_WIN
#include <os2.h>

#include <stdio.h>
#include <malloc.h>
#include <math.h>

#include "\os290\lab15\pmassert.h"

/* A window class has a name, used in several places through the
source, so we define it here */
#define WC_HELLO "Hello"
#define UM_PAINTTITLE WM_USER
#define UM_NORMALTITLE WM_USER+1

/* Forward reference for the window procedure */
MRESULT EXPENTRY SineWndProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2);

/* We need variables for a frame window and a client window */
HWND hwndFrame, hwndClient;
HAB hab; // Handle to an anchor block

HQUEUE hq;

// Structure for inter-thread communication
typedef struct _PaintCommand {
 enum {T2PAINT, T2END } command;
 HWND hwndPaint;
 HPS hpsPaint;
 RECTL rclPaint;
} PAINTCOMMAND, *PPAINTCOMMAND;

/* Forward reference to thread function */
VOID _System PaintThread(ULONG ulParam);
TID tid;

int main(int argc, char *argv[], char *envp[])
{
 APIRET rc; // Base OS return code
 HMQ hmq; // Handle for a message queue
 QMSG qmsg; // Queue message structure
 ULONG ulFrameFlags; // Frame creation flags - allow for frame
components
 PPAINTCOMMAND pcmd;

#ifdef DEBUG
 // Set up a debug log file
 freopen("LOG.TXT" , "w", stdout);
#endif

 /* Create the inter-thread communications queue */
 rc = DosCreateQueue(&hq, QUE_PRIORITY, "\\queues\\paint.que"); /*
Will read in FIFO order if equal priority */
 if (rc != 0) {

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 172

 printf("Failed to create queue, rc = %d\n", rc);
fflush(stdout);
 }

 /* Create the secondary thread */
 rc = DosCreateThread(&tid, PaintThread, 0L, STACK_SPARSE, 80000);
#ifdef DEBUG
 if(rc) {
 printf("Failed to create secondary thread, rc = %d\n", rc);
fflush(stdout);
 }
#endif

 /* Let PM know we're here, and it can allocate resources */
 hab = WinInitialize(0);

 /* Create a message queue to receive messages for our windows */
 hmq = WinCreateMsgQueue(hab, 0);

 /* Register a window class (winproc) to process messages for the
client window */
 if(!WinRegisterClass(hab,
 WC_HELLO,
 SineWndProc,
 CS_SYNCPAINT | CS_SIZEREDRAW,
 0L))
 DosExit(EXIT_PROCESS,1);

 /* Set up frame creation flags for a standard window, only no
menu, accelerator table or icon */
 ulFrameFlags = FCF_STANDARD & ~FCF_MENU & ~FCF_ACCELTABLE &
~FCF_ICON;

 /* Create a frame (and its children) and client windows */
 hwndFrame = WinCreateStdWindow(HWND_DESKTOP, // Frame's parent
 WS_VISIBLE, // Frame window
style
 &ulFrameFlags, // Frame creation
flags
 WC_HELLO, // Client window
class
 "Eight Pi", // Titlebar
text
 WS_VISIBLE, // Client window
style
 (HMODULE)0L, // Resource
module handle - 0 for resources in .EXE
 0L, // Resource ID
 &hwndClient); // Variable to
receive client window handle

 if (hwndFrame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

 /* The 'event loop' reads messages and dispatches them until
WinGetMsg returns FALSE after reading WM_QUIT */
 while(WinGetMsg(hab, &qmsg, 0L, 0L, 0L))
 WinDispatchMsg(hab, &qmsg);

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 173

 /* Kill the paint thread */
 // Assemble a paint request packet
 pcmd = (PPAINTCOMMAND)malloc(sizeof(PAINTCOMMAND));
 pmassert(hab, pcmd);
 pcmd->hpsPaint = 0L;
 pcmd->hwndPaint = 0L;
 pcmd->command = T2END;
 // And post it to the queue
 rc = DosWriteQueue(hq,
 0,
 sizeof(PAINTCOMMAND),
 (PVOID)pcmd,
 15); // Priority higher than normal to preempt any
pending paints
#ifdef DEBUG
 printf("T1: Sent T2END command to end T2\n"); fflush (stdout);
#endif
 DosWaitThread(&tid, DCWW_WAIT);
 /* Destroying the frame automatically destroys all its children
*/
 WinDestroyWindow(hwndFrame);
 WinDestroyMsgQueue(hmq);
 WinTerminate(hab);
 rc = DosCloseQueue(hq);
 return 0;
}

/* The 'guts' of the application is in the window procedure, which
implements behaviour of the client window */
MRESULT EXPENTRY SineWndProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2)
{
 APIRET rc;
 PPAINTCOMMAND pcmd;
 static ULONG ulCommandCounter = 1;

 switch(msg) {
 case WM_CREATE: // Return false to allow
the system to
 return (MRESULT) FALSE; // continue creating the
window
 break; // Return TRUE if there's
a problem

 case WM_ERASEBACKGROUND:
 return (MRESULT) FALSE; // Return TRUE to allow
the frame to fill the client with white
 break;

 case WM_PAINT: // The real 'guts' of the
application are here
 // Assemble a paint request packet
 pcmd = (PPAINTCOMMAND)malloc(sizeof(PAINTCOMMAND));
 pmassert(hab, pcmd);
 pcmd->hpsPaint = WinBeginPaint(hwnd, 0, &pcmd->rclPaint);
// Get a presentation space to paint in
 pcmd->hwndPaint = hwnd;
 pcmd->command = T2PAINT;
 // And post it to the queue
 rc = DosWriteQueue(hq,
 0,

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 174

 sizeof(PAINTCOMMAND),
 (PVOID)pcmd,
 8);
#ifdef DEBUG
 printf("T1: Sent paint command %d to paint thread\n",
ulCommandCounter++); fflush(stdout);
#endif
 return (MRESULT) FALSE; // Return FALSE to
indicate the message has been processed
 break;

 case UM_PAINTTITLE:
 WinSetWindowText(WinWindowFromID(hwndFrame,FID_TITLEBAR),
"Eight Pi - Repainting");
 return (MRESULT) FALSE;
 break;

 case UM_NORMALTITLE:
 WinSetWindowText(WinWindowFromID(WinQueryWindow(hwnd,
QW_PARENT), FID_TITLEBAR), "Eight Pi");
 return (MRESULT) FALSE;
 break;

 case WM_CLOSE: // Post back a
WM_QUIT to yourself
 WinPostMsg(hwnd, WM_QUIT, 0L, 0L); // so that the event
loop terminates
 return (MRESULT) FALSE;
 break;

 default: // Let the system handle all other messages
with default behaviour
 return WinDefWindowProc(hwnd, msg, mp1, mp2);
 break;
 }
 return (MRESULT) FALSE; // Shut the compiler up
}

/* Painting thread */

VOID _System PaintThread(ULONG ulParam)
{
 PPAINTCOMMAND pcmd;
 static ULONG ulCommandCounter = 1;
 HAB hab;
 REQUESTDATA request;
 ULONG uldatalength;
 BYTE ucPriority;
 RECTL rclWindow;
 APIRET rc;
 INT j;
 BOOL brc;
 POINTL ptl;
 LONG lScaleFactor, xaxis;
 double theta;

#ifdef DEBUG
 printf("T2: starting\n"); fflush(stdout);
#endif
 hab = WinInitialize(0L);
 rc = DosSetPriority(PRTYS_THREAD, PRTYC_IDLETIME, 4, 0);

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 175

#ifdef DEBUG
 printf("T2: Priority reduced, rc = %d\n", rc); fflush(stdout);
#endif
 for(;;) {
#ifdef DEBUG
 printf("T2: Entered loop\n"); fflush (stdout);
#endif
 /* Read a command off the queue */
 rc = DosReadQueue(hq, // Queue handle
 &request, // request (not used)
 &uldatalength, // length of queue element
(not used)
 (PPVOID)&pcmd, // Passed data
 0, // Element code - read from
front of queue
 DCWW_WAIT, // Wait (opp. DCWW_NOWAIT)
 &ucPriority, // Priority (not used)
 0L); // Semaphore handle (not
used since synchronous)
#ifdef DEBUG
 printf("T2: Command %d was read\n", ulCommandCounter++);
fflush(stdout);
#endif
 if(pcmd->command == T2END) break; // We're outa here
 WinQueryWindowRect(pcmd->hwndPaint, &rclWindow);
 // Set the title bar to show we're painting
 WinPostMsg(pcmd->hwndPaint, UM_PAINTTITLE, 0L, 0L);
 pmassert(hab, brc);
 WinFillRect(pcmd->hpsPaint, &pcmd->rclPaint, CLR_WHITE);
 lScaleFactor = (rclWindow.yTop - rclWindow.yBottom) / 2;
 xaxis = (LONG) rclWindow.yBottom + lScaleFactor;

 for(ptl.x = pcmd->rclPaint.xLeft-1; ptl.x < pcmd-
>rclPaint.xRight; ptl.x++) { // For every pixel column across the
invalid rect
 theta = 4 * (ptl.x - rclWindow.xLeft) * 2 * 3.141592654 /
(rclWindow.xRight - rclWindow.xLeft);
 ptl.y = xaxis + (LONG)(sin(theta) * lScaleFactor);
 // if (ptl.y > pcmd->rclPaint.yTop || ptl.y < pcmd-
>rclPaint.yBottom) continue;
 GpiLine(pcmd->hpsPaint, &ptl);
 for (j = 0; j < 100000; j++); // Slow down and suck up
CPU cycles
 }
 brc = WinEndPaint(pcmd->hpsPaint); //
Release the presentation space
#ifdef DEBUG
 printf("T2: WinEndPaint returned %d\n", brc); fflush(stdout);
#endif
 WinPostMsg(pcmd->hwndPaint, UM_NORMALTITLE, 0L, 0L);
 free(pcmd);
 } // Do it all over again
#ifdef DEBUG
 printf("T2: terminating\n"); fflush(stdout);
#endif
 DosExit(EXIT_THREAD, 0);
}

Notice, by the way, that unlike earlier examples in this series, which have simply repainted
their entire client window area in response to WM_PAINT messages, this one only repaints the
invalid rectangle, in the interest of performance.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 176

This program is not a comprehensive exposition of queues, or multithreaded painting
techniques, or the MVC paradigm, or of worker threads generally. But it does provide a basic
introduction to some of the issues involved, as well as providing a small experimental
platform. For example, what happens if the priority of the paint thread is not reduced?

Using Object Windows & Message Queues for MVC

In the previous section, we examined an implementation of the Model-View-Controller
Paradigm for application design, using control program queues. We briefly mentioned the
alternative use of Presentation Manager message queues, but gave no details.

Of course, the first problem that will occur to the perceptive reader is that message queues
provide communication between windows, not threads or processes. While it should be
possible to communicate with another process by getting its window handles, what about use
in a simple application which simply has a single client window? Here, there is no window to
which we can send or post messages.

However, the solution is at hand. And even better, it fits well with another set of modern
programming concepts - those of object oriented programming.

In a previous section, we showed how a window can be used as the unit of encapsulation,
through the use of window words. In this context, a window procedure can be thought of as a
class (hence the WinRegisterClass() API), since it provides behaviour for all windows of
the same type, and each window is an object, with its instance data stored in a structure
pointed to by the window words.

It is tempting to investigate this further, by using a window to represent internal objects in a
program. After all, windows can be created with zero size and position and not made visible,
and we can then interact with them by sending or posting messages. However, there is a
drawback: the system still sees such windows as at least potentially part of the user interface
subsystem and sends them all kinds of messages which must be dealt with. In addition, such
a window must respond to any messages almost immediately or it will hold up the reading of
subsequent messages from the system's synchronous input queues.

Presentation Manager's designers obviously saw the potential for the use of the window
concept for representation of internal objects and provided object windows for this purpose.
An object window is descended from HWND_OBJECT (remember that conventional windows
are descendants of HWND_DESKTOP) and is not part of PM's user interface subsystem.
Consequently, object windows do not receive messages relating to user interface operation,
and they need not process messages in less than 1/10th second.

In fact, the only system-defined messages which an object window will receive are
WM_CREATE, which is used to create/allocate/open resources, WM_DESTROY, which is used
for the converse operation, and WM_QUIT, which is used to terminate the thread running an
object window.

An object window is generally run on its own thread, which is created using
DosCreateThread(). The thread will need to have an anchor block, create an input queue,
perhaps register a class for the object window and generally do the things that a main thread
does:

 hab = WinInitialize(0L);
 hmq = WinCreateMsgQueue(hab, 0L);

In addition, it also needs to call WinCancelShutdown(). This API has two functions: when
called with a FALSE parameter in response to a WM_QUIT message, it cancels the system

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 177

shutdown which generated the WM_QUIT in the first place. This form is usually used in
application primary UI threads. When called with the TRUE argument, it stops the system
from sending WM_QUIT to this thread. Usually, the designer wants the system to send
WM_QUIT to the primary thread only, which will then take care of terminating the other
threads in a sequence and fashion which makes sense in the contect of the application. If all
threads received WM_QUIT simultaneously, application termination would be difficult, to put
it mildly:

 WinCancelShutdown(hmq, TRUE); // We don't want to receive
WM_QUIT in event of system shutdown

 if(!WinRegisterClass(hab,
 WC_OPAINT,
 (PFNWP)wpPaintThread,
 0,
 sizeof(void *))) {
 DosBeep(440,1000);
 DosExit(EXIT_PROCESS,1);
 /* Couldn't register class */
 }

Finally, the object window is created. Note that it is created with WinCreateWindow(),
rather than WinCreateStdWindow() and that it is a child of HWND_OBJECT:

 hwndObject = WinCreateWindow(HWND_OBJECT, // hwndParent
 WC_OPAINT, // Class
 NULL, // Name
 0L, // Style
 0,0, // x,y
 0,0, // cx, cy
 HWND_OBJECT, // hwndOwner
 HWND_BOTTOM, // hwndInsertBehind
 1, // ID
 NULL, // pCtlData
 NULL); // pPresParams

At this point, an extra complication rears its ugly head: While the secondary thread was
getting started and performing this initialisation, the main thread has been going about its
business, creating its windows, as a result of this, the system will have generated a WM_PAINT
message to make the application client window area visible. If this is handed off by the
WM_PAINT processing in the main window posting a message to the object window, there is a
much greater than vanishing chance that this message will be processed by the system before
the object window has been created. As a result, the client window will not be repainted.

We need some mechanism to 'hold up' the main thread so that it does not proceed to create
the application window(s) until such time as the object window is ready to service it. An
event semaphore should do the job nicely. In the main thread, we set up the semaphore and
create it in a reset state:

 /* Set up the wait semaphore to be initially reset */
 rc = DosCreateEventSem(NULL, &hevWait, 0L, FALSE);

then a little later, after registering the main window class, we wait until the secondary thread
has created the object window:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 178

 /* Got to wait until the secondary thread posts the wait
semaphore */
 rc = DosWaitEventSem(hevWait, -1L);

The corresponding code in the secondary thread posts the semaphore after returning from
WinCreateWindow():

 /* object window has been created so we can release the primary
thread */
 rc = DosPostEventSem(hevWait);

This takes care of that little synchronization issue.

Here is the complete program:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 179

/* PM Queued multithreaded paint example */
#define DEBUG
/* We need to include symbolic constants, function prototypes,
structures and types for the system */
#define INCL_BASE
#define INCL_WIN
#include <os2.h>

#include <stdio.h>
#include <malloc.h>
#include <math.h>

#include "\prog21\lab15\pmassert.h"

/* A window class has a name, used in several places through the
source, so we define it here */
#define WC_HELLO "Hello"
#define WC_OPAINT "ObjectPaint"
#define UM_PAINTTITLE WM_USER
#define UM_NORMALTITLE WM_USER+1

#define T2PAINT WM_USER
#define T2END WM_USER+1

/* Forward reference for the window procedure */
MRESULT EXPENTRY SineWndProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2);
MRESULT EXPENTRY wpPaintThread(HWND hwnd, ULONG msg, MPARAM mp1,
MPARAM mp2);

/* We need variables for a frame window and a client window */
HWND hwndFrame, hwndClient, hwndObject = NULLHANDLE;

// Structure for inter-thread communication
typedef struct _PaintCommand {
 HWND hwndPaint;
 HPS hpsPaint;
 RECTL rclPaint;
} PAINTCOMMAND, *PPAINTCOMMAND;

// Event semaphore for thread synchronization
HEV hevWait;

/* Forward reference to thread function */
VOID _System PaintThread(ULONG ulParam);
TID tid;

int main(int argc, char *argv[], char *envp[])
{
 HAB hab; // Handle to an anchor block
 APIRET rc; // Base OS return code
 HMQ hmq; // Handle for a message queue
 QMSG qmsg; // Queue message structure
 ULONG ulFrameFlags; // Frame creation flags - allow for frame
components
 PPAINTCOMMAND pcmd;

#ifdef DEBUG
 // Set up a debug log file
 freopen("LOG.TXT" , "w", stdout);
#endif

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 180

 /* Set up the wait semaphore to be initially reset */
 rc = DosCreateEventSem(NULL, &hevWait, 0L, FALSE);

 /* Create the secondary thread */
 rc = DosCreateThread(&tid, PaintThread, 0L, STACK_SPARSE, 80000);
#ifdef DEBUG
 if(rc) {
 printf("Failed to create secondary thread, rc = %d\n", rc);
fflush(stdout);
 }
#endif

 /* Let PM know we're here, and it can allocate resources */
 hab = WinInitialize(0);

 /* Create a message queue to receive messages for our windows */
 hmq = WinCreateMsgQueue(hab, 0);

 /* Register a window class (winproc) to process messages for the
client window */
 if(!WinRegisterClass(hab,
 WC_HELLO,
 SineWndProc,
 CS_SYNCPAINT | CS_SIZEREDRAW,
 0L))
 DosExit(EXIT_PROCESS,1);

 /* Got to wait until the secondary thread posts the wait
semaphore */
 rc = DosWaitEventSem(hevWait, -1L);

 /* Set up frame creation flags for a standard window, only no
menu, accelerator table or icon */
 ulFrameFlags = FCF_STANDARD & ~FCF_MENU & ~FCF_ACCELTABLE &
~FCF_ICON;

 /* Create a frame (and its children) and client windows */
 hwndFrame = WinCreateStdWindow(HWND_DESKTOP, // Frame's parent
 WS_VISIBLE, // Frame window
style
 &ulFrameFlags, // Frame creation
flags
 WC_HELLO, // Client window
class
 "Eight Pi", // Titlebar
text
 WS_VISIBLE, // Client window
style
 (HMODULE)0L, // Resource
module handle - 0 for resources in .EXE
 0L, // Resource ID
 &hwndClient); // Variable to
receive client window handle

 if (hwndFrame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 181

 /* The 'event loop' reads messages and dispatches them until
WinGetMsg returns FALSE after reading WM_QUIT */
 while(WinGetMsg(hab, &qmsg, 0L, 0L, 0L))
 WinDispatchMsg(hab, &qmsg);

 /* Kill the paint thread */
 WinPostMsg(hwndObject, WM_QUIT, 0L, 0L);
#ifdef DEBUG
 printf("T1: Posted WM_QUIT message to end T2\n"); fflush
(stdout);
#endif
 DosWaitThread(&tid, DCWW_WAIT);
 /* Destroying the frame automatically destroys all its children
*/
 WinDestroyWindow(hwndFrame);
 WinDestroyMsgQueue(hmq);
 WinTerminate(hab);
 return 0;
}

/* The 'guts' of the application is in the window procedure, which
implements behaviour of the client window */
MRESULT EXPENTRY SineWndProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2)
{
 APIRET rc;
 PPAINTCOMMAND pcmd;
 static ULONG ulCommandCounter = 1;

 switch(msg) {
 case WM_CREATE: // Return false to allow
the system to
 return (MRESULT) FALSE; // continue creating the
window
 break; // Return TRUE if there's
a problem

 case WM_ERASEBACKGROUND:
 return (MRESULT) FALSE; // Return TRUE to allow
the frame to fill the client with white
 break;

 case WM_PAINT: // The real 'guts' of the
application are here
 // Assemble a paint request packet
 pcmd = (PPAINTCOMMAND)malloc(sizeof(PAINTCOMMAND));
 pmassert(WinQueryAnchorBlock(hwnd), pcmd);
 pcmd->hpsPaint = WinBeginPaint(hwnd, 0, &pcmd->rclPaint);
// Get a presentation space to paint in
 pcmd->hwndPaint = hwnd;
 // And post it to the object window
 rc = WinPostMsg(hwndObject,
 T2PAINT,
 MPFROMP(pcmd),
 0L);
#ifdef DEBUG
 printf("T1: Sent paint command %d to paint thread using
hwnd %08x\n", ulCommandCounter++, hwndObject); fflush(stdout);
#endif
 return (MRESULT) FALSE; // Return FALSE to
indicate the message has been processed

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 182

 break;

 case UM_PAINTTITLE:
 WinSetWindowText(WinWindowFromID(hwndFrame,FID_TITLEBAR),
"Eight Pi - Repainting");
 return (MRESULT) FALSE;
 break;

 case UM_NORMALTITLE:
 WinSetWindowText(WinWindowFromID(WinQueryWindow(hwnd,
QW_PARENT), FID_TITLEBAR), "Eight Pi");
 return (MRESULT) FALSE;
 break;

 case WM_CLOSE: // Post back a
WM_QUIT to yourself
 WinPostMsg(hwnd, WM_QUIT, 0L, 0L); // so that the event
loop terminates
 return (MRESULT) FALSE;
 break;

 default: // Let the system handle all other messages
with default behaviour
 return WinDefWindowProc(hwnd, msg, mp1, mp2);
 break;
 }
 return (MRESULT) FALSE; // Shut the compiler up
}

/* Painting thread */

VOID _System PaintThread(ULONG ulParam)
{
 HAB hab; // Handle to an anchor block
 HMQ hmq;
 QMSG qmsg;
 APIRET rc;

#ifdef DEBUG
 printf("T2: starting\n"); fflush(stdout);
#endif
 rc = DosSetPriority(PRTYS_THREAD, PRTYC_IDLETIME, 4, 0);
#ifdef DEBUG
 printf("T2: Priority reduced, rc = %d\n", rc); fflush(stdout);
#endif

 hab = WinInitialize(0L);
 hmq = WinCreateMsgQueue(hab, 0L);

 WinCancelShutdown(hmq, TRUE); // We don't want to receive
WM_QUIT in event of system shutdown

 if(!WinRegisterClass(hab,
 WC_OPAINT,
 (PFNWP)wpPaintThread,
 0,
 sizeof(void *))) {
 DosBeep(440,1000);
 DosExit(EXIT_PROCESS,1);
 /* Couldn't register class */
 }

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 183

 hwndObject = WinCreateWindow(HWND_OBJECT, // hwndParent
 WC_OPAINT, // Class
 NULL, // Name
 0L, // Style
 0,0, // x,y
 0,0, // cx, cy
 HWND_OBJECT, // hwndOwner
 HWND_BOTTOM, // hwndInsertBehind
 1, // ID
 NULL, // pCtlData
 NULL); // pPresParams

 pmassert(hab,hwndObject);

 /* object window has been created so we can release the primary
thread */
 rc = DosPostEventSem(hevWait);

 while(WinGetMsg(hab, &qmsg, 0L, 0L, 0L))
 WinDispatchMsg(hab, &qmsg);

 WinDestroyWindow(hwndObject);
 WinTerminate(hab);
#ifdef DEBUG
 printf("T2: terminating\n"); fflush(stdout);
#endif
 DosExit(EXIT_THREAD, 0);
}

MRESULT EXPENTRY wpPaintThread(HWND hwnd, ULONG msg, MPARAM mp1,
MPARAM mp2)
{
 PPAINTCOMMAND pcmd;
 static ULONG ulCommandCounter = 1;
 RECTL rclWindow;
 INT j;
 BOOL brc;
 POINTL ptl;
 LONG lScaleFactor, xaxis;
 double theta;

 switch(msg) {
 case WM_CREATE:
 return (MRESULT) 0L;
 break;

 case WM_DESTROY:
 return (MRESULT) 0L;
 break;

 case T2PAINT:
 pcmd = (PPAINTCOMMAND)PVOIDFROMMP(mp1);
 WinQueryWindowRect(pcmd->hwndPaint, &rclWindow);
 // Set the title bar to show we're painting
 WinPostMsg(pcmd->hwndPaint, UM_PAINTTITLE, 0L, 0L);
 WinFillRect(pcmd->hpsPaint, &pcmd->rclPaint, CLR_WHITE);
 lScaleFactor = (rclWindow.yTop - rclWindow.yBottom) / 2;
 xaxis = (LONG) rclWindow.yBottom + lScaleFactor;

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 184

 for(ptl.x = pcmd->rclPaint.xLeft-1; ptl.x < pcmd-
>rclPaint.xRight; ptl.x++) { // For every pixel column across the
invalid rect
 theta = 4 * (ptl.x - rclWindow.xLeft) * 2 *
3.141592654 / (rclWindow.xRight - rclWindow.xLeft);
 ptl.y = xaxis + (LONG)(sin(theta) * lScaleFactor);
 GpiLine(pcmd->hpsPaint, &ptl);
 for (j = 0; j < 100000; j++); // Slow down and suck
up CPU cycles
 }
#ifdef DEBUG
 brc = WinEndPaint(pcmd->hpsPaint); //
Release the presentation space
 printf("T2: WinEndPaint returned %d\n", brc);
fflush(stdout);
#endif
 WinPostMsg(pcmd->hwndPaint, UM_NORMALTITLE, 0L, 0L);
 free(pcmd);
 return (MRESULT) FALSE;
 break;

 default:
 return WinDefWindowProc(hwnd, msg, mp1, mp2);
 break;
 } //end switch(msg)
 return 0L;
}

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 185

Subclassing
Subclassing is an object-oriented concept, and is possible in Presentation Manager because it
is an object-orientedsystem, in certain senses. An object is a combination of instance data and
methods, while a window can be viewed as the same thing: the instance data is stored in
window words, while the methods are implemented in the window procedure.

If, in an object-oriented system, one can subclass an existing class which almost provides and
desired behavior and modify its methods until it is exactly right, can one not do the same
thing with window classes? The answer is yes: you can over-ride the behaviour of a window
by intercepting messages to it and processing them in your own window procedure or
allowing them to pass on to the original winproc. Notice that this is actually subclassing a
window, rather than a class. Only that window will be affected, and it cannot be subclassed
until after it has been created, so that the WM_CREATE message processing cannot be
intercepted. Nonetheless, this is a surprisingly useful technique.

Subclassing can be used to modify the behaviour of existing classes. For example, originally
entryfield controls always displayed what was typed into them, and so a common
application for subclassing was the interception of WM_CHAR messages to catch passwords
while displaying asterisks (today, one might use ES_UNREADABLE style on the entryfield,
which does the same thing). However, entry-fields are still often subclassed to support
editing of input, or addition of pop-up menus for cut/copy/paste and other useful features.

Here's how it is done: the WinSubclassWindow() API will allow the programmer to
specify a new address for the window procedure for a window, and returns the address of
the old window procedure. For example:

 case WM_INITDLG:
 /* Subclass the ID_SRCH_ABBREV entry field */
 OldWndProc = WinSubclassWindow(WinWindowFromID(hwnd,
ID_SRCH_ABBREV), UCEFWndProc);

In this case, OldWndProc is a static variable defined to be of type PFNWP (pointer to function
which is a window procedure). Because the entryfield to be subclassed is in a dialog window,
we know its ID but not its handle, so we use WinWindowFromID to get the handle. And
UCEFWndProc is the Upper Case Entry Field winproc:

MRESULT EXPENTRY UCEFWndProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2)
{
 switch(msg) {
 case WM_CHAR:
 mp2 =
MPFROM2SHORT(toupper(SHORT1FROMMP(mp2)),SHORT2FROMMP(mp2));
 default:
 return OldWndProc(hwnd, msg, mp1, mp2);
 }
 return (MRESULT) FALSE;
}

This window procedure simply intercepts all WM_CHAR messages, and converts short 1 of
mp2 to upper case. It then calls OldWndProc(), as for all other messages. For intercepted
messges, a subclassing window procedure can perform some pre- or post-processing around
the base window procedure, as shown here, or can completely implement the desired

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 186

behaviour, without calling the base winproc at all. Of course, if you don't call the base
window procedure ever, for any message, there was no point in subclassing as you have
completely implemented the window class.

The example code shown here can be seen in a modified version of Lab 10 called LAB10A.C,
in the LAB10 subdirectory.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 187

Dialog Windows
Dialog windows are windows which are usually displayed for short-term user interaction.
They are typically used for font selection, data entry, file selection and similar interactions.

In most regards, dialog windows behave very much like conventional application windows,
but there are some important distinctions. A dialog window has a window procedure that is
structurally similar to that for a conventional window, but it does not have any class and
WinRegisterClass() is not called for it.

A dialog window is actually a subclassed frame window. This has several interesting
implications. The first is that your window procedure code for the dialog will never see the
WM_CREATE message, since the frame window receives WM_CREATE before being subclassed.
Instead, the dialog is sent a WM_INITDLG message, and this can be used in exactly the same
way, to initialize resources required by the dialog.

The second implication is that, since it is a subclassing window procedure, your dialog
window procedure should not call WinDefWindowProc(). Instead, it needs to call the
original frame window procedure to perform default processing, and it should do this by
calling WinDefDlgProc().

Thirdly - and this is more subtle - you should remember that your code is running in the
winproc for the frame itself, and not a client window. There is no frame/client relationship
here: all the children of the frame are control windows like entry fields, list boxes and
pushbuttons. If you want to, for example, display a bitmap background in your dialog,
remember that there is no client.

The reason for subclassing the frame window is to provide the basic window-handling logic
and add functionality such as processing of the tab and arrow keys for movement between
control groups, selection of radio buttons, etc.

Conventions

A dialog window is typically used to obtain information from the user - a filename, font
name and size, or perhaps a user ID and password. However, there is no way that a dialog,
run by an API such as WinDlgBox(), can return several pieces of information. The
WinDlgBox() API is of type ULONG, and the convention that has been adopted is that the
API should return the window ID of the button which was used to dismiss the dialog -
typically DID_OK or DID_CANCEL. In the dialog procedure, this is passed as an argument to
WinDismissDlg(), and becomes the returned value of the WinDlgBox() API.

So now we have a way to determine whether the dialog ran successfully or not, but what
about the data the user entered? The usual way of dealing with this is to pass a structure to
the dialog window, which will be filled in before it is dismissed. A pointer to the structure is
passed as one of the parameters of the WinDlgBox() call, and is received in the dialog
procedure as mp2 of the WM_INITDLG message (mp1 is the handle of the control window
which is to receive focus). Important: the first member of the passed structure must be a
USHORT which is initialized to the size of the structure. This is required for thunking
purposes.

Here is a simple example:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 188

 case ID_SETCOLOR: {
 BGColor.cbSize = sizeof(BGColor);
 BGColor.red = (BYTE)(ulBGColor >> 16 &
0x000000ff);
 BGColor.green = (BYTE)(ulBGColor >> 8 &
0x000000ff);
 BGColor.blue = (BYTE)(ulBGColor & 0x000000ff);
 if (WinDlgBox(HWND_DESKTOP, /* Parent window -
the desktop */
 hwnd, /* Owner window -
this window */
 ColorDlg, /* The dialog
procedure */
 0, /* Module handle -
the EXE */
 ID_DLGCOLOR, /* Dialog resource
ID */
 &BGColor) == DID_OK) {
 ulBGColor = 65536 * BGColor.red + 256 *
BGColor.green + BGColor.blue;
 WinInvalidateRect(hwnd, NULL, FALSE);
 }
 }
 break;

Note that the structure being passed to the dialog starts with a USHORT called cbSize, which
is initialized to the size of the structure. The parent window of the dialog is usually the
desktop, not the application client window. Why? The dialog will be clipped to its parent,
and if the application client is fairly small, it is possible that it might obscure the OK and
Cancel buttons on the dialog, making it impossible to dismiss. If the dialog is modal, this
may make it impossible to quit the application. Messy.

The dialog window itself is created from a dialog template which is a resource attached to the
.EXE file. We'll see how to create that later. If the WinDlgBox() API returns DID_OK, then
the user clicked on the OK button (or otherwise dismissed the dialog, e.g. by double-clicking
on a list-box item) and we go ahead and use the (presumably modified) values in the
structure to update the application window.

Creating a Dialog Window

Dialog windows are usually designed using the Dialog Editor, which is one of the
components of the OS/2 Developer Toolkit. Using the Dialog Editor is real kindergarten
stuff: you just click on the window controls you want in a palette, and then click where you
want to place them on the dialog.

Notice that each control should be given an identifier. The dialog editor will automatically
assign an integer identifier to each control, but you should augment this by entering
symbolic ID's. When the dialog is saved, the editor will create a source file - filename.DLG - a
resource file - filename.RES - and a include file - filename.H which contains the symbolic
values. This should then be included into the source file for the dialog procedure and
possibly the client program.

The dialog editor has facilities for aligning controls, laying them out on a grid pattern and
generally getting the visual appearance right.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 189

Generally, the application will have other resources, in the form of a .RC resource script file
which will have to be bound to the application .EXE file. If left to its own devices, the
makemake utility will generate a make file which has two resource bind steps, but this will
not work, as the second resource bind overwrites the resources from the first. Only one .RES
file can be bound to an .EXE file, so this approach cannot work.

Instead the main .RC file should be edited to #include the dialog header (.H) file, and also to
rcinclude the .DLG file. The .RES file containing the dialogs should be ignored during the
make process, and only used to reload the dialogs into the dialog editor.

The Dialog Procedure

The dialog procedure is very like a conventional window procedure, with the differences
noted above: default call to WinDefDlgProc() rather than WinDefWindowProc(); no
WM_CREATE message, instead WM_INITDLG; and no client window area - the frame paints a
grey background by default.

Modality

Most application dialogs are modal; that is, they are created using the WinDlgBox() API,
and while they are displayed, input to other application windows is disabled. This is because
WinDlgBox() incorporates its own event loop (while (WinGetMsg()) WinDispatchMsg();)
which filters input and dispatches only messages for the dialog window and its children

The WinLoadDlg() API produces a modeless dialog box which will remain on the screen
while the user works with it and other application windows. It can be made modal by calling
the WinProcessDlg() API. However, modeless dialogs are generally more convenient for
the user: witness the search and replace dialog in EPM, which allows the user to perform
other editing tasks while searching for a string. Modeless dialogs should be used wherever
possible.

The WinCreateDlg() API creates a modeless dialog from a dialog template in memory, not
from the module resources. This can be useful when you want to dynamically build a dialog
in memory. However, in the author's experience in building a generic SQL database front
end, it is easier to build the on-screen form from WinCreateWindow() function calls than to
build the dialog resource structures in memory.

Standard Dialogs

The system provides two standard dialogs for the commonest requirements: file open/save
and font selection. The latter dialog, in particular, can save a lot of work.

In the bad old days of PM programming, every programmer used to write his own file open
and save dialogs, and they all looked different. The DeScribe word processor, for example,
had a dialog with three list boxes: one for drive selection, one for subdirectory and one for
file, and this was quite different from every other application. The inconsistency annoys
users and increases training and support costs (though not by much, admittedly). Plus, it
costs programmers lots of time and money.

In the Microsoft OS/2 1.x SDK was a sample program showing how to encapsulate a dialog
in a dynamic link library, and by happy coincidence this DLL just happened to implement a
file open / save dialog. It wasn't long before programmers were using this DLL and shipping
it with their applications. In OS/2 2.0, IBM standardised the DLL and added functionality.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 190

The two standard dialogs are driven by structures which should be initialized before calling
the corresponding DLL API (the DLL's have a single entry point). Although the structures
look complex, they can basically be used by initializing almost everything to zeros and just
calling the API. Only the most sophisticated applications would require extensive use of the
structure members.

For the file open/save dialog, the structure looks like this:

cbSize; /* Size of FILEDLG structure. */
fl; /* FDS_ flags. Alter behavior of dlg. */
ulUser; /* User defined field. */
lReturn; /* Result code from dialog dismissal. */
lSRC; /* System return code. */
pszTitle; /* String to display in title bar. */
pszOKButton; /* String to display in OK button. */
pfnDlgProc; /* Entry point to custom dialog proc. */
pszIType; /* initial EA type filter. */
papszITypeList; /* Type strings. */
pszIDrive; /* Initial drive. */
papszIDriveList; /* Drive strings. */
hMod; /* Custom File Dialog template. */
szFullFile[CCHMAXPATH]; /* Initial path and file. */
papszFQFilename; /* FQFname*/
ulFQFCount; /* Number of files selected */
usDlgId; /* Custom dialog id. */
x; /* X coordinate of the dialog */
sEAType; /* Selected file's EA Type. */

The most important members to initialize are the cbSize field and the fl flags (especially
FDS_OPEN_DIALOG or FDS_SAVEAS_DIALOG). Everything else can be zero and it will still
work.

Here's the logic:

FILEDLG fildlg;
HFILE hFile;
memset(&fildlg, NULL, sizeof(FILDLG));
fildlg.cbsize=sizeof(FILDLG);
fildlg.fl = FDS_OPEN_DIALOG | FDS_CENTER;
fildlg.pszTitle = "Open Edit File";
hwndFileDlg = WinFileDlg(HWND_DESKTOP, hwndOwner, &fildlg);
if(hwndFileDlg && (fildlg.lReturn == DID_OK))
 rc = DosOpen(fild.szFullFile, &hFile, &ulAction, . . .);

The trick is to use memset() to zero out the structure memory and then just set what is
required. In this case, the dialog is to be a Open dialog, and I've also set the title of the dialog
rather than using the default. The WinFileDlg() API takes three arguments: the parent
window (usually the desktop, for reasons previously discussed), the owner window and the
address of the FILEDLG structure. Notice that we check for the API returning a valid dialog
window handle and also that the lReturn field is set to DID_OK so that we know the dialog
was displayed correctly and the user didn't press cancel. The filename is returned as a fully
qualified pathname in the szFullFile member.

The font selection dialog structure is much more impressive; some might say alarming:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 191

cbSize; sizeof(FONTDLG)
hpsScreen; Screen presentation space
hpsPrinter; Printer presentation space
pszTitle; Application supplied title
pszPreview; String to print in preview wndw
pszPtSizeList; Application provided size list
pfnDlgProc; Dialog subclass procedure
pszFamilyname; Family name of font
fxPointSize; Point size the user selected
fl; FNTS_* flags - dialog styles
flFlags; FNTF_* state flags
flType; Font type option bits
flTypeMask; Mask of which font types to use
flStyle; The selected style bits
flStyleMask; Mask of which style bits to use
clrFore; Selected foreground color
clrBack; Selected background color
ulUser Blank field for application
lReturn; Return Value of the Dialog
lSRC; System return code.
lEmHeight; Em height of the current font
lXHeight; X height of the current font
lExternalLeading; External Leading of font
hMod; Module to load custom template
fAttrs; Font attribute structure
sNominalPointSize; Nominal Point Size of font
usWeight; The boldness of the font
usWidth; The width of the font
x; X coordinate of the dialog
y; Y coordinate of the dialog
usDlgId; ID of a custom dialog template
usFamilyBufLen; Length of family buffer provided
usReserved; reserved

However, as before, the secret is to ignore most of the fields for simple applications. In fact,
most of the fields relate to typographical font handling considerations beyond the scope of
this course, although they are dealt with in course OS291, Advanced Presentation Manager
and OS/2 Programming.

The most important fields to initialize are the cbSize field, the fl flags field, the

Once the WinFontDlg() function has returned, the fattrs structure will have been initialized
and can be used to create a logical font by calling GpiCreateLogFont().

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 192

GPI
The Graphics Programming Interface is the major subsystem of Presentation Manager
concerned with graphics. The GPI combines the benefits of a high-level graphics
programming language with an intelligent device interface.

The high-level graphics programming language features:
• Stored Picture Elements (it stores graphic orders, a kind of interpreted graphics language)
• Hierarchical Picture Construction (segments allow graphics to be composed of
'subroutines')
• Picture Editing / Replacement (elements can be inserted and deleted as required)
• Input / Picture Correlation (automatically calculates which elements need to be
repainted, or which are being selected by the mouse pointer)
• Automatic Picture Repair (needn't even repaint - the GPI can save the window contents
in some circumstances)

The device interface:
• Lets the device do what it can
• Makes all devices look the same
• Provides information on the interface

Historically, the GPI is rooted in some older IBM mainframe software, such as GDDM
(Graphical Data Display Manager) and the 3270 Graphics Control Program, coupled with
newer standards such as PHIGS (Programmers Hierarchical Graphics Standard) and ANSI
GKS (Graphical Kernel Standard). (PM itself is modelled on Smalltalk and the Microsoft
Windows GDI, as well as the Computer Graphics Interface).

The GPI is different from earlier standards in two ways: It was the first system to combine
support for both raster and vector devices, and the first to allow device sharing - serial
sharing of printers through a complex spooler subsystem and concurrent use of interactive
display via overlapping windows.

Basic GPI Concepts

There are some basic concepts to get under your belt before tackling the GPI. The GPI is the
most complex component of OS/2, with hundreds of API's, but fortunately they fall into
place once you have the basics under control.

A Device Context is the means of writing data to an output device. It is both the device driver
and the physical device itself (if any). There are several types of device context:
• Screen device context
• Memory device context
• Metafile device context
• Other device device context (printer, plotter etc)

A specialised subset of the other device device context called an information device contexts
allows querying, for example, to find out the default paper size when an application first
creates a new document, or to query supported fonts.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 193

The device context is associated with a Presentation Space. Drawing into the PS causes
output to the associated DC. Since a PS is a 'logical device' which is completely generic, it
cannot support device-specific functions like spooler job management, and so a
DevEscape() function is provided which allows direct output.

To open a device context, use DevOpenDC() or WinOpenWindowDC(). The DevOpenDC()
API supports various attributes:
• OD_QUEUED
• OD_DIRECT
• OD_INFO
• OD_METAFILE
• OD_MEMORY
• OD_METAFILE_NOQUERY

A Presentation Space is like a scratchpad or palette which the GPI uses to assemble the
completed image. It is modal in operation, and consists of the following:
• Segment store
• Definition of symbol sets and fonts
• Definition of line-type sets
• Various controls, e.g. draw controls
• Logical color table / color palette
• Viewing pipeline, down to and including the page and page window

The Presentation Space is the key to using the GPI. It is a generalization of the device
context of the GPI. There are three types of PS:
• Normal - full state preserved over time, supports segments, retained graphics, etc. and
can be associated with any device context for true WYSIWYG operation.
• Micro - state preserved, but no retained graphics. Useable with mutiple device contexts,
though.
• Micro-cached - usable with one DC only, typically screen. You must release the cached-
micro PS before returning from processing a message, as there are only sixteen of these in PM
and it uses them heavily for drawing controls

OS/2 1.x actually supports one other type of PS, which OS/2 2,x and Warp continue to
support for 16-bit applications only: the Advanced VIO (AVIO) PS. The idea is that a
character mode DOS application can quickly be ported to a VIO OS/2 application, since the
OS/2 Vio subsystem API's map from the ROM BIOS INT 10H functions. However, such an
application does not have any access to PM functionality such as resizable windows, menu
bar, dialog windows and so on. The AVIO PS provides a PS in which character cell
coordinates are used and allows the application to be ported to an intermediate stage before
complete rewriting for PM/GPI. In effect, the application runs in a resizeable window with
black characters on a white background, rather than fixed 80 x 25 white text on black
background.

GPI Primitives

Drawing into a presentation space is accomplished by calling the GPI Primitive API's. Each
primitive will perform some drawing function or store graphics elements into a segment (see
below), depending on the current drawing mode.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 194

To use the primitives, remember that GPI is a modal system. Each primitive will operate at or
from the current position, in the current width, color, etc. Use GpiMove() or
GpiSetCurrentPos() to position before starting to draw.

Primitives Quick Reference

Characters

GpiCharString()

GpiCharStringAt()

GpiCharStringPos()

GpiCharStringPosAt()

Lines

GpiLine()

GpiPolyLine()

GpiBox()

Arcs

GpiFullArc()

GpiPartialArc()

GpiPointArc()

GpiPolyFillet()

GpiPolyFilletSharp()

GpiPolySpline()

Markers

GpiMarker()

GpiPolyMarker()

Areas

GpiBeginArea()

GpiEndArea()

GpiBeginPath()

GpiEndPath()

GpiFillPath()

GpiStrokePath()

GpiOutlinePath()

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 195

GpiModifyPath()

GpiCloseFigure()

Images

GpiImage()

GpiLoadBitmap()

GpiCreateBitMap()

GpiDrawBits()

WinDrawBitmap()

GpiBitBlt()

GpiWCBitBlt()

Attributes on Primitives

There are two fundamentally different ways to modify the current attributes, thereby
affecting all subsequent drawing primitives. The first is to use a BUNDLE structure to set or
default a number of attributes simultaneously, while the second is to use specific calls to alter
attributes individually.

The various primitives are broken into five types:

• Area primitives AREABUNDLE

• Character primitives CHARBUNDLE

• Image primitives IMAGEBUNDLE

• Line primitives LINEBUNDLE

• Marker primitives MARKERBUNDLE

Each type has a corresponding bundle structure which allows a number of attributes to be set
simultaneously. For example, the line-attributes LINEBUNDLE structure looks like this:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 196

typedef struct _LINEBUNDLE {
LONG lColor; /* Line foreground color. */
LONG lBackColor; /* Line background color. */
USHORT usMixMode; /* Line foreground-mix mode. */
USHORT usBackMixMode; /* Line background-mix mode. */
FIXED fxWidth; /* Line width. */
LONG lGeomWidth; /* Geometric line width. */
USHORT usType; /* Line type. */
USHORT usEnd; /* Line end. */
USHORT usJoin; /* Line join. */
USHORT usReserved; /* Reserved. */
 } LINEBUNDLE;

typedef LINEBUNDLE *PLINEBUNDLE;

Each field specifies some attribute used in line drawing (this covers lines, arcs, splines,
ellipses, boxes and all the other shapes drawn with lines). In addition, for each field there is a
corresponding flag or mask, which is used in the GpiSetAttrs() API: one of its parameters
specifies the attributes to be changed (based on the values passed in the LINEBUNDLE), while
another specifies the attributes to be reset to the defaults. In each case, the parameter consists
of the various flags OR'ed together.

So, to set all lines drawn from this point on to be red and of default width:

LINEBUNDLE linebundle;
linebundle.lColor = CLR_RED;

GpiSetAttrs(hps, // Handle to PS
 PRIM_LINE, // type of primitive
 LBB_COLOR | LBB_WIDTH, // attrs to change
 LBB_WIDTH, // set to default
 &linebundle);

Setting Attributes Individually

Alternatively, single attributes can be changed using API's:

Lines

GpiSetLineWidth() - sets the cosmetic line width. This is the width used in 'normal'
drawing operations, and remains the same, regardless of any scaling or zooming operations.
It is expressed as a multiple of the normal device line width.

GpiSetLineWidthGeom() - sets the geometric line width, which is used in the
GpiModifyPath() and GpiStrokePath() API's when converting lines and arcs into wide
lines and arcs, which are then treated as an area. The geometric line width is specified in
world coordinates, and so it changes as a result of scaling and zooming.

GpiSetLineType() - sets the line type: default, dotted, dash-dot, double-dot and so on.

GpiSetLineEnd() - specifies how line ends will be drawn: flat, square or rounded.

GpiSetLineJoin() - sets the line-join type: bevelled, rounded or mitred.

Areas

GpiSetPatternSet() - sets the current pattern-set to be used for area fills and shading.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 197

GpiSetPattern() - sets the shading pattern to be used. The default set include various
densities of dotted grey, and horizontal, vertical and diagonal striping.

GpiSetPatternRefPoint() - sets the pattern reference point (in world coordinates) so
that if an area is transformed, the pattern will appear to move with it.

Markers

GpiSetMarkerSet() - sets the current marker set to a logical font number.

GpiSetMarker() - sets the current marker. The default set includes various crosses,
squares, diamonds and stars.

GpiSetMarkerBox() - sets the size of markers selected from an outline font.

Text

GpiSetCharSet() - sets the current font, based on a logical font number. The font must
previously have been loaded and identified using GpiCreateLogFont().

GpiSetCharMode() - specifies the character drawing mode in an attempt to optimize
character drawing.

GpiSetCharBox() - specifies the character box, in world coordinates.

GpiSetCharAngle() - specifies the angle of the text baseline, allowing a line of text to be
drawn at any angle.

GpiSetCharShear() - specifies shearing for character drawing, to give a perspective or
sheared effect to text.

GpiSetCharDirection() - specifies the direction in which characters are drawn, e.g. for
labelling vertical axes, or drawing Chinese or Arabic character sets.

Images

All IMAGEBUNDLE attributes are global

NB All 'Set' functions have 'Query' equivalents

Segments and Retained Graphics

Segments are available in normal presentation spaces only, when operating in retain or
draw-and- retain drawing mode. The beauty of retained graphics is that, rather than having
to maintain data structures in your application to represent the window contents, PM will do
it for you. To redraw the window in response to a WM_PAINT message, you only have to
issue a WinDrawChain() call (although if you are smart, you will use correlation to avoid
having to repaint the entire window contents, for performance reasons).

A graphics segment is a collection of picture elements - notice, segments in this context have
nothing to do with Intel processor memory segments. Segments are identified by number -
either assigned as symbolic constants by the programmer, or allocated from a pool in more
dynamic programs such as drawing or charting applications.

Segments are generally chained together, one after another, to form the picture chain.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 198

The real power of segments is that segments may call segments hierarchically, and the call
may specify a segment transform matrix which performs a different transform on each call.
So, for example, a CAD/CAM program might have a segment which represents the drawing
of a bracket, and in a larger image make several calls to this segment with appropriate
transforms to translate and rotate the bracket into the correct position.

Segments have many attributes: Detectability, Visibility, Chained, Highlighted, Dynamic,
some of which can be automatically propagated to their children.

The elements contained in segments are calls to graphics routines - they are stored in a
segment automatically as you make GPI API calls in either retained or draw-and-retain
drawing modes. Elements are the editable unit, and may be referenced by name or number in
insertion or replacement mode. Drawing most objects will require multiple API calls, and the
element brackets allow this to be treated as a single item.

To draw an element use element brackets:

GpiElement(hps, lType, pszDesc);
Gpixxx(. . .);
Gpiyyy(. . .);
GpiEndElement(hps);

or

GpiElement();

Elements, in turn, contain one or more graphics orders. An order is a byte sequence which
represents a drawing primitive. One-byte orders are a single byte which is an opcode, two-
byte orders comprise an opcode and value, while long orders comprise an opcode, length
byte and variable- length data. Very long orders have a sixteen-bit length field and can carry
up to 64KB of data. Read the header file PMORD.H for more details about orders and the
macros which are used to process them. The good news is that you generally don't need to
understand orders unless you are doing low-level graphics editing (very low-level, using
GpiGetData() and GpiPutData())

Presentation Page Units

Coordinates can be specified in any of several units in the various coordinate spaces

Pels

PU_PELS - Screen or window coordinates. These are device-dependent, and the aspect ratio
may vary

Metrics

PU_LOMETRIC 0.1 mm

PU_HIMETRIC 0.01 mm

PU_LOENGLISH 0.01 in

PU_HIENGLISH 0.0001 in

PU_TWIPS 1/1440 in

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 199

Guaranteed sizes for printers and plotters, but not displays

Arbitrary

PU_ARBITRARY No measurement scheme, preserves aspect ratio

Coordinate Spaces

A graphical application will utilise at least three, and possibly four, coordinate spaces in
which the final image is assembled. First, there is the world coordinate space. In this space,
segments can be constructed to represent components of the image, using whatever
coordinates are natural for the application. This is optionally transformed, by the model
transform, to the model coordinate space, which is an intermediate space in which segments
in different world coordinate spaces can be assembled. This is then transformed by the
viewing transform, to the presentation space, and this is finally passed through the default
viewing transform to the device space.

Transforms

Time to go back to school! It turns out that all the various types of transform required for a
2D graphics system - scaling, translation, reflection, shearing, rotation, etc - can all be
implemented by multiplying 3 x 3 matrices. We go into the details of this in course OS291,
but basically

Fonts

OS/2 provides support for two basic families of fonts. From the earliest, OS/2 has supported
bitmap or image fonts, in which each character is stored as an array of pixels at a predefined
resolution. The problem with such fonts is that scaling is crude: at large type sizes, the result
is characters made up of large blocks, with obvious jaggies along diagonal edges. In addition,
rotation and other effects are difficult at best.

OS/2 1.1 and 1.2 supported vector fonts, in which the font is defined by a series of points
with straight edges between them. With lots of points, curves can be simulated, and the
results aren't too bad, even when scaled up. However, OS/2 1.3 seamlessly added support
for Adobe's Postscript Type 1 font technology through an integrated rasterising engine. The
advantage of these fonts is that curved edges are describedin terms of sets of simultaneous
equations which define a Bezier spline curve, allowing for much better definition of curves at
large sizes. OS/2 Warp 4.0 (Merlin) has dropped in a rasterizing engine for TrueType fonts,
which are similar in principle. Fonts which are generated through the rasterizing engine are
known as outline fonts.

Remember that GPI units are often expressed as FIXED values, and this applies to font
measures such as height, which is measured in printer's points (units of 1/72nd inch).

The characteristics of a particular font are represented by a FATTRS structure:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 200

typedef struct _FATTRS {
 USHORT usRecordLength; /* Length of record. */
 USHORT fsSelection; /* Selection indicators. */
 LONG lMatch; /* Matched-font identity. */
 CHAR szFacename[FACESIZE]; /* Typeface name. */
 USHORT idRegistry; /* Registry identifier. */
 USHORT usCodePage; /* Code page. */
 LONG lMaxBaselineExt; /* Maximum baseline extension. */
 LONG lAveCharWidth; /* Average character width. */
 USHORT fsType; /* Type indicators. */
 USHORT fsFontUse; /* Font-use indicators. */
} FATTRS;

 typedef FATTRS *PFATTRS;

The selection indicators are primarily used with image fonts in order to simulate features
such as italic, bold, strikethrough, underscore and outlining, since those features are often
only supported on outline fonts.

The match value identifies a particular font, and is assigned to the font when it is loaded. A
negative match value indicates a device font, that is, a font which is specific to a particular
device, while positive match values indicate generic fonts which will work on any device.
The standard fonts, for example, are generic, as are any Adobe Type 1 fonts which are
installed. The match value can be supplied to the GpiCreateLogFont() API, although more
flexibility can be obtained by specifying the font name and characteristics.

The face name field is pretty self-evident, while the registry number is a unique number
managed by IBM. The code page field can be defaulted in most English-speaking countries
by setting it to zero.

The maximum baseline extent of the character is the maximum vertical height occupied by
characters in the font. It is specified in world coordinates, and must be specified when
requesting an image font with GpiCreateLogFont(). The average character width is the
average width of characters in the font, again specified in world coordinates.

The fsType field is used to specify type indicators, allowing selection of fonts which contain
kerning information for use on Postscript devices, as well as selection of double-byte
character set code pages.

Finally, fsFontUse allows the programmer to specify font-use indicators which allow the
GPI to optimise the font rasterization. FATTR_FONTUSE_OUTLINE will force use of outline
fonts only, while FATTR_FONTUSE_TRANSFORMABLE allows the font to be used with GPI
transforms, and hence scaling, rotation and other effects. This requires the current character
mode to be set to CM_MODE3. Finally FATTR_FONTUSE_NOMIX means that the font will never
be used to paint text across other graphics, only plain color, and allows the GPI to optimize
text painting.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 201

Printing Under OS/2 Presentation Manager
Presentation Manager operates quite differently from graphics drivers for operating systems
such as DOS, which treat the screen and printer as very different devices. PM is different
from earlier graphical environments in two important respects:

It handles both raster and vector devices, and

It allows for device sharing

Raster devices operate by scanning across and down the output device. Examples include
most PC graphics and text displays and dot-matrix impact and many laser printers. Vector
devices, by contrast, can create an image by drawing in any direction, including back 'up' the
page, and would include a very few storage CRT displays, plotters and Postscript printers
(conversion from vector to raster images is performed inside the printer in the last case).

PM allows for device sharing by means of overlapping windows, in the case of the screen and
through a sophisticated spooler subsystem for printers and plotters.

In the case of both screen and plotter output, text and graphics output is achieved in exactly
the same way: through the creation of graphics in a presentation space and association of that
presentation space with a device context.

A device context is the means of writing output to a device. It includes both the device driver
and the device itself (if any). There are several types of device contexts:

Screen device context (for example, used for menus, dialog windows, etc)

Memory device context (used for application-specific graphics representations)

Metafile device context (a portable graphic)

Other Device device context (used for printers, plotters etc.)

A subset of the 'Other Device' device context is the information device context, which is used
to obtain information about the device, such as supported fonts, sheet feeders and the like.

A presentation space is a virtual and abstracted device context. It is essentially a 'perfect'
graphics environment, in which the programmer can use function calls to create object-
oriented graphics of extreme precision and resolution. The associated physical device will
have to get by as best it can.

Graphic and text output is created by associating the device context with a presentation
space. Once this is done, the use of Gpi drawing functions in the presentation space will cause
output on the associated device context. In fact, four different modes of operation are
possible:

Storing of graphics in the PS with output on the DC

Storing of graphics in the PS with no output

No graphics retained in the PS, but output on the DC

No graphics retained, no output on the DC

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 202

The latter is rather like winking at pretty girls in a darkened room - you may know what
you're doing, but no-one else does and there's no end result!

With retained graphics in operation, the various Gpi function calls place graphics elements or
orders - which are a kind of threaded code making function calls on the graphics primitives -
into graphics segments. Segments may call other segments hierarchically, allowing
hierarchical picture construction and editing, in which elements are the editable unit and may
be inserted or deleted by name or number.

The GPI (Graphical Programming Interface) contains hundreds of calls for graphics and text
handling. In this article, I propose to deal with just the simple problem of printing,
particularly as it is not well dealt with elsewhere.

Printing under OS/2 is usually done through a print spooler which will support multiple
print queues and printers. The spooler subsystem actually consist of the spooler program
(PMSPOOL.EXE) which reads print jobs off its queue and hands them to the queue processor.
At this stage, a print job will be in one of two formats: PM_Q_RAW and PM_Q_STD. If the
print job is of type PM_Q_RAW, then the queue processor assumes that it is raw printer-
dependent data (e.g. contains mixed text and escape sequences, like HP PCL 5, or straight text
like Postscript) and hands it directly to the printer. However, if the print job is of type
PM_Q_STD, then the print job is actually a Presentation Manager metafile, and the queue
processor then invokes the printer driver to convert the metafile into something the printer
can understand.

Wherever possible, OS/2 programmers writing print formatting and similar utilities should
use Gpi function calls to produce output of data type PM_Q_STD, as this will work on any
printer which has an OS/2 PM printer driver, and for any supported paper size (both US and
metric). Programs which output printer-specific data (PM_Q_RAW) should be avoided as
they are non-portable.

The first task any program which will print should perform is to find out which of the
attached printers or queues the user has selected as default. This information is stored in the
OS2.INI file and can be retrieved using the WinQueryProfileString() (1.x) or
PrfQueryProfileString() (2.x) function call.

 cb = WinQueryProfileString(hab,
 "PM_SPOOLER",
 "PRINTER",
 "",
 szPrinter,
 32);
 szPrinter[cb-2] = '\0';

This will fill in the variable szPrinter with the name of the default printer, along with some
semi-colons, and returns the length of the returned string. Trim the semicolons out as shown.

Having obtained the name of the default printer, the next step is to get its details, particularly
the driver name and the logical port name, in order to be able to print to it.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 203

 cb = WinQueryProfileString(hab,
 "PM_SPOOLER_PRINTER",
 szPrinter,
 "",
 szPrnDetails,
 256);

The printer details is a long string which contains four fields separated by semicolons. For my
default printer, it looks like this:

 LPT1;PSCRIPT.Apple LaserWriter Plus;LWPLUS;;

The fields are: physical port name; printer driver and possibly other information separated by
a period; logical port name; and lastly any network information (the above example is from a
network, yet no network information was returned). There may be multiple values in a field;
if so, they will be separated by commas and the first one will be the default.

In order to extract the printer driver name and logical port, it is necessary to parse the printer
details string and extract the default values for the printer driver name (stripping out the
period and any other information) and the logical port name. This is done by the functions
ExtractDriverName() and ExtractLogAddress() in this example. Notice that these
simple versions do not check for multiple values separated by commas.

Once this information has been extracted, the program can now open a device context for the
printer. To do this, a DEVOPENSTRUC (dop) structure and handle to a device context
(hdcPrinter) are required. The structure is filled in with pointers to the strings just
extracted, as well as a pointer to a string which is either "PM_Q_STD" or "PM_Q_RAW". Of
course, this is a PM program, so we use "PM_Q_STD". We can now go ahead and create the
device context.

 ExtractLogAddress(szLogAddress,szPrnDetails);
 ExtractDriverName(szDriverName,szPrnDetails);
 dop.pszDriverName = szDriverName;
 dop.pszLogAddress = szLogAddress;
 dop.pdriv = NULL;
 dop.pszDataType = "PM_Q_STD";
 hdcPrinter = DevOpenDC(hab,
 OD_QUEUED,
 "*",
 4L,
 (PDEVOPENDATA) &dop,
 (HDC) NULL);

The second parameter specifies the type of device context; for printing, this can be
OD_QUEUED, OD_DIRECT (non-spooled - can hold up the app while printing) and
OD_INFO. This last type would be used to query the printer driver without actually printing
anything - for example, to query the page size when creating a new document.

We can now start the print job by issuing a DevEscape function call which will pass a "start
document" message to the device context. This is used to reset the printer driver and pass
data such as the document name to the spooler:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 204

 lrc = DevEscape(hdcPrinter,
 DEVESC_STARTDOC,
 9, /* Length of docname string */
 "Test Doc",
 NULL,
 NULL);

Having successfully opened the device context (indicated by a non-null hdc returned), we can
now associate a presentation space. There are several types of presentation space: micro,
cached-micro and normal - however, a cached-micro presentation space cannot be used for
printing, while a GPIT_NORMAL PS has the benefit that it can be used for screen drawing
and then re-associated with the printer device context in order to produce a printed copy of
the screen image. However, there are some complexities with this approach, in particular
avoiding the processing of WM_PAINT messages so that screen activity does not interfere
with printer output.

In this case, we'll create a new presentation space for printer output:

 sizl.cx = 0L;
 sizl.cy = 0L;

 hpsPrinter = GpiCreatePS(hab,
 hdcPrinter,
 &sizl,
 PU_LOMETRIC | GPIF_DEFAULT | GPIT_NORMAL |
GPIA_ASSOC);

Notice that one of the parameters passed to the GpiCreatePS function call is a pointer to a
SIZEL structure which we have previously initialized to zeros. By setting the sizl elements to
zero, we make GpiCreatePS return a PS which is conveniently the same size as the printer
page. What do the units in the sizl structure represent? In this case, by passing
PU_LOMETRIC, we selected units of 0.1 mm, but other values are possible:

PU_ARBITRARY Sets units to pels initially (change with
GpiSetPageViewport() later)

PU_HIENGLISH Sets units to 0.001 inch

PU_HIMETRIC Sets units to 0.01 mm

PU_LOENGLISH Sets units to 0.01 inch

PU_PELS Sets units to pels

PU_TWIPS Sets units to 1/1440 inch (one twentieth of a point)

The other options specify that the PS type is normal (as opposed to micro) and that it is to be
associated with the device context specified.

From this point on, what the program does is up to the programmer. Any of the standard
drawing functions that are discussed in texts such as Petzold will work.

When printing a multi-page document, the programmer must issue a DevEscape(hDC,
DEVESC_NEWFRAME,,,,) function call to cause "form feeds" on the device driver.

Printing large (multipage) graphics images is achieved by sliding the origin of the world
space coordinate system used in the application to match the coordinate space of the printer.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 205

The following sample program does not perform any useful task, but can quite easily be
modified into a file print formatter or other print utility. It also illustrates various useful
techniques for debugging PM programs, including the use of the __FILE__ and __LINE__
macros to display the module name and line number where an error was encountered.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 206

#define INCL_SHLERRORS
#define INCL_GPIERRORS
#define INCL_GPICONTROL
#define INCL_WIN
#define INCL_DEV

#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "prntest.h"
#include "\prog21\lab15\pmassert.h"

MRESULT EXPENTRY MainWndProc(HWND hwnd, ULONG ulMessage, MPARAM mp1,
MPARAM mp2);
BOOL ExtractLogAddress(char * LogAddress, char * DetailStr);
BOOL ExtractDriverName(char * DriverName, char * DetailStr);

#define PMERRCHECK ShowLastError(__FILE__, __LINE__)
void ShowLastError(char * file, int lineno);
void dbuginfo(PSZ info);
int prfile(HWND hwnd, char *filename);

HAB hab;
HMQ hmq;
HWND hwndFrame;
HWND hwndClient;

CHAR szClassName[] = "Main";

CHAR szMessage[] = "Test Message";

void main()
{
 QMSG qmsg;

 ULONG ctldata;

 hab = WinInitialize(0);
 hmq = WinCreateMsgQueue(hab, 0);

 if(!WinRegisterClass(hab,
 (PCH)szClassName,
 (PFNWP) MainWndProc,
 CS_SYNCPAINT | CS_SIZEREDRAW,
 sizeof(PGLOBALS))) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS,1);
 }

 ctldata = FCF_STANDARD & ~FCF_ACCELTABLE & ~FCF_ICON;

 hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
 WS_VISIBLE,
 &ctldata,
 (PCH)szClassName,
 "Test Print App",
 WS_VISIBLE,
 (HMODULE)0,
 ID_RESOURCE,
 (HWND *)&hwndClient);

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 207

 if(hwndFrame == 0) {
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 WinAlarm(HWND_DESKTOP, WA_ERROR);
 DosExit(EXIT_PROCESS, 1);
 }

 while(WinGetMsg(hab, &qmsg, 0, 0, 0))
 WinDispatchMsg(hab, &qmsg);

 WinDestroyWindow(hwndFrame);
 WinDestroyMsgQueue(hmq);
 WinTerminate(hab);
}

MRESULT EXPENTRY MainWndProc(HWND hwnd, ULONG ulMessage, MPARAM mp1,
MPARAM mp2)
{

 HPS hps;
 RECTL WinSize;
 char szPrinter[32];
 char szPrnDetails[256];
 char szDriverName[32];
 char szLogAddress[32];
 USHORT cb;
 DEVOPENSTRUC dop;
 HDC hdcPrinter;
 HPS hpsPrinter;
 LONG lrc;
 SIZEL sizl;
 POINTL pointl;
 PGLOBALS p;
 HWND hwndDlg;

 p = WinQueryWindowPtr(hwnd, 0);

 switch(ulMessage) {

 case WM_CREATE:
 p = (PGLOBALS)malloc(sizeof(GLOBALS));
 WinSetWindowPtr(hwnd, 0, p);
 return (MRESULT)FALSE;
 break;

 case WM_DESTROY:
 free(p);

 case WM_COMMAND:
 switch(SHORT1FROMMP(mp1)) {
 case IDM_OPEN:
 memset(&p->filedlg, 0, sizeof(FILEDLG));
 p->filedlg.cbSize = sizeof(FILEDLG);
 p->filedlg.fl = FDS_OPEN_DIALOG | FDS_CENTER;
 WinFileDlg(HWND_DESKTOP, hwnd, &p->filedlg);
 return (MRESULT) TRUE;
 break;

 case IDM_EXIT:
 WinPostMsg(hwnd, WM_QUIT, mp1, mp2);
 break;

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 208

 case IDM_QUERY:
 cb = PrfQueryProfileString(HINI_PROFILE,
 "PM_SPOOLER",
 "PRINTER",
 "",
 szPrinter,
 32);
 szPrinter[cb-2] = '\0';
 WinMessageBox(HWND_DESKTOP,
 hwnd,
 szPrinter,
 "Printer Name",
 ID_DBGI,
 MB_OK | MB_ICONHAND);
 break;
 case IDM_QUERYD:
 cb = PrfQueryProfileString(HINI_PROFILE,
 "PM_SPOOLER",
 "PRINTER",
 "",
 szPrinter,
 32);
 szPrinter[cb-2] = '\0';
 cb = PrfQueryProfileString(HINI_PROFILE,
 "PM_SPOOLER_PRINTER",
 szPrinter,
 "",
 szPrnDetails,
 256);
 WinMessageBox(HWND_DESKTOP,
 hwnd,
 szPrnDetails,
 "Printer Details",
 ID_DBGI,
 MB_OK | MB_ICONHAND);
 break;
 case IDM_TEST:
 cb = PrfQueryProfileString(HINI_PROFILE,
 "PM_SPOOLER",
 "PRINTER",
 "",
 szPrinter,
 32);
 szPrinter[cb-2] = '\0';
 dbuginfo(szPrinter);
 cb = PrfQueryProfileString(HINI_PROFILE,
 "PM_SPOOLER_PRINTER",
 szPrinter,
 "",
 szPrnDetails,
 256);
 if (cb == 0) PMERRCHECK;
 ExtractLogAddress(szLogAddress,szPrnDetails);
 ExtractDriverName(szDriverName,szPrnDetails);
 dop.pszDriverName = szDriverName;
 dop.pszLogAddress = szLogAddress;
 dop.pdriv = NULL;
 dop.pszDataType = "PM_Q_STD";
 hdcPrinter = DevOpenDC(hab,
 OD_QUEUED,

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 209

 "*",
 4L,
 (PDEVOPENDATA) &dop,
 (HDC) NULL);
 if(hdcPrinter == 0L) PMERRCHECK;
 lrc = DevEscape(hdcPrinter,
 DEVESC_STARTDOC,
 9,
 "Test Doc",
 NULL,
 NULL);
 if(lrc == 0L) PMERRCHECK;
 /* DevQueryCaps(hdcPrinter, CAPS_WIDTH, 2L, (PLONG)
&sizl); */
 sizl.cx = 0L;
 sizl.cy = 0L;

 hpsPrinter = GpiCreatePS(hab,
 hdcPrinter,
 &sizl,
 PU_PELS | GPIF_DEFAULT | GPIT_NORMAL |
GPIA_ASSOC);
 if(hpsPrinter == 0L) PMERRCHECK;
 GpiQueryPS(hpsPrinter, &sizl);
 pointl.x = sizl.cx / 2;
 pointl.y = sizl.cy / 2;

 GpiCharStringAt(hpsPrinter,&pointl, sizeof(szMessage),
szMessage);

 lrc = DevEscape(hdcPrinter,
 DEVESC_ENDDOC,
 0,
 NULL,
 NULL,
 NULL);

 GpiDestroyPS(hpsPrinter);
 DevCloseDC(hdcPrinter);

 break;
 }
 break;

 case WM_CLOSE:
 WinPostMsg(hwnd, WM_QUIT, 0L, 0L);
 break;

 case WM_PAINT:
 hps = WinBeginPaint(hwnd, 0, &WinSize);
 WinFillRect(hps, &WinSize, CLR_PINK);
 WinEndPaint(hps);
 break;

 case WM_ERASEBACKGROUND:
 return (MRESULT)TRUE;
 break;

 default:
 return WinDefWindowProc(hwnd, usMessage, mp1, mp2);

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 210

 break;

 }
 return 0L;
}

BOOL ExtractLogAddress(char * LogAddress, char * DetailStr)
{
 char *p;

 p = DetailStr;
 while(*p++ != ';'); /* Gets to first ';' and one char beyond
*/
 while(*p++ != ';'); /* Gets to second ';' and one char beyond */
 while(*p != ';') *LogAddress++ = *p++;
 *LogAddress = '\0';
 return TRUE;
}

BOOL ExtractDriverName(char * DriverName, char * DetailStr)
{
 char *p;

 p = DetailStr;
 while(*p++ != ';'); /* Gets to first ';' and one char beyond */
 while(*p != '.' && *p != ';' && *p != ',')
 *DriverName++ = *p++;
 *DriverName = '\0';
 return TRUE;
}

void ShowLastError(char * file, int lineno)
{
 char buffer[32], title[48], temp[10];
 ERRORID errcode;
 char *errormessage;

 errcode = WinGetLastError(hab) && 0x0000ffff;
 switch(errcode){
 case PMERR_OK:
 return;
 case PMERR_DOSOPEN_FAILURE:
 errormessage = "PM Err: Dos Open Failure";
 break;
 case PMERR_INV_DC_TYPE:
 errormessage = "PM Err: Invalid Device Context Type";
 break;
 case PMERR_INV_LENGTH_OR_COUNT:
 errormessage = "PM Err: Invalid length or count";
 break;
 case PMERR_INV_DC_DATA:
 errormessage = "PM Err: Invalid Device Context Data";
 break;
 case PMERR_INV_HDC:
 errormessage = "PM Err: Invalid Handle to Device Context";
 break;
 case PMERR_INV_HPS:
 errormessage = "PM Err: Invalid hPS";
 break;
 case PMERR_PS_BUSY:
 errormessage = "PM Err: PS Busy";

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 211

 break;
 case PMERR_INV_CHAR_SET_ATTR:
 errormessage = "PM Err: Invalid char set attribute";
 break;
 case PMERR_NOT_IN_IDX:
 errormessage = "PM Err: Not in IDX";
 break;
 default:
 sprintf(buffer,"Unknown error code: %08x",errcode);
 errormessage = buffer;
 }
 strcpy(title,"Module: ");
 strcat(title, file);
 strcat(title, ". Line ");
 _itoa(lineno, temp, 10);
 strcat(title, temp);

 WinMessageBox(HWND_DESKTOP,
 HWND_DESKTOP,
 errormessage,
 title,
 ID_DBGI,
 MB_OK | MB_ICONEXCLAMATION);
}

void dbuginfo(PSZ info)
{
 WinMessageBox(HWND_DESKTOP,
 HWND_DESKTOP,
 info,
 "Debug Info",
 ID_DBGI,
 MB_OK | MB_ICONEXCLAMATION);
}

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 212

Introduction to System Object Model

What is SOM?

The adoption of object-oriented programming techniques and languages has long held out
the hope of improved productivity through increased code reuse, coupled with greater initial
integrity and improved maintainability of code. However, these benefits have not been
realised in the majority of cases, and for many organisations there are obstacles to the
introduction of OO technology.

First is the existence of legacy code written in conventional languages such as COBOL, PL/I
and C. Rather than being a problem, this code represents an asset: the code has already been
paid for, it is working and may adequately serve the existing needs of the business. No-one
wants to scrap this code and replace it with new code, just to get the benefits of object
technology, but how can it be adapted or grafted into OO systems?

Another asset is the existing programming staff. Experience shows that attempting to retrain
programmers familiar with existing procedural languages to use OO languages is often
unsuccessful. In fact IBM Consulting studies show that there is approximately a 10% chance
of successfully retraining a COBOL programmer in C++, although the transition to Smalltalk
is more successful.

Another problem is the selection of tools. There is a wide selection of OO languages - C++,
Objective C, Object Pascal, Smalltalk, Eiffel, CLOS all come immediately to mind - so that the
first decision is ‘what language do we use?’. This leads to another problem.

The major benefit of OO technology is the ability to buy in subassemblies or ‘parts’, in the
form of class libraries or frameworks. After all, nobody builds a computer from scratch; the
assemblers purchase cases, power supplies, disk controllers and system boards from OEMs
who in turn source their processors and memory chips from semiconductor companies, who
in turn purchase silicon wafers from specialist suppliers. At each stage of the process, the
manufacturer is buying in subassemblies which provide a high level of functionality.

Yet in the software business, we have traditionally not worked this way. A corporation
requires a new personnel system, and so a senior analyst/designer sits down with a legal pad
and pencil to design the system and then programmers start coding - the whole thing being
built from scratch.

OO offers the opportunity for specialists in application domains to construct class libraries or
frameworks which implement business classes and behaviour. These frameworks can then be
sold to customers who will write client programs to suit their business needs, and in some
cases subclass the supplied classes to provide customised behaviour.

But - and here’s the rub - there are no (well, few) standards for interoperability between
classes in the OO world. The procedural languages have had this sorted out for years - I can
write a program in C which calls library functions written in Pascal, for example - but OO is
just too new. If I write a banking framework in C++, my client banks will have to use C++ for
their programs too. A bank which has committed to Smalltalk will have to look elsewhere for
a framework (or pay me huge chunks of cash to rewrite my code in Smalltalk!).

Even within a single language, trouble still exists. There is no standard for parameter passing
and virtual function tables in C++, for example, so that client programs and classes have to be
compiled with the same compiler. Even different versions of a single compiler can produce
incompatibilities unless care is taken.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 213

SOM (System Object Model) is the answer to these problems. There is an emerging standard
for interoperability between classes, or more properly between objects. The Object
Management Group, an international body seeking to standardise OO technology, has
produced a standard called CORBA (Common Object Request Broker Architecture) and SOM
is the first implementation of this technology.

SOM is ‘a new object-oriented programming technology for building, packaging, and
manipulating binary class libraries’3. How does this solve the problems described above, and
what are the benefits?

Benefits of SOM

SOM and CORBA split apart the interface of a class from its implementation. The interface
defines what members of the class are visible to the outside world - public instance data and
methods, for example - along with their calling conventions, number and types of parameters
and other information required for a client to use an object of that class.

The interface specification is written in a special language called IDL (Interface Definition
Language), which in the case of SOM is CORBA-compliant with extensions. The interface is
then compiled by the SOM Compiler, which should more properly be titled the SOM
Preprocessor, as it produces language bindings in the form of header or include files for the
target language.

The programmer then writes the code which implements the object behaviour using his
choice of language - C, C++, PL/I, whatever. This is the solution to the first
problem/opportunity mentioned above: existing code, written in procedural languages can
be turned into classes either by ‘wrapping’ the existing code in a class, or by pulling apart the
existing code and using it to implement the methods of the class.

In essence, SOM can be used to ‘front-end’ a traditional procedural programming language
and give it object-oriented features. Programmers can continue to use languages with which
they are familiar and can gradually adopt object-oriented techniques.

Because SOM is also a standard for binary interoperability of objects, it solves the other
problems mentioned above. SOM classes can be implemented in one language and used by
another. In other words, it is possible to write a SOM class in, say, C, and have it subclassed
in C++, and the resultant subclass used by a client program written in Smalltalk. Thus
developers can write class frameworks and sell them without having to worry about their
choice of language.

This is also useful to corporate development teams. Technical and systems programmers can
use SOM to implement low-level code such as client-server transport layers, while business-
oriented applications programmers can use the resultant classes from higher-level languages
like Smalltalk and visual programming environments such as IBM’s Visual Age and
Digitalk’s PARTS (Parts Assembly and Reuse Toolkit).

However, for those who have a library of C++ code, their early adoption of OO techniques is
repaid: the IBM Visual Age C++ compiler can generate SOM binaries directly from C++
classes and can even reverse-engineer IDL files from class source (.HH) files.

The language-neutrality of SOM comes about from four factors:

3 SOMObjects Developer Toolkit Users Guide, p 1-3

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 214

• SOM object methods are invoked by standard procedure calls, so that any language
which can make external calls will work with SOM.

• The SOM API consists of bindings, which are header files or include files for a
particular language, emitted by the SOM compiler. An emitter framework allows new
languages to be added fairly easily

• Different languages use different techniques for method resolution, that is, working
out which method to invoke for a particular class. SOM supports three different mechanisms
for method resolution, ranging from a static technique which is similar to C++’s virtual
function tables, to completely arbitrary techniques which can support interpreted languages
such as Smalltalk and Object REXX.

• SOM complies with CORBA standards for data types, bindings and the CORBA-
defined run-time ‘Interface Repository’.

SOM provides significant benefits during development and also later in the system lifecycle
as maintenance is performed. For example, thanks to its binary compatibility, it is possible for
the programmer to make quite significant changes to class implementation without requiring
recompilation of client programs. Generally, if the changes made to a SOM class do not
require source-code changes in the client programs, then those programs will not need to be
recompiled. Changes which can be made to classes, yet may not require recompilation
include:

• Adding new methods

• Changing the size of an object by adding or deleting instance variables

• Inserting new base classes above a class in the inheritance hierarchy

• Relocating methods upwards in the class hierarchy to a base class.

In fact, SOM makes it easy to encapsulate and deliver classes in the form of Dynamic Link
Libraries. With this technique, client programs need not even be relinked, and applications
can be designed to be extensible.

For an extreme example of this, consider the OS/2 Workplace Shell user interface. This allows
new classes to be registered and objects of those classes created by dragging from templates,
so that new functionality can be seamlessly added to the system. It is SOM that makes this
possible.

A final benefit is that SOM is also platform-neutral. IBM has implemented it on OS/2, AIX,
Win16, Win32, Macintosh, various UNIX implementations, AS/400 and MVS.

SOM Class Frameworks

Compilers for languages like C++ are generally accompanied by class libraries which
implement such generic functionality as I/O, complex number or vector classes and collection
classes. The SOMObjects Developer Toolkit also provides a number of class frameworks.

DSOM

One drawback to conventional SOM is that, like C++, objects and their clients must exist in
the same address space, as object references are passed around as pointers. For most host
operating systems, this means that the objects and their clients must be in the same process,
and this exposes the program system to bugs in classes. The larger the system, the more

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 215

objects and classes running as part of the process, and the greater the chance that a bug in one
will bring the whole process down. This could be clearly seen in the first release of the
Workplace Shell in OS/2 2.0, where poorly-tested objects would regularly cause the interface
to crash, although it would always restart itself and continue.

DSOM (Distributed SOM) solves this problem by allowing objects to exist in different address
spaces. Objects are instantiated and run on a DSOM server process, and a client program is
able to manipulate them by invoking methods on a stub called a ‘proxy object’ which appears
in the client’s address space. If either client or server crash, the other should be able to recover
and continue, and a bug in one class should not affect other classes running on other servers.

Clearly, the genuine object and the proxy communicate using some form of client-server
protocol. If this protocol could be transferred across a network, it would allow SOM to be
used as a network client-server development tool. A subsystem called the Workgroup
Enabler does exactly this: it allows objects and their client programs to communicate over
NETBIOS, SPX/IPX and TCP/IP networks (and the existence of SOM for AS/400 and MVS
suggests that SNA LU6.2 should also be supported).

Using SOM as a client-server protocol allows for interoperation of objects on a variety of
platforms. User-interface classes running on an OS/2 workstation could interact with
business classes running on an MVS mainframe. Of course, with all the debate about client-
server application partitioning, SOM provides the answer: instantiate the objects wherever it
makes sense.

The Interface Repository Framework

The Interface Repository is a primitive database which contains the interface information
from the IDL for given classes, and provides this information at run-time for highly dynamic
systems.

Replication Framework

Replicant SOM allows an object to exist in several address spaces, while actually maintaining
a single image. Changes made in one addres space propagates immediately to others.

Workplace Shell

In a sense the OS/2 Workplace Shell is simply a SOM class framework. The PMSHELL.EXE
program provides a process and context within which objects are manipulated, and each class
is implemented using SOM and its class DLL registered into the system.

OpenDoc

OpenDoc is an architecture for the creation of compound, intelligent documents.

Definition of an object: “An independent piece of software that provides a specialised
function and is designed to be assembled into specialised applications and/or compound
documents”

OpenDoc: A robust component technology for:

• Assembling specialised applications

• Creating and managing compound documents

• Automating and integrating user tasks

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 216

OpenDoc draws heavily on SOM for its underlying functionality, and this is reflected into its
robustness and utility to application developers. By contrast, Microsoft’s Object Linking and
Embedding (OLE) architecture is overly-complex, difficult to use, fragile and limited in
functionality - for example, it does not support inheritance, which is the lynchpin of OO
design. This is in part due to its genesis in Microsoft’s applications division, where it was
viewed originally as a facility to allow users to link together documents in Microsoft Office.

OLE has been referred to as “a morgue of dead objects” - a reference to the fact that in OLE,
objects are cached but only one object can be brought to life at a time. This severely limits the
utility of OLE in application development, and also limits the user interface capabilities.

How Does SOM Work?

The programmer starts by designing the class interface, i.e. the external view of the object,
and defining it using Interface Definition Language. The SOM compiler uses a variant of IDL
called ‘SOM IDL’ to distinguish it from pure CORBA IDL, and the developer can use
conditional compilation to make clear which parts of the interface definition are pure
CORBA-compliant and which are extensions.

Basically, the IDL file will contain the following components:

• Include statements for the IDL definitions of the base class(es) and metaclass of the
new class. (In SOM, unlike C++, all classes are derived).

• Type and constant declarations

• Interface declaration(s) which specify a class name, base class(es) and the new
methods, constants, type definitions and exceptions the new class supports.

The interface declarations takes the following form:

interface <classname> : <parent-class> {
 <constant-declarations>
 <type-declarations>
 <exception-declarations>
 <attribute-declarations>
 <method-declarations>
 <implementation statement>
} ;

Like C++, SOM classes can introduce new constants and types - more on this later.

Attributes are instance data members for which the SOM compiler will automatically create
two accessor methods of the form _get_<attribute-name> and _set_<attribute-
name>. So, for example, specifying

 attribute string errorMsg;

is equivalent to defining the two methods

 void _set_errorMsg(in string errorMsg);
 string _get_errorMsg();

Attributes may be readonly, in which case there will be no _set method.

Method declarations define the interface of each method introduced by a class, and their
syntax is similar to C or C++ function declarations. However, parameters must have a

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 217

directional attribute indicator (in, out, inout) which indicates whether a parameter is to
be passed from client to server (in), from server to client (out) or in both directions (inout).
For example:

 void dump();
 float distance(in float lat1, in float long1, in float lat2, in
float long2);
 void track(in location start, in location end, out float
bearing, out float distance);

A SOM IDL interface may contain an implementation statement, which specifies details
such as version numbers, inherited method overrides, resolution mechanisms and more.
Because the implementation statement is not CORBA-compliant, it should be conditionally
compiled, and so the syntax for the implementation statement looks like this:

 #ifdef __SOMIDL__
 implementation {
 <implementation-stuff>
 } ;
 #endif

Typical statements encountered in the implementation statement include modifiers such as

 filestem = stack;
 dllname = “E:\som\utils”
 majorversion = 2;
 minoversion = 1;

In this case, the filestem statement specifies the rootname of the generated bindings files,
the dllname statement specifies the name of the library which will contain the class’s
implementation and the version modifiers are used to specify the version number for
version control and compatibility checking.

Other important statements in the implementation section include qualified modifiers such
as:

• override - indicates that the method is introduced in a base class and is
redefined by this class

• nooverride - indicates that this method should not be overridden by derived
classes (the SOM compiler will generate an error if this is attempted)

• releaseorder - specifies the order in which the methods appear in SOM’s
equivalent to the C++ virtual function table. The release order should contain
every method introduced by a class, including the get and set methods for
attributes. The entries in the release order must be maintained in the same order
- new methods must be added at the end, and entries should not be deleted,
even when the corresponding method is removed. The release order is the major
mechanism by which SOM ensures binary compatibility as a class is maintained
and extended.

The implementation statement may also include passthru statements which allow statements
to be inserted into the generated bindings files. However, this facility is provided primarily
for compatibility with the older SOM version 1.0 OIDL, and new classes should limit their use
to #include directives.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 218

Comments in an IDL file can conform to the C and C++ conventions: “//” starts a line
comment while ‘/*’ and ‘*/’ delimit a block comment. However, the SOM compiler passes
comments through to the bindings files, and they must therefore be strictly associated with
particular syntactic elements to ensure correct placement in the generated files. The
following locations are legal:

• At the beginning of the IDL specification

• After a semicolon

• Before or after the opening brace of a module, interface statement,
implementation statement or structure or union definition

• After a comma that separates parameter declarations or enumeration members

• After the last parameter in a prototype (before the closing parenthesis)

• After the last enumeration name in an enumeration definition (before the closing
brace)

• After the colon following a case label of a union definition

• After the closing brace of an interface statement

SOM IDL also supports throw-away line comments, which start with “//#”, do not appear in
generated files and may be used to ‘comment out’ portions of IDL statements.

Methods or attributes within an IDL specification may be designated as private by using the
preprocessor definition __PRIVATE__, like this:

 #ifdef __PRIVATE__
 attribute int num_elements;
 #endif

The SOM Compiler will generally recognise only non-private methods and attributes when
generating the bindings file for use by client programs. In addition, a special emitter called
pdl can be used to generate a copy of a .IDL file which has private sections removed.

Listing 1 shows a simple .IDL file which illustrates some of these elements.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 219

#include <somobj.idl>
#include <somcls.idl>

interface Hello;

interface M_Hello : SOMClass
{
 Hello HelloCreate(in string message);
 // This method creates an instance of the Hello class and
 // uses the value of "message" to initialise it.

};

interface Hello : SOMObject
{
 void sayHello();

 attribute string msg;

#ifdef __SOMIDL__
 implementation {
 //# Class Modifiers
 metaclass = M_Hello; //# Identify Hello's metaclass
 };
#endif //# __SOMIDL__
};
Listing 1. A simple .IDL file.

The SOM Compiler, SC.EXE, reads the class interface definition from an .IDL file and
‘compiles’ it to produce bindings for the target language. These are:

• An implementation skeleton (classname.C or .CPP) which contains the skeleton
code for the method functions

• An implementation header file (classname.IH or .XIH) which contains macros
and definitions for use by the class implentor

• A header file for use by clients (classname.H or .XH)

The SOM Compiler can also optionally produce:

• A .DEF file which is used by the linker to package a class as a dynamic link
library

• A .PDL file which is a cleaned-up version of the .IDL file with no private items

• Entries in the Interface Repository allowing the class to be used dynamically

The programmer now edits the implementation skeleton to add in the executable code for the
various methods. The SOM compiler will have provided stub procedures for the various
methods, with the correct returned types and parameters, together with some default code
which calls debugging routines. All the programmer has to do is complete the functions.

Rerunning the SOM compiler on the same IDL file will not overwrite the programmer’s
added code. Newly added methods will cause new stub procedures to be emitted, and
changed parameters will cause revised function parameter lists to be generated, but the
programmer’s own code will be left untouched.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 220

Acccessing Internal Instance Variables

In order to access instance variables declared in the implementation section, the programmer
can use either of the following forms:

 _varName

 somThis->varName

Note that the somThis pointer must have been previously initialized using the
<className>GetData() procedure, but the SOM compiler will automatically generate this
statement for classes which introduce instance data. Note also that instance variables can be
accessed only within the implementation of the class that introduces the instance variables,
and not within subclasses or client programs (use attributes if this form of access is required).

Acccessing Parent Class Methods

The implementation header file also provides some macros for making parent method calls.
This is typically required when a class overrides a parent method: it adds some processing
either before or after the default processing provided by the parent class, and needs some
way to call the corresponding parent class method.

This is achieved using two provided macros:

 <className>_parent_<parentClassName>_<methodName>();

 <className>_parents_<methodName>();

Writing a Client Program

Programs that use a SOM class are referred to as client programs. Client programs can be
written in C, C++, Object REXX or other languages.

In C, the client program source must #include the class header file <stem>.h, while C++
programs must #include <stem>.xh. These are the usage bindings files generated by the
SOM compiler for client programs.

Because the size of SOM objects cannot be known at compile time, instances of SOM classes
must always be dynamically allocated.

An object variable can be declared like this:

 <interfaceName> obj; /* C technique */
 <interfaceName> *obj; // C++ technique

For example:

 Location destination;

To create an object of the specified class, use the <interfaceName>New macro, like this:

 destination = LocationNew();

When the object is no longer needed, it should be freed by invoking the _somFree method on
it:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 221

 _somFree(destination);

To invoke a method on an object in C, use the macro

 _<methodName>(receiver, args)

Example: Implementing a Stack Class in SOM

A stack class can be implemented in C++ as shown:

#include <iostream.h>

extern const char *msg[];

class stack {
 int *top;
 int *base;
 int size;
 void report_error(int err) { cout << msg[err]; }
public:
 stack(int insize) {base = top = new int[size=insize]; } //
Constructor
 int full() const { return top >= base+size; }
 int empty() const {return top <= base; }
 void push(int);
 int pop (void);
 unsigned short count_items(void) {return top-base; }
} ;

The equivalent IDL looks like this:

#include <somobj.idl>

This is necessary because, unlike in C++, SOM objects must always be derived from some
existing base class. In this case, we inherit directly from the SOMObject class, and must
include its IDL definition.

#include <somcls.idl>

We must include somcls.idl because we are going to implement a metaclass, and this will be
derived from SOMClass, so its definition must be #included.

interface Stack;

This is a forward reference to the interface definition for the Stack class itself; this is necessary
because one of the methods of the M_Stack metaclass is a factory method which returns a
Stack reference.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 222

interface M_Stack : SOMClass {
 Stack StackCreate(in int insize);
 // This method creates an instance of the stack class and
initialises it from insize
 #ifdef __SOMIDL__
 implementation {
 releaseorder: StackCreate;
 };
 #endif //# __SOMIDL__
} ;
interface Stack:SOMObject {
 void push(in int value);
 int pop();
#ifdef __PRIVATE__
 attribute int *base;
 attribute int *top;
 attribute int size;
#endif
 #ifdef __SOMIDL__
 implementation {
 somInit: override;
 somUninit: override;
 metaclass: M_Stack;
 releaseorder: push, pop, _get_base, _set_base, _get_top,
_set_top, _get_size, _set_size;
 };
 #endif //# __SOMIDL__
} ;

#include <somobj.idl>
#include <somcls.idl>

interface Stack;
interface M_Stack : SOMClass {
 Stack StackCreate(in int insize);
 // This method creates an instance of the stack class and
initialises it from insize
 #ifdef __SOMIDL__
 implementation {
 releaseorder: StackCreate;
 };
 #endif //# __SOMIDL__
} ;
interface Stack:SOMObject {
 void push(in int value);
 int pop();
#ifdef __PRIVATE__
 attribute int *base;
 attribute int *top;
 attribute int size;
#endif
 #ifdef __SOMIDL__
 implementation {
 somInit: override;
 somUninit: override;
 metaclass: M_Stack;
 releaseorder: push, pop, _get_base, _set_base, _get_top,
_set_top, _get_size, _set_size;
 };
 #endif //# __SOMIDL__
} ;

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 223

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 224

The Workplace Shell and System Object Model

What is the Workplace Shell?

The Workplace Shell (WPS) is a complex beast. To the end user, the WPS is OS/2 Version 2.
To a programmer, it is an environment in which programs can be tightly integrated with the
operating system to lessen the writing of code, and still present a consistent, easy to use
interface. The ability of the programmer to understand the end user is enhanced by the object
oriented foundation the WPS provides.

The WPS As a Shell

Users of PC's have different levels of understanding of the processes that a computer
performs in order to accomplish a task. The amount of understanding a user of a machine
needs is dependent on the shell that machine provides. A shell is used to hide some of the
lower level details of interacting with the operating system from the user. To operate a PC
using the DOS Command Line Interface, you need to know the commands to navigate
through the file system, manipulate files and the names of the application software you wish
to use. For a user with little knowledge of PC's, this is a daunting amount of information to
remember.

Graphical User Interfaces (GUIs) have alleviated the need for some of this knowledge by
providing an easier method of navigating the file system and accessing application software.
But most GUIs are just a combination of applications, each written to perform a specific
function. For example, File Manager, Print Manager and the Control Panel of Windows and
OS/2 1.3 are separate applications that have to be learned as any other application is learned
by the end user. Granted, they provided a consistent user interface to the end user, thus
alleviating some application learning, but they did not try to hide the inherent complexities of
the operating system from the end user. Knowledge of directories, files and programs was
still essential.

OS/2 Version 2 introduced the Workplace Shell, an Object Oriented User Interface (OOUI),
which allows the end user to work with a PC with little or no knowledge of the operating
system it is running, or the structure of the persistent storage strategy being used. Instead the
end user interacts with familiar objects such as Printers, Folders, Documents, a Shredder and
a Desktop. This allows a user who is unfamiliar with PC's to be task driven, rather than
process driven. The user no longer has to think about which applications to run and which
files to create to achieve the end result, rather objects are manipulated which are directly
related to achieving the end result.

What about experienced users of PC's? Don't tell me we spent all this time remembering DOS
commands and fast ways of doing things, to revert back to a Macintosh like interface?
Luckily, no. OS/2 Version 2 also allows a user to manipulate files, directories and
applications almost exactly the same way as they have been doing for years. You have the
flexibility of using the WPS when you like, and still have access to the operating system on a
more personal level at any time through the OS/2 Command Prompt. Most experienced users
will balk at the WPS until they spend some time with it and find out the power it can provide.
Some will often pop back to the command line interface to achieve a specific task, although
most times this is due to the organisation of the data, not the usability of the shell itself

The WPS As a Work Place

The WPS implements the desktop metaphor of the CUA 91 guidelines with a few exceptions.
The desktop provided with OS/2 Version 2's WPS is one that allows most users to

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 225

manipulate objects represented by their PC, or attached to it, with very little training and
guidance.

Many objects are provided for the user as part of the WPS, and almost all of them can be
customised to the users particular preferences. But not everything has been provided for the
user, many objects have been left to third parties to provide. For example, the Startup Folder
and STARTUP.CMD file both have similar purposes. It is possible to integrate them into the
one object and provide settings options to allow the user to specify that a program is to start
at boot time, or at WPS initialisation time.

Users of different technology will also require different objects on their desktops. If a CD-
ROM drive is connected to a machine, for example, it can be used as a storage device or an
audio play-back device. OS/2 implements the first of these two in the WPS, but not the
second. As a desktop, the WPS is really a clean slate - it provides all you need for general
work, but allows you to extend and improve your desktop to suit your work habits.

Workplace Shell Object Hierarchy

The WPS uses a hierarchy of classes to create the objects that appear on the desktop and
inside various folders. To understand and program using the WPS, you must have a basic
understanding of the hierarchy and where objects should fit into it.

The WPS provides the following classes of objects according to IBM documentation :-

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 226

SOMObject
 |
 |-WPObject
 |
 |---WPAbstract
 | |---WPClock
 | |---WPCountry
 | |---WPKeyboard
 | |---WPMouse
 | |---WPPalette
 | | |---WPColourPalette
 | | |---WPFontPalette
 | | |---WPSchemes
 | |---WPPrinter
 | |---WPProgram
 | |---WPShadow
 | |---WPShredder
 | |---WPSound
 | |---WPSpecialNeeds
 | |---WPSpooler
 | |---WPSystem
 |
 |---WPFileSystem
 | |---WPDataFile
 | | |---WPInstall
 | |---WPFolder
 | | |---WPDesktop
 | | |---WPDisk
 | | |---WPDrives
 | | |---WPStartup
 | | |---WPTemplates
 | |---WPProgramFile
 |
 |---WPTransient
 |---WPJob
 |---WPPort
 |---WPPrinterDriver
 |---WPQueueDriver

WPS Class Hierarchy from documentation

The Toolkit that IBM provides for developing WPS applications has a slightly different
hierarchy :-

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 227

SOMObject
 |
 |-WPObject
 |
 |---WPAbstract
 | |---WPClock
 | |---WPCountry
 | |---WPDisk
 | |---WPKeyboard
 | |---WPMouse
 | |---WPPalette
 | | |---WPColourPalette
 | | |---WPFontPalette
 | | |---WPSchemes
 | |---WPPrinter
 | |---WPProgram
 | |---WPShadow
 | |---WPShredder
 | |---WPSound
 | |---WPSpecialNeeds
 | |---WPSpool
 | |---WPSystem
 |
 |---WPFileSystem
 | |---WPDataFile
 | | |---WPBitmap
 | | |---WPIcon
 | | |---WPPointer
 | | |---WPProgramFile
 | | |---WPCommandFile
 | |---WPFolder
 | | |---WPDesktop
 | | |---WPDisk
 | | |---WPDrives
 | | |---WPStartup
 | | |---WPTemplates
 |
 |---WPTransient
 |---JO
 |---PDR
 |---PORT
 |---QDR

WPS Class Hierarchy from the Toolkit

Instead of going by the paper documentation, the information from the toolkit is assumed to
be more up to date and representative of the implementation of the WPS delivered with OS/2
Version 2.

All WPS Objects are derived from the WPObject class, which in turn is derived from the
SOMObject class. I will cover SOMObjects and SOM in general in the section on SOM
following.

There are three main classes of objects within the WPS. Those derived from WPAbstract,
WPFileSystem or WPTransient. These classes are called base classes and differ in the way that
they store persistent information about objects.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 228

WPAbstract

Objects derived from this class store state information in the OS2.INI file. As such, they can be
manipulated anywhere within the work place shell, but are unable to operate without a
reference to the OS2.INI file, such as when copied to a diskette and used on another machine.
These objects tend to be representations of abstract concepts, and hardware whose
information doesn't readily allow itself to be attached to a particular file.

WPFileSystem

Objects derived from this class store information in extended attributes associated with a file
physically residing on some storage media. The .CLASSINFO EA is used to hold this
information, and can be queried by any OS/2 program.

Note that the EA's are stored with the file when the High Performance File System is used,
but when FAT is used as a storage strategy, all EA's for a drive are stored in 'EA DATA. SF' or
'WPROOT. SF'. This is an important consideration when you are considering the performance
of the WPS.

Objects derived from this class may be moved from machine to machine, as long as the EA's
associated with that object are moved as well.

As you can see from the hierarchy diagram, there are currently two classes of objects derived
from WPFileSystem :- Data Files and Folders.

WPTransient

Objects of this class are created 'on the fly', and destroyed after the application or object that
creates them is finished processing. Examples of this are print jobs, which appear in the
Printer object that is usually installed on the desktop of the WPS. These print jobs are
accessible as objects, but are destroyed from the WPS Printer object once the information has
been printed. If the object or application 'containing' transient objects doesn't reinstate them
when a machine is powered down, they will be lost. Print jobs are recreated from entries in
the spool directory associated with that printer, and the driver being used to print the
information.

Implementing New WPS Objects

This subject will be covered in more detail in the section 'Creating an object - a programmers
view', but it is worth mentioning that to implement new objects, you need to understand the
WPS Hierarchy and how your new object fits into this scheme.

Creating a new base class for the WPS is not an exercise to be taken lightly, and given the
base classes provided, most new objects will naturally belong in one particular area. For
example, our Audio CD Player is probably best integrated into the WPAbstract class, as it
bears no particular physical representation to the storage used in the other base classes,
unless of course, the tracks on the CD are seen as files, in which case it may be better as a
WPFolder with special objects inside it.

The Workplace Shell and Presentation Manager

WPS applications and PM applications are really beasts of different species, although it is
possible to integrate PM applications with the WPS by providing WPS-like facilities.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 229

The WPS as a PM Program

The WPS itself is just a PM program that has been created using SOM, and as such, follows
the same drag and drop protocol as PM, uses the same types of resources, and creates the
same PM objects such as windows, bitmaps and icons.

However, the WPS and any objects it loads, currently run as a single process under OS/2
Version 2. None of the usual interprocess protection that OS/2 provides is of any use, if the
object is a single threaded process. This means that any object in the WPS can cause the entire
shell to coming to a screaming halt. This will be changed in a future release of the WPS,
although good design dictates that if features are provided for interprocess communication
and protection, and they are applicable, they should be used. This means that if a WPS object
is involved in say retrieving information from a database, it should create two separate
processes, one to act as a client on behalf of the WPS process, and the other to act as a
database server. The client process then communicates with the WPS process using any form
of interprocess communication.

A WPS object is a DLL that can contain resources and code for the WPS to invoke. The
resources are loaded as PM resources are loaded from any DLL, using DosLoadModule or
DosGetModuleHandle. Fonts, bitmaps, icons, pointers and any other form of resource can be
stored in the object's DLL and loaded at the appropriate time.

Migrating PM Programs to the Workplace Shell

Ideally, from an end user's perspective, all applications would be instantly rewritten as a
collection of objects for the WPS, tightly integrated, and easy to use. Unfortunately, this costs
time and money :- something not that many companies are willing to throw away without a
large justification. The benefits of the WPS approach have to be weighed up carefully, and a
sensible decision made.

Things you can do without totally rewriting

• Associate the application with any of the data files it uses via the Settings of the
program reference object. This means that a user can automatically invoke the
application by double-clicking on a data file, and not need to know the
applications executable name. This means that the program will have to accept a
file name as one of its arguments. Another possibility is the use of an
ASSOCTABLE statement when building the application. This is covered below.

• Replace menu bars with context menus using WinPopUpMenu. This provides a
more consistent interface with the WPS.

• Look for dialogues which you could replace with the new controls such as
Sliders, NoteBooks and container objects. These new controls tend to make the
application easier to use and seem more like a WPS object.

• Make sure the resource file for your application has an ASSOCTABLE statement
that provides the default associations, rather than the user doing it. This also will
provide the user with a template data file in the systems Templates folder (see
example below).

• Support some form of direct manipulation if possible. This can be a large amount
of work in some instances, so be careful when choosing to do this. A good
example is to allow to user to drag information to the printer, this can be
extremely useful to the end user.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 230

• Implement options that allow the user to tailor the application, as a Settings view
would. These options could be presented in a notebook control.

• If you will be letting the user create data files from templates, make sure your
application can handle empty files.

• Have an automatic procedure to create the program reference object on the
desktop, or in its own folder, alleviating the need for the user to do this. This will
be covered in the section on WPS and REXX.

Using an ASSOCTABLE Statement to Provide New File Types

ASSOCTABLE 1 PRELOAD
BEGIN
 "123 Worksheet", "*.wk*", EAF_DEFAULTOWNER, 123.ico
END

The first quoted string is the File Type that appears in the associations page of the program
reference objects settings.

The second lets you associate the application by a file mask, rather than using the templates.
This string may be empty if you don't want to do this.

The third parameter lets the system know that we want our application to be automatically
invoked when one of the aforementioned types of files is opened.

The last parameter is an icon to be used for any data files matching this description.

Considerations when moving to a WPS implementation

• Most application specific code can be reused. A WPS object still uses PM to load
resources and create windows, so try not to throw out your hard work.

• Look for opportunities to put code in a separate process, and remember the one
process nature of most WPS objects. This should lead you to some form of
interprocess communication method which should be consistently used
throughout the object's implementation.

• Take another look at the user interface. New controls may be used, and are more
easily manipulated using WPS. Similarly, look for opportunities to use direct
manipulation. Container windows, icons and folders can often replace listbox
controls and are more user friendly

• Consider what sorts of views of the data the user may want.

• Take advantage of the ability of an object to save its state, and use that
information to have the object appear as it has done previously when it is
reopened.

• Beware the Minimized Window Viewer and OS/2 Version 2's new minimisation
strategy. You may need to provide the user with a way of accessing minimised
windows or objects, as the operating system now 'hides' minimised windows
and if the window is not in the window list, where is it?

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 231

The System Object Model

SOM is a language neutral, object oriented programming interface for the implementation,
manipulation and sharing of software objects. SOM is a mouthful.

SOM was provided as a way of adding and modifying objects and interfaces to those objects
to an operating system in a wide variety of languages. Interfaces between objects provided by
the system and those supplied by others, had to be efficient and consistent, so that even if a
new version of the operating system were to be released, third party objects would still be
usable.

SOM is really an object and class definition language. As such, it is not used to define the
methods associated with classes and objects, and as such remains impartial to the language
that the object is implemented in. SOM allows the original implementer of an object, and later
users of that object to program in totally separate languages. The reasons for SOM's language
neutrality are

• Interaction with SOM is done through standard (ANSI) procedure calls.

• SOM classes support several forms of method resolution, which correspond to a
wide range of commercial object oriented programming languages.

• The SOM API can be implemented differently for different languages via SOM
bindings. This is the ability of a program to produce native code from a SOM
source file.

Method Resolution

Method resolution is the way in which the object oriented language works out which
particular piece of code should be called when the objects method is invoked. SOM supports
three ways of method resolution :-

• Offset resolution : Similar to C++ virtual functions - a part of the object's
interface.

• Name resolution: Similar to Objective C and Smalltalk in that it is dynamically
resolved.

• Dispatch Resolution: Used for distributed objects and the like. Only the receiving
object knows whether the method is valid.

Classes Supplied With SOM

SOMObject

This class defines what an 'object' is to SOM. It holds the behaviour common to all objects,
and is the class that all other classes are derived from. This class has no instance data, but
several methods to define the behaviour of objects.

SOMClass

Objects respond to instance methods which manipulate the data associated with that
particular object instance. SOM classes are real objects and as such are instances of some class.
This sort of class is called a metaclass. An object's methods are defined in its class description,
and a class's methods are defined in its metaclass description.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 232

This is the base class for all metaclasses. It defines the behaviour of all SOM Class objects.
SOMClass is both unique and confusing in that it is its own metaclass. This takes quite some
thinking to get used to. An object of class SOMClass is a class object which provides
constructor methods and informational class methods for that particular class.

SOMClassMgr

The SOMClassMgr object is the object that handles the registry and loading of classes from
DLLs for each process that uses SOM. Only one instance of this object is created per process.
SOMClassMgr is not usually used by programmers as a parent class.

How Can I Use SOM?

There are really two answers to this question :-

If you are using an OO language now

You can use SOM as a standard for importing existing classes in other languages into your
own environment, or exporting your classes for use by others. SOM makes its possible to
access classes (or subclass other classes) in other languages through the one interface, a
special interface does not have to be written for each object in each language you wish to use.
To export your own languages classes, you create corresponding SOM classes and methods,
which simply invoke your native methods. Other users of your objects only ever go through
SOM to interact with your class of objects.

If you are not using an OO language now

You can use SOM to turn your language into a fully object oriented programming language.
SOM 'bindings', which are a set of macros and/or procedure calls are used to access and
manipulate SOM objects.

What generally happens is that when an object is implemented, code for a particular language
may be generated so that language can access objects. The generation of this code (SOM
bindings), is tied to the SOM Compiler. Currently only the C programming language has a
full set of SOM bindings, but other language vendors are considering supporting SOM and
will be more inclined to do so with customer support.

The SOM Runtime Environment

What sort of overhead do you pay for using SOM?

The SOM run time environment is one DLL - SOM.DLL, which contains the three SOM
Classes, and related functions for initialising SOM and customising the SOM environment.

When SOM is initialised, it creates four objects :-

• The SOMClass class object for creating other classes

• The SOMObject class object for creating SOMObjects

• The SOMClassMgr class object for creating the SOMClassMgr object to assist in
loading and registering SOM classes

• The SOMClassMgr object

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 233

SOM is fully re-entrant and can be used from multiple threads concurrently. Suppliers of
multi-threaded programs however should ensure that they provide synchronisation for
objects shared across threads and processes using mutual exclusion semaphores or a similar
method.

The Workplace Shell & SOM

The WPS uses SOM to implement its class hierarchy as described in the previous section WPS
Hierarchy. As such, the WPS is the first SOM application sold, and can be used as a good
example of how to use SOM to implement complex concepts. To make the most of the WPS
requires careful study of the methods that are supplied with each object and careful
consideration on which you would override.

WPObject

All WPS objects are derived from the WPObject class and inherent the many methods it
defines. Among these are methods to :-

Set and query an object's title

Set and query an objects icon

Set and query the default view of an object

Save and restore state data for the object

Open and close an object

Add settings pages, pop up menus

Handle drag and drop protocols

This class defines the basic attributes of any WPS object and overriding these methods defines
the look, feel and behaviour of an object you may create.

WPS Runtime Environment

The WPS being a SOM application creates SOMClass objects for each class that is registered to
the shell, and then creates the actual object itself from the class object. This is a slight
overhead, but considering the objects provided and the integration, well worth the cost.

The WPS is made up of an executable and several DLLs. PMSHELL.EXE is the executable
program that loads the WPS, and PMWP.DLL is the DLL which holds the WPS Class
libraries.

Applications vs Objects

The Windows and OS/2 V1.x interfaces were application oriented. The user set up groups of
applications and used the GUI to launch each application. A small amount of integration was
provided using the File Manager and some drag and drop facilities. This sort of interface
required the user to learn several small but well designed applications and to tie these
together to perform tasks.

The WPS is an object oriented interface and presents the user with objects to manipulate that
are directly involved in the task the user wishes to perform. As well as supporting objects, the
WPS also allows applications to be integrated into it, and provides some basic facilities for

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 234

making applications seem more object oriented. Examples of this are the associations and
templates that can be used with straight OS/2 PM applications.

The user of a WPS developed object needs to be able to identify with the object readily, as
well as find it intuitive to work with. More than ever, the user interface is the application.
Programmers have now been given the job of Object Designers and will need to spend far
more time thinking about what a user of an object would want and expect.

Design Considerations

• What views of the object might the user want? What would be the default view?

• What settings of the object should there be?

• What would the user want to be able to do with the object?

• What options should be available to the user without opening the object?

• Where and how should context menus be provided?

• How does the object integrate with other common desktop objects?

Programming considerations

• Is this a new base class or a derived class?

• What would the parent class be?

• Which methods of the parent classes should be overridden and how?

• What new methods should be public?

• What instance data should be public?

Deciding on an application versus a fully fledged WPS Object is a design consideration and
should take into account many different views, performance, usability and maintenance
among them.

Using Objects (an end users view)

It is usually quite easy for an end user to work with the WPS after a short period of time,
although some things can be done to make life a little easier.

Creating Folders

A folder with related objects in it is often something that end users will create after quite
some time using the WPS. A work area is something that most will not even find until they
are told about it. A work area can be used to represent a task that the user performs. All the
necessary templates can be placed in the work area and associations set up for the objects that
those templates become.

Commonly Used Objects

Most commonly used objects should either be shadowed onto the desktop (in the case of data
files) or moved there from nested folders.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 235

If you do not want an end user to be able to delete a data file, only provide a shadow of the
file for them to use, not the original object.

Using Applications

Although the WPS provides an object oriented interface, not all the software an end user uses
in the day to day hustle and bustle will be WPS aware or even OS/2 software. Care should be
taken to show the user the different types of applications and how best to interact with them.

Many users are sometimes confused when they are used to pressing the right mouse button
over a window and find that no menu comes up. This inconsistency is one of the hardest to
explain, as to the end user, all objects are equal.

The Work Place Shell and REXX

REXX (Restructured Extended Executor) can be used to manipulate various objects in the
WPS and even to register and deregister objects from the system.

Registering Objects

Using the two provided functions (SysRegisterObjectClass and SysDeregisterObjectClass),
objects may be installed using a .CMD file as part of an applications installation process. This
lets the implementer of an application install the object DLL's and immediately provide them
for use.

/* */
Call RxFuncadd 'SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs'
Call SysLoadFuncs
Call SysDeregisterObjectClass "WpConfig", "OldDll"
If SysRegisterObjectClass("WPConfig", "Config") Then
 Say "Config.Sys Editor Registered"
Else
 Say "Config.Sys Editor failed to register"
Sample Code to de/register an Object Class

Creating Objects

Using REXX, you can create folders, shadows, program reference objects, and even 'run'
objects by creating them with a default open view.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 236

/* FULLFOLD.CMD */
/* Builds a folder on the DeskTop and places some program objects in
it.*/

call RxFuncAdd 'sysloadfuncs', 'rexxutil', 'sysloadfuncs'
call sysloadfuncs

call SysCls
Say '';Say 'Using REXXUTILs to Add a Folder and Program Objects...'

classname='WPFolder'
title='Test Folder'
location='<WP_DESKTOP>'
setup='OBJECTID=<TEST_FOLDER>;'
Call BldObj

Say ''
Say 'Now open the folder, currently no items are there.'
Say 'Press a key to continue...'
key=SysGetKey()

Say 'Place a program object into the folder...'
Say '';
classname='WPProgram'
title='SYSLEVEL-FULLSCR'
location='<TEST_FOLDER>'
setup='PROGTYPE=FULLSCREEN;EXENAME=\OS2\SYSLEVEL.EXE;',
 'OBJECTID=<TEST_SYSL>;'
Call BldObj

classname='WPShadow'
title='SysLevel-Shadow'
location='<TEST_FOLDER>'
setup='SHADOWID=<TEST_SYSL>;'
Call BldObj

classname='WPProgram'
title='CHKDSK-PM'
location='<TEST_FOLDER>'
setup='MINIMIZED=YES;PROGTYPE=PM;',
 'EXENAME=\OS2\PMCHKDSK.EXE;OBJECTID=<TEST_PMCK>;'
Call BldObj

classname='WPProgram'
title='SYSLEVEL-VIO'
location='<TEST_FOLDER>'
setup='PROGTYPE=WINDOWABLEVIO;',
 'EXENAME=\OS2\SYSLEVEL.EXE;OBJECTID=<TEST_SYSLVIO>;'
Call BldObj

classname='WPProgram'
title='MEM-Fullscreen'
location='<TEST_FOLDER>'
setup='PROGTYPE=VDM;EXENAME=\OS2\MDOS\MEM.EXE;',
 'PARAMETERS=/?;NOAUTOCLOSE=YES;OBJECTID=<TEST_MEMFUL>;'
Call BldObj

classname='WPProgram'
title='MEM-WindowVDM'
location='<TEST_FOLDER>'
setup='PROGTYPE=WINDOWEDVDM;EXENAME=\OS2\MDOS\MEM.EXE;',

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 237

 'PARAMETERS=/?;NOAUTOCLOSE=YES;OBJECTID=<TEST_MEMWIN>;'
Call BldObj

Say '';Say 'All done, to remove objects drag to shredder...'

Exit

/* Build Object */
BldObj:
call charout ,'Building: 'title

result = SysCreateObject(classname, title, location, setup)

If result=1 Then call charout ,'... Object created!'
Else call charout ,'... Not created! Return
code='result

Say '';
Return
Creating a folder and objects using REXX

Running WPS Objects

It is possible to create an object and get it to open immediately. This gives the effect of
'running' a WPS object from a batch file. It is useful for being able to start a Windowed VDM
for instance from a batch file, for a program that cannot be run from a DOS Command
prompt.

/* Boot a Dos image with defined sessions */
call rxfuncadd 'SysLoadFuncs', 'REXXUTIL', 'SysLoadFuncs'
call SysLoadFuncs
call SysCreateObject 'WPProgram', 'Booted DOS', '<WP_NOWHERE>',,
 'EXENAME=*;PROGTYPE=WINDOWEDVDM;STARTUPDIR=A:\;'||,
 'SET DOS_STARTUP_DRIVE=C:\WORK\DOS40.IMG'||,
 ';OPEN=DEFAULT',,
 'REPLACE'
'Running' WPS Objects

Note the use of OPEN=DEFAULT. This is the secret to getting the object to run.

The <WP_NOWHERE> which isused as the location for the object is a special location under the
WPS, it is a place where objects are destroyed once they are closed.

The DOS_STARTUP_DRIVE=C:\WORK\DOS40.IMG is a file which has been created via
VMDISK to be an image of a DOS session captured from floppy.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 238

OS/2 Warp Programming Course Lab Exercises
The Lab Exercises are supplied in the form of a floppy disk. To install them, insert the floppy
disk into drive A: on your machine, open a command prompt, then give the following
commands (user input is underlined - substitute another target drive if C: is not appropriate)

[C:\]A:
[A:\]INSTALL C:

This will create a subdirectory tree called \OS290 on the target drive. Underneath this will be
a series of subdirectories called \OS290\LAB1, \OS290\LAB2, and so on.

In these you will find the source code for the lab exercises. In most cases, I have taken a
working program and excised some of the code, replacing it with comments instructing you
to insert the appropriate code. If you find six blank lines, then I have probably removed five
lines of code - if you can get the program to operate by inserting one line, well done! - but if
you find yourself writing twenty lines of code, you're probably missing an easier way of
doing the job!

To find these missing blocks of code, open the source code file and search for the string
"*LAB*" as this is always inserted at the beginning of the comment.

Lab 9, however, has no LAB9.C file, as in this lab, the exercise is to design the program and
write it from scratch.

Also in the lab exercise subdirectories, you will find .SOL files; these are the solutions to the
labs. Try not to look at the solution until you've given the exercise your best shot! In at least
one case (Lab 9) the solution is encrypted, so you can't cheat, anyway. . .

And finally, the subdirectories also contain the .MAK files which are used on my system to
build the working programs. Since, on my system, the labs exist on the E: drive, there may
well be incorrect drive references when installed on your system. It's usually best to rebuild
the make files on your system - in fact, I want you to learn how to do this so you will know
the various compile and link options required for building DLL's, multithreaded programs,
optimisation and so on.

Lab 1. Introduction to the Programmer's Workbench and a Basic PM
program

In the subdirectory \PROG21\LAB1, you will find the source code for a simple "Hello
World!" program, HELLO.C.

1. Create a Project for this program, to generate a debuggable OS/2 Presentation Manager
program.

2. Compile the program and check that it works. View the compiler output in a window.

3. Run the IPMD debugger and single-step through the program. Observe what happens
when you reach the event loop. Set a breakpoint at the first statement of the
WM_PAINT processing and check that a valid presentation space handle is being
returned.

4. Invoke the icon editor and use it to create an icon for the program. Create a resource
compiler script consisting of the lines:

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 239

 ICON 100 PRELOAD iconfile.ico

 and include it in the file list. Rebuild the application, run it and see if your icon appears
when the program is minimised. What changes might have to be made to the source
code?

Lab 2: Menus and Messages

Add a menu to the "Hello World" program to allow the user to choose the message which is
displayed.

Try a cascading menu.

Lab 3: Business Forms

In the directory \PROG21\LAB3, you will find the files LAB3.C, LAB3.RC, LAB3.H, and
other supporting files. This is the source code for a simplfied version of a program which is
used to maintain a database of navigation aids and airports for use in flight planning.

The program makes use of a set of forms-handling functions in the subdirectory
\PROG21\FORMS, files FORMS.C and PMFORMS.C. It also uses a dynamic link library
called OPENDLG.DLL, and you should ensure that this file is in your LIBPATH somewhere.

1. Make up a project for this lab exercise.

2. Locate the missing sections in the file LAB3.C by searching for the string "*LAB*". Read
the comments and add the required code.

3. Check the operation of the push-buttons when you append to the file. Do they work
correctly?

Lab 4: Memory Management

LAB4.C provides the skeleton of a program which will ask the user his name and then echo it
back.

1. Create a project for this program and set the compile and link options.

2. Locate the missing sections of code and insert code to allocate a memory object and use
it to store the user's name.

3. Does the program work? If not, why?

4. Modify the program to use malloc() and, if time, to use the heap management
functions (DosSubSetMem(), DosSubAllocMem(), etc.).

Lab 5: Dynamic Link Libraries

The files LAB5MAIN.C and LAB5DLL.C contain a simple program consisting of two separate
modules. Read them briefly and compile and link them to check the operation of the
program. Notice that LAB5.MAK compiles and links the two files into one executable,
LAB5MAIN.EXE

1. Create projects for the targets LAB5MAIN.EXE and LAB5DLL.DLL. Edit the source
code as required. Compile and link these files and test the program.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 240

2. Create a composite project for the two targets. Can you compile them both
simultaneously? If not, which should be compiled first?

Lab 6: Threads

The file LAB6.C contains most of the code for a simple demonstration of multi-threading. It
also demonstrates some of the Vio function calls. Read the comments in the program file and
insert the missing code to turn the program into a properly multi-threading program.

Lab 7: Semaphores and Shared Memory

The subdirectory \PROG13\LAB7 contains source code for two programs, called
LAB7SEND.EXE and LAB7RCV.EXE.

1. Read the program comments and add code where appropriate to allow the two
programs to communicate through named shared memory.

2. If time, modify the programs to use giveaway shared memory.

Lab 8: File Handling

The subdirectory \OS290\LAB8 contains source code for a directory listing utility

Lab 9: Multiple windows and instance data

This is a major lab session, which can require an entire day to complete, but brings together
the concepts learned so far. It also introduces the student to PM program design.

In the subdirectory \PROG21\LAB9 you will find a program called LAB9GOAL.EXE. Run it
and review its behaviour. Now, design and write a program to duplicate its functionality. To
help you and to save time, we have supplied LAB9.RC and LAB9.H. You just have to write
LAB9.C.

Hints: review LAB2.C, but do not attempt to simply modify it to achieve the desired effects.
You will find that you will be much more productive if you start from scratch and design
your program from scratch using paper and pencil, rather than hacking at an existing design.

You may notice that the LAB9 directory contains a file called LAB9.SOL and think that all
your troubles are at an end. However, you will find that LAB9.SOL has been encrypted and
you will receive the password late in the lab exercise, to assist those who are irretrievably
stuck. Warning! Do not attempt to decrypt LAB9.SOL - this will probably double-encrypt it,
and you will never be able to decrypt it again!

Things to think about:

How many windows are there (not counting controls, menu, etc.)?

Which window owns the menu?

Which window should really get the WM_COMMAND messages from the
menu?

How much should one window know about another window's business?

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 241

Where should you put the code for creation of the child windows? In the main()
function? Where else?

How big is the main window when the children are being sized and positioned
relative to it?

Do you want the children resized every time the parent is resized?

Should HAB hab be declared static and global? What if you put the code for the
child windows in a DLL to encapsulate it?

Useful Functions - in alphabetical order

These are not the only functions you can use to solve this problem, not need you use all of
them!

WinAlarm()
WinBeginPaint()
WinCreateMsgQueue()
WinCreateStdWindow()
WinDefWindowProc()
WinDestroyMsgQueue()
WinDestroyWindow()
WinDispatchMsg()
WinDrawText()
WinEndPaint()
WinGetMsg()
WinInitialize()

WinInvalidateRect()
WinLoadString()
WinPostMsg
WinQueryActiveWindow()
WinQueryAnchorBlock()
WinQueryWindowPtr()
WinQueryWindowRect()
WinRegisterClass()
WinSendMsg()
WinSetWindowPos()
WinSetWindowPtr()
WinTerminate()

Useful Messages - in alphabetical order

UM_INITSIZE
WM_ACTIVATE
WM_CLOSE
WM_COMMAND
WM_CREATE

WM_DESTROY
WM_ERASEBACKGROUND
WM_PAINT
WM_QUIT

Lab 10: Dialog windows

The file LAB10.C contains a more sophisticated version of the Navaid Maintenance program
examined in Lab 3. Add a dialog window which will allow the user to search for a location
either by its full name or its abbreviation. Functions which will search the file are provided
for you.

Lab 11: File and Font Dialogs

Examine the file \PROG21\LAB11\LAB11.C and determine its operation. Locate the *LAB*
comments and insert the correct code to display the standard file and font selection dialogs.

Lab 12: GPI Functions

Run the program \PROG21\LAB12\LAB12.EXE to see what it does. Examine the source file
\PROG21\LAB12\LAB12.C, analyse its operation and insert the missing code to complete
the application.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 242

Lab 13: Fonts

The subdirectory \PROG21\LAB13 contains another version of the simple editor used in
earlier labs. Edit the file LAB13.C and locate the *LAB* comments. Insert the code required to
complete the application.

Lab 14: SOM

The subdirectory \PROG21\LAB14 contains SOM code for the implementation of a stack
class. The implementation is incomplete - you will have to write the method stubs.

Lab 15: Free Time Lab Exercises

The subdirectory \PROG21\LAB15 contains miscellaneous sample programs and additional
exercises:

SUBCLASS.C Example of subclassing the listbox to add support for menu choices

OWS.C & OBJECT.C Example of an object window being used to implement a time delay
without interfering with the PM synchronous message queue operation.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 243

Common OS/2 & PM Programming Errors
1. Remember that OS/2 Dosxx API's use parameters as both inputs to the function (call by
value) and outputs from the function (call by reference). Should you be passing a handle, or
the address of a handle? A PVOID or a PPVOID?

2. Remember to initialise arguments to functions, even when they are being used as outputs
(example: DosOpenEventSem()).

3. Remember to initialise structures, most commonly using the memset() function.
Remember also to initialise any '.cb' structure element.

4. Remember that C uses '=' for assignment, but '==' for comparison, but often either is
syntactically acceptable and so the compiler can't flag the error. It's sometimes worth taking a
couple of minutes before compiling to use your editor to search for '=' and checking that that's
really what you meant. Another way of avoiding the problem is to place a non-lvalue on the
left of the '==', as in

 while(TRUE == more) {
 . . .
 }

If you should omit one of the equals signs, the compiler will now complain that an lvalue is
required to the left of an equals.

5. (For OS/2 1.x code) Remember that when an application is compiled in small model, the C
library functions will expect to be passed _near pointers. Data stored in segments allocated
with DosAllocSeg() and DLL data segments can only be referenced with _far pointers, and
these will cause errors and exceptions when passed to the functions which expect _near
pointers.

Investigate the special 'far argument' library functions such as _fstrcpy(), _fstrcat(), etc.

Avoid C library functions - use the base OS functions instead, which are always _far.

If in absolute despair - as a last resort - compile in large model. Or better still, port to OS/2
2.X.

6. If WinCreateStdWindow() returns a zero hwndFrame, indicating failure to create the
window, check for the following errors:

a) Are your frame creation flags set correctly, or are you calling for creation of a non-
existent resource, such as an ACCELTABLE?

b) Have you provided the correct resource ID.

c) Is the WM_CREATE processing returning (MRESULT) 0?

d) Did you remember to resource compile the resources onto the .EXE or .DLL?

7. Remember that Presentation Manager programs do not execute from top to bottom.
Instead, they are event driven. Do not assume that because you have assigned a value to a
variable higher up the page, that that code has actually executed. In PM, a common mistake
made by beginning programmers is to assume that hwndFrame was set by the
WinCreate(Std)Window() API call, and to then use it in WM_CREATE processing. But, of

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 244

course, when WM_CREATE is being processed, WinCreate(Std)Window() has not yet
returned and hwndFrame has not been assigned a value! Instead, use the
WinQueryWindow() and WinWindowFromID() API's to work out window handles at run
time. This also increases modularity and increases the probability of your being able to reuse
window procedures.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 245

Key Concepts
1. A window is an object. The window procedure provides the class methods for the window
class, and the window words provide storage for instance data behind the window. The
window is the fundamental unit of application design.

2. Do not attempt to use functional decomposition. Instead, use decomposition into windows,
each of which implements a part of the user interface.

3. Windows do not have to have on-screen appearance. A window is often a useful way of
implementing user interface logic by coordinating its child windows. Dialog windows are the
most obvious example of this, but application clients can also function this way.

4. Use threads. The primary thread of your application can perform user interface logic, while
secondary threads are used for application business logic, slow window repainting, and
keeping the system responsive. Do not be afraid of threads.

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 246

Tests

Intel Processor Architectures

1. The 80286 processor is a 32-bit processor.

 a) True

 b) False

2. The 80386 processor can only support 64 KB segments.

 a) True

 b) False

3. The maximum address space of a 32-bit OS/2 application is:

 a) 640 KBytes

 b) 16 MBytes

 c) 512 Mbytes

 d) 4 GBytes

4. The 386 processor swaps pages which are:

 a) 512 Bytes

 b) 4 KBytes

 c) 64 Kbytes

 d) 16 MBytes

5. 32-bit code is faster than 16-bit code.

 a) True

 b) False

 c) It depends

 d) I’ll take two

6. 32-bit OS/2 applications are written in Small model.

 a) True

 b) False

7. The Pentium’s AX register is 32 bits in size.

 a) True

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 247

 b) False

8. The Pentium’s CS register is 16 bits in size.

 a) True

 b) False

9. The feature which allows OS/2 Warp to multitask DOS and Windows applications is
called:

 a) The DOS Compatibility Box

 b) 8086 Virtual Machine Mode

 c) Windows 95

 d) 386 Enhanced Mode

10. OS/2 applications run in

 a) Ring zero

 b) Ring one

 c) Ring two

 d) Ring three

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 248

Introduction to Presentation Manager Programming

1. The library of graphical user interface functions in OS/2 is called

 a) The Workplace Shell

 b) Presentation Manager

 c) The Graphical Programming Interface

 d) Windows

2. Presentation Manager programs get their input by

 a) Calling gets(), scanf() and other C functions

 b) Calling the WinGetInput() function

 c) Reading messages from an input queue

 d) Using INT 33H for mouse input and INT 16H for keyboard

3. Presentation Manager create a message queue

 a) For each window of your application

 b) For each application

 c) For the entire system

 d) For each message

4. A window is

 a) A data structure inside PM

 b) A rectangular area on the screen

 c) A box on the screen with titlebar, menu, size border, system menu and
scrollbars

 d) A data structure inside PM, plus an associated window procedure

 e) An object

5. A queue message is

 a) A 32-bit symbol

 b) A target window handle and message symbol

 c) A target window handle, message and two mparams

 d) A window handle, message, two mparams, timestamp and mouse position

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 249

6. The WinInitialize() API returns:

 a) A handle to an anchor block

 b) A handle to a presentation space

 c) A handle to a device context

 d) A handle to a window

7. A Presentation Manager application is a single window.

 a) True

 b) False

8. The FCF_STANDARD constant for frame creation flags includes

 a) FCF_ICON, FCF_VERTSCROLL and FCF_TASKLIST

 b) FCF_ICON, FCF_ACCELTABLE and FCF_TASKLIST

 c) FCF_VERTSCROLL, FCF_TASKLIST and FCF_ACCELTABLE

 d) FCF_SIZEBORDER, FCF_SHELLPOSITION and FCF_HORZSCROLL

9. The WinCreateStdWindow() API

 a) Creates a frame window

 b) Creates a client window

 c) Creates a desktop window

 d) a) and b)

 e) a) and c)

10. The returned type of a window procedure is

 a) EXPENTRY

 b) ULONG

 c) MRESULT

 d) int

11. The WM_CLOSE message

 a) closes the target window

 b) shuts down the system

 c) tells you the user wants to close the window

 d) tells you the user wants to quit the application

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 250

12. An MPARAM is

 a) A message parameter which can be interpreted different ways for different
messages

 b) A 16-bit pointer to void

 c) A 32-bit window handle

 d) A 32-bit queue handle

13. A resource is

 a) A help file or on-line documentation

 b) A window

 c) A dynamic link library

 d) A binary icon, bitmap, menu string, acceltable or dialog

14. You can force your window to repaint by posting it a WM_PAINT message.

 a) True

 b) False

15. The WinBeginPaint() API returns:

 a) an error code

 b) a window handle

 c) a presentation space handle

 d) a device context handle

16. The event loop of a PM program consists of the following statements:

 a) while WinGetMsg() WinDispatchMsg()

 b) while WinPeekMsg() WinDispatchMsg()

 c) while WinGetMsg() WinSendMsg()

 d) if WinGetMsg() WinSendMsg()

17. If you choose not to process a particular message, you should

 a) return TRUE

 b) return FALSE

 c) return WinDefWindowProc()

 d) break

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 251

18. The WM_CREATE message is sent to your window

 a) after it has been created

 b) before it is created

 c) as it is being created

 d) after it has been made visible

19. To destroy a window, you should

 a) Send it a WM_DESTROY message

 b) Post it a WM_DESTROY message

 c) Post it a WM_QUIT message

 d) Call WinDestroyWindow()

20. Every frame window on your screen has a separate window procedure

 a) True

 b) False

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 252

Basic Window Concepts and Details

1. The function that creates a pushbutton is:

 a) WinCreatePushButton()

 b) WinCreateButton() with style BS_PUSHBUTTON

 c) WinCreateWindow() with class WC_BUTTON

 d) HWND hwndButton = new button;

2. Inside a window procedure, the variable hwnd by convention refers to:

 a) The client window

 b) The frame window

 c) This window

 d) The system window

3. A window handle is a constant, #defined by the programmer in a header file.

 a) True

 b) False

4. A window ID is

 a) A constant, #defined by the programmer in a header file

 b) A 32-bit variable, usually a ULONG

 c) Returned by the WinCreateWindow() API

 d) What Bill Gates carries to prove he’s over 21.

5. Given a window handle and the ID of one of its children, I can find the child’s handle
using:

 a) WinQueryWindow()

 b) WinWindowFromID()

 c) WinQueryWindowPtr()

 d) WinQueryWindowUShort()

6. When a window is created, its size is by default:

 a) the same as the desktop

 b) half the desktop height and width

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 253

 c) zero, zero

 d) 640 x 480

7. Mouse and keyboard input is initially fed to:

 a) The application message queue

 b) The system message queue

 c) The PM dispatcher

 d) The application window procedure

8. To get the first short out of the first MPARAM in a message, the macro would be

 a) MRFROM2SHORT(s1, s2)

 b) SHORT1FROMMP(mp2)

 c) PVOIDFROMMP(mp1)

 d) SHORT1FROMMP(mp1)

9. The WM_COMMAND message specifies the ID of the menuitem chosen in:

 a) SHORT1FROMMP(mp1)

 b) SHORT2FROMMP(mp1)

 c) SHORT1FROMMP(mp2)

 d) SHORT2FROMMP(mp2)

10. The WM_CONTROL message specifies the ID of the control which generated it in:

 a) SHORT1FROMMP(mp1)

 b) SHORT2FROMMP(mp1)

 c) SHORT1FROMMP(mp2)

 d) SHORT2FROMMP(mp2)

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 254

Menus

1. The message sent by a menu when a user chooses a menuitem is:

 a) WM_CONTROL

 b) WM_INITMENU

 c) WM_DISMISSMENU

 d) WM_COMMAND

2. The WM_COMMAND message mp1 parameter contains:

 a) A pointer to the menu text string

 b) The menuitem index

 c) The menuitem ID

 d) The menuitem window handle

3. The tool which compiles menus is called:

 a) The Resource Compiler

 b) The Menu Compiler

 c) The Chef

 d) The C Compiler

4. When the user selects a submenu, it will send a WM_COMMAND message with mp1
set to its ID.

 a) True

 b) False

5. Menu item attributes can include:

 a) Checked, disabled, highlighted

 b) Checked, bitmap, highlighted

 c) Checked, disabled, ownerdraw

 d) Disabled, ownerdraw, highlighted

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 255

Window Words

1. Because window procedures are called repeatedly, they should use static variables to
preserve settings.

 a) True

 b) False

2. The WinRegisterClass() API allows you to specify:

 a) The address of a structure which will contain instance data

 b) A pointer to a function which will set and query instance data

 c) A number of bytes to be reserved for instance data

 d) A number of bytes to be reserved for a pointer to instance data

 e) a and b

 f) c and d

3. The best place to call malloc() in order to reserve memory for instance data is

 a) The WM_CREATE message processing

 b) Before calling WinCreate(Std)Window()

 c) In the WM_ALLOCMEM message processing

 d) After calling DosAllocMem() to obtain a heap object

4. After obtaining a pointer to an instance data structure by calling malloc(), it should be
stored in the window words by calling

 a) WinSetWindowULong(hwnd, 0, p);

 b) WinSetWindowWord(hwnd, 0, p);

 c) WinSetWindowPtr(hwnd, 0, p);

 d) WinSetInstanceDataPtr(hwnd, 0, p);

5. Whenever the winproc is called, the pointer to instance data must be reset:

 a) Never; it’s already set to the correct value.

 b) At the top of the winproc before any messages are processed.

 c) At the top of each message stub that accesses the instance data

 d) Either b or c

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 256

OS/2 Control Program API

1. All the OS/2 Control Program API names start with Os2.

 a) True

 b) False

2. Which calling convention is used by the OS/2 Warp Control Program API’s?

 a) C

 b) Pascal

 c) _System

 d) FORTRAN

3. The DosOpen() API returns a file, pipe, or device handle.

 a) True

 b) False

4. The first parameter passed to the DosCreateEventSem() API is:

 a) The address of a HEV

 b) A PPHEV

 c) An error indicator

 d) A HEV

5. The Visual Age C++ compiler can be used to create Family API programs.

 a) True

 b) False

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 257

Dynamic Link Libraries

1. A dynamic link library runs in a separate process from its clients.

 a) True

 b) False

2. A single-threaded dynamic link library is compiled using which option?

 a) /Gt+

 b) /Ge+

 c) /Gt-

 d) /Ge-

3. What .DEF file statement tells the linker to generate a .DLL file?

 a) EXPORTS

 b) SEGMENT

 c) LIBRARY

 d) NAME

4. What .DEF file statement tells the linker to generate a .EXE file?

 a) EXPORTS

 b) SEGMENT

 c) LIBRARY

 d) NAME

5. The only entry point into a PM program’s .EXE file is the main() function.

 a) True

 b) False

6. A single-threaded client program which uses a .DLL is compiled using which
option?

 a) /Gt+

 b) /Ge+

 c) /Gt-

 d) /Ge-

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 258

7. Which option does NOT mark a function as exported froma DLL?

 a) #pragma(linkage, external) in the C source.

 b) #pragma(export) in the C source

 c) _Export declarator on the function definition in the C source

 d) EXPORTS functionname in the .DEF file file

8. Dynamic link library files should be placed:

 a) In the same directory as the calling .EXE

 b) In a directory that is somewhere on the PATH

 c) In a directory that is somewhere on the LIBPATH

 d) In the \OS2\DLL directory

9. An “Unresolved external reference” message when linking a program indicates:

 a) You need to specify the DLL’s .DEF file on the command line to link the
program

 b) You forgot to specify EXPENTRY on the client window procedure

 c) You forgot to link with the DLL’s import library

 d) There is no IMPORTS section in the DLL’s .DEF file

10. It is possible to create a .DLL that contains no code and no data.

 a) True

 b) False

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 259

Processes and Threads

1. The API that starts a child process is:

 a) exec()

 b) DosExecPgm()

 c) DosCreateThread()

 d) _beginprocess()

2. The highest priority thread class is:

 a) Urgent class

 b) Time-critical class

 c) Top-priority class

 d) Mission-critical class

3. Which of the following can DosSetPriority() NOT vary?

 a) Priority of all threads in a child process

 b) Priority of one thread in a child process

 c) Priority of all threads in the current process

 d) Priority of one thread in the current process

4. Which of the following resources can a thread own?

 a) Pipes

 b) Files

 c) Queues

 d) None of the above

5. The minimum and maximum priorities in a priority class are:

 a) -31 to +31

 b) -15 to + 16

 c) 0 to 31

 d) 1 to 32

6. To which class does the system apply dynamic priority variation?

 a) Time-critical class

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 260

 b) Urgent class

 c) Idle-time class

 d) Regular class

7. For how long can a winproc tie up a thread before being considered ill-behaved?

 a) One fiftieth of a second

 b) One tenth of a second

 c) One second

 d) Five seconds

8. Which of the following API’s can a non-message-queue thread NOT call?

 a) WinBeginPaint()

 b) WinSendMsg()

 c) GpiDrawText()

 d) WinPostMsg()

9. You are writing a text-mode application. Which API do you use to kick off threads?

 a) DosStartThread()

 b) DosCreateThread()

 c) _beginthread()

 d) _startthread()

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 261

Interprocess Communications

1. Name three types of OS/2 2.x semaphore:

 a) RAM, safe and fast-safe

 b) Event, mutex and muxwait

 c) Global, private and protected

 d) Synchronous, asynchronous and fast-safe

2. Which of the following is correct?

 a) Named shared memory can extend across a network

 b) Named pipes can extend across a network

 c) Named shared memory can link OS/2 and DOS applications

 d) A named pipe can link two DOS applications

3. Which option does NOT apply to semaphores:

 a) Named or unnamed

 b) Protected or unprotected

 c) Private or system

 d) None of the above

4. Which of the following statements is NOT true?

 a) Queues can be read in FIFO sequence

 b) Queue elements can be up to 64 KBytes in size

 c) Queues can be read in LIFO sequence

 d) Only the creator of a queue can read it

5. Which modes does a named pipe support?

 a) Byte mode and message mode

 b) Text mode and packet mode

 c) Asynchronous mode and synchronous mode

 d) Protected mode and real mode

6. Which API is used to pass PM messages to another process?

 a) WinSendMsg()

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 262

 b) WinPostMsg()

 c) WinDispatchMsg()

 d) WinPeekMsg()

7. User-defined messages must be greater than or equal to:

 a) 8192

 b) UM_FIRST

 c) WM_USER

 d) 65536

8. In order to protect access to a presentation space, you would use a:

 a) Mutex semaphore

 b) Event semaphore

 c) WinSetSem() API call

 d) Object window

9. How can you stop your character/kernel application from being nuked by the user
pressing Ctrl-Break?

 a) Subclass the frame window and intercept WM_CHAR messages

 b) Install a device monitor on the keyboard and filter out Ctrl-Break

 c) Call WinCancelShutdown() before creating your message queue

 d) Register an exception handler for the XCPT_SIGNAL_KILLPROC exception

10. How many named pipes can have the same name in a pool?

 a) 4

 b) 8

 c) 16

 d) 32

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 263

Dialog Windows

1. Which API displays an application-modal dialog window from application
resources?

 a) WinLoadDlg()

 b) WinCreateDlg()

 c) WinDlgBox()

 d) WinDisplayDlg()

2. Which API displays a modeless dialog window from application resources?

 a) WinLoadDlg()

 b) WinCreateDlg()

 c) WinDlgBox()

 d) WinDisplayDlg()

3. Which API makes a modeless dialog modal?

 a) WinProcessDlg()

 b) WinSetDlgModal()

 c) WinDlgModal(hwndDlg, TRUE)

 d) WinDlgModal(hwndDlg, FALSE)

4. What is the default message processing in a dialog window procedure?

 a) return WinDefWindowProc(hwnd, msg, mp1, mp2);

 b) return (MRESULT) FALSE;

 c) return WinDefDlgProc(hwnd, msg, mp1, mp2);

 d) return WinDismissDlg(hwnd, DID_OK);

5. Which message allows you to initialize the control windows on your dialog?

 a) WM_SETCONTROLS

 b) WM_CREATE

 c) WM_SIZE

 d) WM_INITDLG

6. In a .RC file, a dialog window is created by which statement?

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 264

 a) WINDOW

 b) DIALOG

 c) CONTROL

 d) DLGTEMPLATE

7. Which resource compiler statement allows you to set the load options for a dialog?

 a) WINDOW

 b) DIALOG

 c) CONTROL

 d) DLGTEMPLATE

8. Which window is usually the parent of a dialog window?

 a) The application client window

 b) The application frame window

 c) The desktop

 d) FID_DIALOG

9. Which API runs the font selection dialog?

 a) GpiQueryFonts()

 b) WinQueryFonts()

 c) WinFileDlg()

 d) WinFontDlg()

10. Which combination of flags is invalid for a file save dialog?

 a) FDS_CENTER | FDS_SAVEAS_DIALOG

 b) FDS_HELPBUTTON | FDS_SAVEAS_DIALOG

 c) FDS_SAVEAS_DIALOG | FDS_MULTIPLESEL

 d) FDS_CUSTOM | FDS_MULTIPLESEL

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 265

Index
_
_beginthread(), 135, 136, 155
_dump_allocated(), 124
_far, 119
_heap_check(), 124
_loadds, 116
_Pascal calling convention, 108
_system, 32
_System calling convention, 108

<
<className>GetData(), 212

0
0\:32 model, 25

3
3270 Graphics Control Program, 184

8
80386, 24
8080, 21
8086 Virtual Machine Mode, 24

A
accelerator table, 30
Access Modes, 150
Access Rights, 23
accessor methods, 208
Advanced VIO, 185
allocation, 121
ALP, 12
anchor block, 29
Anonymous pipes, 138
APIRET, 106
application menu, 28
application window, 28
AREABUNDLE, 187
assembler, 12
Assembly Language Processor, 12
ASSOCTABLE, 221
asynchronous window, 154
Attributes, 208

B
B+ trees, 112
base operating system, 26
bindings, 206
border, 28
Build Smarts, 16
Bus Interface Unit, 21

C
C run-time library, 12
C++, 11
C++, 112
calloc(), 119
CDFS, 146

Ch
CHARBUNDLE, 187
CHARMSG(&msg) macro, 46
child windows, 54

C
class, 30, 112
client window, 28
client-server, 138
Clipping, 64
Comments, 210
commitment, 121
Compile Options, 16
compiler options, 16, 17
Concurrent CP/M, 133
control windows, 77
Controller, 152
cooperative multitasking, 125
CP/M, 128
creation structure, 41
critical section, 156
CS_SYNCPAINT, 154

D
Data Access Builder, 20
data hiding, 112
DB2/2, 16, 20
debugging, 197
DEF file, 113
default data segment, 119
DeScribe, 181
Desktop Folder, 63
desktop window, 63
desktop window, 28
Developer Connection, 12
Developers Connection, 20
DevEscape, 195
DevEscape(), 185, 196
device context, 193, 195
Device Context, 32, 184
DevOpenDC(), 185
DEVOPENSTRUC, 195
Dialog Editor, 20, 49, 180
dialog window, 28
Dialog windows, 179

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 266

DID_CANCEL, 179
DID_OK, 179, 180
directory index, 25
Dispatch Resolution, 223
Distributed SOM, 207
dllname, 209
DosAllocMem(), 106, 121, 123
DosAllocSeg(), 119
DosAllocSharedMem(), 141, 142
DosBeep(), 109
DosBeginThread(), 128
DosBufReset, 149
DosCallNPipe(), 141
DosChgFilePtr, 149
DosCloseQueue(), 142
DosConnectNPipe(), 141
DosCreateNPipe(), 141
DosCreatePipe(), 138
DosCreateQueue, 158
DosCreateQueue(), 142, 156
DosCreateThread, 158
DosCreateThread(), 134, 135, 136, 155,
168
DosDisConnectNPipe(), 141
DosDupHandle, 150
DosDupHandle(), 138
DosEnterCritSec, 115
DosEnterCritSec(), 143, 156
DosExecPgm(), 126, 128, 138
DosExitCritSec, 115
DosExitCritSec(), 143, 156
DosExitList, 116
DosFileLock, 151
DosFreeMem(), 122
DosFreeModule, 113
DosGetModuleHandle, 221
DosGetNamedSharedMem(), 142
DosGetSharedMem(), 142
DosKillThread(), 155, 156
DosLoadModule, 113
DosLoadModule, 221
DosOpen, 146
DosOpen(), 39, 109, 129, 138
DosOpen2, 146
DosOpenQueue(), 142
DosPeekNPipe(), 141
DosPeekQueue(), 142
DosPostEventSem(), 144
DosPurgeQueue(), 142
DosQAppType, 151
DosQFHandState, 150
DosQFileInfo, 151
DosQFileMode, 151
DosQueryFHState(), 138, 139
DosQueryMem(), 122

DosQueryModuleHandle, 113
DosQueryNPHState(), 141
DosQueryNPipeInfo(), 141
DosQueryNPipeSemState(), 141
DosQueryProcAddr, 113
DosQueryQueue(), 142
DosQuerySysInfo(), 120
DosRead, 149
DosRead(), 136, 140
DosReadQueue, 161
DosReadQueue(), 142, 156
DosReleaseMutexSem(), 145
DosRequestMutexSem(), 145
DosSetFHandState, 150
DosSetFHState(), 138
DosSetMaxFH, 150
DosSetMem(), 122
DosSetNPHState(), 141
DosSetNPipeSem(), 141
DosSetPriority, 161
DosSetPriority(), 136
DosStartSession(), 125, 126
DosTransactNPipe(), 141
DosWaitEventSem(), 155
DosWaitNPipe(), 141
DosWaitThread, 159
DosWrite, 149
DosWrite(), 136
DosWriteQueue, 159, 160
DosWriteQueue(), 142
double-byte character sets, 49
DSOM, 207
dynamic link librar, 126
dynamic link libraries, 13
Dynamic Link Libraries, 12
Dynamic Link Library, 111
dynamic linking, 106

E
emitter framework, 206
EN_CHANGE, 81
EN_SETFOCUS, 81
entry fields, 28
entryfield, 177
EPM, 18
error code, 106
ES_UNREADABLE, 177
event loop, 32
event semaphore, 169
Event semaphores, 144
exec(), 126
Execution Unit, 21
EXPORTS, 114

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 267

F
Family API, 109
FAT, 146
FATTRS, 191
file handle, 146
File Locking, 150
file systems, 146
file types, 146
FILEDLG, 182
filestem, 209
Fixed-High Priority Class, 132
Font Editor, 20
fork(), 126
form, 77
Frame Creation Flags, 50
frame window, 28, 64
free(), 119
freopen, 158

G
GDDM, 184
GKS, 184
global data segment, 115
global variables, 40
GPI, 26, 184
GPI, 194
GpiBeginArea(), 186
GpiBeginPath(), 186
GpiBitBlt(), 187
GpiBox(), 186
GpiCharString(), 186
GpiCharStringAt(), 186
GpiCharStringPos(), 186
GpiCharStringPosAt(), 186
GpiCloseFigure(), 187
GpiCreateBitMap(), 187
GpiCreateLogFont(), 189, 192
GpiCreatePS, 196
GpiDrawBits(), 187
GpiEndArea(), 186
GpiEndPath(), 186
GpiFillPath(), 186
GpiFullArc(), 186
GpiGetData(), 190
GpiImage(), 187
GpiLine, 162
GpiLine(), 186
GpiLoadBitmap(), 187
GpiMarker(), 186
GpiModifyPath(), 187, 188
GpiMove(), 186
GpiOutlinePath(), 186
GpiPartialArc(), 186
GpiPointArc(), 186
GpiPolyFillet(), 186

GpiPolyFilletSharp(), 186
GpiPolyLine(), 186
GpiPolyMarker(), 186
GpiPolySpline(), 186
GpiPutData(), 190
GpiSetAttrs(), 188
GpiSetCharAngle(), 189
GpiSetCharBox(), 189
GpiSetCharDirection(), 189
GpiSetCharMode(), 189
GpiSetCharSet(), 189
GpiSetCharShear(), 189
GpiSetLineEnd(), 188
GpiSetLineJoin(), 188
GpiSetLineType(), 188
GpiSetLineWidth(), 188
GpiSetLineWidthGeom(), 188
GpiSetPageViewport(), 196
GpiSetPattern(), 189
GpiSetPatternRefPoint(), 189
GpiSetPatternSet(), 188
GpiStrokePath(), 186, 188
GpiWCBitBlt(), 187
Graphical Data Display Manager, 184
Graphical Programming Interface, 194
graphics elements, 194
graphics orders, 194
Graphics Programming Interface, 32, 184
graphics segments, 194

H
handle, 39
handle, 27, 29
handle, 65
help, 18
help, 18
Help button, 85
HPFS, 146
Hungarian notation, 29
hwnd, 39
HWND_DESKTOP, 63
HWND_OBJECT, 48, 168

I
I/O Privilege Level, 23
icon, 28
Idle-Time Class, 133
ILINK, 19
image fonts, 191
IMAGEBUNDLE, 187
implementation, 205, 209
implementation statement, 209
implib.exe, 114
import librarian, 114
Import Librarian, 13

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 268

IMPORTS, 114
instance data, 53, 208, 223
instance data segments, 115
instance variables, 212
Intel 8086, 21
interface, 205
Interface Definition Language, 205, 208
Interface Repository, 207
inter-process communications, 138
invalid region, 153, 154
IPMD, 19

K
keystrokes, 27

L
LIBPATH, 13
LIBPATH, 113
LIBRARY, 113
linear address, 25, 120
LINEBUNDLE, 187, 188
link options, 17
Link Options, 16
LINK386, 19
linker options, 16
list box, 28
load-time dynamic linking, 112
Local Descriptor Table, 23
LPEX, 18

M
make, 16
make files, 16
MakeMake, 16
malloc(), 119, 120, 124
Mandelbrot sets, 133
MARKERBUNDLE, 187
MASM 6.0, 12
match value, 192
maximum baseline extent, 192
Memory device context, 193
memset(), 182, 235
menu, 48
menu, 80
menuitem, 48
MENUITEM, 51
menuitem attribute, 52
menuitem style, 49
message, 26
message queue, 29
message queue, 28
message queue, 29
Message queue threads, 137
metaclasses, 224
metafile, 194
Metafile device context, 193

method resolution, 206
Method resolution, 223
methods, 112
Microsoft Windows, 26, 184
minimize/maximize buttons, 28
MLE, 33
Model, 152
Model-View-Controller paradigm, 152
modular design, 112
Module Definition File, 13
module-definition file, 113
MP/M, 133
MPARAM, 51
MPARAM, 27
MS C 6.00, 12
Multiple Line Entryfield, 33
Mutex semaphores, 144
muxwait semaphores, 144

N
NAME, 113
Name resolution, 223
Non-message queue threads, 137
non-preemptive multitasking, 125
nooverride, 209

O
object, 26
object, 30
object, 216
object oriented, 216
object oriented programming, 168
Object Oriented User Interface, 216
object window, 28, 168
Object Window, 157
object windows, 138
object-oriented languages, 112
object-oriented programming, 204
objects, 112
Offset resolution, 223
One-Tenth-Second Rule, 157
Open Class Libraries, 19
Open Class Library, 11
OpenDoc, 207
OS/2 API, 105
OS2386.LIB, 13
Other Device device context, 193
outline fonts, 191
override, 209
owner window, 41

P
PAG_COMMIT, 121
PAG_READ, 121
PAG_WRITE, 121
page directory, 25

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 269

page table, 25
parent window, 41
PARTS, 205
pen, 26
Performance Analyzer, 20
Per-Task Data Area, 126
PFNWP, 177
PHIGS, 184
physical address, 25
PM_Q_RAW, 194
PM_Q_STD, 194
PMDD.SYS, 42
POINTL, 27
PPVOID, 107
preemptive multitasking, 125, 128
PRELOAD, 50
Presentation Manager, 26
presentation space, 153, 196
presentation space, 193
Presentation Space, 185
Presentation Space, 32
PRESPARAM, 42
PrfQueryProfileString(), 194
priority classes, 132
process descriptor, 126
program, 126
Program design, 34
Protected Mode, 23
proxy object, 207
pushbutto, 28

Q
queue, 156
queue messages, 28
queues, 157

R
RAM sempahores, 143
Raster devices, 193
rc.exe, 13
Real Mode, 22
reentrant, 135
reentrant code, 115
Region Locking, 150
Regular Class, 132
releaseorder, 209
Replicant SOM, 207
resource, 48
Resource Compiler, 13, 20, 48
resource file, 221
resource interlock errors, 152
retained graphics, 194
REXX, 227
ring, 18
run-time dynamic linking, 113
RUNWORKPLACE, 127

S
SB_ENDSCROLL, 82
SB_LINEDOWN, 82
SB_LINEUP, 82
SB_PAGEDOWN, 82
SB_PAGEUP, 82
SB_SLIDERPOSITION, 82
SB_SLIDERTRACK, 82
Screen device context, 193
scroll bars, 28
Scroll bars, 82
segment descriptor table, 23
segment limit, 23
segment selector, 23
segment unit, 25
segmented architecture, 21
selection indicators, 192
selector, 119
semaphore, 130
semaphore, 156
Semaphores, 143
Server Class, 132
sessions, 125
Share Modes, 150
shared memory, 141
shared variable, 156
shell program, 127
Smalltalk, 28, 152, 184, 205
SOM, 16, 112
SOM, 223
SOM, 223
SOM bindings, 224
SOM Compiler, 211
SOMClass, 223
SOMClassMgr, 224
SOMObject, 223
SOMObject, 219
SOMObjects Developer Toolkit, 206
spooler, 194
SQL Server, 78
SQLPREP, 16
standard dialogs, 181
STARTDATA, 125
static, 53
style flags, 31
subclassing, 75
subclassing, 33
SUBMENU, 50
submenus, 48
subsystem, 111
swap file, 25
symbolic constants, 40
symmetric multiprocessing, 128
synchronous window, 154
SysDeregisterObjectClass, 227
SysRegisterObjectClass, 227

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 270

system menu, 28
System Object Model, 205, 223
System Object Model, 112
system semaphores, 143
system(), 127

T
table index, 25
TASM, 12
this, 39
thread, 33
thread priorities, 127
threads, 153, 154
Time Critical Class, 132
title bar, 28
Toolkit, 20
Turbo Assembler, 12

U
UNIX, 146
Unresolved external reference, 114

V
Vector devices, 193
version, 209
vertical scroll bar, 78
View, 152
Virtual Memory Protected Mode, 23
Visual Age, 205
Visual Age C++, 11, 12
Visual Builder, 11, 19, 20
VSAM, 112

W
WC_ENTRYFIELD, 86
WC_STATIC, 86
WinBeginPaint(), 32, 58, 137, 153, 154,
160
WinCancelShutdown(), 168
WinCreateDlg(), 181
WinCreateMsgQueue(), 29, 42, 156
WinCreateStdWindow(), 30, 31, 39, 50,
53, 62, 63, 235
WinCreateWindow(), 13, 30, 33, 39, 40, 62,
63, 86, 169
WinDefDlgProc(), 45, 85, 179, 181
WinDefWindowProc(), 33, 38, 45, 51,
179, 181
WinDestroyWindow(), 60
WinDismissDlg(), 81, 179
WinDispatchMsg(), 32, 42
WinDlgBox(), 80, 81, 179, 180, 181
window, 26, 28, 40
window class, 30, 41
window handle, 39, 40
window ID, 40

window messages, 28
Window ownership, 64
window procedure, 32, 38, 39
window procedure, 27
window styles, 30
window words, 53, 168
WinDrawBitmap(), 187
WinDrawChain(), 189
WinDrawText(), 33, 58, 137
WinEndPaint(), 33
WinFileDlg(), 182
WinFillRect(), 33, 162
WinGetMsg(), 32, 42, 156
WinInitialize(), 29, 137
WinInvalidateRect(), 154
WinInvalidateRegion(), 154
WinLoadDlg(), 181
WinLoadMenu(), 50
WinOpenWindowDC(), 185
WinPostMsg(), 67, 137
WinProcessDlg(), 181
WinQueryActiveWindow(), 66
WinQueryDlgItemText(), 84
WinQueryProfileString(), 194
WinQueryWindow(), 40, 79
WinQueryWindowPtr(), 54, 58, 61
WinQueryWindowRect(), 58, 66, 86
WinQueryWindowText(), 86
WinQueryWindowULong(), 54
WinQueryWindowUShort(), 54
WinRegisterClass, 30
WinRegisterClass(), 53, 168, 179
WinSendMsg(), 137
WinSetWindowPos(), 62, 66, 86
WinSetWindowPtr(), 54
WinSetWindowText(), 62, 76, 86, 160
WinSetWindowULong(), 54
WinSetWindowUShort(), 54
WinSubclassWindow(), 177
WinUpdateWindow(), 154
WinWindowFromID(), 40, 65, 79
WM_ACTIVATE, 66
WM_CHAR, 27, 45, 80, 177
WM_CLOSE, 27
WM_COMMAND, 27, 50, 51, 80, 85
WM_COMMAND, 51
WM_CONTROL, 27
WM_CONTROL, 64
WM_CONTROL, 81
WM_CREATE, 31, 66, 168, 177, 179, 181, 235
WM_CREATE, 57
WM_DESTROY, 168
WM_ERASEBACKGROUND, 32
WM_HELP, 51, 85
WM_INITDLG, 179, 181

Introduction to OS/2 Warp Programming – Student Guide

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Page 271

WM_PAINT, 27, 31, 32, 153, 154, 169
WM_PAINT, 58
WM_PAINT, 82
WM_QUIT, 32, 168
WM_SIZE, 31, 66
WM_SYSCOMMAND, 51
WordStar, 128
worker thread, 155, 156
WorkFrame, 16
Workgroup Enabler, 207
Workplace Shell, 127, 207
Workplace Shell, 112
Workplace Shell, 216
WPAbstract, 219, 220
WPFileSystem, 220
WPFileSystem, 219
WPObject, 225
WPObject, 219
WPS Class Hierarchy, 219
WPTransient, 219, 220
WS_CLIPCHILDREN, 64
WS_CLIPSIBLINGS, 64
WS_SYNPAINT, 154
WS_TABSTOP, 45

Z
Z-order, 41, 63

	License
	Authors
	Les Bell
	Introduction
	The Development Process
	Generating and Using Dynamic Link Libraries
	Presentation Manager Applications
	Prototyping and Rapid Development
	VisPro/REXX and VX:REXX
	Visual Age C++ Visual Builder

	Introduction to Tools
	WorkFrame/2 1.1
	WorkFrame 3.0
	Dealing with Compile-Time Errors

	EPM
	The Visual Age C++ C and C++ Compiler
	LINK386
	ILINK
	IPMD
	Other Tools
	Toolkit

	Intel Processor Architectures
	8086 Real Mode
	80286 Protected Mode
	Protected Mode Features Summary

	OS/2 and the 80386

	Programming OS/2 Presentation Manager
	Why Message Passing?
	Windows
	Window Procedures

	Basic Window Concepts
	Window Procedure Structure
	Window ID's and Window Handles
	Window Creation
	PM's Message-Passing Architecture
	Packer & Cracker Macros
	Common Useful Messages
	Message Processing - Sending vs Posting

	Menus
	What Is A Menu?
	Resource Compiler Files
	Dealing with Menu Messages

	Window Words
	Setting and Querying Values
	Parents and Children
	Using Data Structures

	Parent - Child Relationships and Window Ownership
	The Parent/Child Relationship
	Affected Attributes
	Position
	Z-order
	Clipping
	Destruction

	Window Ownership
	Dealing with Multiple Windows

	Control Windows
	Scrollbars
	Buttons
	Push Buttons
	Radio Buttons
	Check Buttons

	Entry Fields
	Multiple Line Entry Fields
	List Boxes
	Combo Boxes
	Static Controls
	Notebooks
	Containers
	Value Sets

	Business Forms in OS/2
	Keyboard Handling
	Dialog Window
	Scroll Bars
	Dialog Window Procedure
	File LAB3.C
	File LAB3.RC:
	File MAINT.DEF:
	File FORMS.H:
	File FORMS.C:
	File PMFORMS.C

	The Control Program API
	Calling Conventions
	The Family API

	Dynamic Link Libraries
	Types of Dynamic Linking
	Writing and Compiling DLL's
	Sharing DLL's
	Initialization and Termination
	Compiling under MS C 6.00
	Compiling under IBM Visual Age C++

	Example Code

	Memory Management
	Memory Management on the 80286 With OS/2 1.x
	C Library API's - malloc(), etc.
	Intel 80386 Memory Management with OS/2 Warp
	Suballocating Memory and Heap Management

	Process Management
	Preemptive Multitasking
	Sessions
	Programs
	Processes
	Starting Child Processes
	DosExecPgm()
	system()

	Threads
	Threads vs Processes
	Uses for Threads
	Thread Priorities
	Priority Classes

	Creating Threads
	DosCreateThread()
	_beginthread()

	Priority Variation
	Resuming / Suspending Threads
	Thread Termination
	Why Threads Are Important
	Thread Types

	Interprocess & Interthread Communication
	Pipes
	Named Pipes
	Shared Memory
	Giveaway Shared Memory
	Named Shared Memory

	Queues
	Semaphores

	OS/2 File Handling
	Opening Files
	DosOpen()
	DosOpen2()

	Creating Files
	Reading and Writing
	DosRead()
	DosWrite()
	DosReadAsync()
	DosWriteAsync()
	DosChgFilePtr()
	DosBufReset()

	File Handles
	DosSetMaxFH()
	DosSetFHandState()
	DosQFHandState()
	DosDupHandle()

	File Locking and Region Locking
	Access Modes
	Share Modes
	DosFileLock()

	Obtaining Information About a File
	DosQFileInfo()
	DosQFileMode()
	DosQAppType()

	The Model-View-Controller Approach to PM Programming
	Using Queues for Inter-Thread Communication
	Using Object Windows & Message Queues for MVC

	Subclassing
	Dialog Windows
	Conventions
	Creating a Dialog Window
	The Dialog Procedure
	Modality
	Standard Dialogs

	GPI
	Basic GPI Concepts
	GPI Primitives
	Primitives Quick Reference
	Characters
	Lines
	Arcs
	Markers
	Areas
	Images

	Attributes on Primitives
	Setting Attributes Individually
	Lines
	Areas
	Markers
	Text
	Images

	Segments and Retained Graphics
	Presentation Page Units
	Pels
	Metrics
	Arbitrary

	Coordinate Spaces
	Transforms
	Fonts

	Printing Under OS/2 Presentation Manager
	Introduction to System Object Model
	What is SOM?
	Benefits of SOM
	SOM Class Frameworks
	DSOM
	The Interface Repository Framework
	Replication Framework
	Workplace Shell
	OpenDoc

	How Does SOM Work?
	Acccessing Internal Instance Variables
	Acccessing Parent Class Methods
	Writing a Client Program
	Example: Implementing a Stack Class in SOM

	The Workplace Shell and System Object Model
	What is the Workplace Shell?
	The WPS As a Shell
	The WPS As a Work Place

	Workplace Shell Object Hierarchy
	WPAbstract
	WPFileSystem
	WPTransient
	Implementing New WPS Objects

	The Workplace Shell and Presentation Manager
	The WPS as a PM Program
	Migrating PM Programs to the Workplace Shell
	Things you can do without totally rewriting

	Using an ASSOCTABLE Statement to Provide New File Types
	Considerations when moving to a WPS implementation

	The System Object Model
	Method Resolution
	Classes Supplied With SOM
	SOMObject
	SOMClass
	SOMClassMgr

	How Can I Use SOM?
	If you are using an OO language now
	If you are not using an OO language now

	The SOM Runtime Environment

	The Workplace Shell & SOM
	WPObject
	WPS Runtime Environment

	Applications vs Objects
	Design Considerations
	Programming considerations

	Using Objects (an end users view)
	Creating Folders
	Commonly Used Objects
	Using Applications

	The Work Place Shell and REXX
	Registering Objects
	Creating Objects
	Running WPS Objects

	OS/2 Warp Programming Course Lab Exercises
	Lab 1. Introduction to the Programmer's Workbench and a Basic PM program
	Lab 2: Menus and Messages
	Lab 3: Business Forms
	Lab 4: Memory Management
	Lab 5: Dynamic Link Libraries
	Lab 6: Threads
	Lab 7: Semaphores and Shared Memory
	Lab 8: File Handling
	Lab 9: Multiple windows and instance data
	Lab 10: Dialog windows
	Lab 11: File and Font Dialogs
	Lab 12: GPI Functions
	Lab 13: Fonts
	Lab 14: SOM
	Lab 15: Free Time Lab Exercises

	Common OS/2 & PM Programming Errors
	Key Concepts
	Tests
	Intel Processor Architectures
	Introduction to Presentation Manager Programming
	Basic Window Concepts and Details
	Menus
	Window Words
	OS/2 Control Program API
	Dynamic Link Libraries
	Processes and Threads
	Interprocess Communications
	Dialog Windows

	Index

