
Watcom Linker

User’s Guide

Edition 11.0c

Notice of Copyright
Copyright  2000 Sybase, Inc. and its subsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

ii

Preface
The Watcom Linker User’s Guide describes how to use the Watcom Linker under DOS, OS/2,
Windows 95, Windows NT and QNX. The Watcom Linker can generate executable files that
run under DOS, FlashTek’s DOS extender, Phar Lap’s 386|DOS-Extender and TNT DOS
extender, Tenberry Software’s DOS/4G, Microsoft Windows 3.x, Microsoft Windows NT,
Microsoft Windows 95, IBM OS/2, QNX, and Novell’s NetWare 386 operating system. The
Watcom Linker can also generate ELF format executable files for those systems that will
support ELF. The Microsoft Response File conversion utility, MS2WLINK, is also described
in this book.

Acknowledgements
This book was produced with the Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source
files containing text annotated with tags. These tags label the structural elements of the
document, such as chapters, sections, paragraphs, and lists. The Watcom GML software,
which runs on a variety of operating systems, interprets the tags to format the text into a form
such as you see here. Writers can produce output for a variety of printers, including laser
printers, using separately specified layout directives for such things as font selection, column
width and height, number of columns, etc. The result is type-set quality copy containing
integrated text and graphics.

September, 2000.

Trademarks Used in this Manual
DOS/4G is a trademark of Tenberry Software, Inc.

OS/2 and Presentation Manager are trademarks of International Business Machines Corp.
IBM, IBM PC and IBM PS/2 are registered trademarks of International Business Machines
Corp.

Intel is a registered trademark of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT is a trademark of Microsoft Corp.

iii

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 386|DOS-Extender and TNT are trademarks of Phar Lap Software, Inc.

QNX is a registered trademark of QNX Software Systems Ltd.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iv

Table of Contents

The WATCOM Linker .. 1

1 The Watcom Linker .. 3

2 Linking Executable Files for Various Systems ... 5
2.1 Using the SYSTEM Directive .. 5
2.2 Linking 16-bit x86 Executable Files .. 8

2.2.1 Linking 16-bit x86 DOS Executable Files 8
2.2.2 Linking 16-bit x86 DOS .COM Executable Files 8
2.2.3 Linking 16-bit x86 OS/2 Executable Files 9
2.2.4 Linking 16-bit x86 OS/2 Dynamic Link Libraries 9
2.2.5 Linking 16-bit x86 QNX Executable Files 9
2.2.6 Linking 16-bit x86 Windows 3.x Executable Files 10
2.2.7 Linking 16-bit x86 Windows 3.x Dynamic Link Libraries 10

2.3 Linking 32-bit x86 Executable Files .. 11
2.3.1 Linking 32-bit x86 AutoCAD Development System Executable

Files .. 11
2.3.2 Linking 32-bit x86 AutoCAD Device Interface Executable

Files .. 11
2.3.3 Linking 32-bit x86 DOS/4GW Executable Files 12
2.3.4 Linking 32-bit x86 FlashTek Executable Files 12
2.3.5 Linking 32-bit x86 Novell NetWare Loadable Modules 13
2.3.6 Linking 32-bit x86 OS/2 Executable Files 13
2.3.7 Linking 32-bit x86 OS/2 Dynamic Link Libraries 14
2.3.8 Linking 32-bit x86 OS/2 Presentation Manager Executable

Files .. 14
2.3.9 Linking 32-bit x86 Phar Lap Executable Files 14
2.3.10 Linking 32-bit x86 Phar Lap TNT Executable Files 15
2.3.11 Linking 32-bit x86 QNX Executable Files 15
2.3.12 Linking 32-bit x86 Extended Windows 3.x Executable 15
2.3.13 Linking 32-bit x86 Extended Windows 3.x Dynamic Link

Libraries ... 16
2.3.14 Linking 32-bit x86 Windows 95 Executable Files 16
2.3.15 Linking 32-bit x86 Windows 95 Dynamic Link Libraries 16
2.3.16 Linking 32-bit x86 Windows NT Character-Mode Executable

Files .. 17
2.3.17 Linking 32-bit x86 Windows NT Windowed Executable Files ... 17
2.3.18 Linking 32-bit x86 Windows NT Dynamic Link Libraries 17

3 Linker Directives and Options .. 19
3.1 The ALIAS Directive ... 22
3.2 The ALIGNMENT Option ... 23

v

Table of Contents

3.3 The ANONYMOUSEXPORT Directive .. 24
3.4 The ARTIFICIAL Option ... 26
3.5 The CACHE Option ... 27
3.6 The CASEEXACT Option ... 28
3.7 The CHECK Option ... 29
3.8 The # Directive ... 30
3.9 The COMMIT Directive ... 31
3.10 The COPYRIGHT Option .. 32
3.11 The CUSTOM Option .. 33
3.12 The CVPACK Option ... 34
3.13 The DEBUG Directive ... 35

3.13.1 Line Numbering Information - DEBUG WATCOM LINES 37
3.13.2 Local Symbol Information - DEBUG WATCOM LOCALS 38
3.13.3 Typing Information - DEBUG WATCOM TYPES 38
3.13.4 All Debugging Information - DEBUG WATCOM ALL 39
3.13.5 Global Symbol Information ... 39
3.13.6 Global Symbols for the NetWare 386 Debugger - DEBUG

NOVELL .. 39
3.13.7 The ONLYEXPORTS Debugging Option 40
3.13.8 Using DEBUG Directives .. 40
3.13.9 Removing Debugging Information from an Executable File 41

3.14 The DESCRIPTION Option ... 42
3.15 The DISABLE Directive .. 43
3.16 The DOSSEG Option ... 45
3.17 The ELIMINATE Option ... 47
3.18 The ENDLINK Directive ... 48
3.19 The EXIT Option .. 49
3.20 The EXPORT Directive .. 50

3.20.1 EXPORT - OS/2, Win16, Win32 only ... 50
3.20.2 EXPORT - ELF only .. 52
3.20.3 EXPORT - Netware only ... 53

3.21 The FILE Directive ... 54
3.22 The FORMAT Directive ... 56
3.23 The HEAPSIZE Option .. 64
3.24 The HELP Option ... 65
3.25 The IMPFILE Option ... 66
3.26 The IMPLIB Option ... 67
3.27 The IMPORT Directive .. 68

3.27.1 IMPORT - OS/2, Win16, Win32 only ... 68
3.27.2 IMPORT - ELF only .. 69
3.27.3 IMPORT - Netware only .. 69

3.28 The @ Directive ... 71

vi

Table of Contents

3.29 The INCREMENTAL Option .. 74
3.30 The INTERNALRELOCS Option .. 76
3.31 The LANGUAGE Directive ... 77
3.32 The LIBFILE Directive .. 78
3.33 The LIBPATH Directive .. 80
3.34 The LIBRARY Directive .. 82

3.34.1 Searching for Libraries Specified in Environment Variables 83
3.34.2 Converting Libraries Created using Phar Lap 386|LIB 84

3.35 The LINEARRELOCS Option ... 85
3.36 The LONGLIVED Option .. 86
3.37 The MANGLEDNAMES Option ... 87
3.38 The MANYAUTODATA Option ... 88
3.39 The MAP Option .. 89
3.40 The MAXDATA Option ... 90
3.41 The MAXERRORS Option .. 91
3.42 The MESSAGES Option .. 92
3.43 The MINDATA Option .. 93
3.44 The MODNAME Option .. 94
3.45 The MODFILE Directive ... 95
3.46 The MODTRACE Directive ... 96
3.47 The MODULE Directive .. 97
3.48 The MULTILOAD Option ... 98
3.49 The NAME Directive ... 99
3.50 The NAMELEN Option ... 100
3.51 The NEWFILES Option ... 101
3.52 The NEWSEGMENT Directive ... 102
3.53 The NLMFLAGS Option ... 103
3.54 The NOAUTODATA Option ... 104
3.55 The NODEFAULTLIBS Option .. 105
3.56 The NORELOCS Option .. 106
3.57 The NOSTDCALL Option ... 107
3.58 The OBJALIGN Option ... 108
3.59 The OLDLIBRARY Option ... 109
3.60 The OFFSET Option .. 110

3.60.1 OFFSET - OS/2, Win32 only ... 110
3.60.2 OFFSET - PharLap only .. 111
3.60.3 OFFSET - QNX only ... 111

3.61 The ONEAUTODATA Option ... 113
3.62 The OPTION Directive .. 114
3.63 The OPTLIB Directive ... 115

3.63.1 Searching for Optional Libraries Specified in Environment
Variables .. 116

vii

Table of Contents

3.64 The OSDOMAIN Option ... 117
3.65 The PSEUDOPREEMPTION Option .. 118
3.66 The OSNAME Option .. 119
3.67 The PACKCODE Option ... 120
3.68 The PACKDATA Option ... 121
3.69 The PATH Directive ... 122
3.70 The PRIVILEGE Option .. 124
3.71 The PROTMODE Option ... 125
3.72 The QUIET Option ... 126
3.73 The REDEFSOK Option .. 127
3.74 The REENTRANT Option ... 128
3.75 The REFERENCE Directive .. 129
3.76 The RESOURCE Option .. 130

3.76.1 RESOURCE - OS/2, Win16, Win32 only 130
3.76.2 RESOURCE - QNX only ... 130

3.77 The RUNTIME Directive ... 132
3.77.1 RUNTIME - Win32 only ... 132
3.77.2 RUNTIME - PharLap only ... 133

3.78 The RWRELOCCHECK Option .. 136
3.79 The SCREENNAME Option .. 137
3.80 The SEGMENT Directive .. 138
3.81 The SHARELIB Option ... 141
3.82 The SHOWDEAD Option .. 142
3.83 The SORT Directive ... 143
3.84 The STACK Option .. 144
3.85 The START Option .. 145
3.86 The STARTLINK Directive ... 146
3.87 The STATICS Option ... 147
3.88 The STUB Option ... 148
3.89 The SYMFILE Option .. 149
3.90 The SYMTRACE Directive ... 151
3.91 The SYNCHRONIZE Option ... 152
3.92 The SYSTEM Directive ... 153

3.92.1 Special System Names ... 156
3.93 The THREADNAME Option ... 157
3.94 The TOGGLERELOCS Option .. 158
3.95 The UNDEFSOK Option .. 159
3.96 The VERBOSE Option ... 160
3.97 The VERSION Option .. 161
3.98 The VFREMOVAL Option .. 162
3.99 The XDCDATA Option ... 163

viii

Table of Contents

4 The DOS Executable File Format ... 165
4.1 Memory Layout .. 167
4.2 The Watcom Linker Memory Requirements .. 168
4.3 Using Overlays ... 168
4.4 Converting Microsoft Response Files to Directive Files 168

5 The ELF Executable File Format .. 171
5.1 Memory Layout .. 173
5.2 The Watcom Linker Memory Requirements .. 174

6 The NetWare 386 Executable File Format .. 175
6.1 NetWare Loadable Modules ... 177
6.2 Memory Layout .. 178
6.3 The Watcom Linker Memory Requirements .. 179

7 The OS/2 Executable and DLL File Formats .. 181
7.1 Dynamic Link Libraries .. 184

7.1.1 Creating a Dynamic Link Library .. 184
7.1.2 Using a Dynamic Link Library .. 185

7.2 Memory Layout .. 185
7.3 The Watcom Linker Memory Requirements .. 186
7.4 Converting Microsoft Response Files to Directive Files 187

8 The Phar Lap Executable File Format .. 189
8.1 32-bit Protected-Mode Applications .. 191
8.2 Memory Usage .. 191
8.3 Memory Layout .. 192
8.4 The Watcom Linker Memory Requirements .. 193

9 The QNX Executable File Format .. 195
9.1 Memory Layout .. 197
9.2 The Watcom Linker Memory Requirements .. 198

10 The Win16 Executable and DLL File Formats ... 199
10.1 Fixed and Moveable Segments ... 201
10.2 Discardable Segments ... 202
10.3 Dynamic Link Libraries .. 202

10.3.1 Creating a Dynamic Link Library .. 203
10.3.2 Using a Dynamic Link Library .. 204

10.4 Memory Layout .. 204
10.5 The Watcom Linker Memory Requirements .. 205
10.6 Converting Microsoft Response Files to Directive Files 205

ix

Table of Contents

11 The Win32 Executable and DLL File Formats ... 207
11.1 Dynamic Link Libraries .. 209

11.1.1 Creating a Dynamic Link Library .. 210
11.1.2 Using a Dynamic Link Library .. 211

11.2 Memory Layout .. 211
11.3 The Watcom Linker Memory Requirements .. 212

12 Watcom Linker Diagnostic Messages ... 213

x

The WATCOM Linker

The WATCOM Linker

2

1 The Watcom Linker

The Watcom Linker is a linkage editor (linker) that takes object and library files as input and
produces executable files as output. The following object module and library formats are
supported by the Watcom Linker.

• The standard Intel Object Module Format (OMF).

• Microsoft’s extensions to the standard Intel OMF.

• Phar Lap’s Easy OMF-386 object module format for linking 386 applications.

• The COFF object module format.

• The ELF object module format.

• The OMF library format.

• The AR (Microsoft compatible) object library format.

The Watcom Linker is capable of producing a number of executable file formats. The
following lists these executable file formats.

• DOS executable files

• ELF executable files

• executable files that run under FlashTek’s DOS extender

• executable files that run under Phar Lap’s 386|DOS-Extender

• executable files that run under Tenberry Software’s DOS/4G and DOS/4GW DOS
extenders

• executable files that run under Autodesk’s AutoCAD Development System

• NetWare Loadable Modules (NLMs) that run under Novell’s NetWare 386 operating
system

The Watcom Linker 3

The WATCOM Linker

• OS/2 executable files including Dynamic Link Libraries

• QNX executable files

• 16-bit Windows (Win16) executable files including Dynamic Link Libraries

• 32-bit Windows (Win32) executable files including Dynamic Link Libraries

In addition to being able to generate the above executable file formats, the Watcom Linker
also runs under a variety of operating systems. Currently, the Watcom Linker runs under the
following operating systems.

• DOS

• OS/2

• QNX

• Windows NT

• Windows 95

We refer to the operating system upon which you run the Watcom Linker as the "host".

The chapter entitled "Linking Executable Files for Various Systems" on page 5 summarizes
each of the executable file formats that can be generated by the linker. The chapter entitled
"Linker Directives and Options" on page 19 describes all of the linker directives and options.
The remaining chapters describe aspects of each of the executable file formats.

4 The Watcom Linker

2 Linking Executable Files for Various
Systems

The Watcom Linker command line format is as follows.

wlink {directive}

where directive is a series of Watcom Linker directives specified on the command line or in
one or more files. If the directives are contained within a file, the "@" character is used to
reference that file. If no file extension is specified, a file extension of "lnk" is assumed.

Example:
wlink name testprog @first @second option map

In the above example, directives are specified on the command line (e.g., "name testprog" and
"option map") and in files (e.g., FIRST.LNK and SECOND.LNK).

2.1 Using the SYSTEM Directive
For each executable file format that can be created using the Watcom Linker, a specific
SYSTEM directive may be used. The SYSTEM directive selects a subset of the available
directives necessary to create each specific executable file format.

System Description

com 16-bit x86 DOS ".COM" executable

dos 16-bit x86 DOS executable

dos4g 32-bit x86 DOS/4GW executable

dos4gnz non-zero based 32-bit x86 DOS/4GW executable

Using the SYSTEM Directive 5

The WATCOM Linker

netware 32-bit x86 NetWare Loadable Module

novell synonym for "netware"

os2 16-bit x86 OS/2 executable

os2 dll 16-bit x86 OS/2 Dynamic Link Library

os2v2 32-bit x86 OS/2 executable

os2v2 dll 32-bit x86 OS/2 Dynamic Link Library

os2v2_pm 32-bit x86 OS/2 Presentation Manager executable

pharlap 32-bit x86 Phar Lap executable

tnt 32-bit x86 Phar Lap TNT executable

qnx 16-bit x86 QNX executable

qnx386 32-bit x86 QNX executable

x32r 32-bit x86 FlashTek executable using register-based calling conventions

x32rv 32-bit x86 virtual-memory FlashTek executable using register-based calling
conventions

x32s 32-bit x86 FlashTek executable using stack-based calling conventions

x32sv 32-bit x86 virtual-memory FlashTek executable using stack-based calling
conventions

windows 16-bit x86 Windows 3.x executable

windows_dll 16-bit x86 Windows 3.x Dynamic Link Library

win95 32-bit x86 Windows 95 executable

win95 dll 32-bit x86 Windows 95 Dynamic Link Library

nt 32-bit x86 Windows NT character-mode executable

nt_win 32-bit x86 Windows NT windowed executable

6 Using the SYSTEM Directive

Linking Executable Files for Various Systems

win32 synonym for "nt_win"

nt_dll 32-bit x86 Windows NT Dynamic Link Library

win386 32-bit x86 Watcom extended Windows 3.x executable or Dynamic Link Library

ads 32-bit x86 AutoCAD Development System executable

eadi 32-bit x86 Emulation AutoCAD Device Interface

fadi 32-bit x86 Floating-point AutoCAD Device Interface

The various systems that we have listed above are defined in special linker directive files
which are plain ASCII text files that you can edit. These files are called WLINK.LNK and
WLSYSTEM.LNK.

The file WLINK.LNK is a special linker directive file that is automatically processed by the
Watcom Linker before processing any other directives. On a DOS, OS/2, or Windows-hosted
system, this file must be located in one of the paths specified in the PATH environment
variable. On a QNX-hosted system, this file should be located in the /etc directory. A
default version of this file is located in the \WATCOM\BINW directory on DOS-hosted
systems, the \WATCOM\BINP directory on OS/2-hosted systems, the /etc directory on
QNX-hosted systems, and the \WATCOM\BINNT directory on Windows 95 or Windows
NT-hosted systems. Note that the file WLINK.LNK includes the file WLSYSTEM.LNK which
is located in the \WATCOM\BINW directory on DOS, OS/2, or Windows-hosted systems and
the /etc directory on QNX-hosted systems.

The files WLINK.LNK and WLSYSTEM.LNK reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

In the following sections, we show some of the typical directives that you might use to create
a particular executable file format. The common directives are described in the chapter
entitled "Linker Directives and Options" on page 19. They are "common" in the sense that
they may be used with any executable format. There are other, less general, directives that
may be specified for a particular executable format. In each of the following sections, we
refer you to chapters in which you will find more information on the directives available with
the executable format used.

At this point, it should be noted that various systems have adopted particular executable file
formats. For example, AutoCAD applications use a Phar Lap executable file format and both
the Tenberry Software DOS/4G(W) and FlashTek DOS extenders support one of the OS/2
executable file formats. It is for this reason that you may find that we direct you to a chapter
which would, at first glance, seem unrelated to the executable file format in which you are
interested.

Using the SYSTEM Directive 7

The WATCOM Linker

To summarize, the steps that you should follow to learn about creating a particular executable
are:

1. Look for a section in this chapter that describes the executable format in which you
are interested.

2. See the chapter entitled "Linker Directives and Options" on page 19 for a
description of the common directives.

3. If you require additional information, see also the chapter to which we have
referred you.

4. Also check the Watcom C/C++ Programmer’s Guide or Watcom FORTRAN 77
Programmer’s Guide for more information on creating specific types of
applications.

2.2 Linking 16-bit x86 Executable Files
The following sections describe how to link a variety of 16-bit executable files.

2.2.1 Linking 16-bit x86 DOS Executable Files

To create this type of file, use the following structure.

system dos
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The DOS Executable File Format" on page
165.

2.2.2 Linking 16-bit x86 DOS .COM Executable Files

To create this type of file, use the following structure.

8 Linking 16-bit x86 Executable Files

Linking Executable Files for Various Systems

system com
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The DOS Executable File Format" on page
165.

2.2.3 Linking 16-bit x86 OS/2 Executable Files

To create this type of file, use the following structure.

system os2
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

2.2.4 Linking 16-bit x86 OS/2 Dynamic Link Libraries

To create this type of file, use the following structure.

system os2 dll
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

2.2.5 Linking 16-bit x86 QNX Executable Files

To create this type of file, use the following structure.

Linking 16-bit x86 Executable Files 9

The WATCOM Linker

system qnx
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The QNX Executable File Format" on page
195.

2.2.6 Linking 16-bit x86 Windows 3.x Executable Files

To create this type of file, use the following structure.

system windows
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats"
on page 199.

2.2.7 Linking 16-bit x86 Windows 3.x Dynamic Link Libraries

To create this type of file, use the following structure.

system windows dll
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats"
on page 199.

10 Linking 16-bit x86 Executable Files

Linking Executable Files for Various Systems

2.3 Linking 32-bit x86 Executable Files
The following sections describe how to create a variety of 32-bit executable files.

2.3.1 Linking 32-bit x86 AutoCAD Development System Executable
Files

To create this type of file, use the following structure.

system ads
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The Phar Lap Executable File Format" on
page 189.

2.3.2 Linking 32-bit x86 AutoCAD Device Interface Executable Files

To create this type of file, use the following structure for an emulation AutoCAD Device
Interface.

system eadi
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

To create a floating-point AutoCAD Device Interface, specify

system fadi.

For more information, see the chapter entitled "The Phar Lap Executable File Format" on
page 189.

Linking 32-bit x86 Executable Files 11

The WATCOM Linker

2.3.3 Linking 32-bit x86 DOS/4GW Executable Files

To create this type of file, use the following structure.

system dos4g
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

2.3.4 Linking 32-bit x86 FlashTek Executable Files

To create these files, use one of the following structures.

system x32r
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

If the system is x32r, a FlashTek executable file is created for an application using the register
calling convention.

system x32rv
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

If the system is x32rv, a virtual-memory FlashTek executable file is created for an application
using the register calling convention.

system x32s
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

If the system is x32s, a FlashTek executable file is created for an application using the stack
calling convention.

12 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

system x32sv
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

If the system is x32sv, a virtual-memory FlashTek executable file is created for an application
using the stack calling convention.

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

2.3.5 Linking 32-bit x86 Novell NetWare Loadable Modules

To create this type of file, use the following structure.

system netware
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...
module mod name
import @%WATCOM%\novi\mod name.imp

For more information, see the chapter entitled "The NetWare 386 Executable File Format" on
page 175.

2.3.6 Linking 32-bit x86 OS/2 Executable Files

To create this type of file, use the following structure.

system os2v2
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

Linking 32-bit x86 Executable Files 13

The WATCOM Linker

2.3.7 Linking 32-bit x86 OS/2 Dynamic Link Libraries

To create this type of file, use the following structure.

system os2v2 dll
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

2.3.8 Linking 32-bit x86 OS/2 Presentation Manager Executable Files

To create this type of file, use the following structure.

system os2v2 pm
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

2.3.9 Linking 32-bit x86 Phar Lap Executable Files

To create this type of file, use the following structure.

system pharlap
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The Phar Lap Executable File Format" on
page 189.

14 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

2.3.10 Linking 32-bit x86 Phar Lap TNT Executable Files

To create this type of file, use the following structure.

system tnt
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"
on page 207.

2.3.11 Linking 32-bit x86 QNX Executable Files

To create this type of file, use the following structure.

system qnx386
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The QNX Executable File Format" on page
195.

2.3.12 Linking 32-bit x86 Extended Windows 3.x Executable

To create this type of file, use the following structure.

system win386
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

After linking this executable, you must bind the Watcom 32-bit Windows-extender to the
executable (a .REX file) to produce a Windows executable (a .EXE file).

wbind -n app name

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats"
on page 199.

Linking 32-bit x86 Executable Files 15

The WATCOM Linker

2.3.13 Linking 32-bit x86 Extended Windows 3.x Dynamic Link
Libraries

To create this type of file, use the following structure.

system win386
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

After linking this executable, you must bind the Watcom 32-bit Windows-extender for DLLs
to the executable (a .REX file) to produce a Windows Dynamic Link Library (a .DLL file).

wbind -n -d app name

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats"
on page 199.

2.3.14 Linking 32-bit x86 Windows 95 Executable Files

To create this type of file, use the following structure.

system win95
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"
on page 207.

2.3.15 Linking 32-bit x86 Windows 95 Dynamic Link Libraries

To create this type of file, use the following structure.

system win95 dll
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

16 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"
on page 207.

2.3.16 Linking 32-bit x86 Windows NT Character-Mode Executable
Files

To create this type of file, use the following structure.

system nt
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"
on page 207.

2.3.17 Linking 32-bit x86 Windows NT Windowed Executable Files

To create this type of file, use the following structure.

system nt win
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"
on page 207.

2.3.18 Linking 32-bit x86 Windows NT Dynamic Link Libraries

To create this type of file, use the following structure.

system nt dll
option map
name app name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats"
on page 207.

Linking 32-bit x86 Executable Files 17

The WATCOM Linker

18 Linking 32-bit x86 Executable Files

3 Linker Directives and Options

The Watcom Linker supports a large set of directives and options. The following sections
present these directives and options in alphabetical order. Not all directives and options are
supported for all executable formats. When a directive or option applies only to a subset of
the executable formats that the linker can generate, the supporting formats are noted. In the
following example, the notation indicates that the directive or option is supported for all
executable formats.

Example:
Formats: All

In the following example, the notation indicates that the directive or option is supported for
OS/2, 16-bit Windows and 32-bit Windows executable formats only.

Example:
Formats: OS/2, Win16, Win32

Directives tell the Watcom Linker how to create your program. For example, using directives
you can tell the Watcom Linker which object files are to be included in the program, which
library files to search to resolve undefined references, and the name of the executable file.

The file WLINK.LNK is a special linker directive file that is automatically processed by the
Watcom Linker before processing any other directives. On a DOS, OS/2, or Windows-hosted
system, this file must be located in one of the paths specified in the PATH environment
variable. On a QNX-hosted system, this file should be located in the /etc directory. A
default version of this file is located in the \WATCOM\BINW directory on DOS-hosted
systems, the \WATCOM\BINP directory on OS/2-hosted systems, the /etc directory on
QNX-hosted systems, and the \WATCOM\BINNT directory on Windows 95 or Windows
NT-hosted systems. Note that the file WLINK.LNK includes the file WLSYSTEM.LNK which
is located in the \WATCOM\BINW directory on DOS, OS/2, or Windows-hosted systems and
the /etc directory on QNX-hosted systems.

The files WLINK.LNK and WLSYSTEM.LNK reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

It is also possible to use environment variables when specifying a directive. For example, if
the LIBDIR environment variable is defined as follows,

Linker Directives and Options 19

The WATCOM Linker

set libdir=\test

then the linker directive

library %libdir%\mylib

is equivalent to the following linker directive.

library \test\mylib

Note that a space must precede a reference to an environment variable.

Many directives can take a list of one or more arguments separated by commas. Instead of a
comma-delimited list, you can specify a space-separated list provided the list is enclosed in
braces (e.g., { space delimited list }). For example, the "FILE" directive can take a list of
object file names as an argument.

file first,second,third,fourth

The alternate way of specifying this is as follows.

file {first second third fourth}

Where this comes in handy is in make files, where a list of dependents is usually a
space-delimited list.

OBJS = first second third fourth

.

.

.
wlink file {$(objs)}

The following notation is used to describe the syntax of linker directives and options.

ABC All items in upper case are required.

[abc] The item abc is optional.

{abc} The item abc may be repeated zero or more times.

{abc}+ The item abc may be repeated one or more times.

a|b|c One of a, b or c may be specified.

20 Linker Directives and Options

Linker Directives and Options

a ::= b The item a is defined in terms of b.

Certain characters have special meaning to the linker. When a special character must appear
in a name, you can imbed the string that makes up the name inside apostrophes (e.g.,
’name@8’). This prevents the linker from interpreting the special character in its usual
manner. This is also true for file or path names that contain spaces (e.g., ’\program
files\software\mylib’). Normally, the linker would interpret a space or blank in a file name as
a separator. The special characters are listed below:

+-----------+-----------------------+
| Character | Name of Character |
+-----------+-----------------------+
	Blank
=	Equals
(Left Parenthesis
)	Right Parenthesis
,	Comma
.	Period
{	Left Brace
}	Right Brace
@	At Sign
#	Hash Mark
%	Percentage Symbol
+-----------+-----------------------+

Linker Directives and Options 21

ALIAS

3.1 The ALIAS Directive

Formats: All

The "ALIAS" directive is used to specify an equivalent name for a symbol name. The format
of the "ALIAS" directive (short form "A") is as follows.

ALIAS alias_name=symbol_name{, alias_name=symbol_name}

where description:

alias_name is the alias name.

symbol_name is the symbol name to which the alias name is mapped.

Consider the following example.

alias sine=mysine

When the linker tries to resolve the reference to sine, it will immediately substitute the name
mysine for sine and begin searching for the symbol mysine.

22 The ALIAS Directive

ALIGNMENT (ELF, OS/2, Win16, Win32)

3.2 The ALIGNMENT Option

Formats: ELF, OS/2, Win16, Win32

The "ALIGNMENT" option specifies the alignment for segments in the executable file. The
format of the "ALIGNMENT" option (short form "A") is as follows.

OPTION ALIGNMENT=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n specifies the alignment for segments in the executable file and must be a power of 2.

In 16-bit applications, segments in the executable file are pointed to by a segment table. An
entry in the segment table contains a 16-bit value which is a multiple of the alignment value.
Together they form the offset of the segment from the start of the segment table. Note that the
smaller the value of n the smaller the executable file.

By default, the Watcom Linker will automatically choose the smallest value of n possible.
You need not specify this option unless you want padding between segments in the executable
file.

The ALIGNMENT Option 23

ANONYMOUSEXPORT (Win16, Win32)

3.3 The ANONYMOUSEXPORT Directive

Formats: Win16, Win32

The "ANONYMOUSEXPORT" directive is an alternative to the "EXPORT" directive
described in "The EXPORT Directive" on page 50. The symbol associated with this name
will not appear in either the resident or the non-resident names table. The entry point is,
however, still available for ordinal linking.

The format of the "ANONYMOUSEXPORT" directive (short form "ANON") is as follows.

ANONYMOUSEXPORT export{,export}
or

ANONYMOUSEXPORT =lbc_file

export ::= entry_name[.ordinal][=internal_name]

where description:

entry_name is the name to be used by other applications to call the function.

ordinal is an ordinal value for the function. If the ordinal number is specified, other
applications can reference the function by using this ordinal number.

internal_name is the actual name of the function and should only be specified if it differs
from the entry name.

lbc_file is a file specification for the name of a librarian command file. If no file
extension is specified, a file extension of "lbc" is assumed. The linker will
process the librarian command file and look for commands to the librarian that
are used to create import library entries. These commands have the following
form.

++sym.dll name[.[altsym].export name][.ordinal]

where description:

sym is the name of a symbol in a Dynamic Link Library.

dll_name is the name of the Dynamic Link Library that defines sym.

24 The ANONYMOUSEXPORT Directive

ANONYMOUSEXPORT (Win16, Win32)

altsym is the name of a symbol in a Dynamic Link Library. When
omitted, the default symbol name is sym.

export_name is the name that an application that is linking to the Dynamic Link
Library uses to reference sym. When omitted, the default export
name is sym.

ordinal is the ordinal value that can be used to identify sym instead of
using the name export name.

All other librarian commands will be ignored.

Notes:

1. By default, the Watcom C and C++ compilers append an underscore (’_’) to all
function names. This should be considered when specifying entry_name and
internal_name in an "ANONYMOUSEXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., anonymousexport ’myfunc@8’).

3. The symbol associated with the entry name will not appear in either the resident or
the non-resident names table. The entry point is, however, still available for
ordinal linking. This directive is important when you wish to reduce the number of
entries that are placed in the resident and non-resident names table.

The ANONYMOUSEXPORT Directive 25

ARTIFICIAL

3.4 The ARTIFICIAL Option

Formats: All

The "ARTIFICIAL" option should only be used if you are developing a Watcom C++
application. A Watcom C++ application contains many compiler-generated symbols. By
default, the linker does not include these symbols in the map file. The "ARTIFICIAL" option
can be used if you wish to include these compiler-generated symbols in the map file.

The format of the "ARTIFICIAL" option (short form "ART") is as follows.

OPTION ARTIFICIAL

26 The ARTIFICIAL Option

CACHE

3.5 The CACHE Option

Formats: All

The "CACHE" and "NOCACHE" options can be used to control caching of object and library
files in memory by the linker. When neither the "CACHE" nor "NOCACHE" option is
specified, the linker will only cache small libraries. Object files and large libraries are not
cached. The "CACHE" and "NOCACHE" options can be used to alter this default behaviour.
The "CACHE" option enables the caching of object files and large library files while the
"NOCACHE" option disables all caching.

The format of the "CACHE" option (short form "CAC") is as follows.

OPTION CACHE

The format of the "NOCACHE" option (short form "NOCAC") is as follows.

OPTION NOCACHE

When linking large applications with many object files, caching object files will cause
extensive use of memory by the linker. On virtual memory systems such as OS/2, Windows
NT or Windows 95, this can cause extensive page file activity when real memory resources
have been exhausted. This can degrade the performance of other tasks on your system. For
this reason, the OS/2 and Windows-hosted versions of the linker do not perform object file
caching by default. This does not imply that object file caching is not beneficial. If your
system has lots of real memory or the linker is running as the only task on the machine, object
file caching can certainly improve the performance of the linker.

On single-tasking environments such as DOS, the benefits of improved linker performance
outweighs the memory demands associated with object file caching. For this reason, object
file caching is performed by default on these systems. If the memory requirements of the
linker exceed the amount of memory on your system, the "NOCACHE" option can be
specified.

The QNX operating system is a multi-tasking real-time operating system. However, it is not a
virtual memory system. Caching object files can consume large amounts of memory. This
may prevent other tasks on the system from running, a problem that may be solved by using
the "NOCACHE" option.

The CACHE Option 27

CASEEXACT

3.6 The CASEEXACT Option

Formats: All

The "CASEEXACT" option tells the Watcom Linker to respect case when resolving
references to global symbols. That is, "ScanName" and "SCANNAME" represent two
different symbols. By default, the linker is case insensitive; "ScanName" and "SCANNAME"
represent the same symbol. The format of the "CASEEXACT" option (short form "C") is as
follows.

OPTION CASEEXACT

If you have specified the "CASEEXACT" option in the default directive files WLINK.LNK or
WLSYSTEM.LNK, it is possible to override this option by using the "NOCASEEXACT"
option. The "NOCASEEXACT" option turns off case-sensitive linking. The format of the
"NOCASEEXACT" option (short form "NOCASE") is as follows.

OPTION NOCASEEXACT

The file WLINK.LNK is a special linker directive file that is automatically processed by the
Watcom Linker before processing any other directives. On a DOS, OS/2, or Windows-hosted
system, this file must be located in one of the paths specified in the PATH environment
variable. On a QNX-hosted system, this file should be located in the /etc directory. A
default version of this file is located in the \WATCOM\BINW directory on DOS-hosted
systems, the \WATCOM\BINP directory on OS/2-hosted systems, the /etc directory on
QNX-hosted systems, and the \WATCOM\BINNT directory on Windows 95 or Windows
NT-hosted systems. Note that the file WLINK.LNK includes the file WLSYSTEM.LNK which
is located in the \WATCOM\BINW directory on DOS, OS/2, or Windows-hosted systems and
the /etc directory on QNX-hosted systems.

The files WLINK.LNK and WLSYSTEM.LNK reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

28 The CASEEXACT Option

CHECK (NetWare)

3.7 The CHECK Option

Formats: NetWare

The "CHECK" option specifies the name of a procedure to execute before an NLM is
unloaded. This procedure can, for example, inform the operator that the NLM is in use and
prevent it from being unloaded.

The format of the "CHECK" option (short form "CH") is as follows.

OPTION CHECK=symbol_name

where description:

symbol_name specifies the name of a procedure to execute before the NLM is unloaded.

If the "CHECK" option is not specified, no check procedure will be called.

The CHECK Option 29

COMMENT

3.8 The # Directive

Formats: All

The "#" directive is used to mark the start of a comment. All text from the "#" character to the
end of the line is considered a comment. The format of the "#" directive is as follows.

comment

where description:

comment is any sequence of characters.

The following directive file illustrates the use of comments.

file main, trigtest

Use my own version of "sin" instead of the
library version.

file mysin
library \math\trig

30 The # Directive

COMMIT (Win32)

3.9 The COMMIT Directive

Formats: Win32

When the operating system allocates the stack and heap for an application, it does not actually
allocate the whole stack and heap to the application when it is initially loaded. Instead, only a
portion of the stack and heap are allocated or committed to the application. Any part of the
stack and heap that is not committed will be committed on demand.

The format of the "COMMIT" directive (short form "COM") is as follows.

COMMIT mem_type

mem_type ::= STACK=n | HEAP=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n represents the amout of stack or heap that is initially committed to the
application. The short form for "STACK" is "ST" and the short form for
"HEAP" is "H".

If you do not specify the "COMMIT HEAP" directive then a 4k heap is committed to the
application.

If you do not specify the "COMMIT STACK" directive then the default size is the smaller of
64K or the size specified by the "STACK" option. See the section entitled "The STACK
Option" on page 144 for more information on specifying a stack size.

The COMMIT Directive 31

COPYRIGHT (NetWare)

3.10 The COPYRIGHT Option

Formats: NetWare

The "COPYRIGHT" option specifies copyright information that is placed in the executable
file. The format of the "COPYRIGHT" option (short form "COPYR") is as follows.

OPTION COPYRIGHT ’string’

where description:

string specifies the copyright information.

32 The COPYRIGHT Option

CUSTOM (NetWare)

3.11 The CUSTOM Option

Formats: NetWare

The format of the "CUSTOM" option (short form "CUST") is as follows.

OPTION CUSTOM=file_name

where description:

file_name specifies the file name of the custom data file.

The custom data file is placed into the executable file when the application is linked but is
really not part of the program. When the application is loaded into memory, the information
extracted from a custom data file is not loaded into memory. Instead, information is passed to
the program (as arguments) which allows the access and processing of this information.

The CUSTOM Option 33

CVPACK

3.12 The CVPACK Option

Formats: All

This option is only meaningful when generating Microsoft Codeview debugging information.
This option causes the linker to automatically run the Watcom Codeview 4 Symbolic
Debugging Information Compactor, CVPACK, on the executable that it has created. This is
necessary to get the Codeview debugging information into a state where the Microsoft
Codeview debugger will accept it.

The format of the "CVPACK" option (short form "CVP") is as follows.

OPTION CVPACK

For more information on generating Codeview debugging information into the executable, see
the section entitled "The DEBUG Directive" on page 35

34 The CVPACK Option

DEBUG

3.13 The DEBUG Directive

Formats: All

The "DEBUG" directive is used to tell the Watcom Linker to generate debugging information
in the executable file. This extra information in the executable file is used by the Watcom
Debugger. The format of the "DEBUG" directive (short form "D") is as follows.

DEBUG dbtype [dblist] |
DEBUG [dblist]

db_type ::= DWARF | WATCOM | CODEVIEW | NOVELL
db_list ::= [db_option{,db_option}]
db_option ::= LINES | TYPES | LOCALS | ALL

DEBUG NOVELL only

db_option ::= ONLYEXPORTS | REFERENCED

The Watcom Linker supports four types of debugging information, "DWARF" (the default),
"WATCOM", "CODEVIEW", or "NOVELL".

DWARF (short form "D") specifies that all object files contain Dwarf format debugging
information and that the executable file will contain Dwarf debugging
information.

This debugging format is assumed by default when none is specified.

WATCOM (short form "W") specifies that all object files contain WATCOM format
debugging information and that the executable file will contain WATCOM
debugging information. This format permits the selection of specific classes of
debugging information (db_list) which are described below.

CODEVIEW
(short form "C") specifies that all object files contain Codeview (CV4) format
debugging information and that the executable file will contain Codeview
debugging information.

It will be necessary to run the Microsoft Debugging Information Compactor,
CVPACK, on the executable that it has created. For information on requesting
the linker to automatically run CVPACK, see the section entitled "The

The DEBUG Directive 35

DEBUG

CVPACK Option" on page 34 Alternatively, you can run CVPACK from the
command line.

NOVELL (short form "N") specifies a form of global symbol information that can only be
processed by the NetWare 386 debugger.

For the WATCOM debugging information format, we can be selective about the types of
debugging information that we include with the executable file. We can categorize the types
of debugging information as follows:

• global symbol information

• line numbering information

• local symbol information

• typing information

• NetWare 386 global symbol information

The following options can be used with the "DEBUG WATCOM" directive to control which
of the above classes of debugging information is included in the executable file.

LINES (short form "LI") specifies line numbering and global symbol information.

LOCALS (short form "LO") specifies local and global symbol information.

TYPES (short form "T") specifies typing and global symbol information.

ALL (short form "A") specifies all of the above debugging information.

ONLYEXPORTS
(short form "ONL") restricts the generation of global symbol information to
exported symbols. This option may only be used with Netware executable
formats.

The following options can be used with the "DEBUG NOVELL" directive to control which of
the above classes of debugging information is included in the executable file.

36 The DEBUG Directive

DEBUG

ONLYEXPORTS
(short form "ONL") restricts the generation of global symbol information to
exported symbols.

REFERENCED
(short form "REF") restricts the generation of symbol information to referenced
symbols only.

Note: The position of the "DEBUG" directive is important. The level of debugging
information specified in a "DEBUG" directive only applies to object files and libraries that
appear in subsequent "FILE" or "LIBRARY" directives. For example, if "DEBUG
WATCOM ALL" was the only "DEBUG" directive specified and was also the last linker
directive, no debugging information would appear in the executable file.

Only global symbol information is actually produced by the Watcom Linker; the other three
classes of debugging information are extracted from object modules and copied to the
executable file. Therefore, at compile time, you must instruct the compiler to generate local
symbol, line numbering and typing information in the object file so that the information can
be transferred to the executable file. If you have asked the Watcom Linker to produce a
particular class of debugging information and it appears that none is present, one of the
following conditions may exist.

1. The debugging information is not present in the object files.
2. The "DEBUG" directive has been misplaced.

The following sections describe the classes of debugging information.

3.13.1 Line Numbering Information - DEBUG WATCOM LINES

The "DEBUG WATCOM LINES" option controls the processing of line numbering
information. Line numbering information is the line number and address of the generated
code for each line of source code in a particular module. This allows Watcom Debugger to
perform source-level debugging. When the Watcom Linker encounters a "DEBUG
WATCOM" directive with a "LINES" or "ALL" option, line number information for each
subsequent object module will be placed in the executable file. This includes all object
modules extracted from object files specified in subsequent "FILE" directives and object
modules extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

The DEBUG Directive 37

DEBUG

Note: All modules for which line numbering information is requested must have been
compiled with the "d1" or "d2" option.

A subsequent "DEBUG WATCOM" directive without a "LINES" or "ALL" option terminates
the processing of line numbering information.

3.13.2 Local Symbol Information - DEBUG WATCOM LOCALS

The "DEBUG WATCOM LOCALS" option controls the processing of local symbol
information. Local symbol information is the name and address of all symbols local to a
particular module. This allows Watcom Debugger to locate these symbols so that you can
reference local data and routines by name. When the Watcom Linker encounters a "DEBUG
WATCOM" directive with a "LOCALS" or "ALL" option, local symbol information for each
subsequent object module will be placed in the executable file. This includes all object
modules extracted from object files specified in subsequent "FILE" directives and object
modules extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

Note: All modules for which local symbol information is requested must have been
compiled with the "d2" option.

A subsequent "DEBUG WATCOM" directive without a "LOCALS" or "ALL" option
terminates the processing of local symbol information.

3.13.3 Typing Information - DEBUG WATCOM TYPES

The "DEBUG WATCOM TYPES" option controls the processing of typing information.
Typing information includes a description of all types, structures and arrays that are defined in
a module. This allows Watcom Debugger to display variables according to their type. When
the Watcom Linker encounters a "DEBUG WATCOM" directive with a "TYPES" or "ALL"
option, typing information for each subsequent object module will be placed in the executable
file. This includes all object modules extracted from object files specified in subsequent
"FILE" directives and object modules extracted from libraries specified in subsequent
"LIBRARY" or "FILE" directives.

38 The DEBUG Directive

DEBUG

Note: All modules for which typing information is requested must have been compiled
with the "d2" option.

A subsequent "DEBUG WATCOM" directive without a "TYPES" or "ALL" option
terminates the processing of typing information.

3.13.4 All Debugging Information - DEBUG WATCOM ALL

The "DEBUG WATCOM ALL" option specifies that "LINES", "LOCALS", and "TYPES"
options are requested. The "LINES" option controls the processing of line numbering
information. The "LOCALS" option controls the processing of local symbol information.
The "TYPES" option controls the processing of typing information. Each of these options is
described in a previous section. A subsequent "DEBUG WATCOM " directive without an
"ALL" option discontinues those options which are not specified in the list of debug options.

3.13.5 Global Symbol Information

Global symbol information consists of all the global symbols in your program and their
address. This allows Watcom Debugger to locate these symbols so that you can reference
global data and routines by name. When the Watcom Linker encounters a "DEBUG"
directive, global symbol information for all the global symbols appearing in your program is
placed in the executable file.

3.13.6 Global Symbols for the NetWare 386 Debugger - DEBUG
NOVELL

The NetWare 386 operating system has a built-in debugger that can be used to debug
programs. When "DEBUG NOVELL" is specified, the Watcom Linker will generate global
symbol information that can be used by the NetWare 386 debugger. Note that any line
numbering, local symbol, and typing information generated in the executable file will not be
recognized by the NetWare 386 debugger. Also, WSTRIP cannot be used to remove this
form of global symbol information from the executable file.

The DEBUG Directive 39

DEBUG

3.13.7 The ONLYEXPORTS Debugging Option

The "ONLYEXPORTS" option (short form "ONL") restricts the generation of global symbol
information to exported symbols (symbols appearing in an "EXPORT" directive). If
"DEBUG WATCOM ONLYEXPORTS" is specified, Watcom Debugger global symbol
information is generated only for exported symbols. If "DEBUG NOVELL
ONLYEXPORTS" is specified, NetWare 386 global symbol information is generated only for
exported symbols.

3.13.8 Using DEBUG Directives

Consider the following directive file.

debug watcom all
file module1
debug watcom lines
file module2, module3
debug watcom
library mylib

It specifies that the following debugging information is to be generated in the executable file.

1. global symbol information for your program

2. line numbering, typing and local symbol information for the following object files:

module1.obj

3. line numbering information for the following object files:

module2.obj
module3.obj

Note that if the "DEBUG WATCOM" directive before the "LIBRARY" directive is not
specified, line numbering information for all object modules extracted from the library
"mylib.lib" would be generated in the executable file provided the object modules extracted
from the library have line numbering information present.

40 The DEBUG Directive

DEBUG

Note: A "DEBUG WATCOM" directive with no option suppresses the processing of line
numbering, local symbol and typing information for all subsequent object modules.

Debugging information can use a significant amount of disk space. As shown in the above
example, you can select only the class of debugging information you want and for those
modules you wish to debug. In this way, the amount of debugging information in the
executable file is minimized and hence the amount of disk space used by the executable file is
kept to a minimum.

As you can see from the above example, the position of the "DEBUG WATCOM" directive is
important when describing the debugging information that is to appear in the executable file.

Note: If you want all classes of debugging information for all files to appear in the
executable file you must specify "DEBUG WATCOM ALL" before any "FILE" and
"LIBRARY" directives.

3.13.9 Removing Debugging Information from an Executable File

A utility called WSTRIP has been provided which takes as input an executable file and
removes the debugging information placed in the executable file by the Watcom Linker. Note
that global symbol information generated using "DEBUG NOVELL" cannot be removed by
WSTRIP.

For more information on this utility, see the chapter entitled "The Watcom Strip Utility" in the
Watcom C/C++ Tools User’s Guide or Watcom FORTRAN 77 Tools User’s Guide.

The DEBUG Directive 41

DESCRIPTION (OS/2, Win16, Win32)

3.14 The DESCRIPTION Option

Formats: OS/2, Win16, Win32

The "DESCRIPTION" option inserts the specified text into the application or Dynamic Link
Library. This is useful if you wish to embed copyright information into an application or
Dynamic Link Library. The format of the "DESCRIPTION" option (short form "DE") is as
follows.

OPTION DESCRIPTION ’string’

where description:

string is the sequence of characters to be embedded into the application or Dynamic
Link Library.

42 The DESCRIPTION Option

DISABLE

3.15 The DISABLE Directive

Formats: All

The "DISABLE" directive is used to disable the display of linker messages.

The Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each
message has a 4-digit number associated with it. Fatal messages start with the digit 3, error
messages start with the digit 2, and warning messages start with the digit 1. It is possible for a
message to be issued as a warning or an error.

If a fatal error occurs, the linker will terminate immediately and no executable file will be
generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued.
However, no executable file will be generated since these errors do not permit a proper
executable file to be generated.

If a warning occurs, the linker will continue to execute. A warning message is usually
informational and does not prevent the creation of a proper executable file. However, all
warnings should eventually be corrected.

Note that the behaviour of the linker does not change when a message is disabled. For
example, if a message that normally terminates the linker is disabled, the linker will still
terminate but the message describing the reason for the termination will not be displayed. For
this reason, you should only disable messages that are warnings.

The linker will ignore the severity of the message number. For example, some messages can
be displayed as errors or warnings. It is not possible to disable the message when it is issued
as a warning and display the message when it is issued as an error. In general, do not specify
the severity of the message when specifying a message number.

The format of the "DISABLE" directive (short form "DISA") is as follows.

DISABLE msg_num{, msg_num}

The DISABLE Directive 43

DISABLE

where description:

msg_num is a message number. See the chapter entitled "Watcom Linker Diagnostic
Messages" on page 213 for a list of messages and their corresponding numbers.

The following "DISABLE" directive will disable message 28 (an undefined symbol has been
referenced).

disable 28

44 The DISABLE Directive

DOSSEG

3.16 The DOSSEG Option

Formats: All

The "DOSSEG" option tells the Watcom Linker to order segments in a special way. The
format of the "DOSSEG" option (short form "D") is as follows.

OPTION DOSSEG

When the "DOSSEG" option is specified, segments will be ordered in the following way.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment is initialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

When using Watcom run-time libraries, it is not necessary to specify the "DOSSEG" option.
One of the object files in the Watcom run-time libraries contains a special record that specifies
the "DOSSEG" option.

If no "DOSSEG" option is specified, segments are ordered in the order they are encountered
by the Watcom Linker.

The DOSSEG Option 45

DOSSEG

When the "DOSSEG" option is specified, the Watcom Linker defines two special variables.
edata defines the start of the "BSS" class of segments and end defines the end of the

"BSS" class of segments. Your program must not redefine these symbols.

46 The DOSSEG Option

ELIMINATE

3.17 The ELIMINATE Option

Formats: All

The "ELIMINATE" option can be used to enable dead code elimination. Dead code
elimination is a process the linker uses to remove unreferenced segments from the application.
The linker will only remove segments that contain code; unreferenced data segments will not
be removed.

The format of the "ELIMINATE" option (short form "EL") is as follows.

OPTION ELIMINATE

Linking C/C++ Applications
Typically, a module of C/C++ code contains a number of functions. When this
module is compiled, all functions will be placed in the same code segment. The
chances of each function in the module being unreferenced are remote and the
usefulness of the "ELIMINATE" option is greatly reduced.

In order to maximize the effect of the "ELIMINATE" option, the "zm" compiler
option is available to tell the Watcom C/C++ compiler to place each function in
its own code segment. This allows the linker to remove unreferenced functions
from modules that contain many functions.

Note, that if a function is referenced by data, as in a jump table, the linker will
not be able to eliminate the code for the function even if the data that references
it is unreferenced.

Linking FORTRAN 77 Applications
The Watcom FORTRAN 77 compiler always places each function and
subroutine in its own code segment, even if they are contained in the same
module. Therefore when linking with the "ELIMINATE" option the linker will
be able to eliminate code on a function/subroutine basis.

The ELIMINATE Option 47

ENDLINK

3.18 The ENDLINK Directive

Formats: All

The "ENDLINK" directive is used to indicate the end of a new set of linker commands that
are to be processed after the current set of commands has been processed. The format of the
"ENDLINK" directive (short form "ENDL") is as follows.

ENDLINK

The "STARTLINK" directive, described in "The STARTLINK Directive" on page 146, is
used to indicate the start of the set of commands.

48 The ENDLINK Directive

EXIT (NetWare)

3.19 The EXIT Option

Formats: NetWare

The format of the "EXIT" option (short form "EX") is as follows.

OPTION EXIT=symbol_name

where description:

symbol_name specifies the name of the procedure that is executed when an NLM is unloaded.

The default name of the exit procedure is "_Stop".

Note that the exit procedure cannot prevent the NLM from being unloaded. Once the exit
procedure has executed, the NLM will be unloaded. The "CHECK" option can be used to
specify a check procedure that can prevent an NLM from being unloaded.

The EXIT Option 49

EXPORT (ELF, NetWare, OS/2, Win16, Win32)

3.20 The EXPORT Directive

Formats: ELF, NetWare, OS/2, Win16, Win32

The "EXPORT" directive is used to tell the Watcom Linker which symbols are available for
import by other executables.

3.20.1 EXPORT - OS/2, Win16, Win32 only

The "EXPORT" directive can be used to define the names and attributes of functions in
Dynamic Link Libraries that are to be exported. An "EXPORT" definition must be specified
for every Dynamic Link Library function that is to be made available externally.

Win16: An "EXPORT" directive is also required for the "window function". This
function must be defined by all programs and is called by Windows to provide
information to the program. For example, the window function is called when a
window is created, destroyed or resized, when an item is selected from a menu,
or when a scroll bar is being clicked with a mouse.

The format of the "EXPORT" directive (short form "EXP") is as follows.

EXPORT export{,export}
or

EXPORT =lbc_file

OS/2 only:
export ::= entry_name[.ordinal][=internal_name]

[PRIVATE] [RESIDENT] [iopl_bytes]

Win16, Win32 only:
export ::= entry_name[.ordinal][=internal_name]

[PRIVATE] [RESIDENT]

where description:

entry_name is the name to be used by other applications to call the function.

ordinal is an ordinal value for the function. If the ordinal number is specified, other
applications can reference the function by using this ordinal number.

50 The EXPORT Directive

EXPORT (ELF, NetWare, OS/2, Win16, Win32)

internal_name is the actual name of the function and should only be specified if it differs
from the entry name.

PRIVATE (no short form) specifies that the function’s entry name should be included in
the DLL’s export table, but not included in any import library that the linker
generates.

RESIDENT (short form "RES") specifies that the function’s entry name should be kept
resident in memory (i.e., added to the resident names table).

By default, the entry name is always made memory resident if an ordinal is not
specified (i.e., it is implicitly RESIDENT). For 16-bit Windows, the limit on the
size of the resident names table is 64K bytes. Memory resident entry names
allow the operating system to resolve calls more efficiently when the call is by
entry name rather than by ordinal.

If an ordinal is specified and RESIDENT is not specified, the entry name is
added to the non-resident names table (i.e., it is implicitly non-RESIDENT). If
both the ordinal and the RESIDENT keyword are specified, the symbol is placed
in the resident names table.

If you do not want an entry name to appear in either the resident or non-resident
names table, you can use the "ANONYMOUSEXPORT" directive described in
"The ANONYMOUSEXPORT Directive" on page 24.

iopl_bytes (OS/2 only) is required for functions that execute with I/O privilege. iopl_bytes
specifies that total size of the function’s arguments in bytes. When such a
function is executed, the specified number of bytes is copied from the caller’s
stack to the I/O-privileged function’s stack. The maximum number of bytes
allowed is 63.

lbc_file is a file specification for the name of a librarian command file. If no file
extension is specified, a file extension of "lbc" is assumed. The linker will
process the librarian command file and look for commands to the librarian that
are used to create import library entries. These commands have the following
form.

++sym.dll name[.[altsym].export name][.ordinal]

The EXPORT Directive 51

EXPORT (ELF, NetWare, OS/2, Win16, Win32)

where description:

sym is the name of a symbol in a Dynamic Link Library.

dll_name is the name of the Dynamic Link Library that defines sym.

altsym is the name of a symbol in a Dynamic Link Library. When
omitted, the default symbol name is sym.

export_name is the name that an application that is linking to the Dynamic Link
Library uses to reference sym. When omitted, the default export
name is sym.

ordinal is the ordinal value that can be used to identify sym instead of
using the name export name.

All other librarian commands will be ignored.

Notes:

1. By default, the Watcom C and C++ compilers append an underscore (’_’) to all
function names. This should be considered when specifying entry_name and
internal_name in an "EXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., export ’myfunc@8’).

3. If the __export declspec modifier is used in the source code, it is the equivalent of
using the following linker directive:

EXPORT entry name RESIDENT

3.20.2 EXPORT - ELF only

The "EXPORT" directive is used to tell the Watcom Linker which symbols are available for
import by other executables. The format of the "EXPORT" directive (short form "EXP") is as
follows.

52 The EXPORT Directive

EXPORT (ELF, NetWare, OS/2, Win16, Win32)

EXPORT entry_name{,entry_name}

where description:

entry_name is the name of the exported symbol.

Notes:

1. By default, the Watcom C and C++ compilers append an underscore (’_’) to all
function names. This should be considered when specifying entry_name in an
"EXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., export ’myfunc@8’).

3.20.3 EXPORT - Netware only

The "EXPORT" directive is used to tell the Watcom Linker which symbols are available for
import by other NLMs. The format of the "EXPORT" directive (short form "EXP") is as
follows.

EXPORT entry_name{,entry_name}

where description:

entry_name is the name of the exported symbol.

Notes:

1. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., export ’myfunc@8’).

The EXPORT Directive 53

FILE

3.21 The FILE Directive

Formats: All

The "FILE" directive is used to specify the object files and library modules that the Watcom
Linker is to process. The format of the "FILE" directive (short form "F") is as follows.

FILE obj_spec{,obj_spec}

obj_spec ::= obj_file[(obj_module)]
| library_file[(obj_module)]

where description:

obj_file is a file specification for the name of an object file. If no file extension is
specified, a file extension of "obj" is assumed if you are running a DOS, OS/2 or
Windows-hosted version of the Watcom Linker. Also, if you are running a
DOS, OS/2 or Windows-hosted version of the Watcom Linker, the object file
specification can contain wild cards (*, ?). A file extension of "o" is assumed if
you are running a QNX-hosted version of the Watcom Linker.

library_file is a file specification for the name of a library file. Note that the file extension
of the library file (usually "lib") must be specified; otherwise an object file will
be assumed. When a library file is specified, all object files in the library are
included (whether required or not).

obj_module is the name of an object module defined in an object or library file.

Consider the following example.

Example:
wlink system my os f \math\sin, mycos

The Watcom Linker is instructed to process the following object files:

\math\sin.obj
mycos.obj

The object file "mycos.obj" is located in the current directory since no path was specified.

54 The FILE Directive

FILE

More than one "FILE" directive may be used. The following example is equivalent to the
preceding one.

Example:
wlink system my os f \math\sin f mycos

Thus, other directives may be placed between lists of object files.

The "FILE" directive can also specify object modules from a library file or object file.
Consider the following example.

Example:
wlink system my os f \math\math.lib(sin)

The Watcom Linker is instructed to process the object module "sin" contained in the library
file "math.lib" in the directory "\math".

In the following example, the Watcom Linker will process the object module "sin" contained
in the object file "math.obj" in the directory "\math".

Example:
wlink system my os f \math\math(sin)

In the following example, the Watcom Linker will include all object modules contained in the
library file "math.lib" in the directory "\math".

Example:
wlink system my os f \math\math.lib

The FILE Directive 55

FORMAT

3.22 The FORMAT Directive

Formats: All

The "FORMAT" directive is used to specify the format of the executable file that the Watcom
Linker is to generate. The format of the "FORMAT" directive (short form "FORM") is as
follows.

FORMAT form

form ::= DOS [COM]
| WINDOWS [win_dll] [MEMORY] [FONT]
| WINDOWS NT [TNT] [dll_attrs]
| OS2 [os2_type] [dll_attrs | os2_attrs]
| PHARLAP [EXTENDED | REX | SEGMENTED]
| NOVELL [NLM | LAN | DSK | NAM] ’description’
| QNX [FLAT]
| ELF [DLL]

win_dll ::= DLL [INITGLOBAL | INITINSTANCE]

dll_attrs ::= DLL [INITGLOBAL | INITINSTANCE]
[TERMINSTANCE | TERMGLOBAL]

os2_type ::= FLAT | LE | LX

os2_attrs ::= PM | PMCOMPATIBLE | FULLSCREEN
| PHYSDEVICE | VIRTDEVICE

where description:

DOS (short form "D") tells the Watcom Linker to generate a DOS "EXE" file.

The name of the executable file will have extension "exe". If "COM" is
specified, a DOS "COM" file will be generated in which case the name of the
executable file will have extension "com". Note that these default extensions
can be overridden by using the "NAME" directive to name the executable file.

Not all programs can be generated in the "COM" format. The following rules
must be followed.

56 The FORMAT Directive

FORMAT

1. The program must consist of only one physical segment. This implies
that the size of the program (code and data) must be less than 64k.

2. The program must not contain any segment relocation. A warning
message will be issued by the Watcom Linker each time a segment
relocation is encountered.

A DOS "COM" file cannot contain debugging information. If you wish to
debug a DOS "COM" file, you must use the "SYMFILE" option to instruct the
Watcom Linker to place the debugging information in a separate file.

For more information on DOS executable file formats, see the chapter entitled
"The DOS Executable File Format" on page 165.

WINDOWS tells the Watcom Linker to generate a Win16 (16-bit Windows) executable file.

The name of the executable file will have extension "exe". If "DLL" (short form
"DL") is specified, a Dynamic Link Library will be generated; the name of the
executable file will also have extension "exe". Note that these default extensions
can be overridden by using the "NAME" directive to name the executable file.

Specifying "INITGLOBAL" (short form "INITG") will cause Windows to call
an initialization routine the first time the Dynamic Link Library is loaded. The
"INITGLOBAL" option should be used with "OPTION ONEAUTODATA" (the
default for Dynamic Link Libraries). If the "INITGLOBAL" option is used with
"OPTION MANYAUTODATA", the initialization code will be called once for
the first data segment allocated but not for subsequent allocations (this is
generally not desirable behaviour and will likely cause a program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause Windows to call
an initialization routine each time the Dynamic Link Library is used by a
process. The "INITINSTANCE" option should be used with "OPTION
MANYAUTODATA" (the default for executable programs).

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is
assumed.

Specifying "MEMORY" (short form "MEM") indicates that the application will
run in standard or enhanced mode. If Windows 3.0 is running in standard and
enhanced mode, and "MEMORY" is not specified, a warning message will be
issued. The "MEMORY" specification was used in the transition from Windows
2.0 to Windows 3.0. The "MEMORY" specification is ignored in Windows 3.1
or later.

The FORMAT Directive 57

FORMAT

Specifying "FONT" (short form "FO") indicates that the proportional-spaced
system font can be used. Otherwise, the old-style mono-spaced system font will
be used. The "FONT" specification was used in the transition from Windows
2.0 to Windows 3.0. The "FONT" specification is ignored in Windows 3.1 or
later.

For more information on Windows executable file formats, see the chapter
entitled "The Win16 Executable and DLL File Formats" on page 199.

WINDOWS NT tells the Watcom Linker to generate a Win32 executable file ("PE" format).

If "TNT" is specified, an executable for the Phar Lap TNT DOS extender is
created. A "PL" format (rather than "PE") executable is created so that the Phar
Lap TNT DOS extender will always run the application (including under
Windows NT).

If "DLL" (short form "DL") is specified, a Dynamic Link Library will be
generated in which case the name of the executable file will have extension
"dll". Note that these default extensions can be overridden by using the
"NAME" directive to name the executable file.

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization
routine to be called the first time the Dynamic Link Library is loaded.

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization
routine to be called each time the Dynamic Link Library is referenced by a
process.

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is
assumed.

It is also possible to specify whether the initialization routine is to be called at
DLL termination or not. Specifying "TERMGLOBAL" (short form "TERMG")
will cause the initialization routine to be called when the last instance of the
Dynamic Link Library is terminated. Specifying "TERMINSTANCE" (short
form "TERMI") will cause the initialization routine to be called each time an
instance of the Dynamic Link Library is terminated. Note that the initialization
routine is passed an argument indicating whether it is being called during DLL
initialization or DLL termination. If "INITINSTANCE" is used and no
termination option is specified, "TERMINSTANCE" is assumed. If
"INITGLOBAL" is used and no termination option is specified,
"TERMGLOBAL" is assumed.

58 The FORMAT Directive

FORMAT

For more information on Windows NT executable file formats, see the chapter
entitled "The Win32 Executable and DLL File Formats" on page 207.

OS2 tells the Watcom Linker to generate an OS/2 executable file format.

The name of the executable file will have extension "exe". If "LE" is specified,
an early form of the OS/2 32-bit linear executable will be generated. This
executable file format is required by Tenberry Software’s DOS/4G and
DOS/4GW DOS extenders.

In order to improve load time and minimize the size of the executable file, the
OS/2 32-bit linear executable file format was changed. If "LX" or "FLAT"
(short form "FL") is specified, the new form of the OS/2 32-bit linear executable
will be generated. This executable file format is required by the FlashTek DOS
extender and 32-bit OS/2 executables.

If "FLAT", "LX" or "LE" is not specified, an OS/2 16-bit executable will be
generated.

If "DLL" (short form "DL") is specified, a Dynamic Link Library will be
generated in which case the name of the executable file will have extension
"dll". Note that these default extensions can be overridden by using the
"NAME" directive to name the executable file.

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization
routine to be called the first time the Dynamic Link Library is loaded. The
"INITGLOBAL" option should be used with "OPTION ONEAUTODATA" (the
default for Dynamic Link Libraries). If the "INITGLOBAL" option is used with
"OPTION MANYAUTODATA", the initialization code will be called once for
the first data segment allocated but not for subsequent allocations (this is
generally not desirable behaviour and will likely cause a program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization
routine to be called each time the Dynamic Link Library is referenced by a
process. The "INITINSTANCE" option should be used with "OPTION
MANYAUTODATA" (the default for executable programs).

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is
assumed.

For OS/2 32-bit linear executable files, it is also possible to specify whether the
initialization routine is to be called at DLL termination or not. Specifying
"TERMGLOBAL" (short form "TERMG") will cause the initialization routine

The FORMAT Directive 59

FORMAT

to be called when the last instance of the Dynamic Link Library is terminated.
Specifying "TERMINSTANCE" (short form "TERMI") will cause the
initialization routine to be called each time an instance of the Dynamic Link
Library is terminated. Note that the initialization routine is passed an argument
indicating whether it is being called during DLL initialization or DLL
termination. If "INITINSTANCE" is used and no termination option is
specified, "TERMINSTANCE" is assumed. If "INITGLOBAL" is used and no
termination option is specified, "TERMGLOBAL" is assumed.

If "PM" is specified, a Presentation Manager application will be created. The
application uses the API provided by the Presentation Manager and must be
executed in the Presentation Manager environment.

lf "PMCOMPATIBLE" (short form "PMC") is specified, an application
compatible with Presentation Manager will be created. The application can run
inside the Presentation Manager or it can run in a separate screen group. An
application can be of this type if it uses the proper subset of OS/2 video,
keyboard, and mouse functions supported in the Presentation Manager
applications. This is the default.

If "FULLSCREEN" (short form "FULL") is specified, an OS/2 full screen
application will be created. The application will run in a separate screen group
from the Presentation Manager.

If "PHYSDEVICE" (short form "PHYS") is specified, the executable file is
marked as a physical device driver.

If "VIRTDEVICE" (short form "VIRT") is specified, the executable file is
marked as a virtual device driver.

For more information on OS/2 executable file formats, see the chapter entitled
"The OS/2 Executable and DLL File Formats" on page 181.

PHARLAP (short form "PHAR") tells the Watcom Linker to generate an executable file that
will run under Phar Lap’s 386|DOS-Extender.

There are 4 forms of executable files: simple, extended, relocatable and
segmented. If "EXTENDED" (short form "EXT") is specified, an extended
form of the executable file with file extension "exp" will be generated. If "REX"
is specified, a relocatable executable file with file extension "rex" will be
generated. If "SEGMENTED" (short form "SEG") is specified, a segmented
executable file with file extension "exp" will be generated. If neither
"EXTENDED", "REX" or "SEGMENTED" is specified, a simple executable file

60 The FORMAT Directive

FORMAT

with file extension "exp" will be generated. Note that the default file extensions
can be overridden by using the "NAME" directive to name the executable file.

The simple form is for flat model 386 applications. It is the only format that can
be loaded by earlier versions of 386|DOS-Extender (earlier than 1.2).

The extended form is used for flat model applications that have been linked in a
way which requires a method of specifying more information for
386|DOS-Extender than possible with the simple form.

The relocatable form is similar to the simple form. Unique to the relocatable
form is an offset relocation table. This allows the loader to load the program at
any location it chooses.

The segmented form is used for embedded system applications like Intel RMX.
These executables cannot be loaded by 386|DOS-Extender.

A simple form of the executable file is generated in all but the following cases.

1. "EXTENDED" is specified in the "FORMAT" directive.

2. The "RUNTIME" directive is specified. Options specified by the
"RUNTIME" directive can only be specified in the extended form of
the executable file.

3. The "OFFSET" option is specified. The value specified in the
"OFFSET" option can only be specified in the extended form of the
executable file.

4. "REX" is specified in the "FORMAT" directive. In this case, the
relocatable form will be generated. You must not specify the
"RUNTIME" directive or the "OFFSET" option when generating the
relocatable form.

5. "SEGMENTED" is specified in the "FORMAT" directive. In this
case, the segmented form will be generated.

For more information on Phar Lap executable file formats, see the chapter
entitled "The Phar Lap Executable File Format" on page 189.

NOVELL (short form "NOV") tells the Watcom Linker to generate a NetWare 386
executable file, more commonly called a NetWare Loadable Module (NLM).

The FORMAT Directive 61

FORMAT

NLMs are further classified according to their function. The executable file will
have a file extension that depends on the class of the NLM being generated. The
following describes the classification of NLMs.

LAN instructs the Watcom Linker to generate a LAN driver. A LAN
driver is a device driver for Local Area Network hardware. A file
extension of "lan" is used for the name of the executable file.

DSK instructs the Watcom Linker to generate a disk driver. A file
extension of "dsk" is used for the name of the executable file.

NAM instructs the Watcom Linker to generate a file system name-space
support module. A file extension of "nam" is used for the name of
the executable file.

NLM instructs the Watcom Linker to generate a utility or server
application. This is the default. A file extension of "nlm" is used
for the name of the executable file.

description is a textual description of the program being linked.

For more information on NetWare 386 executable file formats, see the chapter
entitled "The NetWare 386 Executable File Format" on page 175.

QNX tells the Watcom Linker to generate a QNX executable file.

If "FLAT" (short form "FL") is specified, a 32-bit flat executable file is
generated.

Under QNX, no file extension is added to the executable file name.

Under other operating systems, the name of the executable file will have the
extension "qnx". Note that this default extension can be overridden by using the
"NAME" directive to name the executable file.

For more information on QNX executable file formats, see the chapter entitled
"The QNX Executable File Format" on page 195.

ELF tells the Watcom Linker to generate an ELF format executable file.

ELF format DLLs can also be created.

For more information on ELF executable file formats, see the chapter entitled
"The ELF Executable File Format" on page 171.

62 The FORMAT Directive

FORMAT

If no "FORMAT" directive is specified, the executable file format will be selected for each of
the following host systems in the way described.

DOS If 16-bit object files are encountered, a 16-bit DOS executable will be created.
If 32-bit object files are encountered, a 32-bit DOS/4G executable will be
created.

OS/2 If 16-bit object files are encountered, a 16-bit OS/2 executable will be created.
If 32-bit object files are encountered, a 32-bit OS/2 executable will be created.

QNX If 16-bit object files are encountered, a 16-bit QNX executable will be created.
If 32-bit object files are encountered, a 32-bit QNX executable will be created.

Windows NT If 16-bit object files are encountered, a 16-bit Windows executable will be
created. If 32-bit object files are encountered, a 32-bit Win32 executable will be
created.

Windows 95 If 16-bit object files are encountered, a 16-bit Windows executable will be
created. If 32-bit object files are encountered, a 32-bit Win32 executable will be
created.

The FORMAT Directive 63

HEAPSIZE (OS/2, QNX, Win16, Win32)

3.23 The HEAPSIZE Option

Formats: OS/2, QNX, Win16, Win32

The "HEAPSIZE" option specifies the size of the heap required by the application. The
format of the "HEAPSIZE" option (short form "H") is as follows.

OPTION HEAPSIZE=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n specifies the size of the heap. The default heap size is 0 bytes. The maximum value of n is
65536 (64K) for 16-bit applications and 4G for 32-bit applications which is the maximum size
of a physical segment. Actually, for a particular application, the maximum value of n is 64K
or 4G less the size of group "DGROUP".

64 The HEAPSIZE Option

HELP (NetWare)

3.24 The HELP Option

Formats: NetWare

The "HELP" option specifies the file name of an internationalized help file whose language
corresponds to the message file bound to this NLM.

The format of the "HELP" option (short form "HE") is as follows.

OPTION HELP=help_file

where description:

help_file is the name of the help file.

The HELP Option 65

IMPFILE (NetWare, OS/2, Win16, Win32)

3.25 The IMPFILE Option

Formats: NetWare, OS/2, Win16, Win32

The "IMPFILE" option requests the linker to produce a Watcom Library Manager command
file that can be used to create an import library that corresponds to the DLL that is being
generated. This option is useful in situations where the Watcom Linker cannot create an
import library file when you have specified the "IMPLIB" option (i.e., the linker fails to
launch Watcom Library Manager).

The format of the "IMPFILE" option (short form "IMPF") is as follows.

OPTION IMPFILE[=imp_file]

where description:

imp_file is a file specification for the name of the command file that can be used to create
the import library file using the Watcom Library Manager. If no file extension
is specified, no file extension is assumed.

By default, no command file is generated. Specifying this option causes the linker to generate
an import library command file. The import library command file contains a list of the entry
points in your DLL. When this command file is processed by the Watcom Library Manager,
an import library file will be produced.

If no file name is specified, the import library command file will have a default file extension
of "lbc" and the same file name as the DLL file. Note that the import library command file
will be created in the same directory as the DLL file. The DLL file path and name can be
specified in the "NAME" directive.

Alternatively, a library command file path and name can be specified. The following directive
instructs the linker to generate a import library command file and call it "mylib.lcf" regardless
of the name of the executable file.

option impfile=mylib.lcf

You can also specify a path and/or file extension when using the "IMPFILE=" form of the
"IMPFILE" option.

66 The IMPFILE Option

IMPLIB (NetWare, OS/2, Win16, Win32)

3.26 The IMPLIB Option

Formats: NetWare, OS/2, Win16, Win32

The "IMPLIB" option requests the linker to produce an import library that corresponds to the
DLL that is being generated. The format of the "IMPLIB" option (short form "IMPL") is as
follows.

OPTION IMPLIB[=imp_lib]

where description:

imp_lib is a file specification for the name of the import library file. If no file extension
is specified, a file extension of "lib" is assumed.

By default, no library file is generated. Specifying this option causes the Watcom Linker to
generate an import library file. The import library file contains a list of the entry points in
your DLL.

If no file name is specified, the import library file will have a default file extension of "lib"
and the same file name as the DLL file. Note that the import library file will be created in the
same directory as the DLL file. The DLL file path and name can be specified in the "NAME"
directive.

Alternatively, a library file path and name can be specified. The following directive instructs
the linker to generate a library file and call it "mylib.imp" regardless of the name of the
executable file.

option implib=mylib.imp

You can also specify a path and/or file extension when using the "IMPLIB=" form of the
"IMPLIB" option.

Note: At present, the linker spawns the Watcom Library Manager to create the import
library file.

The IMPLIB Option 67

IMPORT (ELF, NetWare, OS/2, Win16, Win32)

3.27 The IMPORT Directive

Formats: ELF, NetWare, OS/2, Win16, Win32

The "IMPORT" directive is used to tell the Watcom Linker what symbols are defined
externally in other executables.

3.27.1 IMPORT - OS/2, Win16, Win32 only

The "IMPORT" directive describes a function that belongs to a Dynamic Link Library. The
format of the "IMPORT" directive (short form "IMP") is as follows.

IMPORT import{,import}

import ::= internal_name module_name[.entry_name | ordinal]

where description:

internal_name is the name the application used to call the function.

module_name is the name of the Dynamic Link Library. Note that this need not be the same
as the file name of the executable file containing the Dynamic Link Library.
This name corresponds to the name specified by the "MODNAME" option when
the Dynamic Link Library was created.

entry_name is the actual name of the function as defined in the Dynamic Link Library.

ordinal is the ordinal value of the function. The ordinal number is an alternate method
that can be used to reference a function in a Dynamic Link Library.

Notes:

1. By default, the Watcom C and C++ compilers append an underscore (’_’) to all
function names. This should be considered when specifying internal_name and
entry_name in an "IMPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., import ’myfunc@8’).

68 The IMPORT Directive

IMPORT (ELF, NetWare, OS/2, Win16, Win32)

The preferred method to resolve references to Dynamic Link Libraries is through the use of
import libraries. See the sections entitled "Using a Dynamic Link Library" on page 185,
"Using a Dynamic Link Library" on page 204, or "Using a Dynamic Link Library" on page
211 for more information on import libraries.

3.27.2 IMPORT - ELF only

The "IMPORT" directive is used to tell the Watcom Linker what symbols are defined
externally in other executables. The format of the "IMPORT" directive (short form "IMP") is
as follows.

IMPORT external_name{,external_name}

where description:

external_name is the name of the external symbol.

Notes:

1. By default, the Watcom C and C++ compilers append an underscore (’_’) to all
function names. This should be considered when specifying external_name in an
"IMPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., import ’myfunc@8’).

3.27.3 IMPORT - Netware only

The "IMPORT" directive is used to tell the Watcom Linker what symbols are defined
externally in other NLMs. The format of the "IMPORT" directive (short form "IMP") is as
follows.

IMPORT external_name{,external_name}

The IMPORT Directive 69

IMPORT (ELF, NetWare, OS/2, Win16, Win32)

where description:

external_name is the name of the external symbol.

Notes:

1. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., import ’myfunc@8’).

If an NLM contains external symbols, the NLMs that define the external symbols must be
loaded before the NLM that references the external symbols is loaded.

70 The IMPORT Directive

INCLUDE

3.28 The @ Directive
The "@" directive instructs the Watcom Linker to process directives from an alternate source.
The format of the "@" directive is as follows.

@directive_var
or

@directive_file

where description:

directive_var is the name of an environment variable. The directives specified by the value of
directive var will be processed.

directive_file is a file specification for the name of a linker directive file. A file extension of
"lnk" is assumed if no file extension is specified.

The environment variable approach to specifying linker directives allows you to specify
commonly used directives without having to specify them each time you invoke the Watcom
Linker. If the environment variable "wlink" is set as in the following example,

set wlink=debug watcom all option map, verbose library math
wlink @wlink

then each time the Watcom Linker is invoked, full debugging information will be generated, a
verbose map file will be created, and the library file "math.lib" will be searched for undefined
references.

A linker directive file is useful, for example, when the linker input consists of a large number
of object files and you do not want to type their names on the command line each time you
link your program. Note that a linker directive file can also include other linker directive
files.

Let the file "memos.lnk" be a directive file containing the following lines.

The @ Directive 71

INCLUDE

system my os
name memos
file memos
file actions
file read
file msg
file prompt
file memmgr
library \termio\screen
library \termio\keyboard

Win16 only: We must also use the "EXPORT" directive to define the window function. This
is done using the following directive.

export window function

Consider the following example.

Example:
wlink @memos

The Watcom Linker is instructed to process the contents of the directive file "memos.lnk".
The executable image file will be called "memos.exe". The following object files will be
loaded from the current directory.

memos.obj
actions.obj
read.obj
msg.obj
prompt.obj
memmgr.obj

If any unresolved symbol references remain after all object files have been processed, the
library files "screen.lib" and "keyboard.lib" in the directory "\termio" will be searched (in the
order listed).

Notes:

1. In the above example, we did not provide the file extension when the directive file
was specified. The Watcom Linker assumes a file extension of "lnk" if none is
present.

2. It is not necessary to list each object file and library with a separate directive. The
following linker directive file is equivalent.

72 The @ Directive

INCLUDE

system my os
name memos
file memos,actions,read,msg,prompt,memmgr
library \termio\screen,\termio\keyboard

However, if you want to selectively specify what debugging information should be
included, the first style of directive file will be easier to use. This is illustrated in
the following sample directive file.

system my os
name memos
debug watcom lines
file memos
debug watcom all
file actions
debug watcom lines
file read
file msg
file prompt
file memmgr
debug watcom
library \termio\screen
library \termio\keyboard

3. Information for a particular directive can span directive files. This is illustrated in
the following sample directive file.

system my os
file memos, actions, read, msg, prompt, memmgr
file @dbgfiles
library \termio\screen
library \termio\keyboard

The directive file "dbgfiles.lnk" contains, for example, those object files that are
used for debugging purposes.

The @ Directive 73

INCREMENTAL (ELF, OS/2, PharLap, QNX, Win16, Win32)

3.29 The INCREMENTAL Option

Formats: ELF, OS/2, PharLap, QNX, Win16, Win32

The "INCREMENTAL" option can be used to enable incremental linking. Incremental
linking is a process whereby the linker attempts to modify the existing executable file by
changing only those portions for which new object files are provided.

The format of the "INCREMENTAL" option (short form "INC") is as follows.

OPTION INCREMENTAL[=inc_file_name]

where description:

inc_file_name is a file specification for the name of the incremental information file. If no
file extension is specified, a file extension of "ilk" is assumed.

This option engages the incremental linking feature of the linker. This option must be one of
the first options encountered in the list of directives and options supplied to the linker. If the
option is presented too late, the linker will issue a diagnostic message.

By default, the incremental information file has the same name as the program except with an
"ilk" extension unless the "NAME" directive has not been seen yet. If this is the case then the
file is called WLINK.ILK.

The linker’s incremental linking technique is very resistant to changes in the underlying object
files - there are very few cases where an incremental re-link is not possible. The options
"ELIMINATE" and "VFREMOVAL" cannot be used at the same time as incremental linking.

It is possible, over time, to accumulate unneeded functions in the executable by using
incremental linking. To guarantee an executable of minimum size, you can cause a full relink
by deleting the ".ilk" file or by not specifying the "INCREMENTAL" option.

Do not use a post processor like the Watcom Resource Compiler on the executable file since
this will damage the data structures maintained by the linker. Add resources to the executable
file using the "RESOURCE" option which is described in "The RESOURCE Option" on page
130.

74 The INCREMENTAL Option

INCREMENTAL (ELF, OS/2, PharLap, QNX, Win16, Win32)

Note: Only Dwarf debugging information is supported with incremental linking.

The INCREMENTAL Option 75

INTERNALRELOCS (OS/2)

3.30 The INTERNALRELOCS Option

Formats: OS/2

The "INTERNALRELOCS" option is used with LX format executables under 32-bit OS/2.
By default, OS/2 executables do not contain internal relocation information and OS/2
Dynamic Link Libraries do contain internal relocation information. This option causes the
Watcom Linker to include internal relocation information in OS/2 LX format executables.

The format of the "INTERNALRELOCS" option (short form "INT") is as follows.

OPTION INTERNALRELOCS

76 The INTERNALRELOCS Option

LANGUAGE

3.31 The LANGUAGE Directive

Formats: All

The "LANGUAGE" directive is used to specify the language in which strings in the Watcom
Linker directives are specified. The format of the "LANGUAGE" directive (short form
"LANG") is as follows.

LANGUAGE lang

lang ::= JAPANESE | CHINESE | KOREAN

JAPANESE (short form "JA") specifies that strings are to be handled as if they contained
characters from the Japanese Double-Byte Character Set (DBCS).

CHINESE (short form "CH") specifies that strings are to be handled as if they contained
characters from the Chinese Double-Byte Character Set (DBCS).

KOREAN (short form "KO") specifies that strings are to be handled as if they contained
characters from the Korean Double-Byte Character Set (DBCS).

The LANGUAGE Directive 77

LIBFILE

3.32 The LIBFILE Directive

Formats: All

The "LIBFILE" directive is used to specify the object files that the Watcom Linker is to
process. The format of the "LIBFILE" directive (short form "LIBF") is as follows.

LIBFILE obj_spec{,obj_spec}

obj_spec ::= obj_file | library_file

where description:

obj_file is a file specification for the name of an object file. If no file extension is
specified, a file extension of "obj" is assumed if you are running a DOS, OS/2 or
Windows-hosted version of the Watcom Linker. Also, if you are running a
DOS, OS/2 or Windows-hosted version of the Watcom Linker, the object file
specification can contain wild cards (*, ?). A file extension of "o" is assumed if
you are running a QNX-hosted version of the Watcom Linker.

library_file is a file specification for the name of a library file. Note that the file extension
of the library file (usually "lib") must be specified; otherwise an object file will
be assumed. When a library file is specified, all object files in the library are
included (whether required or not).

The difference between the "LIBFILE" directive and the "FILE" directive is as follows.

1. When searching for an object or library file specified in a "LIBFILE" directive, the
default directory will be searched first, followed by the paths specified in the
"LIBPATH" directive, and finally the paths specified in the "LIB" environment
variable. Note that if the object or library file name contains a path, only the
specified path will be searched.

2. Object or library file names specified in a "LIBFILE" directive will not be used to
create the name of the executable file when no "NAME" directive is specified.

Essentially, object files that appear in "LIBFILE" directives are viewed as components of a
library that have not been explicitly placed in a library file.

Consider the following linker directive file.

78 The LIBFILE Directive

LIBFILE

libpath \libs
libfile mystart
path \objs
file file1, file2

The Watcom Linker is instructed to process the following object files:

\libs\mystart.obj
\objs\file1.obj
\objs\file2.obj

Note that the executable file will have file name "file1" and not "mystart".

The LIBFILE Directive 79

LIBPATH

3.33 The LIBPATH Directive

Formats: All

The "LIBPATH" directive is used to specify the directories that are to be searched for library
files appearing in subsequent "LIBRARY" directives and object files appearing in subsequent
"LIBFILE" directives. The format of the "LIBPATH" directive (short form "LIBP") is as
follows.

LIBPATH [path_name{;path_name}]

where description:

path_name is a path name.

Consider a directive file containing the following linker directives.

file test
libpath \math
library trig
libfile newsin

First, the Watcom Linker will process the object file "test.obj" from the default directory. The
object file "newsin.obj" will then be processed, searching the default directory first. If
"newsin.obj" is not in the default directory, the "\math" directory will be searched. If any
unresolved references remain after processing the object files, the library file "trig.lib" will be
searched. If the file "trig.lib" does not exist in the default directory, the "\math" directory will
be searched.

It is also possible to specify a list of paths in a "LIBPATH" directive. Consider the following
example.

libpath \newmath;\math
library trig

When processing undefined references, the Watcom Linker will attempt to process the library
file "trig.lib" in the default directory. If "trig.lib" does not exist in the default directory, the
"\newmath" directory will be searched. If "trig.lib" does not exist in the "\newmath"
directory, the "\math" directory will be searched.

80 The LIBPATH Directive

LIBPATH

If the name of a library file appearing in a "LIBRARY" directive or the the name of an object
file appearing in a "LIBFILE" directive contains a path specification, only the specified path
will be searched.

Note that

libpath path1
libpath path2

is equivalent to the following.

libpath path2;path1

The LIBPATH Directive 81

LIBRARY

3.34 The LIBRARY Directive

Formats: All

The "LIBRARY" directive is used to specify the library files to be searched when unresolved
symbols remain after processing all specified input object files. The format of the
"LIBRARY" directive (short form "L") is as follows.

LIBRARY library_file{,library_file}

where description:

library_file is a file specification for the name of a library file. If no file extension is
specified, a file extension of "lib" is assumed.

Consider the following example.

Example:
wlink system my os file trig lib \math\trig, \cmplx\trig

The Watcom Linker is instructed to process the following object file:

trig.obj

If any unresolved symbol references remain after all object files have been processed, the
following library files will be searched:

\math\trig.lib
\cmplx\trig.lib

More than one "LIBRARY" directive may be used. The following example is equivalent to
the preceding one.

82 The LIBRARY Directive

LIBRARY

Example:
wlink system my os f trig lib \math\trig lib \cmplx\trig

Thus other directives may be placed between lists of library files.

3.34.1 Searching for Libraries Specified in Environment Variables

The "LIB" environment variable can be used to specify a list of paths that will be searched for
library files. The "LIB" environment variable can be set using the "set" command as follows:

set lib=\graphics\lib;\utility

Consider the following "LIBRARY" directive and the above definition of the "LIB"
environment variable.

library \mylibs\util, graph

If undefined symbols remain after processing all object files specified in all "FILE" directives,
the Watcom Linker will resolve these references by searching the following libraries in the
specified order.

1. the library file "\mylibs\util.lib"
2. the library file "graph.lib" in the current directory
3. the library file "\graphics\lib\graph.lib"
4. the library file "\utility\graph.lib"

Notes:

1. If a library file specified in a "LIBRARY" directive contains an absolute path
specification, the Watcom Linker will not search any of the paths specified in the
"LIB" environment string for the library file. Under QNX, an absolute path
specification is one that begins the "/" character. Under all other operating systems,
an absolute path specification is one that begins with a drive specification or the "\"
character.

2. Once a library file has been found, no further elements of the "LIB" environment
variable are searched for other libraries of the same name. That is, if the library file
"\graphics\lib\graph.lib" exists, the library file "\utility\graph.lib" will not be
searched even though unresolved references may remain.

The LIBRARY Directive 83

LIBRARY

3.34.2 Converting Libraries Created using Phar Lap 386|LIB

Phar Lap’s librarian, 386|LIB, creates libraries whose dictionary is a different format from the
one used by other librarians. For this reason, linking an application using the Watcom Linker
with libraries created using 386|LIB will not work. Library files created using 386|LIB must
be converted to the form recognized by the Watcom Linker. This is achieved by issuing the
following WLIB command.

wlib newlib +pharlib.lib

The library file "pharlib.lib" is a library created using 386|LIB. The library file "newlib.lib"
will be created so that the Watcom Linker can now process it.

84 The LIBRARY Directive

LINEARRELOCS (QNX)

3.35 The LINEARRELOCS Option

Formats: QNX

The "LINEARRELOCS" option instructs the linker to generate offset fixups in addition to the
normal segment fixups. The offset fixups allow the system to move pieces of code and data
that were loaded at a particular offset within a segment to another offset within the same
segment.

The format of the "LINEARRELOCS" option (short form "LI") is as follows.

OPTION LINEARRELOCS

The LINEARRELOCS Option 85

LONGLIVED (QNX)

3.36 The LONGLIVED Option

Formats: QNX

The "LONGLIVED" option specifies that the application being linked will reside in memory,
or be active, for a long period of time (e.g., background tasks). The memory manager,
knowing an application is "LONGLIVED", allocates memory for the application so as to
reduce fragmentation.

The format of the "LONGLIVED" option (short form "LO") is as follows.

OPTION LONGLIVED

86 The LONGLIVED Option

MANGLEDNAMES

3.37 The MANGLEDNAMES Option

Formats: All

The "MANGLEDNAMES" option should only be used if you are developing a Watcom C++
application. Due to the nature of C++, the Watcom C++ compiler generates mangled names
for symbols. A mangled name for a symbol includes the following.

1. symbol name
2. scoping information
3. typing information

This information is stored in a cryptic form with the symbol. When the linker encounters a
mangled name in an object file, it formats the above information and produces this name in
the map file.

If you would like the linker to produce the mangled name as it appeared in the object file,
specify the "MANGLEDNAMES" option.

The format of the "MANGLEDNAMES" option (short form "MANG") is as follows.

OPTION MANGLEDNAMES

The MANGLEDNAMES Option 87

MANYAUTODATA (OS/2, Win16)

3.38 The MANYAUTODATA Option

Formats: OS/2, Win16

The "MANYAUTODATA" option specifies that a copy of the automatic data segment
(default data segment defined by the group "DGROUP"), for the program module or Dynamic
Link Library (DLL) being created, is made for each instance. The format of the
"MANYAUTODATA" option (short form "MANY") is as follows.

OPTION MANYAUTODATA

The default for a program module is "MANYAUTODATA" and for a Dynamic Link Library
is "ONEAUTODATA". If you do not want the data area of a DLL to be shared across
multiple applications, then you should specify "OPTION MANYAUTODATA".

Win16: Note, however, that this attribute is not supported by Windows 3.x for 16-bit
DLLs.

You should also see the related section entitled "The FORMAT Directive" on page 56 for
information on the "INITINSTANCE", "TERMINSTANCE", "INITGLOBAL", and
"TERMGLOBAL" DLL attributes.

88 The MANYAUTODATA Option

MAP

3.39 The MAP Option

Formats: All

The "MAP" option controls the generation of a map file. The format of the "MAP" option
(short form "M") is as follows.

OPTION MAP[=map_file]

where description:

map_file is a file specification for the name of the map file. If no file extension is
specified, a file extension of "map" is assumed.

By default, no map file is generated. Specifying this option causes the Watcom Linker to
generate a map file. The map file is simply a memory map of your program. That is, it
specifies the relative location of all global symbols in your program. The map file also
contains the size of your program.

If no file name is specified, the map file will have a default file extension of "map" and the
same file name as the executable file. Note that the map file will be created in the current
directory even if the executable file name specified in the "NAME" directive contains a path
specification.

Alternatively, a file name can be specified. The following directive instructs the linker to
generate a map file and call it "myprog.map" regardless of the name of the executable file.

option map=myprog

You can also specify a path and/or file extension when using the "MAP=" form of the "MAP"
option.

The MAP Option 89

MAXDATA (PharLap)

3.40 The MAXDATA Option

Formats: PharLap

The format of the "MAXDATA" option (short form "MAXD") is as follows.

OPTION MAXDATA=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n specifies the maximum number of bytes, in addition to the memory required by executable
image, that may be allocated by 386|DOS-Extender at the end of the loaded executable image.
No more than n bytes will be allocated.

If the "MAXDATA" option is not specified, a default value of hexadecimal ffffffff is
assumed. This means that 386|DOS-Extender will allocate all available memory to the
program at load time.

90 The MAXDATA Option

MAXERRORS

3.41 The MAXERRORS Option

Formats: All

The "MAXERRORS" option can be used to set a limit on the number of error messages
generated by the linker. Note that this does not include warning messages. When this limit is
reached, the linker will issue a fatal error and terminate.

The format of the "MAXERRORS" option (short form "MAXE") is as follows.

OPTION MAXERRORS=n

where description:

n is the maximum number of error messages issued by the linker.

The MAXERRORS Option 91

MESSAGES (NetWare)

3.42 The MESSAGES Option

Formats: NetWare

The "MESSAGES" option specifies the file name of an internationalized message file that
contains the default messages for the NLM. This is the name of the default message file to
load for NLMs that are enabled. Enabling allows the same NLM to display messages in
different languages by switching message files.

The format of the "MESSAGES" option (short form "MES") is as follows.

OPTION MESSAGES=msg_file

where description:

msg_file is the name of the message file.

92 The MESSAGES Option

MINDATA (PharLap)

3.43 The MINDATA Option

Formats: PharLap

The format of the "MINDATA" option (short form "MIND") is as follows.

OPTION MINDATA=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n specifies the minimum number of bytes, in addition to the memory required by executable
image, that must be allocated by 386|DOS-Extender at the end of the loaded executable
image. If n bytes are not available, the program will not be executed.

If the "MINDATA" option is not specified, a default value of zero is assumed. This means
that 386|DOS-Extender will load the program as long as there is enough memory for the load
image; no extra memory is required.

The MINDATA Option 93

MODNAME (OS/2, Win16, Win32)

3.44 The MODNAME Option

Formats: OS/2, Win16, Win32

The "MODNAME" option specifies a name to be given to the module being created. The
format of the "MODNAME" option (short form "MODN") is as follows.

OPTION MODNAME=module_name

where description:

module_name is the name of a Dynamic Link Library.

Once a module has been loaded (whether it be a program module or a Dynamic Link Library),
mod_name is the name of the module known to the operating system. If the "MODNAME"
option is not used to specify a module name, the default module name is the name of the
executable file without the file extension.

94 The MODNAME Option

MODFILE

3.45 The MODFILE Directive

Formats: All

The "MODFILE" directive instructs the linker that only the specified object files have
changed. The format of the "MODFILE" directive (short form "MODF") is as follows.

MODFILE obj_file{,obj_file}

where description:

obj_file is a file specification for the name of an object file. If no file extension is
specified, a file extension of "obj" is assumed if you are running a DOS, OS/2 or
Windows-hosted version of the Watcom Linker. Also, if you are running a
DOS, OS/2 or Windows-hosted version of the Watcom Linker, the object file
specification can contain wild cards (*, ?). A file extension of "o" is assumed if
you are running a QNX-hosted version of the Watcom Linker.

This directive is used only in concert with incremental linking. This directive tells the linker
that only the specified object files have changed. When this option is specified, the linker will
not check the dates on any of the object files or libraries when incrementally linking.

The MODFILE Directive 95

MODTRACE

3.46 The MODTRACE Directive

Formats: All

The "MODTRACE" directive instructs the Watcom Linker to print a list of all modules that
reference the symbols defined in the specified modules. The format of the "MODTRACE"
directive (short form "MODT") is as follows.

MODTRACE module_name{,module_name}

where description:

module_name is the name of an object module defined in an object or library file.

The information is displayed in the map file. Consider the following example.

Example:
wlink system my os op map file test lib math modt trig

If the module "trig" defines the symbols "sin" and "cos", the Watcom Linker will list, in the
map file, all modules that reference the symbols "sin" and "cos".

96 The MODTRACE Directive

MODULE (ELF, NetWare)

3.47 The MODULE Directive

Formats: ELF, NetWare

The "MODULE" directive is used to specify the DLLs or NLMs to be loaded before this
executable is loaded. The format of the "MODULE" directive (short form "MODU") is as
follows.

MODULE module_name{,module_name}

where description:

module_name is the file name of a DLL or NLM.

WARNING! Versions 3.0 and 3.1 of the NetWare 386 operating system do not support
the automatic loading of modules specified in the "MODULE" directive. You must load
them manually.

The MODULE Directive 97

MULTILOAD (NetWare)

3.48 The MULTILOAD Option

Formats: NetWare

The "MULTILOAD" option specifies that the module can be loaded more than once by a
"load" command. The format of the "MULTILOAD" option (short form "MULTIL") is as
follows.

OPTION MULTILOAD

If the "MULTILOAD" option is not specified, it will not be possible to load the module more
than once using the "load" command.

98 The MULTILOAD Option

NAME

3.49 The NAME Directive

Formats: All

The "NAME" directive is used to provide a name for the executable file generated by the
Watcom Linker. The format of the "NAME" directive (short form "N") is as follows.

NAME exe_file

where description:

exe_file is a file specification for the name of the executable file. Under QNX, no file
extension is appended. For all other operating systems, a file extension suitable
for the current executable file format is appended if no file extension is
specified.

Consider the following example.

Example:
wlink system my os name myprog file test, test2, test3

The linker is instructed to generate an executable file called "myprog.exe" if you are running a
DOS, OS/2 or Windows-hosted version of the linker. If you are running a QNX-hosted
version of the linker, an executable file called "myprog" will be generated.

Notes:

1. No file extension was given when the executable file name was specified. The
linker assumes a file extension that depends on the format of the executable file
being generated. If you are running a QNX-hosted version of the linker, no file
extension will be assumed. The section entitled "The FORMAT Directive" on page
56 describes the "FORMAT" directive and how the file extension is chosen for
each executable file format.

2. If no "NAME" directive is present, the executable file will have the file name of the
first object file processed by the linker. If the first object file processed is called
"test.obj" and no "NAME" directive is specified, an executable file called "test.exe"
will be generated if you are running a DOS or OS/2-hosted version of the linker. If
you are running a QNX-hosted version of the linker, an executable file called "test"
will be generated.

The NAME Directive 99

NAMELEN

3.50 The NAMELEN Option

Formats: All

The "NAMELEN" option tells the Watcom Linker that all symbols must be uniquely
identified in the number of characters specified or less. If any symbol fails to satisfy this
condition, a warning message will be issued. The warning message will state that a symbol
has been defined more than once.

The format of the "NAMELEN" option (short form "NAMEL") is as follows.

OPTION NAMELEN=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

Some computer systems, for example, require that all global symbols be uniquely identified in
8 characters. By specifying an appropriate value for the "NAMELEN" option, you can ease
the task of porting your application to other computer systems.

100 The NAMELEN Option

NEWFILES (OS/2)

3.51 The NEWFILES Option

Formats: OS/2

The "NEWFILES" option specifies that the application uses the high-performance file system.
This option is applicable to 16-bit OS/2 applications only. The format of the "NEWFILES"
option (short form "NEWF") is as follows.

OPTION NEWFILES

The NEWFILES Option 101

NEWSEGMENT (DOS, OS/2, QNX, Win16)

3.52 The NEWSEGMENT Directive

Formats: DOS, OS/2, QNX, Win16

This directive is intended for 16-bit segmented applications. By default, the Watcom Linker
automatically groups logical code segments into physical segments. By default, these
segments are 64K bytes in size. However, the "PACKCODE" option can be used to specify a
maximum size for all physical segments that is smaller than 64K bytes.

The "NEWSEGMENT" directive provides an alternate method of grouping code segments
into physical segments. By placing this directive after a sequence of "FILE" directives, all
code segments appearing in object modules specified by the sequence of "FILE" directives
will be packed into a physical segment. Note that the size of a physical segment may vary in
size. The format of the "NEWSEGMENT" directive (short form "NEW") is as follows.

NEWSEGMENT

Consider the following example.

file file1, file2, file3
newsegment
file file4
file file5

Code segments from file1, file2 and file3 will be grouped into one physical segment. Code
segments from file4 and file5 will be grouped into another physical segment.

Note that code segments extracted from library files will be grouped into physical segments as
well. The size of these physical segments is determined by the "PACKCODE" option and is
64k by default.

102 The NEWSEGMENT Directive

NLMFLAGS (NetWare)

3.53 The NLMFLAGS Option

Formats: NetWare

The "NLMFLAGS" option is used to set bits in the flags field of the header of the Netware
executable file. The format of the "NLMFLAGS" option (short form "NLMF") is as follows.

OPTION NLMFLAGS=some_value

where description:

some_value is an integer value that is OR’ed into the flags field of the header of the Netware
executable.

The NLMFLAGS Option 103

NOAUTODATA (OS/2, Win16)

3.54 The NOAUTODATA Option

Formats: OS/2, Win16

The "NOAUTODATA" option specifies that no automatic data segment (default data segment
defined by the group "DGROUP"), exists for the program module or Dynamic Link Library
being created. This option applies to 16-bit applications only. The format of the
"NOAUTODATA" option (short form "NOA") is as follows.

OPTION NOAUTODATA

104 The NOAUTODATA Option

NODEFAULTLIBS

3.55 The NODEFAULTLIBS Option

Formats: All

Special object module records that specify default libraries are placed in object files generated
by Watcom compilers. These libraries reflect the memory and floating-point model that a
source file was compiled for and are automatically searched by the Watcom Linker when
unresolved symbols are detected. These libraries can exist in the current directory, in one of
the paths specified in "LIBPATH" directives, or in one of the paths specified in the LIB
environment variable.

Note that all library files that appear in a "LIBRARY" directive are searched before default
libraries. The "NODEFAULTLIBS" option instructs the Watcom Linker to ignore default
libraries. That is, only libraries appearing in a "LIBRARY" directive are searched.

The format of the "NODEFAULTLIBS" option (short form "NOD") is as follows.

OPTION NODEFAULTLIBS

The NODEFAULTLIBS Option 105

NORELOCS (QNX, Win32)

3.56 The NORELOCS Option

Formats: QNX, Win32

The "NORELOCS" option specifies that no relocation information is to be written to the
executable file. When the "NORELOCS" option is specified, the executable file can only be
run in protected mode and will not run in real mode. In real mode, the relocation information
is required; in protected mode, the relocation information is not required unless your
application is running at privilege level 0.

The format of the "NORELOCS" option (short form "NOR") is as follows.

OPTION NORELOCS

where description:

NORELOCS tells the Watcom Linker not to generate relocation information.

106 The NORELOCS Option

NOSTDCALL (Win32)

3.57 The NOSTDCALL Option

Formats: Win32

The "NOSTDCALL" option specifies that the characters unique to the __stdcall calling
convention be trimmed from all of the symbols that are exported from the DLL being created.
The format of the "NOSTDCALL" option (short form "NOSTDC") is as follows.

OPTION NOSTDCALL

Considering the following declarations.

Example:
short PASCAL export Function1(short var1,

long varlong,
short var2);

short PASCAL export Function2(long varlong,
short var2);

Under ordinary circumstances, these __stdcall symbols are mapped to "_Function1@12" and
"_Function2@8" respectively. The "@12" and "@8" reflect the number of bytes in the
argument list (short is passed as int). When the "NOSTDCALL" option is specified, these
symbols are stripped of the "_" and "@xx" adornments. Thus they are exported from the DLL
as "Function1" and "Function2".

This option makes it easier to access functions exported from DLLs, especially when using
other software languages such as FORTRAN which do not add on the __stdcall adornments.

Note: Use the "IMPLIB" option to create an import library for the DLL which can be used
with software languages that add on the __stdcall adornments.

The NOSTDCALL Option 107

OBJALIGN (Win32)

3.58 The OBJALIGN Option

Formats: Win32

The "OBJALIGN" option specifies the alignment for objects in the executable file. The
format of the "OBJALIGN" option (short form "OBJA") is as follows.

OPTION OBJALIGN=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n must be a value that is a power of 2 and is between 512 bytes and 256
megabytes inclusive. The default is 64k.

108 The OBJALIGN Option

OLDLIBRARY (OS/2, Win16, Win32)

3.59 The OLDLIBRARY Option

Formats: OS/2, Win16, Win32

The "OLDLIBRARY" option is used to preserve the export ordinals for successive versions of
a Dynamic Link Library. This ensures that any application that references functions in a
Dynamic Link Library by ordinal will continue to execute correctly. The format of the
"OLDLIBRARY" option (short form "OLD") is as follows.

OPTION OLDLIBRARY=dll_name

where description:

dll_name is a file specification for the name of a Dynamic Link Library. If no file
extension is specified, a file extension of "DLL" is assumed.

Only the current directory or a specified directory will be searched for Dynamic Link
Libraries specified in the "OLDLIBRARY" option.

The OLDLIBRARY Option 109

OFFSET (OS/2, PharLap, QNX, Win32)

3.60 The OFFSET Option

Formats: OS/2, PharLap, QNX, Win32

For OS/2 and Win32 applications, the "OFFSET" option specifies the preferred base linear
address at which the executable or DLL will be loaded.

For 32-bit PharLap and QNX applications, the "OFFSET" option specifies the offset in the
program’s segment in which the first byte of code or data is loaded.

3.60.1 OFFSET - OS/2, Win32 only

The "OFFSET" option specifies the preferred base linear address at which the executable or
DLL will be loaded. The Watcom Linker will relocate the application for the specified base
linear address so that when it is loaded by the operating system, no relocation will be required.
This decreases the load time of the application.

If the operating system is unable to load the application at the specified base linear address, it
will load it at a different location which will increase the load time since a relocation phase
must be performed.

The format of the "OFFSET" option (short form "OFF") is as follows.

OPTION OFFSET=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

The "OFFSET" option is used to specify the base linear address (in bytes) at which the
program is loaded and must be a multiple of 64K. The linker will round the value up to a
multiple of 64K if it is not already a multiple of 64K. The default base linear address is 64K
for OS/2 executables and 4096K for Win32 executables.

110 The OFFSET Option

OFFSET (OS/2, PharLap, QNX, Win32)

This option is most useful for improving the load time of DLLs, especially for an application
that uses multiple DLLs.

3.60.2 OFFSET - PharLap only

The "OFFSET" option specifies the offset in the program’s segment in which the first byte of
code or data is loaded. The format of the "OFFSET" option (short form "OFF") is as follows.

OPTION OFFSET=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n specifies the offset (in bytes) at which the program is loaded and must be a multiple of 4K.
The Watcom Linker will round the value up to a multiple of 4K if it is not already a multiple
of 4K.

It is possible to detect NULL pointer references by linking the program at an offset which is a
multiple of 4K. Usually an offset of 4K is sufficient.

Example:
option offset=4k

When the program is loaded by 386|DOS-Extender, the pages skipped by the "OFFSET"
option are not mapped. Any reference to an unmapped area (such as a NULL pointer) will
cause a page fault preventing the NULL reference from corrupting the program.

3.60.3 OFFSET - QNX only

The "OFFSET" option specifies the offset in the program’s segment in which the first byte of
code or data is loaded. This option does not apply to 16-bit QNX applications. The format of
the "OFFSET" option (short form "OFF") is as follows.

The OFFSET Option 111

OFFSET (OS/2, PharLap, QNX, Win32)

OPTION OFFSET=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n specifies the offset (in bytes) at which the program is loaded and must be a multiple of 4K.
The Watcom Linker will round the value up to a multiple of 4K if it is not already a multiple
of 4K. The following describes a use of the "OFFSET" option.

It is possible to detect NULL pointer references by linking the program at an offset which is a
multiple of 4K. Usually an offset of 4K is sufficient.

Example:
option offset=4k

When the program is loaded, the pages skipped by the "OFFSET" option are not mapped.
Any reference to an unmapped area (such as a NULL pointer) will cause a page fault
preventing the NULL reference from corrupting the program.

112 The OFFSET Option

ONEAUTODATA (OS/2, Win16)

3.61 The ONEAUTODATA Option

Formats: OS/2, Win16

The "ONEAUTODATA" option specifies that the automatic data segment (default data
segment defined by the group "DGROUP"), for the program module or Dynamic Link Library
(DLL) being created, will be shared by all instances. The format of the "ONEAUTODATA"
option (short form "ONE") is as follows.

OPTION ONEAUTODATA

The default for a Dynamic Link Library is "ONEAUTODATA" and for a program module is
"MANYAUTODATA". If you do not want the data area of a DLL to be shared across
multiple applications, then you should specify "OPTION MANYAUTODATA".

Win16: Note, however, that this attribute is not supported by Windows 3.x for 16-bit
DLLs.

You should also see the related section entitled "The FORMAT Directive" on page 56 for
information on the "INITINSTANCE", "TERMINSTANCE", "INITGLOBAL", and
"TERMGLOBAL" DLL attributes.

The ONEAUTODATA Option 113

OPTION

3.62 The OPTION Directive

Formats: All

The "OPTION" directive is used to specify options to the Watcom Linker. The format of the
"OPTION" directive (short form "OP") is as follows.

OPTION option{,option}

where description:

option is any of the linker options available for the executable format that is being
generated.

114 The OPTION Directive

OPTLIB

3.63 The OPTLIB Directive

Formats: All

The "OPTLIB" directive is used to specify the library files to be searched when unresolved
symbols remain after processing all specified input object files. The format of the "OPTLIB"
directive (no short form) is as follows.

OPTLIB library_file{,library_file}

where description:

library_file is a file specification for the name of a library file. If no file extension is
specified, a file extension of "lib" is assumed.

This directive is similar to the "LIBRARY" directive except that the linker will not issue a
warning message if the library file cannot be found.

Consider the following example.

Example:
wlink system my os file trig optlib \math\trig, \cmplx\trig

The Watcom Linker is instructed to process the following object file:

trig.obj

If any unresolved symbol references remain after all object files have been processed, the
following library files will be searched:

\math\trig.lib
\cmplx\trig.lib

More than one "OPTLIB" directive may be used. The following example is equivalent to the
preceding one.

The OPTLIB Directive 115

OPTLIB

Example:
wlink system my os f trig optlib \math\trig optlib
\cmplx\trig

Thus other directives may be placed between lists of library files.

3.63.1 Searching for Optional Libraries Specified in Environment
Variables

The "LIB" environment variable can be used to specify a list of paths that will be searched for
library files. The "LIB" environment variable can be set using the "set" command as follows:

set lib=\graphics\lib;\utility

Consider the following "OPTLIB" directive and the above definition of the "LIB"
environment variable.

optlib \mylibs\util, graph

If undefined symbols remain after processing all object files specified in all "FILE" directives,
the Watcom Linker will resolve these references by searching the following libraries in the
specified order.

1. the library file "\mylibs\util.lib"
2. the library file "graph.lib" in the current directory
3. the library file "\graphics\lib\graph.lib"
4. the library file "\utility\graph.lib"

Notes:

1. If a library file specified in a "OPTLIB" directive contains an absolute path
specification, the Watcom Linker will not search any of the paths specified in the
"LIB" environment string for the library file. On QNX-hosted systems, an absolute
path specification is one that begins the "/" character. On all other hosts, an
absolute path specification is one that begins with a drive specification or the "\"
character.

2. Once a library file has been found, no further elements of the "LIB" environment
variable are searched for other libraries of the same name. That is, if the library file
"\graphics\lib\graph.lib" exists, the library file "\utility\graph.lib" will not be
searched even though unresolved references may remain.

116 The OPTLIB Directive

OSDOMAIN (NetWare)

3.64 The OSDOMAIN Option

Formats: NetWare

The "OSDOMAIN" option is used when the application is to run in the operating system
domain (ring 0).

The format of the "OSDOMAIN" option (short form "OSD") is as follows.

OPTION OSDOMAIN

The OSDOMAIN Option 117

PSEUDOPREEMPTION (NetWare)

3.65 The PSEUDOPREEMPTION Option

Formats: NetWare

The "PSEUDOPREEMPTION" option specifies that an additional set of system calls will
yield control to other processes. Multitasking in the NetWare 386 operating system is
non-preemptive. That is, a process must give up control in order for other processes to
execute. Using the "PSEUDOPREEMPTION" option increases the probability that all
processes are given an equal amount of CPU time.

The format of the "PSEUDOPREEMPTION" option (short form "PS") is as follows.

OPTION PSEUDOPREEMPTION

118 The PSEUDOPREEMPTION Option

OSNAME

3.66 The OSNAME Option

Formats: All

The "OSNAME" option can be used to set the name of the target operating system of the
executable file generated by the linker. The format of the "OSNAME" option (short form
"OSN") is as follows.

OPTION OSNAME=’string’

where description:

string is any sequence of characters.

The information specified by the "OSNAME" option will be displayed in the creating a ?
executable message. This is the last line of output produced by the linker, provided the
"QUIET" option is not specified. Consider the following example.

option osname=’SuperOS’

The last line of output produced by the linker will be as follows.

creating a SuperOS executable

Some executable formats have a stub executable file that is run under 16-bit DOS. The
message displayed by the default stub executable file will be modified when the "OSNAME"
option is used. The default stub executable displays the following message:

OS/2: this is an OS/2 executable

Win16: this is a Windows executable

Win32: this is a Windows NT executable

If the "OSNAME" option used in the previous example was specified, the default stub
executable would generate the following message.

this is a SuperOS executable

The OSNAME Option 119

PACKCODE (DOS, OS/2, QNX, Win16)

3.67 The PACKCODE Option

Formats: DOS, OS/2, QNX, Win16

This option is intended for 16-bit segmented applications. By default, the Watcom Linker
automatically groups logical code segments into physical segments. The "PACKCODE"
option is used to specify the size of the physical segment. The format of the "PACKCODE"
option (short form "PACKC") is as follows.

OPTION PACKCODE=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n specifies the size of the physical segments into which code segments are packed. The
default value of n is 64K for 16-bit applications. Note that this is also the maximum size of a
physical segment. To suppress automatic grouping of code segments, specify a value of 0 for
n.

Notes:

1. Only adjacent segments are packed into a physical segment.

2. Segments belonging to the same group are packed in a physical segment. Segments
belonging to different groups are not packed into a physical segment.

3. Segments with different attributes are not packed together unless they are explicitly
grouped.

120 The PACKCODE Option

PACKDATA (DOS, OS/2, QNX, Win16)

3.68 The PACKDATA Option

Formats: DOS, OS/2, QNX, Win16

This option is intended for 16-bit segmented applications. By default, the Watcom Linker
automatically groups logical far data segments into physical segments. The "PACKDATA"
option is used to specify the size of the physical segment. The format of the "PACKDATA"
option (short form "PACKD") is as follows.

OPTION PACKDATA=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

n specifies the size of the physical segments into which far data segments are packed. The
default value of n is 64K for 16-bit applications. Note that this is also the maximum size of a
physical segment. To suppress automatic grouping of far data segments, specify a value of 0
for n.

Notes:

1. Only adjacent segments are packed into a physical segment.

2. Segments belonging to the same group are packed in a physical segment. Segments
belonging to different groups are not packed into a physical segment.

3. Segments with different attributes are not packed together unless they are explicitly
grouped.

The PACKDATA Option 121

PATH

3.69 The PATH Directive

Formats: All

The "PATH" directive is used to specify the directories that are to be searched for object files
appearing in subsequent "FILE" directives. When the "PATH" directive is specified, the
current directory will no longer be searched unless it appears in the "PATH" directive. The
format of the "PATH" directive (short form "P") is as follows.

PATH path_name{;path_name}

where description:

path_name is a path name.

Consider a directive file containing the following linker directives.

path \math
file sin
path \stats
file mean, variance

It instructs the Watcom Linker to process the following object files:

\math\sin.obj
\stats\mean.obj
\stats\variance.obj

It is also possible to specify a list of paths in a "PATH" directive. Consider the following
example.

path \math;\stats
file sin

First, the linker will attempt to load the file "\math\sin.obj". If unsuccessful, the linker will
attempt to load the file "\stats\sin.obj".

It is possible to override the path specified in a "PATH" directive by preceding the object file
name in a "FILE" directive with an absolute path specification. On QNX-hosted systems, an
absolute path specification is one that begins the "/" character. On all other hosts, an absolute
path specification is one that begins with a drive specification or the "\" character.

122 The PATH Directive

PATH

path \math
file sin
path \stats
file mean, \mydir\variance

The above directive file instructs the linker to process the following object files:

\math\sin.obj
\stats\mean.obj
\mydir\variance.obj

The PATH Directive 123

PRIVILEGE (QNX)

3.70 The PRIVILEGE Option

Formats: QNX

The "PRIVILEGE" option specifies the privilege level (0, 1, 2 or 3) at which the application
will run. The format of the "PRIVILEGE" option (short form "PRIV") is as follows.

OPTION PRIVILEGE=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

The default privilege level is 0.

124 The PRIVILEGE Option

PROTMODE (OS/2)

3.71 The PROTMODE Option

Formats: OS/2

The "PROTMODE" option specifies that the application will only run in protected mode.
This option applies to 16-bit OS/2 applications only. The format of the "PROTMODE"
option (short form "PROT") is as follows.

OPTION PROTMODE

The PROTMODE Option 125

QUIET

3.72 The QUIET Option

Formats: All

The "QUIET" option tells the Watcom Linker to suppress all informational messages. Only
warning, error and fatal messages will be issued. By default, the Watcom Linker issues
informational messages. The format of the "QUIET" option (short form "Q") is as follows.

OPTION QUIET

126 The QUIET Option

REDEFSOK

3.73 The REDEFSOK Option

Formats: All

The "REDEFSOK" option tells the Watcom Linker to ignore redefined symbols and to
generate an executable file anyway. By default, warning messages are displayed and an
executable file is generated if redefined symbols are present.

The format of the "REDEFSOK" option (short form "RED") is as follows.

OPTION REDEFSOK

The "NOREDEFSOK" option tells the Watcom Linker to treat redefined symbols as an error
and to not generate an executable file. By default, warning messages are displayed and an
executable file is generated if redefined symbols are present.

The format of the "NOREDEFSOK" option (short form "NORED") is as follows.

OPTION NOREDEFSOK

The REDEFSOK Option 127

REENTRANT (NetWare)

3.74 The REENTRANT Option

Formats: NetWare

The "REENTRANT" option specifies that the module is reentrant. That is, if an NLM is
LOADed twice, the actual code in the server’s memory is reused. The NLM’s start procedure
is called once for each LOAD. The format of the "REENTRANT" option (short form "RE")
is as follows.

OPTION REENTRANT

128 The REENTRANT Option

REFERENCE

3.75 The REFERENCE Directive

Formats: All

The "REFERENCE" directive is used to explicitly reference a symbol that is not referenced
by any object file processed by the linker. If any symbol appearing in a "REFERENCE"
directive is not resolved by the linker, an error message will be issued for that symbol
specifying that the symbol is undefined.

The "REFERENCE" directive can be used to force object files from libraries to be linked with
the application. Also note that a symbol appearing in a "REFERENCE" directive will not be
eliminated by dead code elimination. For more information on dead code elimination, see the
section entitled "The ELIMINATE Option" on page 47.

The format of the "REFERENCE" directive (short form "REF") is as follows.

REFERENCE symbol_name{, symbol_name}

where description:

symbol_name is the symbol for which a reference is made.

Consider the following example.

reference domino

The symbol domino will be searched for. The object module that defines this symbol will be
linked with the application. Note that the linker will also attempt to resolve symbols
referenced by this module.

The REFERENCE Directive 129

RESOURCE (OS/2, QNX, Win16, Win32)

3.76 The RESOURCE Option

Formats: OS/2, QNX, Win16, Win32

For 16-bit OS/2 executable files and Win16 or Win32 executable files, the "RESOURCE"
option requests the linker to add the specified resource file to the executable file being
generated. For QNX executable files, the "RESOURCE" option specifies the contents of the
resource record.

3.76.1 RESOURCE - OS/2, Win16, Win32 only

The "RESOURCE" option requests the linker to add the specified resource file to the
executable file that is being generated. The format of the "RESOURCE" option (short form
"RES") is as follows.

OPTION RESOURCE[=resource_file]

where description:

resource_file is a file specification for the name of the resource file that is to be added to the
executable file. If no file extension is specified, a file extension of "RES" is
assumed for all but QNX format executables.

The "RESOURCE" option cannot be used for 32-bit OS/2 executables.

3.76.2 RESOURCE - QNX only

The "RESOURCE" option specifies the contents of the resource record in QNX executable
files. The format of the "RESOURCE" option (short form "RES") is as follows.

OPTION RESOURCE resource_info

resource_info ::= ’string’ | =resource_file

130 The RESOURCE Option

RESOURCE (OS/2, QNX, Win16, Win32)

where description:

resource_file is a file specification for the name of the resource file. No file extension is
assumed.

string is a sequence of characters which is placed in the resource record.

If a resource file is specified, the contents of the resource file are included in the resource
record.

The resource record contains, for example, help information and is displayed when the
following command is executed.

use <executable>

QNX also provides the usemsg utility to manipulate the resource record of an executable file.
Its use is recommended. This utility is described in the QNX "Utilities Reference" manual.

The RESOURCE Option 131

RUNTIME (PharLap, Win32)

3.77 The RUNTIME Directive

Formats: PharLap, Win32

For Win32 applications, the "RUNTIME" directive specifies the environment under which the
application will run.

For PharLap applications, the "RUNTIME" directive describes information that is used by
386|DOS-Extender to setup the environment for execution of the program.

3.77.1 RUNTIME - Win32 only

The "RUNTIME" directive specifies the environment under which the application will run.
The format of the "RUNTIME" directive (short form "RU") is as follows.

RUNTIME env[=major[.minor]]

env ::= NATIVE | WINDOWS | CONSOLE | POSIX | OS2 | DOSSTYLE

where description:

env=major.minor Specifying a system version in the form "major" or "major.minor" indicates
the minimum operating system version required for the application. For
example, the following indicates that the application requires Windows 95.

runtime windows=4.0

NATIVE (short form "NAT") indicates that the application is a native Windows NT
application.

WINDOWS (short form "WIN") indicates that the application is a Windows application.

CONSOLE (short form "CON") indicates that the application is a character-mode (command
line oriented) application.

POSIX (short form "POS") indicates that the application uses the POSIX subsystem
available with Windows NT.

OS2 indicates that the application is a 16-bit OS/2 1.x application.

132 The RUNTIME Directive

RUNTIME (PharLap, Win32)

DOSSTYLE (short form "DOS") indicates that the application is a Phar Lap TNT DOS
extender application that uses INT 21 to communicate to the DOS extender
rather than calls to a DLL.

3.77.2 RUNTIME - PharLap only

The "RUNTIME" directive describes information that is used by 386|DOS-Extender to setup
the environment for execution of the program. The format of the "RUNTIME" directive
(short form "RU") is as follows.

RUNTIME run_option{,run_option}

run_option ::= MINREAL=n | MAXREAL=n | CALLBUFS=n | MINIBuf=n
| MAXIBUF=n | NISTACK=n | ISTKSIZE=n
| REALBREAK=offset | PRIVILEGED | UNPRIVILEGED

offset ::= n | symbol_name

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

symbol_name is a symbol name.

MINREAL (short form "MINR") specifies the minimum number of bytes of conventional
memory required to be free after a program is loaded by 386|DOS-Extender.
Note that this memory is no longer available to the executing program. The
default value of n is 0 in which case 386|DOS-Extender allocates all
conventional memory for the executing program. The Watcom Linker truncates
the specified value to a multiple of 16. n must be less than or equal to
hexadecimal 100000 (64K*16).

MAXREAL (short form "MAXR") specifies the maximum number of bytes of conventional
memory than can be left free after a program is loaded by 386|DOS-Extender.
Note that this memory is not available to the executing program. The default

The RUNTIME Directive 133

RUNTIME (PharLap, Win32)

value of n is 0 in which case 386|DOS-Extender allocates all conventional
memory for the executing program. n must be less than or equal to hexadecimal
ffff0. The Watcom Linker truncates the specified value to a multiple of 16.

CALLBUFS (short form "CALLB") specifies the size of the call buffer allocated for
switching between 32-bit protected mode and real mode. This buffer is used for
communicating information between real-mode and 32-bit protected-mode
procedures. The buffer address is obtained at run-time with a
386|DOS-Extender system call. The size returned is the size of the buffer in
kilobytes and is less than or equal to 64.

The default buffer size is zero unless changed using the "CALLBUFS" option.
The Watcom Linker truncates the specified value to a multiple of 1024. n must
be less than or equal to 64K. Note that n is the number of bytes, not kilobytes.

MINIBUF (short form "MINIB") specifies the minimum size of the data buffer that is used
when DOS and BIOS functions are called. The size of this buffer is particularly
important for file I/O. If your program reads or writes large amounts of data, a
large value of n should be specified. n represents the number of bytes and must
be less than or equal to 64K. The default value of n is 1K. The Watcom Linker
truncates the specified value to a multiple of 1024.

MAXIBUF (short form "MAXIB") specifies the maximum size of the data buffer that is
used when DOS and BIOS functions are called. The size of this buffer is
particularly important for file I/O. If your program reads or writes large
amounts of data, a large value of n should be specified. n represents the number
of bytes and must be less than or equal to 64K. The default value of n is 4K.
The Watcom Linker truncates the specified value to a multiple of 1024.

NISTACK (short form "NIST") specifies the number of stack buffers to be allocated for use
by 386|DOS-Extender when switching from 32-bit protected mode to real mode.
By default, 4 stack buffers are allocated. n must be greater than or equal to 4.

ISTKSIZE (short form "ISTK") specifies the size of the stack buffers allocated for use by
386|DOS-Extender when switching from 32-bit protected mode to real mode.
By default, the size of a stack buffer is 1K. The value of n must be greater than
or equal to 1K and less than or equal to 64K. The Watcom Linker truncates the
specified value to a multiple of 1024.

REALBREAK (short form "REALB") specifies how much of the program must be loaded into
conventional memory so that it can be accessed and/or executed in real mode. If
n is specified, the first n bytes of the program must be loaded into conventional
memory. If symbol is specified, all bytes up to but not including the symbol
must be loaded into conventional memory.

134 The RUNTIME Directive

RUNTIME (PharLap, Win32)

PRIVILEGED (short form "PRIV") specifies that the executable is to run at Ring 0 privilege
level.

UNPRIVILEGED (short form "UNPRIV") specifies that the executable is to run at Ring 3
privilege level (i.e., unprivileged). This is the default privilege level.

The RUNTIME Directive 135

RWRELOCCHECK (Win16)

3.78 The RWRELOCCHECK Option

Formats: Win16

The "RWRELOCCHECK" option causes the linker to check for segment relocations to a
read/write data segment and issue a warning if any are found. This option is useful if you are
building a 16-bit Windows application that may have more than one instance running at a
given time.

The format of the "RWRELOCCHECK" option (short form "RWR") is as follows.

OPTION RWRELOCCHECK

136 The RWRELOCCHECK Option

SCREENNAME (NetWare)

3.79 The SCREENNAME Option

Formats: NetWare

The "SCREENNAME" option specifies the name of the first screen (the screen that is
automatically created when an NLM is loaded). The format of the "SCREENNAME" option
(short form "SCR") is as follows.

OPTION SCREENNAME ’name’

where description:

name specifies the screen name.

If the "SCREENNAME" option is not specified, the description text specified in the
"FORMAT" directive is used as the screen name.

The SCREENNAME Option 137

SEGMENT (OS/2, QNX, Win16, Win32)

3.80 The SEGMENT Directive

Formats: OS/2, QNX, Win16, Win32

The "SEGMENT" directive is used to describe the attributes of code and data segments. The
format of the "SEGMENT" directive (short form "SEG") is as follows.

SEGMENT seg_desc{,seg_desc}

seg_desc ::= seg_id {seg_attrs}+

seg_id ::= ’seg_name’ | CLASS ’class_name’ | TYPE [CODE | DATA]

OS/2:
seg_attrs ::= PRELOAD | LOADONCALL

| IOPL | NOIOPL
| EXECUTEONLY | EXECUTEREAD
| READONLY | READWRITE
| SHARED | NONSHARED
| CONFORMING | NONCONFORMING
| PERMANENT | NONPERMANENT
| INVALID | RESIDENT
| CONTIGUOUS | DYNAMIC

Win32:
seg_attrs ::= PAGEABLE | NONPAGEABLE

| SHARED | NONSHARED

Win16:
seg_attrs ::= PRELOAD | LOADONCALL

| EXECUTEONLY | EXECUTEREAD
| READONLY | READWRITE
| SHARED | NONSHARED
| MOVEABLE | FIXED
| DISCARDABLE

QNX:
seg_attrs ::= EXECUTEONLY | EXECUTEREAD

| READONLY | READWRITE

138 The SEGMENT Directive

SEGMENT (OS/2, QNX, Win16, Win32)

where description:

seg_name is the name of the code or data segment whose attributes are being specified.

class_name is a class name. The attributes will be assigned to all segments belonging to the
specified class.

PRELOAD (short form "PR", OS/2 and Win16 only) specifies that the segment is loaded as
soon as the executable file is loaded. This is the default.

LOADONCALL (short form "LO", OS/2 and Win16 only) specifies that the segment is loaded
only when accessed.

PAGEABLE (short form "PAGE", Win32 only) specifies that the segment can be paged from
memory. This is the default.

NONPAGEABLE (short form "NONP", Win32 only) specifies that the segment, once loaded
into memory, must remain in memory.

CONFORMING (short form "CON", OS/2 only) specifies that the segment will assume the
I/O privilege of the segment that referenced it. By default, the segment is
"NONCONFORMING".

NONCONFORMING (short form "NONC", OS/2 only) specifies that the segment will not
assume the I/O privilege of the segment that referenced it. This is the default.

IOPL (short form "I", OS/2 only) specifies that the segment requires I/O privilege.
That is, they can access the hardware directly.

NOIOPL (short form "NOI", OS/2 only) specifies that the segment does not require I/O
privilege. This is the default.

PERMANENT (short form "PERM", OS/2 32-bit only) specifies that the segment is
permanent.

NONPERMANENT (short form "NONPERM", OS/2 32-bit only) specifies that the segment
is not permanent.

INVALID (short form "INV", OS/2 32-bit only) specifies that the segment is invalid.

RESIDENT (short form "RES", OS/2 32-bit only) specifies that the segment is resident.

CONTIGUOUS (short form "CONT", OS/2 32-bit only) specifies that the segment is
contiguous.

The SEGMENT Directive 139

SEGMENT (OS/2, QNX, Win16, Win32)

DYNAMIC (short form "DYN", OS/2 32-bit only) specifies that the segment is dynamic.

EXECUTEONLY (short form "EXECUTEO", OS/2, QNX and Win16 only) specifies that the
segment can only be executed. This attribute should only be specified for code
segments. This attribute should not be specified if it is possible for the code
segment to contain jump tables which is the case with the Watcom C, C++ and
FORTRAN 77 optimizing compilers.

EXECUTEREAD (short form "EXECUTER", OS/2, QNX and Win16 only) specifies that the
segment can only be executed and read. This attribute, the default for code
segments, should only be specified for code segments. This attribute is
appropriate for code segments that contain jump tables as is possible with the
Watcom C, C++ and FORTRAN 77 optimizing compilers.

READONLY (short form "READO", OS/2, QNX and Win16 only) specifies that the segment
can only be read. This attribute should only be specified for data segments.

READWRITE (short form "READW", OS/2, QNX and Win16 only) specifies that the
segment can be read and written. This is the default for data segments. This
attribute should only be specified for data segments.

SHARED (short form "SH") specifies that a single copy of the segment will be loaded and
will be shared by all processes.

NONSHARED (short form "NONS") specifies that a unique copy of the segment will be
loaded for each process. This is the default.

MOVEABLE (short form "MOV", Win16 only) specifies that the segment is moveable. By
default, segments are moveable.

FIXED (short form "FIX", Win16 only) specifies that the segment is fixed.

DISCARDABLE (short form "DIS", Win16 only) specifies that the segment is discardable.
By default, segments are not discardable.

Note: Attributes specified for segments identified by a segment name override attributes
specified for segments identified by a class name.

140 The SEGMENT Directive

SHARELIB (NetWare)

3.81 The SHARELIB Option

Formats: NetWare

The "SHARELIB" option specifies the file name of an NLM to be loaded as a shared NLM.
Shared NLMs contain global code and global data that are mapped into all memory protection
domains. This method of loading APIs can be used to avoid ring transitions to call other APIs
in other domains.

The format of the "SHARELIB" option (short form "SHA") is as follows.

OPTION SHARELIB=shared_nlm

where description:

shared_nlm is the file name of the shared NLM.

The SHARELIB Option 141

SHOWDEAD

3.82 The SHOWDEAD Option

Formats: All

The "SHOWDEAD" option instructs the linker to list, in the map file, the symbols associated
with dead code and unused C++ virtual functions that it has eliminated from the link. The
format of the "SHOWDEAD" option (short form "SHO") is as follows.

OPTION SHOWDEAD

The "SHOWDEAD" option works best in concert with the "ELIMINATE" and
"VFREMOVAL" options.

142 The SHOWDEAD Option

SORT

3.83 The SORT Directive

Formats: All

The "SORT" directive is used to sort the symbols in the "Memory Map" section of the map
file. By default, symbols are listed on a per module basis in the order the modules were
encountered by the linker. That is, a module header is displayed followed by the symbols
defined by the module.

The format of the "SORT" directive (short form "SO") is as follows.

SORT [GLOBAL] [ALPHABETICAL]

If the "SORT" directive is specified without any options, as in the following example, the
module headers will be displayed each followed by the list of symbols it defines sorted by
address.

sort

If only the "GLOBAL" sort option (short form "GL") is specified, as in the following
example, the module headers will not be displayed and all symbols will be sorted by address.

sort global

If only the "ALPHABETICAL" sort option (short form "ALP") is specified, as in the
following example, the module headers will be displayed each followed by the list of symbols
it defines sorted alphabetically.

sort alphabetical

If both the "GLOBAL" and "ALPHABETICAL" sort options are specified, as in the following
example, the module headers will not be displayed and all symbols will be sorted
alphabetically.

sort global alphabetical

If you are linking a Watcom C++ application, mangled names are sorted by using the base
name. The base name is the name of the symbol as it appeared in the source file. See the
section entitled "The MANGLEDNAMES Option" on page 87 for more information on
mangled names.

The SORT Directive 143

STACK

3.84 The STACK Option

Formats: All

The "STACK" option can be used to increase the size of the stack. The format of the
"STACK" option (short form "ST") is as follows.

OPTION STACK=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a
hexadecimal number. If k is specified, the value is multiplied by 1024. If m is
specified, the value is multiplied by 1024*1024.

The default stack size varies for both 16-bit and protected-mode 32-bit applications depending
on the executable format. You can determine the default stack size by looking at the map file
that can be generated when an application is linked ("OPTION MAP"). During execution of
your program, you may get an error message indicating your stack has overflowed. If you
encounter such an error, you must link your application again, this time specifying a larger
stack size using the "STACK" option.

Example:
option stack=8192

144 The STACK Option

START

3.85 The START Option

Formats: All

The format of the "START" option is as follows.

OPTION START=symbol_name

where description:

symbol_name specifies the name of the procedure where execution begins.

For the Netware 386 executable format, the default name of the start procedure is "_Prelude".

The START Option 145

STARTLINK

3.86 The STARTLINK Directive

Formats: All

The "STARTLINK" directive is used to indicate the start of a new set of linker commands that
are to be processed after the current set of commands has been processed. The format of the
"STARTLINK" directive (short form "STARTL") is as follows.

STARTLINK

The "ENDLINK" directive is used to indicate the end of the set of commands identified by the
"STARTLINK" directive.

146 The STARTLINK Directive

STATICS

3.87 The STATICS Option

Formats: All

The "STATICS" option should only be used if you are developing a Watcom C or C++
application. The Watcom C and C++ compilers produce definitions for static symbols in the
object file. By default, these static symbols do not appear in the map file. If you want static
symbols to be displayed in the map file, use the "STATICS" option.

The format of the "STATICS" option (short form "STAT") is as follows.

OPTION STATICS

The STATICS Option 147

STUB (OS/2, Win16, Win32)

3.88 The STUB Option

Formats: OS/2, Win16, Win32

The "STUB" option specifies an executable file containing a "stub" program that is to be
placed at the beginning of the executable file being generated. The "stub" program will be
executed if the module is executed under DOS. The format of the "STUB" option is as
follows.

OPTION STUB=stub_name

where description:

stub_name is a file specification for the name of the stub executable file. If no file
extension is specified, a file extension of "EXE" is assumed.

The Watcom Linker will search all paths specified in the PATH environment variable for the
stub executable file. The stub executable file specified by the "STUB" option must not be the
same as the executable file being generated.

148 The STUB Option

SYMFILE

3.89 The SYMFILE Option

Formats: All

The "SYMFILE" option provides a method for specifying an alternate file for debugging
information. The format of the "SYMFILE" option (short form "SYMF") is as follows.

OPTION SYMFILE[=symbol_file]

where description:

symbol_file is a file specification for the name of the symbol file. If no file extension is
specified, a file extension of "sym" is assumed.

By default, no symbol file is generated; debugging information is appended at the end of the
executable file. Specifying this option causes the Watcom Linker to generate a symbol file.
The symbol file contains the debugging information generated by the linker when the
"DEBUG" directive is used. The symbol file can then be used by Watcom Debugger. If no
debugging information is requested, no symbol file is created, regardless of the presence of
the "SYMFILE" option.

If no file name is specified, the symbol file will have a default file extension of "sym" and the
same path and file name as the executable file. Note that the symbol file will be placed in the
same directory as the executable file.

Alternatively, a file name can be specified. The following directive instructs the linker to
generate a symbol file and call it "myprog.sym" regardless of the name of the executable file.

option symf=myprog

You can also specify a path and/or file extension when using the "SYMFILE=" form of the
"SYMFILE" option.

Notes:

1. This option should be used to debug a DOS "COM" executable file. A DOS
"COM" executable file must not contain any additional information other than the
executable information itself since DOS uses the size of the file to determine what
to load.

The SYMFILE Option 149

SYMFILE

2. This option should be used when creating a Microsoft Windows executable file.
Typically, before an executable file can be executed as a Microsoft Windows
application, a resource compiler takes the Windows executable file and a resource
file as input and combines them. If the executable file contains debugging
information, the resource compiler will strip the debugging information from the
executable file. Therefore, debugging information must not be part of the
executable file created by the linker.

150 The SYMFILE Option

SYMTRACE

3.90 The SYMTRACE Directive

Formats: All

The "SYMTRACE" directive instructs the Watcom Linker to print a list of all modules that
reference the specified symbols. The format of the "SYMTRACE" directive (short form
"SYMT") is as follows.

SYMTRACE symbol_name{,symbol_name}

where description:

symbol_name is the name of a symbol.

The information is displayed in the map file. Consider the following example.

Example:
wlink system my os op map file test lib math symt sin, cos

The Watcom Linker will list, in the map file, all modules that reference the symbols "sin" and
"cos".

The SYMTRACE Directive 151

SYNCHRONIZE (NetWare)

3.91 The SYNCHRONIZE Option

Formats: NetWare

The "SYNCHRONIZE" option forces an NLM to complete loading before starting to load
other NLMs. Normally, the other NLMs are loading during the startup procedure. The format
of the "SYNCHRONIZE" option (short form "SY") is as follows.

OPTION SYNCHRONIZE

152 The SYNCHRONIZE Option

SYSTEM

3.92 The SYSTEM Directive

Formats: All

There are three forms of the "SYSTEM" directive.

The first form of the "SYSTEM" directive (short form "SYS") is called a system definition
directive. It allows you to associate a set of linker directives with a specified name called the
system name. This set of linker directives is called a system definition block. The format of a
system definition directive is as follows.

SYSTEM BEGIN system_name {directive} END

where description:

system_name is a unique system name.

directive is a linker directive.

A system definition directive cannot be specified within another system definition directive.

The second form of the "SYSTEM" directive is called a system deletion directive. It allows
you to remove the association of a set of linker directives with a system name. The format of
a system deletion directive is as follows.

SYSTEM DELETE system_name

where description:

system_name is a defined system name.

The third form of the "SYSTEM" directive is as follows.

The SYSTEM Directive 153

SYSTEM

SYSTEM system_name

where description:

system_name is a defined system name.

When this form of the "SYSTEM" directive is encountered, all directives specified in the
system definition block identified by system name will be processed.

Let us consider an example that demonstrates the use of the "SYSTEM" directive. The
following linker directives define a system called statistics.

system begin statistics
format dos
libpath \libs
library stats, graphics
option stack=8k
end

They specify that a statistics application is to be created by using the libraries "stats.lib" and
"graphics.lib". These library files are located in the directory "\libs". The application requires
a stack size of 8k and the specified format of executable will be generated.

Suppose the linker directives in the above example are contained in the file "stats.lnk". If we
wish to create a statistics application, we can issue the following command.

wlink @stats system statistics file myappl

As demonstrated by the above example, the "SYSTEM" directive can be used to localize the
common attributes that describe a class of applications.

The system deletion directive can be used to redefine a previously defined system. Consider
the following example.

154 The SYSTEM Directive

SYSTEM

system begin at dos

libpath %WATCOM%\lib286
libpath %WATCOM%\lib286\dos
format dos ^

end
system begin n98 dos

sys at dos ^
libpath %WATCOM%\lib286\dos\n98

end
system begin dos
sys at dos ^
end

If you wish to redefine the definition of the "dos" system, you can specify the following set of
directives.

system delete dos
system begin dos
sys n98 dos ^
end

This effectively redefines a "dos" system to be equivalent to a "n98_dos" system (NEC
PC-9800 DOS), rather than the previously defined "at_dos" system (AT-compatible DOS).

For additional examples on the use of the "SYSTEM" directive, examine the contents of the
WLINK.LNK and WLSYSTEM.LNK files.

The file WLINK.LNK is a special linker directive file that is automatically processed by the
Watcom Linker before processing any other directives. On a DOS, OS/2, or Windows-hosted
system, this file must be located in one of the paths specified in the PATH environment
variable. On a QNX-hosted system, this file should be located in the /etc directory. A
default version of this file is located in the \WATCOM\BINW directory on DOS-hosted
systems, the \WATCOM\BINP directory on OS/2-hosted systems, the /etc directory on
QNX-hosted systems, and the \WATCOM\BINNT directory on Windows 95 or Windows
NT-hosted systems. Note that the file WLINK.LNK includes the file WLSYSTEM.LNK which
is located in the \WATCOM\BINW directory on DOS, OS/2, or Windows-hosted systems and
the /etc directory on QNX-hosted systems.

The files WLINK.LNK and WLSYSTEM.LNK reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

The SYSTEM Directive 155

SYSTEM

3.92.1 Special System Names

There are two special system names. When the linker has processed all object files and the
executable file format has not been determined, and a system definition block has not been
processed, the directives specified in the "286" or "386" system definition block will be
processed. The "386" system definition block will be processed if a 32-bit object file has been
processed. Furthermore, only a restricted set of linker directives is allowed in a "286" and
"386" system definition block. They are as follows.

• FORMAT

• LIBFILE

• LIBPATH

• LIBRARY

• NAME

• OPTION

• RUNTIME (for Phar Lap executable files only)

• SEGMENT (for OS/2 and QNX executable files only)

156 The SYSTEM Directive

THREADNAME (NetWare)

3.93 The THREADNAME Option

Formats: NetWare

The "THREADNAME" option is used to specify the pattern to be used for generating thread
names. The format of the "THREADNAME" option (short form "THR") is as follows.

OPTION THREADNAME ’thread_name’

where description:

thread_name specifies the pattern used for generating thread names and must be a string of 1
to 5 characters.

The first thread name is generated by appending "0" to thread_name, the second by appending
"1" to thread_name, etc. If the "THREADNAME" option is not specified, the first 5
characters of the description specified in the "FORMAT" directive are used as the pattern for
generating thread names.

The THREADNAME Option 157

TOGGLERELOCS (OS/2)

3.94 The TOGGLERELOCS Option

Formats: OS/2

The "TOGGLERELOCS" option is used with LX format executables under 32-bit DOS/4G
only. The "INTERNALRELOCS" option causes the Watcom Linker to include internal
relocation information in DOS/4G LX format executables. Having done so, the linker
normally clears the "internal fixups done" flag in the LX executable header (bit 0x10). The
"TOGGLERELOCS" option causes the linker to toggle the value of the "internal fixups done"
flag in the LX executable header (bit 0x10). This option is used with DOS/4G non-zero based
executables. Contact Tenberry Software for further explanation.

The format of the "TOGGLERELOCS" option (short form "TOG") is as follows.

OPTION TOGGLERELOCS

158 The TOGGLERELOCS Option

UNDEFSOK

3.95 The UNDEFSOK Option

Formats: All

The "UNDEFSOK" option tells the Watcom Linker to generate an executable file even if
undefined symbols are present. By default, no executable file will be generated if undefined
symbols are present.

The format of the "UNDEFSOK" option (short form "U") is as follows.

OPTION UNDEFSOK

The "NOUNDEFSOK" option tells the Watcom Linker to not generate an executable file if
undefined symbols are present. This is the default behaviour.

The format of the "NOUNDEFSOK" option (short form "NOU") is as follows.

OPTION NOUNDEFSOK

The UNDEFSOK Option 159

VERBOSE

3.96 The VERBOSE Option

Formats: All

The "VERBOSE" option controls the amount of information produced by the Watcom Linker
in the map file. The format of the "VERBOSE" option (short form "V") is as follows.

OPTION VERBOSE

If the "VERBOSE" option is specified, the linker will list, for each object file, all segments it
defines and their sizes. By default, this information is not produced in the map file.

160 The VERBOSE Option

VERSION (NetWare, OS/2, Win16, Win32)

3.97 The VERSION Option

Formats: NetWare, OS/2, Win16, Win32

The "VERSION" option can be used to identify the application so that it can be distinguished
from other versions (releases) of the same application.

This option is most useful when creating a DLL or NLM since applications that use the DLL
or NLM may only execute with a specific version of the DLL or NLM.

The format of the "VERSION" option (short form "VERS") is as follows.

OS/2, Win16, Win32:
OPTION VERSION=major[.minor]

Netware:
OPTION VERSION=major[.minor[.revision]]

where description:

major specifies the major version number.

minor specifies the minor version number and must be less than 100.

revision specifies the revision. The revision should be a number or a letter. If it is a
number, it must be less than 27.

The VERSION Option 161

VFREMOVAL

3.98 The VFREMOVAL Option

Formats: All

The "VFREMOVAL" option instructs the linker to remove unused C++ virtual functions. The
format of the "VFREMOVAL" option (short form "VFR") is as follows.

OPTION VFREMOVAL

If the "VFREMOVAL" option is specified, the linker will attempt to eliminate unused virtual
functions. In order for the linker to do this, the Watcom C++ "zv" compiler option must be
used for all object files in the executable. The "VFREMOVAL" option works best in concert
with the "ELIMINATE" option.

162 The VFREMOVAL Option

XDCDATA (NetWare)

3.99 The XDCDATA Option

Formats: NetWare

The "XDCDATA" option specifies the name of a file that contains Remote Procedure Call
(RPC) descriptions for calls in this NLM. RPC descriptions for APIs make it possible for
APIs to be exported across memory-protection domain boundaries.

The format of the "XDCDATA" option (short form "XDC") is as follows.

OPTION XDCDATA=rpc_file

where description:

rpc_file is the name of the file containing RPC descriptions.

The XDCDATA Option 163

The WATCOM Linker

164 The XDCDATA Option

4 The DOS Executable File Format

This chapter deals specifically with aspects of DOS executable files. The DOS executable file
format will only run under the DOS operating system.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] |
DISABLE msg_num{,msg_num}
ENDLINK
FILE obj_spec{,obj_spec}
FORMAT DOS [COM]
LANGUAGE lang
LIBFILE obj_file{,obj_file}
LIBPATH path_name{;path_name}
LIBRARY library_file{,library_file}
MODTRACE obj_module{,obj_module}
NAME exe_file
NEWSEGMENT
OPTION option{,option}

ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CVPACK
DOSSEG
ELIMINATE
MANGLEDNAMES
MAP[=map_file]

The DOS Executable File Format 165

The WATCOM Linker

MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
OSNAME=’string’
PACKCODE=n
PACKDATA=n
QUIET
REDEFSOK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_file]
[NO]UNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{,library_file}
PATH path_name{;path_name}
REFERENCE symbol_name{,symbol_name}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@ directive_file

You can view all the directives specific to DOS executable files by simply typing the
following:

wlink ? dos

Notes:

1. If the file "wlink.hlp" is located in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wlink ?

2. If all of the directive information does not fit on the command line, type the
following.

wlink

166 The DOS Executable File Format

The DOS Executable File Format

The prompt "WLINK>" will appear on the next line. You can enter as many lines
of directive information as required. Press "Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press "Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

4.1 Memory Layout
The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment is initialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

Memory Layout 167

The WATCOM Linker

4.2 The Watcom Linker Memory Requirements
The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It is possible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image file is to contain debugging information.
For this reason, a temporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have a RAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tmp

The Watcom Linker will create the temporary file in the directory "\tmp".

4.3 Using Overlays
The creation of overlaid executables is not supported by this version of the Watcom Linker.

4.4 Converting Microsoft Response Files to Directive
Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Watcom
Linker directive files. The response files must correspond to the linker found in version 7 or
earlier of Microsoft C. Later versions of response files such as those used with Microsoft
Visual C++ are not entirely supported.

The same utility can also convert much of the content of IBM OS/2 LINK386 response files
since the syntax is similar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processes its input.
The difference is that MS2WLINK writes the corresponding Watcom Linker directive file to
the standard output device instead of a creating an executable file. The resulting output can be
redirected to a disk file which can then be used as input to the Watcom Linker to produce an
executable file.

168 Converting Microsoft Response Files to Directive Files

The DOS Executable File Format

Suppose you have a Microsoft linker response file called "test.rsp". You can convert this file
to a Watcom Linker directive file by issuing the following command.

Example:
ms2wlink @test.rsp >test.lnk

You can now use the Watcom Linker to link your program by issuing the following command.

Example:
wlink @test

An alternative way to link your application with the Watcom Linker from a Microsoft
response file is to issue the following command.

Example:
ms2wlink @test.rsp | wlink

Since the Watcom Linker gets its input from the standard input device, you do not have to
create a Watcom Linker directive file to link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2
applications.

Converting Microsoft Response Files to Directive Files 169

The WATCOM Linker

170 Converting Microsoft Response Files to Directive Files

5 The ELF Executable File Format

This chapter deals specifically with aspects of ELF executable files. The ELF executable file
format will only run under the operating systems that support the ELF executable file format.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] |
DISABLE msg_num{,msg_num}
ENDLINK
EXPORT entry_name {,entry_name}
FILE obj_spec{,obj_spec}
FORMAT ELF [DLL]
IMPORT external_name {,external_name}
LANGUAGE lang
LIBFILE obj_file{,obj_file}
LIBPATH path_name{;path_name}
LIBRARY library_file{,library_file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
MODULE module_name {,module_name}
NAME exe_file
OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CVPACK

The ELF Executable File Format 171

The WATCOM Linker

DOSSEG
ELIMINATE
INCREMENTAL
MANGLEDNAMES
MAP[=map_file]
MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
OSNAME=’string’
QUIET
REDEFSOK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_file]
[NO]UNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{,library_file}
PATH path_name{;path_name}
REFERENCE symbol_name{,symbol_name}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@ directive_file

You can view all the directives specific to ELF executable files by simply typing the
following:

wlink ? elf

Notes:

1. If the file "wlink.hlp" is located in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wlink ?

172 The ELF Executable File Format

The ELF Executable File Format

2. If all of the directive information does not fit on the command line, type the
following.

wlink

The prompt "WLINK>" will appear on the next line. You can enter as many lines
of directive information as required. Press "Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press "Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

5.1 Memory Layout
The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment is initialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

Memory Layout 173

The WATCOM Linker

5.2 The Watcom Linker Memory Requirements
The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It is possible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image file is to contain debugging information.
For this reason, a temporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have a RAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tmp

The Watcom Linker will create the temporary file in the directory "\tmp".

174 The Watcom Linker Memory Requirements

6 The NetWare 386 Executable File Format

This chapter deals specifically with aspects of NetWare 386 executable files. The Novell
NetWare 386 executable file format will only run under the NetWare 386 operating system.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] |
DISABLE msg_num{,msg_num}
ENDLINK
EXPORT entry_name {,entry_name}
FILE obj_spec{,obj_spec}
FORMAT NOVELL [NLM | LAN | DSK | NAM] ’description’
IMPORT external_name {,external_name}
LANGUAGE lang
LIBFILE obj_file{,obj_file}
LIBPATH path_name{;path_name}
LIBRARY library_file{,library_file}
MODTRACE obj_module{,obj_module}
MODULE module_name {,module_name}
NAME exe_file
OPTION option{,option}

ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CHECK=symbol_name
COPYRIGHT ’string’
CUSTOM=file_name

The NetWare 386 Executable File Format 175

The WATCOM Linker

CVPACK
DOSSEG
ELIMINATE
EXIT=symbol_name
HELP=help_file
IMPFILE[=imp_file]
IMPLIB[=imp_lib]
MANGLEDNAMES
MAP[=map_file]
MAXERRORS=n
MESSAGES=msg_file
MULTILOAD
NAMELEN=n
NLMFLAGS=some_value
NODEFAULTLIBS
OSDOMAIN
OSNAME=’string’
PSEUDOPREEMPTION
QUIET
REDEFSOK
SHOWDEAD
REENTRANT
SCREENNAME ’name’
SHARELIB=shared_nlm
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_file]
SYNCHRONIZE
THREADNAME ’thread_name’
[NO]UNDEFSOK
VERBOSE
VERSION=major[.minor[.revision]]
VFREMOVAL
XDCDATA=rpc_file

OPTLIB library_file{,library_file}
PATH path_name{;path_name}
REFERENCE symbol_name{,symbol_name}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END

176 The NetWare 386 Executable File Format

The NetWare 386 Executable File Format

SYSTEM system_name
comment
@ directive_file

You can view all the directives specific to NetWare 386 executable files by simply typing the
following:

wlink ? nov

Notes:

1. If the file "wlink.hlp" is located in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wlink ?

2. If all of the directive information does not fit on the command line, type the
following.

wlink

The prompt "WLINK>" will appear on the next line. You can enter as many lines
of directive information as required. Press "Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press "Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

6.1 NetWare Loadable Modules
NetWare Loadable Modules (NLMs) are executable files that run in file server memory under
the NetWare 386 operating system. NLMs can be loaded and unloaded from file server
memory while the server is running. When running they actually become part of the
operating system thus acting as building blocks for a server environment tailored to your
needs.

There are four types of NLMs, each identified by the file extension of the executable file.

• Utility and server applications (executable files with extension "nlm").

• LAN drivers (executable files with extension "lan").

NetWare Loadable Modules 177

The WATCOM Linker

• Disk drivers (executable files with extension "dsk").

• Modules that define file system name spaces (executable files with extension "nam").

The Watcom Linker can generate all four types of NLMs.

6.2 Memory Layout
The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment is initialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

178 Memory Layout

The NetWare 386 Executable File Format

6.3 The Watcom Linker Memory Requirements
The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It is possible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image file is to contain debugging information.
For this reason, a temporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have a RAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tmp

The Watcom Linker will create the temporary file in the directory "\tmp".

The Watcom Linker Memory Requirements 179

The WATCOM Linker

180 The Watcom Linker Memory Requirements

7 The OS/2 Executable and DLL File Formats

This chapter deals specifically with aspects of OS/2 executable files. The OS/2 16-bit
executable file format will run under the following operating systems.

1. 16-bit OS/2 1.x
2. 32-bit OS/2 2.x and 3.x (Warp)
3. Phar Lap’s 286|DOS-Extender

The OS/2 32-bit linear executable file format will run under the following operating systems.

1. OS/2 2.x (LX format only)
2. OS/2 3.x (LX format only)
3. Tenberry Software’s DOS/4G and DOS/4GW DOS extenders (LE format only)
4. FlashTek’s DOS Extender (LX format only)

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] |
DISABLE msg_num{,msg_num}
ENDLINK
EXPORT export{,export}
EXPORT =lbc_file
FILE obj_spec{,obj_spec}
FORMAT OS2 [exe_type] [dll_form | exe_attrs]
IMPORT import{,import}
LANGUAGE lang
LIBFILE obj_file{,obj_file}
LIBPATH path_name{;path_name}

The OS/2 Executable and DLL File Formats 181

The WATCOM Linker

LIBRARY library_file{,library_file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
NAME exe_file
NEWSEGMENT
PATH path_name{;path_name}
OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CVPACK
DESCRIPTION ’string’
DOSSEG
ELIMINATE
HEAPSIZE=n
IMPFILE[=imp_file]
IMPLIB[=imp_lib]
INCREMENTAL
INTERNALRELOCS
MANGLEDNAMES
MANYAUTODATA
MAP[=map_file]
MAXERRORS=n
MODNAME=module_name
NAMELEN=n
NEWFILES
NOAUTODATA
NODEFAULTLIBS
OFFSET
OLDLIBRARY=dll_name
ONEAUTODATA
OSNAME=’string’
PACKCODE=n
PACKDATA=n
PROTMODE
QUIET
REDEFSOK
RESOURCE=resource_file
SHOWDEAD
STACK=n

182 The OS/2 Executable and DLL File Formats

The OS/2 Executable and DLL File Formats

START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symbol_file]
TOGGLERELOCS
[NO]UNDEFSOK
VERBOSE
VERSION=major[.minor]
VFREMOVAL

OPTLIB library_file{,library_file}
REFERENCE symbol_name{,symbol_name}
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@ directive_file

You can view all the directives specific to OS/2 executable files by simply typing the
following:

wlink ? os2

Notes:

1. If the file "wlink.hlp" is located in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wlink ?

2. If all of the directive information does not fit on the command line, type the
following.

wlink

The prompt "WLINK>" will appear on the next line. You can enter as many lines
of directive information as required. Press "Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press "Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

The OS/2 Executable and DLL File Formats 183

The WATCOM Linker

7.1 Dynamic Link Libraries
The Watcom Linker can generate two forms of executable files; program modules and
Dynamic Link Libraries. A program module is the executable file that gets loaded by the
operating system when you run your application. A Dynamic Link Library is really a library
of routines that are called by a program module but not linked into the program module. The
executable code in a Dynamic Link Library is loaded by the operating system during the
execution of a program module when a routine in the Dynamic Link Library is called.

Program modules are contained in files whose name has a file extension of "exe". Dynamic
Link Libraries are contained in files whose name has a file extension of "dll". The Watcom
Linker "FORMAT" directive can be used to select the type of executable file to be generated.

Let us consider some of the advantages of using Dynamic Link Libraries over standard
libraries.

1. Functions in Dynamic Link Libraries are not linked into your program. Only
references to the functions in Dynamic Link Libraries are placed in the program
module. These references are called import definitions. As a result, the linking
time is reduced and disk space is saved. If many applications reference the same
Dynamic Link Library, the saving in disk space can be significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain
the actual executable code, a Dynamic Link Library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the
applications that use them. If many applications that use the same Dynamic Link
Library are executing concurrently, the sharing of code and data segments
improves memory utilization.

7.1.1 Creating a Dynamic Link Library

To create a Dynamic Link Library, you must place the "DLL" keyword following the system
name in the "SYSTEM" directive.

system system os2v2 dll

In addition, you must specify which functions in the Dynamic Link Library are to be made
available to applications which use it. This is achieved by using the "EXPORT" directive for
each function that can be called by an application.

184 Dynamic Link Libraries

The OS/2 Executable and DLL File Formats

Dynamic Link Libraries can reference other Dynamic Link Libraries. References to other
Dynamic Link Libraries are resolved by specifying "IMPORT" directives or using import
libraries.

7.1.2 Using a Dynamic Link Library

To use a Dynamic Link Library, you must tell the Watcom Linker which functions are
contained in a Dynamic Link Library and the name of the Dynamic Link Library. This is
achieved in two ways.

The first method is to use the "IMPORT" directive. The "IMPORT" directive names the
function and the Dynamic Link Library it belongs to so that the Watcom Linker can generate
an import definition in the program module.

The second method is to use import libraries. An import library is a standard library which
contains object modules with special object records that define the functions belonging to a
Dynamic Link Library. An import library is created from a Dynamic Link Library using the
Watcom Library Manager. The resulting import library can then be specified in a
"LIBRARY" directive in the same way one would specify a standard library. See the chapter
entitled "The Watcom Library Manager" in the Watcom C/C++ Tools User’s Guide or the
Watcom FORTRAN 77 Tools User’s Guide for more information on creating import
libraries.

Using an import library is the preferred method of providing references to functions in
Dynamic Link Libraries. When a Dynamic Link Library is modified, typically the import
library corresponding to the modified Dynamic Link Library is updated to reflect the changes.
Hence, any directive file that specifies the import library in a "LIBRARY" directive need not
be modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directives to reflect the changes in the Dynamic Link Library.

7.2 Memory Layout
The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

Memory Layout 185

The WATCOM Linker

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment is initialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

7.3 The Watcom Linker Memory Requirements
The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It is possible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image file is to contain debugging information.
For this reason, a temporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have a RAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tmp

The Watcom Linker will create the temporary file in the directory "\tmp".

186 The Watcom Linker Memory Requirements

The OS/2 Executable and DLL File Formats

7.4 Converting Microsoft Response Files to Directive
Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Watcom
Linker directive files. The response files must correspond to the linker found in version 7 or
earlier of Microsoft C. Later versions of response files such as those used with Microsoft
Visual C++ are not entirely supported.

The same utility can also convert much of the content of IBM OS/2 LINK386 response files
since the syntax is similar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processes its input.
The difference is that MS2WLINK writes the corresponding Watcom Linker directive file to
the standard output device instead of a creating an executable file. The resulting output can be
redirected to a disk file which can then be used as input to the Watcom Linker to produce an
executable file.

Suppose you have a Microsoft linker response file called "test.rsp". You can convert this file
to a Watcom Linker directive file by issuing the following command.

Example:
ms2wlink @test.rsp >test.lnk

You can now use the Watcom Linker to link your program by issuing the following command.

Example:
wlink @test

An alternative way to link your application with the Watcom Linker from a Microsoft
response file is to issue the following command.

Example:
ms2wlink @test.rsp | wlink

Since the Watcom Linker gets its input from the standard input device, you do not have to
create a Watcom Linker directive file to link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2
applications.

Converting Microsoft Response Files to Directive Files 187

The WATCOM Linker

188 Converting Microsoft Response Files to Directive Files

8 The Phar Lap Executable File Format

This chapter deals specifically with aspects of Phar Lap 386|DOS-Extender executable files.
The Phar Lap executable file format will run under the following operating systems.

1. Phar Lap’s 386|DOS-Extender
2. Watcom’s 32-bit Windows supervisor (relocatable format only)

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] |
DISABLE msg_num{,msg_num}
ENDLINK
FILE obj_spec{,obj_spec}
FORMAT PHARLAP [EXTENDED | REX | SEGMENTED]
LANGUAGE lang
LIBFILE obj_file{,obj_file}
LIBPATH path_name{;path_name}
LIBRARY library_file{,library_file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
NAME exe_file
OPTION option{,option}

ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CVPACK
DOSSEG

The Phar Lap Executable File Format 189

The WATCOM Linker

ELIMINATE
INCREMENTAL
MANGLEDNAMES
MAP[=map_file]
MAXDATA=n
MAXERRORS=n
MINDATA=n
NAMELEN=n
NODEFAULTLIBS
OFFSET=n
OSNAME=’string’
QUIET
REDEFSOK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_file]
[NO]UNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{,library_file}
PATH path_name{;path_name}
REFERENCE symbol_name{,symbol_name}
RUNTIME run_option{,run_option}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@ directive_file

You can view all the directives specific to Phar Lap 386|DOS-Extender executable files by
simply typing the following:

wlink ? phar

Notes:

1. If the file "wlink.hlp" is located in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

190 The Phar Lap Executable File Format

The Phar Lap Executable File Format

wlink ?

2. If all of the directive information does not fit on the command line, type the
following.

wlink

The prompt "WLINK>" will appear on the next line. You can enter as many lines
of directive information as required. Press "Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press "Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

8.1 32-bit Protected-Mode Applications
The Watcom Linker generates executable files that run under Phar Lap’s 386|DOS-Extender.
386|DOS-Extender provides a 32-bit protected-mode environment for programs running under
PC DOS. Running in 32-bit protected mode allows your program to access all of the memory
in your machine.

Essentially, what 386|DOS-Extender does is provide an interface between your application
and DOS running in real mode. Whenever your program issues a software interrupt (DOS
and BIOS system calls), 386|DOS-Extender intercepts the requests, transfers data between the
protected-mode and real-mode address space, and calls the corresponding DOS system
function running in real mode.

8.2 Memory Usage
When running a program under 386|DOS-Extender, memory for the program is allocated from
conventional memory (memory below one megabyte) and extended memory. Conventional
memory is allocated from a block of memory that is obtained from DOS by
386|DOS-Extender at initialization time. By default, all available memory is allocated at
initialization time; no conventional memory remains free. The "MINREAL" and
"MAXREAL" options of the "RUNTIME" directive control the amount of conventional
memory initially left free by 386|DOS-Extender.

Part of the conventional memory allocated at initialization is required by 386|DOS-Extender.
The following is allocated from conventional memory for use by 386|DOS-Extender.

Memory Usage 191

The WATCOM Linker

1. A data buffer is allocated and is used to pass data to DOS and BIOS system
functions. The size allocated is controlled by the "MINIBUF" and "MAXIBUF"
options of the "RUNTIME" directive.

2. Stack space is allocated and is used for switching between 32-bit protected mode
and real mode. The size allocated is controlled by the "NISTACK" and
"ISTKSIZE" options of the "RUNTIME" directive.

3. A call buffer is allocated and is used for passing data on function calls between
32-bit protected mode and real mode. The size allocated is controlled by the
"CALLBUFS" option of the "RUNTIME" directive.

When a program is loaded by 386|DOS-Extender, memory to hold the entire program is
allocated. In addition, memory beyond the end of the program is allocated for use by the
program. By default, all extra memory is allocated when the program is loaded. It is assumed
that any memory not required by the program is freed by the program. The amount of
memory allocated at the end of the program is controlled by the "MINDATA" and
"MAXDATA" options.

8.3 Memory Layout
The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. all "USE16" segments. These segments are present in applications that execute in
both real mode and protected mode. They are first in the segment ordering so that
the "REALBREAK" option of the "RUNTIME" directive can be used to separate
the real-mode part of the application from the protected-mode part of the
application. Currently, the "RUNTIME" directive is valid for Phar Lap executables
only.

2. all segments not belonging to group "DGROUP" with class "CODE"

3. all other segments not belonging to group "DGROUP"

4. all segments belonging to group "DGROUP" with class "BEGDATA"

5. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

6. all segments belonging to group "DGROUP" with class "BSS"

192 Memory Layout

The Phar Lap Executable File Format

7. all segments belonging to group "DGROUP" with class "STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

8.4 The Watcom Linker Memory Requirements
The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It is possible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image file is to contain debugging information.
For this reason, a temporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have a RAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tmp

The Watcom Linker will create the temporary file in the directory "\tmp".

The Watcom Linker Memory Requirements 193

The WATCOM Linker

194 The Watcom Linker Memory Requirements

9 The QNX Executable File Format

This chapter deals specifically with aspects of QNX executable files. The QNX executable
file format will only run under the QNX operating system.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

wlink {directive}

where directive is any of the following:

ALIAS symbol_name=symbol_name{,symbol_name=symbol_name}
DEBUG dbtype [dblist] |
DISABLE msg_num{,msg_num}
ENDLINK
FILE obj_spec{,obj_spec}
FORMAT QNX [FLAT]
LANGUAGE
LIBFILE obj_file{,obj_file}
LIBPATH path_name{:path_name}
LIBRARY library_file{,library_file}
MODFILE obj_file{,obj_file}
MODTRACE obj_spec{,obj_spec}
NAME exe_file
NEWSEGMENT
OPTION option{,option}

ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CVPACK
DOSSEG
ELIMINATE
HEAPSIZE=n

The QNX Executable File Format 195

The WATCOM Linker

INCREMENTAL
LINEARRELOCS
LONGLIVED
MANGLEDNAMES
MAP[=map_file]
MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
NORELOCS
OFFSET=n
OSNAME=’string’
PACKCODE=n
PACKDATA=n
PRIVILEGE=n
QUIET
REDEFSOK
RESOURCE[=resource_file | ’string’]
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_file]
[NO]UNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{,library_file}
PATH path_name{:path_name}
REFERENCE symbol_name{,symbol_name}
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@ directive_file

You can view all the directives specific to QNX executable files by simply typing the
following:

wlink ? qnx

196 The QNX Executable File Format

The QNX Executable File Format

Notes:

1. If the file /etc/wlink.hlp exists, the contents of that file will be displayed
when the following command is issued.

wlink ?

2. If all of the directive information does not fit on the command line, type the
following.

wlink

The prompt "WLINK>" will appear on the next line. You can enter as many lines
of directive information as required. Press "Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press "Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

9.1 Memory Layout
The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment is initialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Memory Layout 197

The WATCOM Linker

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

9.2 The Watcom Linker Memory Requirements
The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It is possible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image file is to contain debugging information.
For this reason, a temporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the current working directory. However, by
defining the "TMPDIR" environment variable to be a directory, you can tell the Watcom
Linker where to create the temporary file. This can be particularly useful if you have a RAM
disk. Consider the following definition of the "TMPDIR" environment variable.

export TMPDIR=/tmp

The Watcom Linker will create the temporary file in the directory "/tmp".

198 The Watcom Linker Memory Requirements

10 The Win16 Executable and DLL File
Formats

This chapter deals specifically with aspects of Win16 executable files. The Win16 executable
file format will run under Windows 3.x, Windows 95, and Windows NT.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
ANONYMOUSEXPORT export{,export} | =lbc_file
DEBUG dbtype [dblist] |
DISABLE msg_num{,msg_num}
ENDLINK
EXPORT export{,export}
EXPORT =lbc_file
FILE obj_spec{,obj_spec}
FORMAT WINDOWS [dll_form] [MEMORY] [FONT]
IMPORT import{,import}
LANGUAGE lang
LIBFILE obj_file{,obj_file}
LIBPATH path_name{;path_name}
LIBRARY library_file{,library_file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
NAME exe_file
NEWSEGMENT
PATH path_name{;path_name}
OPTION option{,option}

The Win16 Executable and DLL File Formats 199

The WATCOM Linker

ALIGNMENT=n
ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CVPACK
DESCRIPTION ’string’
DOSSEG
ELIMINATE
HEAPSIZE=n
IMPFILE[=imp_file]
IMPLIB[=imp_lib]
INCREMENTAL
MANGLEDNAMES
MANYAUTODATA
MAP[=map_file]
MAXERRORS=n
MODNAME=module_name
NAMELEN=n
NOAUTODATA
NODEFAULTLIBS
OLDLIBRARY=dll_name
ONEAUTODATA
OSNAME=’string’
PACKCODE=n
PACKDATA=n
QUIET
REDEFSOK
RESOURCE=resource_file
RWRELOCCHECK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symbol_file]
[NO]UNDEFSOK
VERBOSE
VERSION=major[.minor]
VFREMOVAL

OPTLIB library_file{,library_file}
REFERENCE symbol_name{,symbol_name}
SEGMENT seg_desc{,seg_desc}

200 The Win16 Executable and DLL File Formats

The Win16 Executable and DLL File Formats

SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@ directive_file

You can view all the directives specific to Win16 executable files by simply typing the
following:

wlink ? win

Notes:

1. If the file "wlink.hlp" is located in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wlink ?

2. If all of the directive information does not fit on the command line, type the
following.

wlink

The prompt "WLINK>" will appear on the next line. You can enter as many lines
of directive information as required. Press "Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press "Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

10.1 Fixed and Moveable Segments
All segments have attributes that tell Windows how to manage the segment. One of these
attributes specifies whether the segment is fixed or moveable. Moveable segments can be
moved in memory to satisfy other memory requests. When a segment is moved, all near
pointers to that segment are still valid since a near pointer references memory relative to the
start of the segment. However, far pointers are no longer valid once a segment has been
moved. Fixed segments, on the other hand, cannot be moved in memory. A segment must be
fixed if there exists far pointers to that segment that Windows cannot adjust if that segment
were moved.

Fixed and Moveable Segments 201

The WATCOM Linker

This is a memory-management issue for real-mode Windows only. However, if a DLL is
marked as "fixed", Windows 3.x will place it in the lower 640K real-mode memory
(regardless of the mode in which Windows 3.x is running). Since the lower 640K is a limited
resource, you normally would want a DLL to be marked as "moveable".

Most segments, including code and data segments, are moveable. Some exceptions exist. If
your program contains a far pointer, the segment which it references must be fixed. If it were
moveable, the segment address portion of the far pointer would be invalid when Windows
moved the segment.

All non-Windows programs are assigned fixed segments when they run under Windows.
These segments must be fixed since there is no information in the executable file that
describes how segments are referenced. Whenever possible, your application should consist
of moveable segments since fixed segments can cause memory management problems.

10.2 Discardable Segments
Moveable segments can also be discardable. Memory allocated to a discardable segment can
be freed and used for other memory requests. A "least recently used" (LRU) algorithm is used
to determine which segment to discard when more memory is required.

Discardable segments are usually segments that do not change once they are loaded into
memory. For example, code segments are discardable since programs do not usually modify
their code segments. When a segment is discarded, it can be reloaded into memory by
accessing the executable file.

Discardable segments must be moveable since they can be reloaded into a different area in
memory than the area they previously occupied. Note that moveable segments need not be
discardable. Obviously, data segments that contain read/write data cannot be discarded.

10.3 Dynamic Link Libraries
The Watcom Linker can generate two forms of executable files; program modules and
Dynamic Link Libraries. A program module is the executable file that gets loaded by the
operating system when you run your application. A Dynamic Link Library is really a library
of routines that are called by a program module but not linked into the program module. The
executable code in a Dynamic Link Library is loaded by the operating system during the
execution of a program module when a routine in the Dynamic Link Library is called.

202 Dynamic Link Libraries

The Win16 Executable and DLL File Formats

Program modules are contained in files whose name has a file extension of "exe". Dynamic
Link Libraries are contained in files whose name has a file extension of "dll". The Watcom
Linker "FORMAT" directive can be used to select the type of executable file to be generated.

Let us consider some of the advantages of using Dynamic Link Libraries over standard
libraries.

1. Functions in Dynamic Link Libraries are not linked into your program. Only
references to the functions in Dynamic Link Libraries are placed in the program
module. These references are called import definitions. As a result, the linking
time is reduced and disk space is saved. If many applications reference the same
Dynamic Link Library, the saving in disk space can be significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain
the actual executable code, a Dynamic Link Library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the
applications that use them. If many applications that use the same Dynamic Link
Library are executing concurrently, the sharing of code and data segments
improves memory utilization.

10.3.1 Creating a Dynamic Link Library

To create a Dynamic Link Library, you must place the "DLL" keyword following the system
name in the "SYSTEM" directive.

system system windows dll

In addition, you must specify which functions in the Dynamic Link Library are to be made
available to applications which use it. This is achieved by using the "EXPORT" directive for
each function that can be called by an application.

Dynamic Link Libraries can reference other Dynamic Link Libraries. References to other
Dynamic Link Libraries are resolved by specifying "IMPORT" directives or using import
libraries.

Dynamic Link Libraries 203

The WATCOM Linker

10.3.2 Using a Dynamic Link Library

To use a Dynamic Link Library, you must tell the Watcom Linker which functions are
contained in a Dynamic Link Library and the name of the Dynamic Link Library. This is
achieved in two ways.

The first method is to use the "IMPORT" directive. The "IMPORT" directive names the
function and the Dynamic Link Library it belongs to so that the Watcom Linker can generate
an import definition in the program module.

The second method is to use import libraries. An import library is a standard library which
contains object modules with special object records that define the functions belonging to a
Dynamic Link Library. An import library is created from a Dynamic Link Library using the
Watcom Library Manager. The resulting import library can then be specified in a
"LIBRARY" directive in the same way one would specify a standard library. See the chapter
entitled "The Watcom Library Manager" in the Watcom C/C++ Tools User’s Guide or the
Watcom FORTRAN 77 Tools User’s Guide for more information on creating import
libraries.

Using an import library is the preferred method of providing references to functions in
Dynamic Link Libraries. When a Dynamic Link Library is modified, typically the import
library corresponding to the modified Dynamic Link Library is updated to reflect the changes.
Hence, any directive file that specifies the import library in a "LIBRARY" directive need not
be modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directives to reflect the changes in the Dynamic Link Library.

10.4 Memory Layout
The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

204 Memory Layout

The Win16 Executable and DLL File Formats

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment is initialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

10.5 The Watcom Linker Memory Requirements
The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It is possible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image file is to contain debugging information.
For this reason, a temporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have a RAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tmp

The Watcom Linker will create the temporary file in the directory "\tmp".

10.6 Converting Microsoft Response Files to Directive
Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Watcom
Linker directive files. The response files must correspond to the linker found in version 7 or
earlier of Microsoft C. Later versions of response files such as those used with Microsoft
Visual C++ are not entirely supported.

The same utility can also convert much of the content of IBM OS/2 LINK386 response files
since the syntax is similar.

Converting Microsoft Response Files to Directive Files 205

The WATCOM Linker

Input to MS2WLINK is processed in the same way as the Microsoft linker processes its input.
The difference is that MS2WLINK writes the corresponding Watcom Linker directive file to
the standard output device instead of a creating an executable file. The resulting output can be
redirected to a disk file which can then be used as input to the Watcom Linker to produce an
executable file.

Suppose you have a Microsoft linker response file called "test.rsp". You can convert this file
to a Watcom Linker directive file by issuing the following command.

Example:
ms2wlink @test.rsp >test.lnk

You can now use the Watcom Linker to link your program by issuing the following command.

Example:
wlink @test

An alternative way to link your application with the Watcom Linker from a Microsoft
response file is to issue the following command.

Example:
ms2wlink @test.rsp | wlink

Since the Watcom Linker gets its input from the standard input device, you do not have to
create a Watcom Linker directive file to link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2
applications.

206 Converting Microsoft Response Files to Directive Files

11 The Win32 Executable and DLL File
Formats

This chapter deals specifically with aspects of Win32 executable files. The Win32 executable
file format will run under Windows 95, Windows NT, and Phar Lap’s TNT DOS extender. It
may also run under Windows 3.x using the Win32S subsystem (you are restricted to a subset
of the Win32 API).

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
ANONYMOUSEXPORT export{,export} | =lbc_file
COMMIT mem_type
DEBUG dbtype [dblist] |
DISABLE msg_num{,msg_num}
ENDLINK
EXPORT export{,export}
EXPORT =lbc_file
FILE obj_spec{,obj_spec}
FORMAT WINDOWS NT [TNT] [dll_form]
IMPORT import{,import}
LANGUAGE lang
LIBFILE obj_file{,obj_file}
LIBPATH path_name{;path_name}
LIBRARY library_file{,library_file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
NAME exe_file

The Win32 Executable and DLL File Formats 207

The WATCOM Linker

PATH path_name{;path_name}
OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CVPACK
DESCRIPTION ’string’
DOSSEG
ELIMINATE
HEAPSIZE=n
IMPFILE[=imp_file]
IMPLIB[=imp_lib]
INCREMENTAL
MANGLEDNAMES
MAP[=map_file]
MAXERRORS=n
MODNAME=module_name
NAMELEN=n
NODEFAULTLIBS
NORELOCS
NOSTDCALL
OBJALIGN=n
OFFSET
OLDLIBRARY=dll_name
OSNAME=’string’
QUIET
REDEFSOK
RESOURCE=resource_file
SHOWDEAD
STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symbol_file]
[NO]UNDEFSOK
VERBOSE
VERSION=major[.minor]
VFREMOVAL

OPTLIB library_file{,library_file}
REFERENCE symbol_name{,symbol_name}

208 The Win32 Executable and DLL File Formats

The Win32 Executable and DLL File Formats

RUNTIME run_option
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@ directive_file

You can view all the directives specific to Win32 executable files by simply typing the
following:

wlink ? nt

Notes:

1. If the file "wlink.hlp" is located in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wlink ?

2. If all of the directive information does not fit on the command line, type the
following.

wlink

The prompt "WLINK>" will appear on the next line. You can enter as many lines
of directive information as required. Press "Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press "Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

11.1 Dynamic Link Libraries
The Watcom Linker can generate two forms of executable files; program modules and
Dynamic Link Libraries. A program module is the executable file that gets loaded by the
operating system when you run your application. A Dynamic Link Library is really a library
of routines that are called by a program module but not linked into the program module. The
executable code in a Dynamic Link Library is loaded by the operating system during the
execution of a program module when a routine in the Dynamic Link Library is called.

Dynamic Link Libraries 209

The WATCOM Linker

Program modules are contained in files whose name has a file extension of "exe". Dynamic
Link Libraries are contained in files whose name has a file extension of "dll". The Watcom
Linker "FORMAT" directive can be used to select the type of executable file to be generated.

Let us consider some of the advantages of using Dynamic Link Libraries over standard
libraries.

1. Functions in Dynamic Link Libraries are not linked into your program. Only
references to the functions in Dynamic Link Libraries are placed in the program
module. These references are called import definitions. As a result, the linking
time is reduced and disk space is saved. If many applications reference the same
Dynamic Link Library, the saving in disk space can be significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain
the actual executable code, a Dynamic Link Library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the
applications that use them. If many applications that use the same Dynamic Link
Library are executing concurrently, the sharing of code and data segments
improves memory utilization.

11.1.1 Creating a Dynamic Link Library

To create a Dynamic Link Library, you must place the "DLL" keyword following the system
name in the "SYSTEM" directive.

system system nt win dll

In addition, you must specify which functions in the Dynamic Link Library are to be made
available to applications which use it. This is achieved by using the "EXPORT" directive for
each function that can be called by an application.

Dynamic Link Libraries can reference other Dynamic Link Libraries. References to other
Dynamic Link Libraries are resolved by specifying "IMPORT" directives or using import
libraries.

210 Dynamic Link Libraries

The Win32 Executable and DLL File Formats

11.1.2 Using a Dynamic Link Library

To use a Dynamic Link Library, you must tell the Watcom Linker which functions are
contained in a Dynamic Link Library and the name of the Dynamic Link Library. This is
achieved in two ways.

The first method is to use the "IMPORT" directive. The "IMPORT" directive names the
function and the Dynamic Link Library it belongs to so that the Watcom Linker can generate
an import definition in the program module.

The second method is to use import libraries. An import library is a standard library which
contains object modules with special object records that define the functions belonging to a
Dynamic Link Library. An import library is created from a Dynamic Link Library using the
Watcom Library Manager. The resulting import library can then be specified in a
"LIBRARY" directive in the same way one would specify a standard library. See the chapter
entitled "The Watcom Library Manager" in the Watcom C/C++ Tools User’s Guide or the
Watcom FORTRAN 77 Tools User’s Guide for more information on creating import
libraries.

Using an import library is the preferred method of providing references to functions in
Dynamic Link Libraries. When a Dynamic Link Library is modified, typically the import
library corresponding to the modified Dynamic Link Library is updated to reflect the changes.
Hence, any directive file that specifies the import library in a "LIBRARY" directive need not
be modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directives to reflect the changes in the Dynamic Link Library.

11.2 Memory Layout
The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

Memory Layout 211

The WATCOM Linker

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment is initialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

11.3 The Watcom Linker Memory Requirements
The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It is possible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image file is to contain debugging information.
For this reason, a temporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have a RAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tmp

The Watcom Linker will create the temporary file in the directory "\tmp".

212 The Watcom Linker Memory Requirements

12 Watcom Linker Diagnostic Messages

The Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each
message has a 4-digit number associated with it. Fatal messages start with the digit 3, error
messages start with the digit 2, and warning messages start with the digit 1. It is possible for a
message to be issued as a warning or an error.

If a fatal error occurs, the linker will terminate immediately and no executable file will be
generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued.
However, no executable file will be generated since these errors do not permit a proper
executable file to be generated.

If a warning occurs, the linker will continue to execute. A warning message is usually
informational and does not prevent the creation of a proper executable file. However, all
warnings should eventually be corrected.

The messages listed contain references to %s, %S, %a, %x, %d, %l, and %f. They
represent strings that are substituted by the Watcom Linker to make the error message more
precise.

1. %s represents a string. This may be a segment or group name, or the name of a
linker directive or option.

2. %S represents the name of a symbol.

3. %a represents an address. The format of the address depends on the format of the
executable file being generated.

4. %x represents a hexadecimal number.

5. %d represents integers in the range -32768 and 32767.

6. %l represents integers in the range -2147483648 and 2147483647.

7. %f represents an executable file format such as DOS, WINDOWS, PHARLAP,
NOVELL, OS2, QNX or ELF.

Watcom Linker Diagnostic Messages 213

The WATCOM Linker

The following is a list of all warning and error messages produced by the Watcom Linker
followed by a description of the message. A message may contain more than one reference to
"%s". In such a case, the description will reference them as "%sn" where n is the occurrence
of "%s" in the message.

MSG 2002 ** internal ** - %s

If this message occurs, you have found a bug in the linker and should report it.

MSG 2008 cannot open %s1 : %s2

An error occurred while trying to open the file "%s1". The reason for the error
is given by "%s2". Generally this error message is issued when the linker cannot
open a file (e.g., an object file or an executable file).

MSG 3009 dynamic memory exhausted

The linker uses all available memory when linking an application. For
DOS-hosted versions of the linker, this includes expanded memory (EMS) and
extended memory. When all available memory is used, a spill file will be used.
Therefore, unless you are low on disk space, the linker will always be able to
generate the executable file. Dynamic memory is the memory the linker uses to
build its internal data structures and symbol table. Dynamic memory is the
amount of unallocated memory available on your machine (including virtual
memory for those operating systems that support it). A spill file is not used for
dynamic memory. If the linker issues this message, it cannot link your
application. The following are suggestions that may help you in this situation.

1. Concatenate all your object files into one and specify only the
resulting object file as input to the linker. For example, if you are
linking in a DOS environment, you can issue the following DOS
command.

C>copy/b *.obj all.obj

This technique only works for OMF-type object files. This
significantly reduces the size of the file list the linker must maintain.

2. Object files may contain a record which specifies the module name.
This information is used by Watcom Debugger to locate modules
during a debugging session and usually contains the full path of the
source file. This can consume a significant amount of memory when
many such object files are being linked. If your source is being
compiled by the Watcom C or C++ compiler, you can use the "nm"

214 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

option to set the module name to just the file name. This reduces the
amount of memory required by the linker. If your are using Watcom
Debugger to debug your application, you may have to use the "set
source" command so that the source corresponding to a module can
be located.

3. Typically, when you are compiling a program for a large code model,
each module defines a different "text" segment. If you are compiling
your application using the Watcom C or C++ compiler, you can
reduce the number of "text" segments that the linker has to process by
specifying the "nt" option. The "nt" option allows you to specify the
name of the "text" segment so that a group of object files define the
same "text" segment.

MSG 2010,3010 I/O error processing %s1 : %s2

An error has occurred while processing the file "%s1". The cause of the error is
given by "%s2". This error is usually detected while reading from object and
library files or writing to the spill file or executable file. For example, this error
would be issued if a "disk full" condition existed.

MSG 2011 invalid object file attribute

The linker encountered an object file that was not of the format required of an
object file.

MSG 2012 invalid library file attribute

The linker encountered a library file that was not of the format required of a
library file.

MSG 3013 break key detected

The linking process was interrupted by the user from the keyboard.

MSG 1014 stack segment not found

The linker identifies the stack segment by a segment defined as having the
"STACK" attribute. This message is issued if no such segment is encountered.
This usually happens if the linker cannot find the run-time libraries required to
link your application.

MSG 2015 bad relocation type specified

Watcom Linker Diagnostic Messages 215

The WATCOM Linker

This message is issued if a a relocation is found in an object file which the linker
does not support.

MSG 2016 %a: absolute target invalid for self-relative relocation

This message is issued, for example, if a near call or jump is made to an external
symbol which is defined using the "EQU" assembler directive. "%a" identifies
the location of the near call or jump instruction.

MSG 2017 bad location specified for self-relative relocation at %a

This message is issued if a bad fixup is encountered. "%a" defines the location
of the fixup.

MSG 2018 relocation offset at %a is out of range

This message is issued when the offset part of a relocation exceeds 64K in a
16-bit executable or an Alpha executable. "%a" defines the location of the
fixup. The error is most commonly caused by errors in coding assembly
language routines. Consider a module that references an external symbol that is
defined in a segment different from the one in which the reference occurred.
The module, however, specifies that the segment in which the symbol is defined
is the same segment as the segment that references the symbol. This error is
most commonly caused when the "EXTRN" assembler directive is placed after
the "SEGMENT" assembler directive for the segment referencing the symbol. If
the segment that references the symbol is allocated far enough away from the
segment that defines the symbol, the linker will issue this message.

MSG 1019 segment relocation at %a

This message is issued when a 16-bit segment relocation is encountered and
"FORMAT DOS COM", "FORMAT PHARLAP" or "FORMAT NOVELL" has
been specified. None of the above executable file formats allow segment
relocation. "%a" identifies the location of the segment relocation.

MSG 2020 size of group %s exceeds 64k by %l bytes

The group "%s" has exceeded the maximum size (64K) allowed for a group in a
16-bit executable by "%l" bytes. Usually, the group is "DGROUP" (the default
data segment) and your application has placed too much data in this group. One
of the following may solve this problem.

1. If you are using the Watcom C or C++ compiler, you can place some
of your data in a far segment by using the "far" keyword when

216 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

defining data. You can also decrease the value of the data threshold
by using the "zt" compiler option. Any datum whose size exceeds the
value of the data threshold will be placed in a far segment.

2. If you are using the Watcom FORTRAN 77 compiler, you can
decrease the value of the data threshold by using the "dt" compiler
option. Any datum whose size exceeds the value of the data threshold
will be placed in a far segment.

MSG 2021 size of segment %s exceeds 64k by %l bytes

The segment "%s" has exceeded the maximum size (64K) for a segment in a
16-bit executable. This usually occurs if you are linking a 16-bit application that
has been compiled for a small code model and the size of the application has
grown in such a way that the size of the code segment ("_TEXT") has exceeded
64K. You can compile your application for a large code model if you cannot
reduce the amount of code in your application.

MSG 2022 cannot have a starting address with an imported symbol

When generating an OS/2 executable file, a symbol imported from a DLL
cannot be a start address. When generating a NetWare 386 executable file, a
symbol imported from an NLM cannot be a start address.

MSG 1023 no starting address found, using %a

The starting address defines the location where execution is to begin and must
be defined by a special "module end" record in one of the object files linked into
your application. This message is issued if no such record is encountered in
which case a default starting address, namely "%a", will be used. This usually
happens if the linker cannot find the run-time libraries required to link your
application.

MSG 2026 redefinition of reserved symbol %s

The linker defines certain reserved symbols. These symbols are "_edata",
"_end", "__OVLTAB__", "__OVLSTARTVEC__", "__OVLENDVEC__",
"__LOVLLDR__", "__NOVLLDR__", "__SOVLLDR__", "__LOVLINIT__",
"__NOVLINIT__" and "__SOVLINIT__". The symbols "_edata" and "_end"
are defined only if the "DOSSEG" option is specified. Your application must
not attempt to define these symbols. "%s" identifies the reserved symbol.

MSG 1027 redefinition of %S ignored

Watcom Linker Diagnostic Messages 217

The WATCOM Linker

The symbol "%S" has been defined by more that one module; the first definition
is used. This is only a warning message. Note that if a symbol is defined more
than once and its address is the same in both cases, no warning will be issued.
This prevents the warning message from being issued when linking FORTRAN
77 modules that contain common blocks.

MSG 1028,2028 %S is an undefined reference

The symbol "%S" has been referenced but not defined. Check that the spelling
of the symbol is consistent. If you wish the linker to ignore undefined
references, use the "UNDEFSOK" option.

MSG 2029 premature end of file encountered

This error is issued while processing object files and object modules from
libraries and is caused if the end of the file or module is reached before the
"module end" record is encountered. The probable cause is a truncated object
file.

MSG 2030 multiple starting addresses found

The starting address defines the location where execution is to begin and is
defined by a "module end" record in a particular object file. This message is
issued if more than one object file contains a "module end" record that defines a
starting address.

MSG 2031 segment %s is in group %s and group %s

The segment "%s1" has been defined to be in group "%s2" in one module and in
group "%s3" in another module. A segment can only belong to one group.

MSG 1032 record (type 0x%x) not processed

An object record type not supported by the linker has been encountered. This
message is issued when linking object modules created by other compilers or
assemblers that create object files with records that the linker does not support.

MSG 2033,3033 directive error near ’%s’

A syntax error occurred while the linker was processing directives. "%s"
specifies where the error occurred.

MSG 2034 %a cannot have an offset with an imported symbol

218 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

An imported symbol is one that was specified in an "IMPORT" directive.
Imported symbols are defined in Windows or OS/2 16-bit DLLs and in Netware
386 NLMs. References to imported symbols must always have an offset value
of 0. If "DosWrite" is an imported symbol, then referencing "DosWrite+2" is
illegal. "%a" defines the location of the illegal reference.

MSG 1038 DEBUG directive appears after object files

This message is issued if the first "DEBUG" directive appears after a "FILE"
directive. A common error is to specify a "DEBUG" directive after the "FILE"
directives in which case no debugging information for those object files is
generated in the executable file.

MSG 2039 ALIGNMENT value too small

The value specified in the "ALIGNMENT" option refers to the alignment of
segments in the executable file. For 16-bit Windows or 16-bit OS/2, segments
in the executable file are pointed to by a segment table. An entry in the segment
table contains a 16-bit value which is a multiple of the alignment value.
Together they form the offset of the segment from the start of the segment table.
The smaller the alignment, the bigger the value required in the segment table to
point to the segment. If this value exceeds 64K, then a larger alignment value is
required to decrease the size that goes in the segment table.

MSG 2040 ordinal in IMPORT directive not valid

The specified ordinal in the "IMPORT" directive is incorrect (e.g., -1). An
ordinal number must be in the range 0 to 65535.

MSG 2041 ordinal in EXPORT directive not valid

The specified ordinal in the "EXPORT" directive is incorrect (e.g., -1). An
ordinal number must be in the range 0 to 65535.

MSG 2042 too many IOPL words in EXPORT directive

The maximum number of IOPL words for a 16-bit executable is 63.

MSG 1043 duplicate exported ordinal

This message is issued for ordinal numbers specified in an "EXPORT" directive
for symbols belonging to DLLs. This message is issued if an ordinal number is
assigned to two different symbols. A warning is issued and the linker assigns a
non-used ordinal number to the symbol that caused the warning.

Watcom Linker Diagnostic Messages 219

The WATCOM Linker

MSG 1044,2044 exported symbol %s not found

This message is issued when generating a DLL or NetWare 386 NLM. An
attempt has been made to define an entry point into a DLL or NLM that does not
exist.

MSG 1045 segment attribute defined more than once

A segment appearing in a "SEGMENT" directive has been given conflicting or
duplicate attributes.

MSG 1046 segment name %s not found

The segment name specified in a "SEGMENT" directive has not been defined.

MSG 1047 class name %s not found

The class name specified in a "SEGMENT" directive has not been defined.

MSG 1048 inconsistent attributes for automatic data segment

This message is issued for Windows or OS/2 16-bit executable files. Two
conflicting attributes were specified for the automatic data segment. For
example, "LOADONCALL" and "PRELOAD" are conflicting attributes. Only
the first attribute is used.

MSG 2049 invalid STUB file

The stub file is not a valid executable file. The stub file is only used for OS/2
executable files and Windows (both Win16 and Win32) executable files.

MSG 1050 invalid DLL specified in OLDLIBRARY option

The DLL specified in an "OLDLIBRARY" option is not a valid dynamic link
library.

MSG 2051 STUB file name same as executable file name

When generating an OS/2 or Windows (Win16, Win32) executable file, the stub
file name must not be same as the executable file name.

MSG 2052 relocation at %a not in the same segment

220 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

This message is only issued for Windows (Win16), OS/2, Phar Lap, and QNX
executables. A relative fixup must relocate to the same segment. "%a" defines
the location of the fixup.

MSG 2053 %a: cannot reach a DLL with a relative relocation

A reference to a symbol in an OS/2 or Windows 16-bit DLL must not be
relative. "%a" defines the location of the reference.

MSG 1054 debugging information incompatible: using line numbers only

An attempt has been made to link an object file with out-of-date debugging
information.

MSG 2055 %a: frame must be the same as the target in protected mode

Each relocation consists of three components; the location being relocated, the
target (or address being referenced), and the frame (the segment to which the
target is adjusted). In protected mode, the segment of the target must be the
same as the frame. "%a" defines the location of the fixup. This message does
not apply to 32-bit OS/2 and Windows (Win32).

MSG 2056 cannot find library member %s(%s)

Library member "%s2" in library file "%s1" could not be found. This message
is issued if the library file could not be found or the library file did not contain
the specified member.

MSG 3057 executable format has been established

This message is issued if there is more than one "FORMAT" directive.

MSG 1058 %s option not valid for %s executable

The option "%s1" can only be specified if an executable file whose format is
"%s2" is being generated.

MSG 1059,2059 value for %s too large

The value specified for option "%s" exceeds its limit.

MSG 1060 value for %s incorrect

The value specified for option "%s" is not in the allowable range.

Watcom Linker Diagnostic Messages 221

The WATCOM Linker

MSG 1061 multiple values specified for REALBREAK

The "REALBREAK" option for Phar Lap executables can only be specified
once.

MSG 1062 export and import records not valid for %f

This message is issued if a reference to a DLL is encountered and the executable
file format is not one that supports DLLs. The file format is represented by
"%f".

MSG 2063 invalid relocation for flat memory model at %a

A segment relocation in the flat memory model was encountered. "%a" defines
the location of the fixup.

MSG 2064 cannot combine 32-bit segments with 16-bit segments

A 16-bit segment and a 32-bit segment have been encountered. Mixing object
files created by a 286 compiler and object files created by a 386 compiler is the
most probable cause of this error.

MSG 2065 REALBREAK symbol %s not found

The symbol specified in the "REALBREAK" option for Phar Lap executables
has not been defined.

MSG 2066 invalid relative relocation type for an import at %a

This message is issued only if a NetWare 386 executable file is being generated.
An imported symbol is one that was specified in an "IMPORT" directive or an
import library. Any reference to an imported symbol must not refer to the
segment of the imported symbol. "%a" defines the location of the reference.

MSG 2067 %a: cannot relocate between code and data in Novell formats

This message is issued only if a NetWare 386 executable file is being generated.
Segment relocation is not permitted. "%a" defines the location of the fixup.

MSG 2068 absolute segment fixup not valid in protected mode

A reference to an absolute location is not allowed in protected mode. A
protected-mode application is one that is being generated for OS/2, FlashTek’s
DOS extender, Phar Lap’s 386|DOS-Extender, Tenberry Software’s DOS/4G or

222 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

DOS/4GW DOS extender, Novell’s NetWare 386 operating system, Windows
NT, or Windows 95. An absolute location is most commonly defined by the
"EQU" assembler directive.

MSG 1069 unload CHECK procedure not found

This message is issued only if a NetWare 386 executable file is being generated.
The symbol specified in the "CHECK" option has not been defined.

MSG 2070 START procedure not found

This message is issued only if a NetWare 386 executable file is being generated.
The symbol specified in the "START" option has not been defined. The default
"START" symbol is "_Prelude".

MSG 2071 EXIT procedure not found

This message is issued only if a NetWare 386 executable file is being generated.
The symbol specified in the "EXIT" option has not been defined. The default
"STOP" symbol is "_Stop".

MSG 2073 bad Novell file format specified

An invalid NetWare 386 executable file format was specified. Valid formats are
NLM, DSK, NAM and LAN.

MSG 2074 circular alias found for %s

An attempt was made to circularly define the symbol name specified in an
ALIAS directive. For example:

ALIAS foo1=foo2, foo2=foo1

MSG 1076 %s option multiply specified

The option "%s" can only be specified once.

MSG 1080 file %s is a %d-bit object file

A 32-bit attribute was encountered while generating a 16-bit executable file
format, or a 16-bit attribute was encountered while generating a 32-bit
executable file format.

Watcom Linker Diagnostic Messages 223

The WATCOM Linker

MSG 2082 invalid record type 0x%x

An object record type not recognized by the linker has been encountered. This
message is issued when linking object modules created by other compilers or
assemblers that create object files with records that the linker does not
recognize.

MSG 2083 cannot reference address %a from frame %x

When generating a 16-bit executable, the offset of a referenced symbol was
greater than 64K from the location referencing it.

MSG 2084 target offset exceeds 64K at %a

When generating a 16-bit executable, the computed offset for a symbol exceeds
64K. "%a" defines the location of the fixup.

MSG 2086 invalid starting address for .COM file

The value of the segment of the starting address for a 16-bit DOS "COM" file, as
specified in the map file, must be 0.

MSG 1087 stack segment ignored in .COM file

A stack segment must not be defined when generating a 16-bit DOS "COM" file.
Only a single physical segment is allowed in a DOS "COM" file. The stack is
allocated from the high end of the physical segment. That is, the initial value of
SP is hexadecimal FFFE.

MSG 3088 virtual memory exhausted

This message is similar to the "dynamic memory exhausted" message. The
DOS-hosted version of the linker has run out of memory trying to keep track of
virtual memory blocks. Virtual memory blocks are allocated from expanded
memory, extended memory and the spill file.

MSG 2089 program too large for a .COM file

The total size of a 16-bit DOS "COM" program must not exceed 64K. That is,
the total amount of code and data must be less than 64K since only a single
physical segment is allowed in a DOS "COM" file. You must decrease the size
of your program or generate a DOS "EXE" file.

224 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 1090 redefinition of %s by %s ignored

The symbol "%s1" has been redefined by module "%s2". This message is issued
when the size specified in the "NAMELEN" option has caused two symbols to
map to the same symbol. For example, if the symbols routine1 and routine2 are
encountered and "OPTION NAMELEN=7" is specified, then this message will
be issued since the first seven characters of the two symbols are identical.

MSG 2092 NEWSEGMENT directive appears before object files

The 16-bit "NEWSEGMENT" directive must appear after a "FILE" directive.

MSG 2093 cannot open %s

This message is issued when the linker is unable to open a file and is unable to
determine the cause.

MSG 2094 i/o error processing %s

This message is issued when the linker has encountered an i/o error while
processing the file and is unable to determine the cause. This message may be
issued when reading from object and library files, or writing to the executable
and spill file.

MSG 1098 Offset option must be a multiple of %dK

The value specified with the "OFFSET" option must be a multiple of 4K (4096)
for Phar Lap and QNX executables and a multiple of 64K (65536) for OS/2 and
Windows 32-bit executables.

MSG 2099 symbol name too long: %s

The maximum size (approximately 2048) of a symbol has been exceeded.
Reduce the size of the symbol to avoid this error.

MSG 1101 invalid incremental information file

The incremental information file is corrupt or from an older version of the
compiler. The old information file and the executable will be deleted and new
ones will be generated.

MSG 1102 object file %s not found for tracing

Watcom Linker Diagnostic Messages 225

The WATCOM Linker

A "SYMTRACE" or "MODTRACE" directive contained an object file (namely
%s) that could not be found.

MSG 1103 library module %s(%s) not found for tracing

A "SYMTRACE" or "MODTRACE" directive contained an object module
(namely module %s1 in library %s2) that could not be found.

MSG 1107 undefined system name: %s

The name %s was referenced in a "SYSTEM" directive but never defined by a
system block definition.

MSG 1108 system %s defined more than once

The name %s has appeared in a system definition block more than once.

MSG 1109 OFFSET option is less than the stack size

For the QNX operating system, the stack is placed at the front of the executable
image and thus the initial load address must leave enough room for the stack.

MSG 1110 library members not allowed in libfile

Only object files are allowed in a "LIBFILE" directive. This message will be
issued if a module from a library file is specified in a "LIBFILE" directive.

MSG 1111 error in default system block

The default system block definition (system name "286" for 16-bit applications)
and (system name "386" for 32-bit applications) contains a directive error. The
system name "286" or "386" is automatically referenced by the linker when the
format of the executable cannot be determined (i.e. no "FORMAT" directive
has been specified).

MSG 3114 environment name specified incorrectly

This message is specified if the environment variable is not properly enclosed
between two percent (%) characters.

MSG 1115 environment name %s not found

The environment variable %s has not been defined in the environment space.

226 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 1117 segment number too high for a movable entry point

The segment number of a moveable segment must not exceed 255 for 16-bit
executables. Reduce the number of segments or use the "PACKCODE" option.

MSG 1118 heap size too large

This message is issued if the size of the heap, stack and the default data segment
(group DGROUP) exceeds 64K for 16-bit executables.

MSG 2119 wlib import statement incorrect

The "EXPORT" directive allows you to specify a library command file. This
command file is scanned for any librarian commands that create import library
entries. An invalid command was detected. See the section entitled "The
EXPORT Directive" for the correct format of these commands.

MSG 2120 application too large to run under DOS

This message is issued if the size of the 16-bit DOS application exceeds 1M.

MSG 1121 ’%s’ has already been exported

The linker has detected an attempt to export a symbol more than once. For
example, a name appearing in more than one "EXPORT" directive will cause
this message to be issued. Also, if you have declared a symbol as an export in
your source and have also specified the same symbol in an "EXPORT" directive,
this message will be issued. This message is only a warning.

MSG 3122 no FILE directives found

This message is issued if no "FILE" directive has been specified. In other
words, you have specified no object files to link.

MSG 3123 overlays are not supported in this version of the linker

This version of the linker does not support the creation of overlaid 16-bit
executables.

MSG 1124 lazy reference for %S has different default resolutions

A lazy external reference is one which has two resolutions: a preferred one and
a default one which is used if the preferred one is not found. In this case, the

Watcom Linker Diagnostic Messages 227

The WATCOM Linker

linker has found two lazy references that have the same preferred resolution but
different default resolutions.

MSG 1125 multiple aliases found for %S

The linker has found a name which has been aliased to two different symbols.

MSG 1126 %s has been modified: doing full relink

The linker has determined that the time stamps on the executable file and
symbolic information file (.sym) are different. An incremental link will not be
done.

MSG 2127 cannot export symbol %S

An attempt was made to export a symbol defined with an absolute address or to
export an imported symbol. It is not possible to export these symbols with the
"EXPORT" directive.

MSG 3128 directive error near beginning of input

The linker detected an error at the start of the command line.

MSG 3129 address information too large

The linker has encountered a segment that appears in more than 11000 object
files. An empty segment does not affect this limit. This can only occur with
WATCOM debugging information. If this message appears, switch to DWARF
debugging information.

MSG 1130 %s is an invalid shared nlm file

The NLM specified in a "SHAREDNLM" option is not valid.

MSG 3131 cannot open spill file: file already exists

All 26 of the DOS-hosted linker’s possible spill file names are in use. Spill files
can accumulate when linking on a multi-tasking system and the directory in
which the spill file is created is identical for each invocation of the linker.

MSG 2132 curly brace delimited list incorrect

A list delimited by curly braces is not correct. The most likely cause is a
missing right brace.

228 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 1133 no realbreak specified for 16-bit code

While generating a Phar Lap executable file, both 16-bit and 32-bit code was
linked together and no "REALBREAK" option has been specified. A warning
message is issued since this may be a potential problem.

MSG 1134 %s is an invalid message file

The file specified in a "MESSAGE" option for NetWare 386 executable files is
invalid.

MSG 1136 relocation to a read/write data segment found at %a

The "RWRELOCCHECK" option for 16-bit Windows (Win16) executables has
been specified and the linker has detected a segment relocation to a read/write
data segment.

MSG 3137 too many errors encountered

This message is issued when the number of error messages issued by the linker
exceeds the number specified by the "MAXERRORS" option.

MSG 3138 invalid filename ’%s’

The linker performs a simple filename validation whenever a filename is
specified to the linker. For example, a directory specification is not a valid
filename.

MSG 3139 cannot have both 16-bit and 32-bit object files

It is impossible to mix 16-bit code and 32-bit code in the same executable when
generating a QNX executable file.

MSG 1140 invalid message number

An invalid message number has been specified in a "DISABLE" directive.

MSG 1141 virtual function table record for %s mismatched

The linker performs a consistency check to ensure that the C++ compiler has not
generated incorrect virtual function information. If the message is issued, please
report this problem.

Watcom Linker Diagnostic Messages 229

The WATCOM Linker

MSG 1143 not enough memory to sort map file symbols

There was not enough memory for the linker to sort the symbols in the "Memory
Map" portion of the map file. This will only occur when the "SORT GLOBAL"
option has been specified.

MSG 1145 %S is both pure virtual and non-pure virtual

A function has been declared both as "pure" and "non-pure" virtual.

MSG 2146 %s is an invalid object file

Something was encountered in the object file that cannot be processed by the
linker.

MSG 3147 Ambiguous format specified

Not enough of the FORMAT directive attributes were specified to enable the
linker to determine the executable file format. For example,

FORMAT OS2

will generate this message.

MSG 1148 Invalid segment type specified

The segment type must be one of CODE or DATA.

MSG 1149 Only one debugging format can be specified

The debugging format must be one of WATCOM, Codeview, Dwarf (default),
or Novell. You cannot specify multiple debugging formats.

MSG 1150 file %s has code for a different processor

An object file has been encountered which contains code compiled for a
different processor (e.g., an Intel application and an Alpha object file).

MSG 2151 big endian code not supported

Big endian code is not supported by the linker.

MSG 2152 no dictionary found

230 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

No symbol search dictionary was found in a library that the linker attempted to
process.

MSG 2154 cannot execute %s1 : %s2

An attempt by the linker to spawn another application failed. The application is
specified by "%s1" and the reason for the failure is specified by "%s2".

MSG 2155 relocation at %a to an improperly aligned target

Some relocations in Alpha executables require that the object be aligned on a 4
byte boundary.

MSG 2156 OPTION INCREMENTAL must be one of the first directives specified

The option must be specified before any option or directive which modifies the
linker’s symbol table (e.g., IMPORT, EXPORT, REFERENCE, ALIAS).

MSG 3157 no code or data present

The linker requires that there be at least 1 byte of either code or data in the
executable.

MSG 1158 problem adding resource information

The resource file is invalid or corrupt.

MSG 3159 incremental linking only supports DWARF debugging information

When OPTION INCREMENTAL is used, you cannot specify non-Dwarf
debugging information for the executable. You must specify DEBUG DWARF
when requesting debugging information.

MSG 3160 incremental linking does not support dead code elimination

When OPTION INCREMENTAL is used, you cannot specify OPTION
ELIMINATE.

MSG 1162 relocations on iterated data not supported

An object file was encountered that contained an iterated data record that
requires relocation. This is most commonly caused by a module coded in
assembly language.

Watcom Linker Diagnostic Messages 231

The WATCOM Linker

MSG 1163 module has not been compiled with the "zv" option

When OPTION VFREMOVAL is used, all object files must be compiled with
the "zv" option. The linker has detected an object file that has not been
compiled with this option.

MSG 3164 incremental linking does not support virtual function removal

When OPTION INCREMENTAL is used, you cannot also specify OPTION
VFREMOVAL.

MSG 1165 resource file %s too big

The resource file specified in OPTION RESOURCE was too big to fit inside the
QNX executable. The maximum size is approximately 32000 bytes.

MSG 2166 both %s1 and %s2 marked as starting symbols

If the linker sees that there is more than one starting address specified in the
program and they have symbol names associated with them, it will emit this
error message. If there is more than one starting address specified and at least
one of them is unnamed, it will issue message 2030.

232 Watcom Linker Diagnostic Messages

Index

32-bit Windows 3.x executables 15
32-bit Windows 95 DLLs 16# 32-bit Windows 95 executables 16
386|DOS-Extender 191

directive 30

A

1
ALIAS directive 22
ALIGNMENT option 23
ANONYMOUSEXPORT directive 2416-bit DOS .COM 8
apostrophes 21, 6816-bit DOS executables 8
applications16-bit executables 8

creating for 16-bit OS/2 18116-bit OS/2 DLLs 9
creating for 32-bit OS/2 18116-bit OS/2 executables 9
creating for 32-bit Windows 20716-bit QNX executables 9
creating for DOS 16516-bit Windows 3.x DLLs 10
creating for DOS/4G 18116-bit Windows 3.x executables 10
creating for ELF 171
creating for FlashTek 181
creating for NetWare 386 175
creating for Phar Lap 286|Dos-Extender 1813
creating for Phar Lap 386|Dos-Extender 189
creating for QNX 195
creating for Win32 207
creating for Windows 3.x 19932-bit AutoCAD ADI executables 11
creating for Windows NT 20732-bit AutoCAD ADS executables 11

AR-format 332-bit DOS/4GW executables 12
ARTIFICIAL option 2632-bit executables 11

32-bit FlashTek executables 12
32-bit Netware NLMs 13
32-bit OS/2 DLLs 14

B32-bit OS/2 executables 13
32-bit OS/2 PM executables 14
32-bit Phar Lap executables 14
32-bit QNX executables 15

blanks in file names 2132-bit TNT executables 15
32-bit Win NT character-mode executables 17
32-bit Win NT DLLs 17
32-bit Win NT windowed executables 17
32-bit Windows 3.x DLLs 16

233

Index

REFERENCED 37
TYPES 36C WATCOM 35

debugging information
all 39
for NetWare 386 debugger 39CACHE option 27
global symbol 36, 39CALLBUFS runtime option 134
line numbering 36-37CASEEXACT option 28
local symbol 36, 38CHECK option 29
NetWare 386 global symbol 36Codeview 34
strip from "EXE" file 41COFF 3
typing 36, 38command line format

Debugging Information Compactor 34-35WLINK 5, 165, 171, 175, 181, 189, 195, 199,
default directive file 7, 19, 28, 155207

wlink.lnk 28comment (#) directive 30
DESCRIPTION option 42COMMIT directive 31
directives 19Compactor 34

30CONSOLE runtime option 132
ALIAS 22COPYRIGHT option 32
ANONYMOUSEXPORT 24CUSTOM option 33
comment 30CV4 34
COMMIT 31CVPACK 34-35
DEBUG 35CVPACK option 34
DISABLE 43
ENDLINK 48
EXPORT 50
FILE 54D
FORMAT 56
IMPORT 68
include 71
LANGUAGE 77DBCS
LIBFILE 78Chinese 77
LIBPATH 80Japanese 77
LIBRARY 82Korean 77
MODFILE 95dead code elimination 47, 129, 142
MODTRACE 96DEBUG directive 35
MODULE 97DEBUG options
NAME 99ALL 36
NEWSEGMENT 102CODEVIEW 35
OPTION 114DWARF 35
OPTLIB 115LINES 36
PATH 122LOCALS 36
REFERENCE 129NOVELL 36
RUNTIME 132ONLYEXPORTS 36-37, 40

234

Index

SEGMENT 138
SORT 143 FSTARTLINK 146
SYMTRACE 151
SYSTEM 153

DISABLE directive 43 fatal errors 43, 213
DOS applications FILE directive 54

creating 165 FlashTek applications
DOS/4G applications creating 181

creating 181 FORMAT directive 56
DOSSEG option 45
DOSSTYLE runtime option 133

G
E

general directives/options 19

_edata linker symbol 46
ELF 3
ELF applications H

creating 171
ELIMINATE option 47
_end linker symbol 46
ENDLINK directive 48 HEAPSIZE option 64
environment variables HELP option 65

LIB 83, 105, 116 host 4
LIBDIR 19 host operating system 4
PATH 7, 19, 28, 148, 155
tmp 168, 174, 179, 186, 193, 205, 212
TMPDIR 198
WATCOM 7, 19, 28, 155 I

errors 43, 213
executable formats 3
EXIT option 49

IMPFILE option 66__export 52
IMPLIB option 67EXPORT directive 50
import definitions 184, 203, 210
IMPORT directive 68
import library 66-67, 185, 204, 211
import library command file 66
include directive 71
incremental linking 74

235

Index

INCREMENTAL option 74 MAXERRORS option 91
Intel OMF 3 MAXIBUF runtime option 134
internal relocation 76, 158 MAXREAL runtime option 133
INTERNALRELOCS option 76 memory layout 45, 167, 173, 178, 185, 192, 197,
invoking Watcom Linker 5, 165, 171, 175, 181, 204, 211

189, 195, 199, 207 memory requirements 168, 174, 179, 186, 193,
ISTKSIZE runtime option 134 198, 205, 212

message
1014 215
1019 216
1023 217L
1027 217
1028,2028 218
1032 218

LANGUAGE directive 77 1038 219
LANGUAGE options 1043 219

CHINESE 77 1044,2044 220
JAPANESE 77 1045 220
KOREAN 77 1046 220

LIB environment variable 83, 105, 116 1047 220
LIBDIR environment variable 19 1048 220
LIBFILE directive 78 1050 220
LIBPATH directive 80 1054 221
LIBRARY directive 82 1058 221
library file 66-67 1059,2059 221
LINEARRELOCS option 85 1060 221
linker symbols 1061 222

_edata 46 1062 222
_end 46 1069 223

linking notation 20 1076 223
LONGLIVED option 86 1080 223

1087 224
1090 225
1098 225M 1101 225
1102 225
1103 226
1107 226mangled names in C++ 87, 143
1108 226MANGLEDNAMES option 87
1109 226MANYAUTODATA option 88
1110 226map file 89
1111 226MAP option 89
1115 226MAXDATA option 90
1117 227

236

Index

1118 227 2052 220
1121 227 2053 221
1124 227 2055 221
1125 228 2056 221
1126 228 2063 222
1130 228 2064 222
1133 229 2065 222
1134 229 2066 222
1136 229 2067 222
1140 229 2068 222
1141 229 2070 223
1143 230 2071 223
1145 230 2073 223
1148 230 2074 223
1149 230 2082 224
1150 230 2083 224
1158 231 2084 224
1162 231 2086 224
1163 232 2089 224
1165 232 2092 225
2002 214 2093 225
2008 214 2094 225
2010,3010 215 2099 225
2011 215 2119 227
2012 215 2120 227
2015 215 2127 228
2016 216 2132 228
2017 216 2146 230
2018 216 2151 230
2020 216 2152 230
2021 217 2154 231
2022 217 2155 231
2026 217 2156 231
2029 218 2166 232
2030 218 3009 214
2031 218 3013 215
2033,3033 218 3057 221
2034 218 3088 224
2039 219 3114 226
2040 219 3122 227
2041 219 3123 227
2042 219 3128 228
2049 220 3129 228
2051 220 3131 228

237

Index

3137 229
3138 229 O3139 229
3147 230
3157 231
3159 231 OBJALIGN option 108
3160 231 OFFSET option 110
3164 232 OLDLIBRARY option 109

MESSAGES option 92 OMF 3
Microsoft OMF 3 OMF library 3
MINDATA option 93 ONEAUTODATA option 113
MINIBUF runtime option 134 operating system
MINREAL runtime option 133 host 4
MODFILE directive 95 OPTION directive 114
MODNAME option 94 options
MODTRACE directive 96 ALIGNMENT 23
MODULE directive 97 ARTIFICIAL 26
MS2WLINK command 168, 187, 205 CACHE 27
MULTILOAD option 98 CASEEXACT 28

CHECK 29
COPYRIGHT 32
CUSTOM 33N CVPACK 34
DESCRIPTION 42
DOSSEG 45
ELIMINATE 47NAME directive 99
EXIT 49NAMELEN option 100
HEAPSIZE 64NATIVE runtime option 132
HELP 65NetWare 386 applications
IMPFILE 66creating 175
IMPLIB 67NetWare 386 debugger 39
INCREMENTAL 74NEWFILES option 101
INTERNALRELOCS 76NEWSEGMENT directive 102
LINEARRELOCS 85NISTACK runtime option 134
LONGLIVED 86NLMFLAGS option 103
MANGLEDNAMES 87NOAUTODATA option 104
MANYAUTODATA 88NODEFAULTLIBS option 105
MAP 89NOREDEFSOK option 127
MAXDATA 90NORELOCS option 106
MAXERRORS 91NOSTDCALL option 107
MESSAGES 92notation 20
MINDATA 93NOUNDEFSOK option 159
MODNAME 94

238

Index

MULTILOAD 98 creating 181
NAMELEN 100 OS/2 32-bit applications
NEWFILES 101 creating 181
NLMFLAGS 103 OS/2 Dynamic Link Libraries 184
NOAUTODATA 104 OS/2 program modules 184
NODEFAULTLIBS 105 OS2 runtime option 132
NOREDEFSOK 127 OSDOMAIN option 117
NORELOCS 106 OSNAME option 119
NOSTDCALL 107
NOUNDEFSOK 159
OBJALIGN 108
OFFSET 110 P
OLDLIBRARY 109
ONEAUTODATA 113
OSDOMAIN 117

PACKCODE option 120OSNAME 119
PACKDATA option 121PACKCODE 120
PATH directive 122PACKDATA 121
PATH environment variable 7, 19, 28, 148, 155PRIVILEGE 124
PE format executable 58PROTMODE 125
Phar Lap 286|Dos-Extender applicationsPSEUDOPREEMPTION 118

creating 181QUIET 126
Phar Lap 386|Dos-Extender applicationsREDEFSOK 127

creating 189REENTRANT 128
Phar Lap OMF-386 3RESOURCE 130
Phar Lap TNT 58RWRELOCCHECK 136
PL format executable 58SCREENNAME 137
POSIX runtime option 132SHARELIB 141
privilegeSHOWDEAD 142

ring 0 135STACK 144
ring 3 135START 145

PRIVILEGE option 124STATICS 147
PRIVILEGED runtime option 135STUB 148
PROTMODE option 125SYMFILE 149
PSEUDOPREEMPTION option 118SYNCHRONIZE 152
punctuation characters 21THREADNAME 157

TOGGLERELOCS 158
UNDEFSOK 159
VERBOSE 160 QVERSION 161
VFREMOVAL 162
XDCDATA 163

OPTLIB directive 115 QNX applications
OS/2 16-bit applications

239

Index

creating 195
QUIET option 126 S

R SCREENNAME option 137
SEGMENT directive 138
segment ordering 45, 167, 173, 178, 185, 192,

197, 204, 211REALBREAK runtime option 134
SHARELIB option 141REDEFSOK option 127
SHOWDEAD option 142REENTRANT option 128
SORT directive 143REFERENCE directive 129
space character 21relocation
special characters 21internal 76, 158
STACK option 144resource file 130
START option 145RESOURCE option 130
STARTLINK directive 146response files
STATICS option 147conversion 168, 187, 205
__stdcall 107ring 0 135
STUB option 148ring 3 135
symbol file 149running in 32-bit protected mode 191
SYMFILE option 149RUNTIME directive 132
SYMTRACE directive 151RUNTIME options
SYNCHRONIZE option 152CALLBUFS 134
SYSTEM directive 5, 153CONSOLE 132
system name 153DOSSTYLE 133

ISTKSIZE 134
MAXIBUF 134
MAXREAL 133 TMINIBUF 134
MINREAL 133
NATIVE 132
NISTACK 134 THREADNAME option 157
OS2 132 tmp environment variable 168, 174, 179, 186,
POSIX 132 193, 205, 212
PRIVILEGED 135 TMPDIR environment variable 198
REALBREAK 134 TNT DOS extender 58
UNPRIVILEGED 135 TOGGLERELOCS option 158
version 132
WINDOWS 132

runtime version option 132
RWRELOCCHECK option 136

240

Index

creating 207
Windows NT applicationsU creating 207
WINDOWS runtime option 132
WLINK

command line format 5, 165, 171, 175, 181,UNDEFSOK option 159
189, 195, 199, 207UNPRIVILEGED runtime option 135

WLINK command lineUSE16 segments 192
invoking WLINK 5, 165, 171, 175, 181, 189,usemsg 131

195, 199, 207using environment variables in directives 19
WLINK notation 20
wlink.lnk

default directive file 7, 19, 28, 155
wlsystem.lnkV

directive file 7, 19, 28, 155
WSTRIP 39, 41
WSTRIP command 41

VERBOSE option 160
VERSION option 161
VFREMOVAL option 162

Xvirtual functions 142, 162

x32r 12W
x32rv 12
XDCDATA option 163

warnings 43, 213
Watcom C/C++ options

Zzm 47
WATCOM environment variable 7, 19, 28, 155
Win16 applications

creating 199
zm compiler option (Watcom C/C++) 47Win16 Dynamic Link Libraries 202

Win16 program modules 202
Win32 applications

creating 207
Win32 Dynamic Link Libraries 209
Win32 program modules 209
window function 50, 72
Windows 3.x applications

creating 199
Windows 32-bit applications

241

