Gardens Point Component Pascal — Release
Notes

John Gough
September 17, 2004

This document applies to GPCP version 1.3 for JVM
(Java Virtual Machine)

1 Introduction

Gardens Point Component Pasag€p is an implementation of th€omponent Pas-

cal Language, as defined in the Component Pascal F@bom Oberon Microsys-
tems. It is intended that this be a faithful implementation of the Report, except for
those changes that are explicitly detailed here. Any other differences in detail should
be reported as potential bugs.

The distribution consists of four programs, and a number of libraries. The pro-
grams are the compilegpcp the make utilityCPMake a module interface browser
tool Browse and a tool for extracting public symbol metadata from assemblies written
in the Jav languageJ2CPS

The compiler produces eitheédET Common Intermediate Languagel() or Java
byte-codes as output. The compiler can be bootstrapped on either platform. These
release notes refer to the JVM platform.

There are a number of syntactic extensions to@Gbenponent Pascdanguage ac-
cepted by the compiler which are introduced to allow interworking with the native
libraries of the underlying platform. The guiding philosophy in such cases is to not
significantly extend the semantics of the constructs that form part of Component Pas-
cal, but rather to provide syntax for accessing features of other languages, which have
no direct counterpart ifomponent Pascal

2 Overall Structure

2.1 Input and Output files

In normal usage the compiler creates two or more output files for every source file. If
the file “Hello.cp " contains the modulélello, and is compiled, then the output files
will be “Hello.cps " and “Hello.class "

1The defining document is simply referred to throughout this documethesReport
2Java is a registered trademark of Sun Microsystems.

2 OVERALL STRUCTURE 2

In general for a modul®Name the “MName.cps” file is the symbol file which
contains the metadata that describes the facilities exported from the module. The pro-
gram executable will be fileMName.class " in the package MNam&. If the module
definesany record types, then there will be an additional class file for each such type,
also defined in packag@fNam&. If a listing file is created it will have filename name
“MName.Ist ”. The “MName.cps” and “MName.Ist ” files will be created in the cur-
rent directory, while all of the class files will be found in the directo@P/MNamé.

Be aware that the stem name of the output files comes fromttilename, and
not from the source-file name. Thus if mod#Heo is in source file Hello.cp " then
all of the output files will have stem namgdo”.

By default the compiler writes class files directly. However it is possible to force
gpcpto produce an output text file in thiasminbyte code assembly language. These
files have filename extension.j* ”. The corresponding class files may then be pro-
duced by manually invokingasmin but this is not recommended as, Jasmin does not
handle floating poing literal correctly. Nevertheless, it may be instructive to view the
Jasmin output, in order to understand how programs are encoded for this exectution
platform.

2.2 Invoking the compiler
The compiler is invoked from the command line using the following command line
syntax —
$> cprun gpcp [gpcp-optiongfiles
The gpcp-options are given in Figure 1.
Inthe.NET versions “/"is the option prefix, but “~" is recognized also. Any number
of files may be added in a white-space separated list.

2.3 The cprun script

cprun is a script or batch file that lives in thggcp/bin " directory. A corresponding
script cpint invokes the java system without the just in time interpreter. However,
the Java Runtime System may be invoked directly without using the script, using the
syntax —

$> java [java-option$ CP.gpcp.gpcp [gpcp-optionkfiles
If this format is used then the availahlavaoptions allow for a choice ofl T compiler,
output directories, or to pass property values toJearuntime.

2.4 Target choice

The compiler may choose its output language at runtime. The default output when
running on thelVM platform isJavaclass files. The recognized options are —

-target=net this is the.NET CIL format
-target=jvm this causedavaclass files to be emitted
-target=dcf this chooses the Gardens Point “d-code” form

The Javaoutput option produces eithd¥M class files directly, or produces assembly
language files for th@asminbyte code assembler.

The “dcf ” format is not yet available, but is intended to access the Gardens Point
native code generators on all the platforms for which Gardens Point ModgpA3 (
implemented.

2 OVERALL STRUCTURE 3

-clsdir=" X setclass file tree root to directory
-copyright display the copyright notice

-dostats emit timing and other statistics

-extras enable experimental compiler features

-help emit this usage prompt

-hsize= N set hashtable size, witN (0 .. 65000)

-jasmin create asm files and invoke Jasmin automatically
-list create an output listing if there are errors (default)
-list+ always create an output listing

-list- never create an output listing

-noasm produce a symbol file, but no il

-nocode create il output, but do not assemble

-nosym produce no output files, not even a symbol file
-strict disallow non-standard language constructs
-special used for creating symbol files for foreign interfaces

-symdir= X place symbol files in directoryX™
-target= X emit assembler output for platforni™

-verbose chatter on about progress during compilation
-version emit version information

-warn- suppress warning messages from the console
-nowarn same as /warn-

-Xmlerror errors are irXML format

Figure 1:gpcpoptions

Output files

Running the compiler with thenosym flag causes the input files to be parsed and
type-checked, but no output files are created except possibly a listing file.

If the compiler is run with thenoasm flag, the input files are parsed and type-
checked, and a symbol file is produced for each input file. No assembly language or
program executable file output is produced however.

If the compiler is run with thenocode flag, the input files are parsed and type-
checked, and a symbol file addsminassembly language files are produced for each
input file. No class files are produced in this case.

If the compiler is run without any flags, the input files are parsed and type-checked,
and a symbol file, and a program class files are produced for each input file.

Output files with “ -target=net " option

If the compiler is run with thetarget=net flag, the input files are parsed and
type-checked, and a symbol file and an assembly language file with extengior’“

will be produced. There are additional program options available in this case. The
compiler can directly produce program executable files, or Common Intermediate Lan-
guage CIL) assembly language file€IL is always produced if the-fiocode " option

is given.

2 OVERALL STRUCTURE 4

2.5 Runtime checking

On theJavaplatform there is no facility for efficiently performing arithmetic overflow
tests. On theNET platform such checks are performed, but there is a very small speed
gain if checks are turned off. Checks may also be turned off on a per-procedure basis,
as described in Secti¢pn 4]12, when it is logically necessary to do so. It is good practice
to do this in the source code, even when writing forik® platform in order to ensure

that source code is portable between targets.

2.6 Listing output

The compiler, by default, produces a listing file only if there are compile-time errors or
warnings. It is possible to force the compiler to produce a listing, using/ke-“ "
option. Equally, it is possible to prevent the creation of a listing file even if there are
errors, by using the/fist- " option.

The listing file contains the complete listing of the program, with four digit line
numbers prepended. Errors are reported in the format shown in [Figure 2

1 MODULE BarMod;

2 IMPORT FooMod,;

3 TYPE

4 Bar* = POINTER TO ABSTRACT RECORD (FooMod.Foo)
Fkkk " Only ABSTRACT basetypes can have abstract extensions

5 ij,k : INTEGER

6 END;

7 END BarMod.

Figure 2: Example error message

2.7 Statistics output

If the compiler is invoked with optioridostats then compile time statistics are
produced. Figurg]3 is an example, compiling the progBaowse
The meaning of the values written to the console is as follows.

* The compiler imports symbol files in dependency order, if necessary. The maxi-
mum recursion depth for this example turned out to be 3.

* The size of the hash-table, and the number of entries used is shown

* Import time is the time to read and process metainformation for all imports. In
this example modulBrowseimports much of the compiler data structures.

* Source time is the time to read the source file into the internal buffer.

* Parse time is the time to parse the buffer, create the syntax tree and resolve all
identifiers.

* Analysis time is the time to do type checking, and dataflow analysis.

* SymWrite time is the time to write out metatdata to the symbol file.

2 OVERALL STRUCTURE 5

E:\gpcp-CLR\work> gpcp /dostats Browse.cp
#gpcp: created Browse.exe

#gpcp: <Browse> No errors

#gpcp: net version 1.2.x of June 2004+
#gpcp: 2281 source lines

#gpcp: import recursion depth 3

#gpcp: 853 entries in hashtable of size 8209

#gpcp: import time 93mSec
#gpcp: source time 125mSec
#gpcp: parse time 157mSec
#gpcp: analysis time 31mSec
#gpcp: symWrite time OmSec
#gpcp: asmWrite time 500mSec
#gpcp: assemble time OmSec
#gpcp: total time 906mSec

Figure 3: Compile statistics example

* AsmWrite time is the time to write out the jasmin or class-file output. For this
example in Figurg]3 33 class files are written.

* Assemble time is the time taken to spawn a new process andsmin . As-
semble time is always zeroJasminis not invoked.

2.8 Setting the hash table size

The compiler uses closed hashing internally, with a default number of identifiers of
8209 in the current version. It is possible to increase the number of entries by means of
the-hsize= NUMBERoption. Numbers up to 66000 are meaningful to the program.

If the hash table overflows, the compiler gives an error message, with a hint to in-
crease the size. There is a example program with the distribution that creates a program
that will break the compiler, so that users may test this feature. The compilation fails
with “-hsize=4000 ", but succeeds with the default table size.

2.9 Choosing the Output Directories

By default all output files are created in the current directory or in #e®“” directory
tree. This behavior may be overridden with the optiecisdir and -symdir
The symbol file is placed in the directory specified by the opt®ymdir= target-
directory. Note carefully that if a target directory is chosen that is not orGR&YM
path thergpcpwill not be able to find the symbol files automatically.

Program executable directories, and debug files in the case that debugging symbols
are being created may be placed in a directory tree the root of which is specified by the
-clsdir= target-directoryoption.

If the .NET target has been chosen then tegmdir option still applies, but
-clsdir option does not. Instead, the binary output files may be place in a directory
specified by a syntactically similabindir ~ option.

2 OVERALL STRUCTURE 6

2.10 The Make utility

The compilation process witBomponent Pascajuarantees type safety across sepa-
rately compiled module boundaries. Since interface meta-information resides in the
symbol files whichgpcpcreates, modules must be compiled in an order that respects
the partial order induced by the global importation graph. For complex programs, this
may be difficult to determine manually.

The utility CPMakereads symbol files, and if necessary source files, in order to
determine a valid order of compilation. The syntax for invocation is —

$> cprun CPMake [optiond moduleName

The module name may be given with or without a file-extension, but must be the name
of a module which imports modul€PMain that is, it must be &ase module The
module name given tGPMakeis case sensitive.

In general, when source files of a program have been modified only a subset of
the modules have to be recompilggiPMakeis able to work out which modules must
be recompiled by checking the date stamps on the files, and also checking the module
hash-keys (“magic numbers”) in the symbol files. If a module has been edited, but
the public interface of the module has not changed a recompilation should compute
a new magic number that is the same as that expected by any previously compiled,
dependent modules. In this caS@Makedetects that the dependent modules are still
consistent and do not require recompilation. This “domino-stopping” feature of the
program ensures that a conservative minimum of modules are recompiled.

The options accepted by the program are exactly the options accepigucpy
except that an additional opticall forces compilation ofll modules in the local
directory irrespective of date stamps and magic numbers.

Hint:

If you useCPMaketo bootstrap the compiler on thNET
platform, be aware that output file-creation will fail| if
the output would overwrite any file of a loaded assembly.
This means that you cannot bootstgprp.NETusing an
instance of the compiler from the same directory, unless
you use the “hocode ” option and then invokaélasm
manually, or use the-bindir=directory " option.

2.11 Module Interface Browser

The progranBrowsereads the symbol file of a module and displays the public inter-
face. This public interface is shown in a form similar t€amponent Pascahodule.
This “module” shows all the types, variables and procedures that are exported from the
specified module. Only the exported fields of record types are shown. Any exported
procedures are shown as procedure headers only. The outpuBhmaseis not a
properComponent Pascahodule and will not compile usingpcp It simply shows
all of the identifiers that may be imported and used by a client module.

This program is invoked with the command —

$> cprun Browse [option§g moduleName

2 OVERALL STRUCTURE 7

The symbol file extensionéps ” may optionally be included imoduleNameAs with
gpcp any number of files may be added in a white-space separated lisBrohese
program sends its output to the console by default, and has the following options:

-all browse this and all imported modules
-full display full foreign names
-file write output to the filecmoduleName.bro

-html write html output to the filecmoduleName.html

The-all option produces output for all of the modules on the global imports graph of
the specified module. Thdull option is only meaningful foFOREIGNmodules

where the output fronBrowsewill include the full external names for all procedures.
The default forBrowseis to only display the internalqomponent Pascahames. See
Section[¥ for more on Foreign Language Interfaces. Tite option sends the
output to the filecmoduleName.bro instead of to the console. Thetml option
produces hyperlinked html text in the fienoduleName.html . In the html output
defining occurrences of identifiers are red and are anchored, while module names and
external types are blue and hyperlinked. Figyre 4 is the html output from the command
“Browse -html ClassMaker ”

MODULEClassMaker ;
IMPORT
RTS
GPCPcopyright ,
Console ,
ldDesc ;
TYPE
Assembler* = POINTER TO ABSTRACT RECORD
END;
Assembler* = POINTER TO ABSTRACT RECORD
mod* : IdDesc.Blkld :
END;

PROCEDURE (self:Assembler) Assemble *(),NEW,EMPTY;
PROCEDURE (self:ClassEmitter) Init *(),NEW,EMPTY;
PROCEDURE (self:ClassEmitter) Emit *(),NEW,ABSTRACT;
END ClassMaker .

Figure 4: Browse output frorgpcpsource fileClassMaker.cp

2.12 Symbol File Generator J2CPS

This program generates symbols files correspondirdytd packages. Taken together
with the Browse too| this makes the libraries of théavaframework accessible to
Component Pascalsers. Usage is —

$> java J2CPS [optiong JavaPackageName
To runJ2CPS—

3 LEXICAL ISSUES 8

* Unpack the class files if they are in @ ” archive file. The runtime system
files are in an archive named.Jjar " inthe “jre/lib " directory of yourJava
Development Kit

* Put the directory containing the class files on your path. You may need to edit
the “j2cps " shell or batch file. Add the class file directory to the path under the
“-classfile " option.

* You should now be able to invoke théps " script

3 Lexical Issues

3.1 Non-standard Keywords

In order to provide facilities for the foreign language interface there are a total of six
new keywords defined. These are all upper case names and cannot be used as program
identifiers.

DIVO an additional arithmetic operator (C integer division)
REMO an additional arithmetic operator (C integer remainder)
EVENT used to declare multicast delegate type.f/ET events
RESCUE used to mark a procedure-level exception catch block
ENUM used in dummy foreign modules in tiMET system
INTERFACE used in dummy foreign modules for defining interfaces
STATIC used to declare static features in dummy foreign modules

Only DIVO, REMO, EVENTand RESCUEmay be used in normal programs, the
remainder are used in dummy foreign definition modules.

The following new predefined identifiers have been added. These can be redefined,
but not at the outer lexical level. Definitions for these built-in identifiers are given
below.

UBYTE an unsigned 8-bit integer type

MKSTR function to convert £P “string” to the native string type
BOX make a dynamically allocated copy of record or array
TYPEOF fetch the runtime type descriptor, for reflection
USHORT convert a value to unsiged byte, with range-check
THROW procedure that (re)throws a native exception object
APPEND appends a new element to an extensible array (vector)
CuT shortens an extensible array to the given length

There are some other predefined identifiers used in the extended syntax, but these
are ‘“context sensitive markérand do not prevent the same names being used for
program identifiers.

Warning
Remember, if you use any of these non-standard key-
words or built-in identifiers, your program source will
not be portable to other implementations@dmponent
Pascal

3 LEXICAL ISSUES 9

3.2 Java Package and Class Names
Fully qualified names in the Java virtual machid¥1) comprise three parts.

* Package name — this defines the directory in which the class files are found. The
package name may be a “dotted name”.

* Class name — the class name
* Feature name — the field or method name.

An example might be —
java.lang.Excecption.ToString

wherejava.langis the package nam&xceptionis the class name, anfbStringis a
method name.

In this version ofgpcp the compiler produces one package per module, The pack-
age is the same as the module name. Thus a type-bound procedureisStitey)
bound to the typ&naryXin moduleExprDesowould have the]lVM name —

CP.ExprDesc.ExprName_UnaryX.isString

where CP.ExprDesds the package namé&xprDescUnaryXis the class name, and
isStringis the method name.

Procedures and variables at the module level are declared dvi¥eas belonging
to a synthetic “class” that contains only static data and code. ififhcit static class
has the same name as the module. Thus variadde™in module Foo will have the
somewhat boringVM name —

CP.Foo.Foo::xld

Users of the compiler should almost never have to deal with exghél names.

All aspects of the default naming scheme may be overridden, if required. Such a
necessity might arise if thEomponent Pascalode must interface with a framework
that has particular naming patterns hardwired in. The details of the mechanisms for
overriding are given in Appendjx 2.

3.3 Identifier syntax

The identifier syntax foEomponent Pascailllows arbitrary use of the underscore (low-
line character). There is a further extension that is specific to the foreign language
interface of gpcp.

Occasionally, names that are imported from foreign modules will happen to clash
with CP reserved words. In this case, we may escape the reserve word detection by
starting the identifier with the back-quote charactef, “Thus, if an imported mod-
ule has (say) a class with a field namdg *, then the field may be referenced as
“IF " in the source of your program. You may na¢fineidentifiers using this escape
mechanism, except in foreign definition modules. You may howeafer to imported
identifiers using this mechanism.

It may be important to know that the back-quote is stripped at the time that the
program is scanned. The presence of the escape simply suppresses the usual check
for reserved identifiers that normally follows identifier scanning. Thus the back-quote
is not used during any name matching of identifiers. A curious result of this strategy
is that if a program escapes an identifier that does not need it, the escaped and non-
escaped identifiers will refer to the same name.

4 SEMANTIC ISSUES 10

4 Semantic Issues

4.1 Class files and entry points

The compiler produces one or more class files from each module which it compiles.
Classes may be dynamically loaded, or may contain an entry point witbatredan-
guage signhature —

public static void main(java.lang.string[] args)

This entry point method takes a possibly empty array of native-strings as argument.
Any command line arguments are accessed through the liBragArgs

If the source file contains the import of the special module n&Renain then
an class file with an entry point is produced as output. In this case the module body
becomes the methodhain ”, and begins with a hidden call which saves any command
line arguments so that they may be later accessed by calls Ryabgérgslibrary.

If the source file does not impo&tPmainthen the module body becomes the “class
constructor” which is executed at the time that class is loaded on demand.

4.2 Unimplemented constructs

There are a small number of constructs that are unimplemented or restricted in this
release of the compiler. These are —

* Module finalizers (unimplemented)
* Procedure variables (not implemented on &)
* Passing of reference parameters (inexact semantics), see sidebpx]page 16

All of these features were implemented in a prototype version of the compiler.

Module finalizers are intended to be run prior to unloading the module code. There
is no facility for doing this on either of thgpcptarget platforms.

Procedure variables are not permitted on Ivé plaform. This restriction will
probably be removed in the next major release.

On theJVM platform argument of certain types are passed by copying rather than
the semantically specified reference semantics. See the sidebox gn page 16.

4.3 Additional Arithmetic Operators

The usual arithmetic operatoBdV and MOD in Pascal-family languages have well
defined semantics that are different to the division and remainder operators of imple-
mentations of C-family languages. Gomponent Pascahe operator®IV andMOD
are defined as follows —
iDIVj = |i/3]
(iDIVj) x j+ (i MOD j) =1

wherei, j are integers;/;j denotes real division, and. | is thefloor function.

Notice thatDIV always rounds toward negative infinity unlike most C-language
implementations (which normally round toward zero). The Pascal operators are math-
ematically preferred, but in case the alternative semantics are required for compatibility

4 SEMANTIC ISSUES 11

reasonsgpcpintroduces alternative®I1V0 denotes integer division with rounding to-
ward zero, whileREMOdenotes the corresponding remainder operation.

i DIVO j = RTZi/j)
(i DIVO j) x j + (i MODO j) = i

wherei, j are integers;/j denotes real division, ariITZ4.) is theRound-to-Zerdunc-
tion.

Warning
Remember, if you use any of these non-standard oper-
ators your program source will not be portable to other
implementations o€omponent Pascal

4.4 Semantics of the WITH statement

The semantics of th&/ITH statement have been slightly modified so as to strengthen
the guarantees on the properties of the selected variable. In the code —
WITH x : TypeTi DO
... (* guarded regiort)
| x : TypeTj DO
.. (* guarded regiort)
END;

the variabler is asserted to have the specified type throughout the so-calkded

region The base language guarantees that the type of the selected variable cannot be
“widened” in the guarded region, but might possibly be narrowedplepthe selected
variable is treated as a constant, and neither the type nor the value can be modified
either directly or indirectly. Any attempt to do so attracts a compile-time error message.

4.5 Extensible arrays: the vector types

From version 1.3 there is direct support for extensible array types. Values of these
vectortypes are dynamically allocated, and automatically extend their capacity when
an append operation is performed on an array that is already full. Vectors may be
declared to have any element type, and extend their length asiogtized doubling

In most circumstances when a linked list would otherwise have been used the vector
types are faster, more memory efficient, and allow memory-safe indexing. Elements
of vectors may be accessed using the familiar index syntax, with index values checked
against theactive lengthof the array, rather than the arregpacity

Declaring vector types

Vectors are declared using the new syntax —

Type - .. - - other type constructors
| “VECTOR"OF Type

4 SEMANTIC ISSUES 12

Variables of vector type are not automatically allocated. They must be explicitly allo-
cated using a variant of the built-MEWprocedure which specifies the initial capacity.
Here is an example —

TYPE IntVec = VECTOR OF INTEGER;
VAR iVec . IntVec;

NEW(iVec, 16); (* Allocate vector with initial capacity 16)

Built-in procedures

There are two new procedures defined on the vector types. The first of these appends
a new value of the declared element type to an existing vector. The signature of the
procedure is —

PROCEDURE APPEND(v VectorOfEType e : ETypé:;

As noted above, vectors are reference types, so that the first argument may be passed

by value. The vector will double its length if there is no further space left in the array.
There is another built-in procedure which allows for #wtive lengthof the vector

to be reduced. This has the effect of truncating the array at the given length. The

signature is —

PROCEDURE CUT(v VectorOfETypei : INTEGER);

It is a runtime error if the requested new length of the vector is less than zero, or is
greater than the current active length.

A new version of the standard built-in functi®fEN returns the active length of the
vector. There is no way of querying the current capacity of a vector datum.

As noted above, a new version of the standard built-in proceN&W/ allocates
vectors of the specified initial capacity.

Assignment semantics

Vector values are references, so that an assignment of a vector value creates an alias
to the original r-value. If you really do have to make a value copy, here is a coding
pattern —

VAR ab : SomeVecType;

NEW(b, LEN(a)); (* b is barely big enough)

FOR i := 0 TO LEN(a)-1 DO APPEND(b, afi]) END;
Note that in this case the value copyvill extend at the very next append operation,
since its initialcapacityis the same as thactive lengthof a. The active length ofi
may have been as little as one half of its capacity.

4.6 Implementing foreign interfaces

Component Pascdypes may extend classes from the underlying execution platform.
Types which extendVM or .NET CLSclasses may also declare that they implement
interface|from theCLS The syntax extension to access this featureBis —

RecordDecl ::- “RECORD[BaseTypE[Fieldd “END “;".
BaseType :- “[” Qualifiedldent{ “+" Qualifiedldent} “1".

3By “interface” in this context, we medflly abstract class

4 SEMANTIC ISSUES 13

The first qualified identifier, as in the Report, is the class that is extended by the type
being defined. Any additional qualified identifiers are the names of interfaces that the
type promises to implement. The compiler checks that this contract is honored. In
the case that interfaces are implemented, the base type may be left blank, or may be
explicitly set toANYREC

The semantics of type-assertions are also relaxed whenever a reference is asserted
to be of some interface type. For non-interface types many erroneous type-checks can
be detected at compile time. However, there are almost no cases where an assertion that
a dynamically typed object belongs to some interface type can be rejected at compile
time.

Thus, interface types may lisedin Component PascaHowever, it is not possible
to defineinterface types usingpcp

4.7 Unsigned byte type on .NET platform

The 8-bit type used in th&dET Common Language SpecificatioBl(S is an unsigned

type. If Component Pascas to be a full consumer oELSlibraries then it must be
possible to declare variables and fields of such typ&sdmponent Pascadrograms.

In order to facilitate this a new built-in typdgBYTEhas been introduced in version 1.2

of gpcp Values of this type may be assigned to variables of larger integral types as
required. However, if values of this type are assigned to locations of the signed 8-bit
type BYTEa runtime range-check is required. Similarly if values of any signed type
are assigned to a location of unsigned byte type an explicit narrowing cast is required,
using the new built-in functio)SHORT).

4.8 Runtime type descriptors

A new function since version 1.2 returns runtime type descriptors. This allows easy
access to the facilities of theystem reflectiotibraries. The function is overloaded,
and has the following signatures —

PROCEDURE TYPEO#penamg RTS.NativeType;

PROCEDURE TYPEOF(IN s :anytyp@ : RTS.NativeType;
If the target is.NET, thenNativeTypeis an alias forSystem.Typen the underlying
runtime. If the target is th@VM, then the return value type will ava.lang.Class

The procedure with the first signature takes any type name as actual parameter.

The procedure with the second signature takes an actual parameter that is any variable
designator. If the type of the designator is statically known (perhaps because it denotes
an object of an inextensible type) then the compiler resolves the reference and no call
is needed to the runtime functigeva.lang.Object.getClass()

4.9 Additional built-in functions

There are four additional built-in functions added to the implementation. One allows
convenient access to the underlying native string object type. The signature is —
PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;

Note that it is never necessary to use MKSTR when passiitgral string to a formal
parameter of native string type. In the literal case the compiler does the conversion for
the programmer automatically.

Another handy function takes a record or array type, and makes a value copy onto
the heap, returning a pointer to the copy. The signature is —

4 SEMANTIC ISSUES 14

PROCEDURE BOX(s CP-typg : POINTER TO CP-type

Here,CP-typeis a Component Pascalefined record, array or string type. The func-
tion copies the value so that modification of the boxed value does not affect the original
value. The function is particularly convenient for programs that manipulate character
data implemented as dynamically allocated arrays. TB@X("hello") "returns a
pointer to an array of characters of length 6, whiBOX(ptrl™ + ptr2") " per-
forms a string concatenation and allocates a destination array of the required length. If
the function is applied to an array of fixed length the return value is an open array of the
same length. In the case of character arrays the use of the array “stringifier” $fiark “
on the argument dBOXboxes a copy of the array which is truncated at the position of
the “nul ” character. Here is an example program fragment —

VAR str : ARRAY 16 OF CHAR;

ptr : POINTER TO ARRAY OF CHAR,

str

= "Hello";
ptr := BOX(str); (* ptr points to an array of length 1€)
ptr := BOX(str$);(* ptr points to an array of length 6)

Without theBOX function, the construction of a value copy of an open array would
require the following tedious construction —
VAR a,b : POINTER TO ARRAY OF CHAR;

NE.\./.\I(b, LEN(a));
FOR i := 0 TO LEN(a) DO b[i] := a[i] END;

Using theBOX function, the same effect is achieved by “= BOX(@"); .

As of version 1.2 a new built-in unsigned byte type has been introduced, for con-
formance with theNET CLS In order to coerce values of signed type to the new type
a new functionJSHORT), analogous to the standa&HORT) function is also intro-
duced. This function has the signature —

PROCEDURE USHORT(s AnyNumericType: UBYTE;
It is a runtime error if the value of the parameter is not within the unsigned byte range.

The fourth new built-in functionTYPEOF, allows programs to access the reflec-
tion facilities of the underlying platform. The function was described in the previous
section.

4.10 Deprecated features and warnings

The use of procedure variables and of super-calls are deprecated. Both attract compile-
time warning messages. Warnings are also issued in the case of procedures that are not
exported, and are not called (or assigned as procedure variables) within their defining
module. This situation is usually an error arising from failure to mark the procedure
for export.

4.11 Program executable verification

Component Pascas a type-safe language. Every correct program is type-safe in the
same sense that is guaranteed by.MET virtual object system’s verifier. In principle
therefore, all output ofjpcpshould be verifiable.

You may force theJavaruntime to invoke the verifier by running programs using
the —

5 EXCEPTION HANDLING 15

java -verify ...

option, together with any other options required for the program.

Output might fail to verify if a manually constructed interface to a library does not
correspond to the internal metadata of the imported assembly. This potential problem
has largely gone away with the useJ#CPS

4.12 Unchecked arithmetic

The JVM version ofComponent Pascaloes not perform overflow-checking, but this
is the default on theNET target. If you wish to write code that is portable between
the versions, you should explicitly turn off overflow checking for those procedures
that require this for semantic correctness. Overflow checking is turned off on a per-
procedure basis using a custom attribute.

The syntax of the custom attribute is a context sensitive marker that appears imme-
diately after the keywor@8EGIN in a procedure or module body. The syntax is —

Body :- “BEGIN’'[“[UNCHECKEDARITHMETIC]"]
StatementSequentEND identifier.

An example of the use of this construct, from the source of the compiler itself, is the
identifier hash function shown in Figuré 5. This function performs a rotate-and-add

PROCEDURE hashStr(IN str : ARRAY OF CHAR) : INTEGER,;
VAR tot : INTEGER,;

idx : INTEGER,;
len : INTEGER;
BEGIN [UNCHECKED_ARITHMETIC] (* Turn off overflow checky
len := LEN(str$);
tot := O;

FOR idx := 0 TO len-1 DO
INC(tot, tot);
IF tot < 0 THEN INC(tot) END;
INC(tot, ORD(str[idx]));
END;
RETURN tot MOD size;
END hashsStr;

Figure 5: Code of the hash function

computation, in which bits are carried out of the sign bit back into the least significant
bit of the variable tot ”. Overflow checking must be turned off, in order to prevent
very long identifiers from crashing the compiler.

5 Exception Handling

Component Pascaloes not define exception handling, but it is necessary to deal with
foreign libraries that may throw exceptions. There is one new keyword and one new
built-in procedure introduced to facilitate this.

5 EXCEPTION HANDLING 16

Important note on parameter passing semantics for theVM

The JVM version ofgpcptakes liberties with the precise semantics of parameter
passing almost everywhere. Actual parameters of unifoxaliie type that ar
passed to reference formals are passed by copying. In the case of formal param-
eters ofVARmode, actual values of unboxed value type are copiexhthcopied
out. In the case of formal parameters@T mode the value is only copied out.
The current implementation method is necessary in order to obtain reasonable per-
formance on thdVM. The change will not affect the results of your program unless
you access the actual of a reference formal along two paths (either by having two
reference formals sharing the same actual argument value, or accessing a static vari-
able directly and through a parameter). You should not write programs that do this!
You might also care to know that with this change, the performance of code is good
if you have only one such copied parameter, but becomes poor if you have more
than one in any frequently called procedure.
In contrast, on theNET platform unboxed reference parameters are only passed
inexactly if they are non-locally accessed from within a nested procedure.

4]

aUnboxed value types on tl&/M platform are the built-in standard types suciCA$ARandINTE-
GER together with the pointer types. Structures and arrays are always boxed at runtimé\ivirend
are not affected by this semantic inexactness.

5.1 The RESCUE clause

Procedures, but not modules may include exactly RESCUEclause, at the end of
the procedure body. This has syntax —

ProcBody :- “BEGIN’ Statements
[*RESCUE" (" ident") " Statemenis
“END ident

The identifier introduced in the parentheses is of tiR¥e5.NativeExceptiorand
must have a name that is distinct from every other identifier in the local scope.

If any exception is thrown in the body of the procedure, or if any exception is
unhandled in a procedure called from this procedure, then the rescue clause is entered
with the exception object in the named local variable. This variable is read-only within
the rescue clause, and is not known in the rest of the procedure body.

If the program has imported or defined any extensions of the native exception type,
filtering may be performed by using the usual type-test syntaxes. The compiler will
check that the rescue clause fulfills any contracts implied by the procedure signature.
For example, in the case of function procedures the rescue clause must explicitly return
a type-correct value, or explicitly throw another exception.

5.2 The THROW statement

Code may throw an exception by using the built-in procedure THROW. This procedure
has two signatures —

PROCEDURE THROW(x : RTS.NativeException);

PROCEDURE THROW(x : RTS.NativeString);
These may be used anywhere in the program. The first is useful for rethrowing an
exception from within a rescue clause. The second of these may be passed a literal

6 FACILITIES OF THE CP RUNTIME SYSTEM 17

string, without requiring a call oMKSTR) since the the compiler will automatically
coerce literal strings to formals of native string type. This call will throw an exception
object of System.Exceptiotype, with the given string as embedded information. If

Warning
Remember, if you use any of these non-standard facijlties
for exception handling your program source will not|be
portable to other implementations@bmponent Pascal

you want to create an exception object to abort program execution with a meaningful
string, you may also use the library function

RTS.Throw(msg : ARRAY OF CHAR);
Exceptions thrown by this library function can be caught liYESCUEclause.

6 Facilities of the CP Runtime System
6.1 Supplied libraries

This release has a small number of libraries supplied. These are —
* Consolewrites strings and numbers to the console
* StdInreads characters and whole lines from the console
* Error this library writes strings and number to the error stream
* ProgArgsprovides access to the command line arguments, if any
* GPTexta basic library for handling text formatting
* GPFilesdefines the supertype &PBinfFiles.FILEandGPTextFiles.FILE
* GPBinFilesreading and writing binary files
* GPTextFilegeading and writing text files
* RealStrformatting real numbers: based on #8©-Modula-2library
* RTSaccess to the facilities of the runtime system
* StringLibstring library, based on th&O-Modula-2library
* SYSTEMsome unsafe, low-level facilites.

For the most part these libraries are the ones that were required to bootstrap the
compiler. More will come later.

6 FACILITIES OF THE CP RUNTIME SYSTEM 18

6.2 The runtime system (RTS)

The runtime system provides a variety of low-level access facilities. The source file for
this module, RTS.cp ", is not really the source. This file is a dummy, as is denoted by
the context-sensitive mafkY STEMappearing before the keywolrdiODULE. All such
“modules” are actually implemented in tl@# file named RTS.cs ”, and at runtime
are found in the assemblRTS.dll ”.

The “source” ofRTSis shown in Figur¢]6. The four charactiefaultTargestring
will hold “net ” when running on theNET platform, and jvm ” when running under
the Java Runtime Environment. The w@¥STEMn the first line of the definition
is a context sensitive mark, rather than a reserved word. This means that the word
may be used as an identifier elsewhere in the program. The mark simply indicates that
the resources of this module are actually found in the asser®3ig.4ll ". Console,
Error andProgArgsare alsd&SYSTEMnodules.

6.3 The ProgArgs library

The ProgArgslibrary provides access to the command line argument, if any. From
gpcprelease 1.3 it also provides access to the process environment. This is a system
library, with the following public interface —
SYSTEM MODULE ProgArgs;
PROCEDURE ArgNumber*() : INTEGER,;
PROCEDURE GetArg*(num : INTEGER; OUT arg : ARRAY OF CHAR);
PROCEDURE GetEnvVar*(IN str : ARRAY OF CHAR;
OUT val : ARRAY OF CHAR);
END ProgArgs.

Note carefully that on theNET platform GetEnvVarfetches an environment vari-
able, or an empty string. On thi/M platform the use of environment variables is
deprecated, and the procedure fetches the correspoRddpgrty String Such prop-
erty strings are passed to the underlyilayaprocess at startup, using options of the
form —

-D name=value

6.4 The RealStr library

The RealStr library is a port t&omponent Pascalf the ISO-Modula-2real number
formatting library. The interface to the library is shown in Figure 8.

The library contains procedures to transform real number values into fixed format
strings, floating format strings and the so-called “engineering” format in which expo-
nents are always a multiple of three. For the string pagToReal the recognized
format is given by the regular expression —

Number :- [“+"|“-"] dig{dig} [“. " {dig}][“E"[“+" | “-"] dig {dig}].

wheredig denotes a decimal digit.

TheRealStdibrary will exactly round trip numbers viRealToFloaandStrToReal
provided a full 17 significant figures are specified RealToFloat So far as possible
the results of using moduRRealStrshould be identical on the two platforms.

6 FACILITIES OF THE CP RUNTIME SYSTEM

19

SYSTEM MODULE RTS;
VAR defaultTarget- : ARRAY 4 OF CHAR,;

TYPE CharOpen* = POINTER TO ARRAY OF CHAR,;
NativeObject* = POINTER TO RECORD END;

NativeString* POINTER TO RECORD END;
NativeException* POINTER TO RECORD END;

PROCEDURE getStr(x : NativeException) : CharOpen;
(* Get error message from Exceptiorf)x

PROCEDURE StrToReal*(IN s : ARRAY OF CHAR;
OUT r : REAL;
OUT ok : BOOLEAN);

(* Parse array into an IEEE double REAN

PROCEDURE StrToInt*(IN s : ARRAY OF CHAR;
OUT i : INTEGER;
OUT ok : BOOLEAN);

(* Parse an array into a CP INTEGER

PROCEDURE StrToLong*(IN s : ARRAY OF CHAR,;
OUT i : LONGINT;
OUT ok : BOOLEAN);

(* Parse an array into a CP LONGINT)

PROCEDURE RealToStr*(r : REAL;
OUT s : ARRAY OF CHAR);
(* Decode a CP REAL into an array

PROCEDURE IntToStr*(i : INTEGER;
OUT s : ARRAY OF CHAR);
(* Decode a CP INTEGER into an arr&y

PROCEDURE LongToStr*(i : LONGINT;
OUT s : ARRAY OF CHARY);
(* Decode a CP INTEGER into an arr&y

PROCEDURE realToLongBits*(r : REAL) : LONGINT;
(* Convert IEEE double to longint with same bit pattéjn

PROCEDURE longBitsToReal*(I : LONGINT) : REAL;
(* Convert IEEE double to a longint with same bit patt&jn

TYPE NativeType* = POINTER TO RECORD END;

R continues J..

Figure 6: Source of thRTSpseudo-module

6 FACILITIES OF THE CP RUNTIME SYSTEM 20

RTS continuation ...
PROCEDURE hilnt*(I : LONGINT) : INTEGER;
(* Get hi-significant word of long integéj

PROCEDURE loInt*(I : LONGINT) : INTEGER,;
(* Get lo-significant word of long integéj

PROCEDURE Throw*(IN s : ARRAY OF CHAR);(* Abort executiort)
PROCEDURE GetMillis*() : LONGINT;(* Get time in millisecondy)
PROCEDURE ClassMarker*(o : ANYPTR);(* Write class nam&)
PROCEDURE GetDateString*(OUT str : ARRAY OF CHAR);

(* Get adate string in some native format
END RTS.

Figure 7: Source of thRTSpseudo-module, continued

6.5 The StringLib library

The StringLiblibrary reproduces the functionality of thH8O Modula-2string library,
although the implementation has little similarity. The publicly accessible interface to
the library is shown in Figure| 9.

The library contains the expected procedures for assigning, extracting, replacing,
deleting, concatenating and searching strings. As well, each of the procedures that
mutates a string value has a corresponding predicate function that tests if the operation
can be carried out exactly. This allows a guarded style of coding.

None of these routines raises program exceptions, but have sensible behaviour in
the case that the incoming arguments do not allow correct completion. For example,
in the case of thé\ssignprocedure, if the source string is too long for the supplied
destination the result is truncated to fit. Similarly, for theractprocedure the length
of the extracted string is the least of: (i) the requested character count, (ii) the number
of characters left in the source string, and (iii) the capacity of the destination array.

6.6 The SYSTEM facilities

The SYSTEMnodule consists of three procedures. It must be explicitly imported, and
programs that import it will only compile if the command line argumenhgafe "
is in effect and the target iSNET. Programs which use any of these facilities will
be unverifiable. Furthermore, the careless use of these facilities may compromise the
correctness of the garbage collector. The module is useful for diagnostic testing, but
should never be used in deployed code.
The procedures are —
PROCEDURE ADR(IN obj : any type) : INTEGER;

PROCEDURE GET(IN adr : INTEGER; OUT dst : any basic typg
PROCEDURE PUT(IN adr : INTEGER; IN val : any basic typg

6 FACILITIES OF THE CP RUNTIME SYSTEM 21

MODULE RealStr;

(* lgnores any leading spaces étr. If the subsequent charactersstrare in the *)

(* format of a signed real number, assigns a corresponding value to real. Argumef)t

(* resreports whether conversion was successful. *)
PROCEDURE StrToReal*(str . ARRAY OF CHAR;

OUT real : REAL;
OUT res : BOOLEAN);

(* Converts the value of real to floating-point string form, wstgFigssignificant *)
(* digits and copies the possibly truncated resulsto *)
PROCEDURE RealToFloat*(real . REAL;
sigFigs : INTEGER;
OUT str : ARRAY OF CHAR);

(* Converts the value of real to floating-point string form, wstgFigssignificant *)
(* digits, and copies the possibly truncated resulstio The number is scaled with orfg
(* to three whole-number digits and an exponent that is a multiple of three. *)
PROCEDURE RealToEng*(real : REAL;
sigFigs : INTEGER,;
OUT str : ARRAY OF CHAR);

(* Converts the value of real to fixed-point string form, rounded to the given place®)
(* relative to the decimal point, and copies the resulstio *)
PROCEDURE RealToFixed*(real : REAL;
place : INTEGER;(* num. of frac. placey)
OUT str : ARRAY OF CHAR);

(* Converts the value atalasRealToFixedf the sign and magnitude can be showrt)

(* within the capacity oétr, or otherwise askealToFloatand copies the possibly *)

(* truncated result testr. The format is implementation-defined. *)
PROCEDURE RealToStr*(real: REAL; OUT str: ARRAY OF CHAR);

END RealStr.

Figure 8: Interface of the RealStr library

There is a demonstration program nanmedamples\hello\testadr.cp This
example demonstrates some of the capabilities of the library. Study the results, you may
find them surprising. Note, for example, t#EDR(arr) is not equal ttADR(arr[0]).

6.7 The Stdin library

In version 1.3 a new library is supplied that provides primitives for reading single
characters and whole lines from the standard input stream. This stream is connected
by default to the machine console, but may be redirected using the facilities of the
underlying platform libraries.

This library has very simple functionality, described by the foreign module shown
in Figure[T]. In the first release the predicate funchore always returns th& RUE
value. The team will restore the functionality when we figure out a way of making the
behaviour the same on the two execution platforms.

6 FACILITIES OF THE CP RUNTIME SYSTEM

22

MODULE StringLib;(* from GPM module StdStrings.mdy

PROCEDURE CanAssignAll*(sLen : INTEGER;
IN dest : ARRAY OF CHAR) : BOOLEAN;
(* Check if an assignment is possible without truncation.

PROCEDURE Assign* (IN src : ARRAY OF CHAR,;
OUT dst : ARRAY OF CHAR);
(* Assign as much as possible of src to dst, with terminating nul

PROCEDURE CanExtractAll*(len : INTEGER,;
six : INTEGER;
num : INTEGER,;
OUT dst : ARRAY OF CHAR) : BOOLEAN;
(* Check if extraction of "num” chars starting at indestx is possible.

PROCEDURE Extract* (IN src : ARRAY OF CHAR;
six : INTEGER;
num : INTEGER,;
OUT dst : ARRAY OF CHAR);
(* Extractnumcharacters starting fronsix. Result is truncated if there
(* are fewer characters left, or the destination is too short.

PROCEDURE CanDeleteAll*(len,slx,num : INTEGER) : BOOLEAN;
(* Check ifnumchars may be deleted starting frastx. lenis the source length

PROCEDURE Delete*(VAR str : ARRAY OF CHAR;
six : INTEGER,;
num : INTEGER);
(* Deletenumchars starting fronslx. Less are deleted if there are lessmafter six.

PROCEDURE CanlnsertAll*(sLen : INTEGER;
sldx : INTEGER;
VAR dest : ARRAY OF CHAR) : BOOLEAN;
(* Check ifsLenchars may be inserted intteststarting fromsldx.

PROCEDURE Insert* (IN src : ARRAY OF CHAR;
sIx : INTEGER;
VAR dst : ARRAY OF CHAR);
(* Insertsrcstring intodststarting fromslIx. Less chars are inserted if there is
(* insufficient space idst dstis unchanged i§lx is beyond the end afst

PROCEDURE CanReplaceAll*(len : INTEGER;
sIx : INTEGER;
VAR dst : ARRAY OF CHAR) : BOOLEAN;
(* Check iflenchars may be replaced uiststarting fromsix.

)

")

")

*)
)

)

")

*)
")

*)

[StringLib continues ..

Figure 9: Interface to th8tringLiblibrary

7 FOREIGN LANGUAGE INTERFACE 23

StringLib continuation ...
PROCEDURE Replace* (IN src : ARRAY OF CHAR;
six : INTEGER;
VAR dst : ARRAY OF CHAR);
(* Insert the characters afrcinto dststarting fromsix. Less chars are replaced if the¥)
(* initial length ofdstis insufficient. The string length dktis unchanged. *)

PROCEDURE CanAppendAll*(len : INTEGER;
VAR dst : ARRAY OF CHAR) : BOOLEAN;
(* Check iflencharacters may be appendeddst *)

PROCEDURE Append*(src : ARRAY OF CHAR;
VAR dst : ARRAY OF CHAR);
(* Append the chars afrcstring ontodst Less characters are appended if the *)
(* length of the destination string is insufficient. *)

PROCEDURE Capitalize*(VAR str : ARRAY OF CHAR);

PROCEDURE FindNext* (IN pat : ARRAY OF CHAR;
IN str : ARRAY OF CHAR;
bix : INTEGER;(* Begin index)
OUT fnd : BOOLEAN;
OUT pos : INTEGER);
(* Find the first occurrence of the pattepatin str starting the search frorhlx *)
(* 1f no match is foundnd is false andposis bix. Empty patterns match everywhere¥)

PROCEDURE FindPrev*(IN pat : ARRAY OF CHAR;
IN str : ARRAY OF CHAR;
bix : INTEGER;(* Beginindex)
OUT fnd : BOOLEAN;
OUT pos : INTEGER);
(* Find the previous occurrence of the pattgratin strstarting the search frorblx. *)
(* If no match is foundnd is false andoosis bix. Empty patterns match everywhere¥)

PROCEDURE FindDiff* (IN strl : ARRAY OF CHAR;
IN str2 : ARRAY OF CHAR;
OUT diff : BOOLEAN;
OUT dPos : INTEGER);
(* Find the index of the first char of difference between the two input strings. *)
(* If the strings are identicatliff is false, anddPosis zero. *)

END StringLib.

Figure 10: Interface to th8tringLiblibrary

7 Foreign Language Interface

7.1 Accessing the underlying native types

As seen in Figurg]6 thRTSmodule defines four type aliases. The binding of these
types to the native platform types is determined dynamically, at compile time. Thus, the

7 FOREIGN LANGUAGE INTERFACE 24

SYSTEM MODULE Stdin;
(* Read aline of text, discarding new-lifie
PROCEDURE ReadLn*(OUT arr : ARRAY OF CHAR);
PROCEDURE SkipLn*();(* Discard remainer of lin&)
PROCEDURE Read*(OUT ch : CHAR);(* Fetch next charactet)
PROCEDURE More*() : BOOLEAN;(* Return TRUE in gpcp v1.3)
END Stdin.

Figure 11: Source of th8tdInpseudo-module

underlying types are accessible without any other import otherRi& At compiler-
runtime the compiler queries the target flag, or takes the default target value if there is
no target command option.

If the target is het ” then NativeObjectNativeStringandNativeExceptionvill be
the CLRtypesSystem.ObjecBystem.Stringnd System.Exceptiaespectively.

If the target is jvm ” then NativeObjectNative StringandNativeExceptionvill be
theJavatypesjava.lang.Objectjava.lang.Stringandjava.lang.Exceptionespectively.

In any case, literal strings may be implicitly coerced to either the native string type,
or to the native object type. This saves a lot of clutter in code that interfaces to foreign
libraries. However, if the value of a charater arkayiable needs to be transformed to
a native string, the non-standard built-in function —

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;

must be used. See the appendix for an extended example of using these facilities for
working with native string types.

7.2 Compiling dummy definition modules

As a convenience during bootstrapping, the compiler has been enhanced so as to allow
the construction of metainformation files for foreign language libraries. Such modules
must be compiled with the-$pecial " option.

Foreign language interfaces are denoted by the context sensitive FRRR&IGN
or SYSTEMoreceding the keywortMODULE at the start of the file. Such “dummy”
modules do not contain the code of the foreign language facilities, but simply define
the interface to those facilities. Such modules must be compiled withgpecfal "
option. The system marker has special meaning inNi&eT platform, but has the same
semantics as foreign in th/M platform.

When a dummy definition module is compiled there are a small number of syntactic
extensions and changes.

* Modules can be given an explicit external name

* Procedures can be given an explicit external name
* Features with “protected” scope may be defined

* Static features of classes may be defined

* Escaped identifiers may be defined

* Interface types may be defined

7 FOREIGN LANGUAGE INTERFACE 25

* Qverloaded names may be given aliases
* Constructors may be given an alias

A module declaration of the form —
MODULE Foo['PackageName"];

declares that this module will be found #VM assembly CP.PackageNaniewhere
the it PackageName is a possibly dotted name of the farm*.. " or“a/b ... "
It is not necessary to use this mechanism if you write the foreign module so that it has
the default name as described in Secfion 3.2.
A procedure declaration of the form —
PROCEDURE (x : T)Barll*["Bar’|(ij : INTEGER);

declares that this type-bound procedure has the external ngené dnd the internal
(CP) name Barll ". This mechanism allows overloaded names in@hé&sto be given
non-overloaded aliases in CP.

The mark 1 " is used to declare that a foreign name has protected scope. The mark
is placed in the same position in a declaration as the standard export markarsl*

If a name clashes with@omponent Pascéeyword, it should be defined using the
back-quote escape, as described on page 9.

Here is an example of the syntax that is required to define a foreign interface type.

TYPE Foo* = POINTER TO INTERFACE RECORD @iways empty) END;

The keywordINTERFACEIs reserved. Such types cannot declare any instance fields
in the record, nor can they define type-bound procedures which are not desBwed
STRACT

Finally, constructors must be declared with the special nasim¢* ”. Declaring
a constructor is not necessary if only the no-arg constructor is required N0 b))
works in this case as for all other typesG@omponent Pascgbee Sectiop 8|4 for more
detail). If access to constructors with arguments is required, then these may be given
a Component Pascallias, and are marked as constructors by using the magic explicit
name. For the-target=net " version, the magic name isctor "

7.3 Accessing Static Features of Foreign Classes

If a class has been imported from a foreign definition, and the class has static members,
these may be accessed by means of a semantic extension to the designator grammatr.
Normally, the syntactic construct —
Qualifiedldent{ Selecto}

is in error if the qualified identifier resolves to a type-identifier. However there are two
exceptional cases where this is legagjpcp If a designator begins —

Typeldentifie'. ” Identifier...
and the following is true —

The type identifier resolves to an imported, foreign tygoed either
the identifier is a static field or constant of the type,
the identifier is a static method of the named type
then this is a legal reference to the named static feature of the type.
In order to define such constructs in the syntax of dummy definitions the follow-
ing productions are added to the record syntax. Note that these extensions are only
recognised if the module is compiled with thegecial " command-line option.

8 CREATING AND USING FOREIGN DEFINITION MODULES 26

Record - “RECORD[“ (" Typeld") "] {FieldList}
[“STATIC” {StatFeaturé¢] “END.

StatFeature ::- ProcHeading StatConst StatField.
StatConst - identifier*=" ConstExpression
StatField - identifier*: " Typeld.

All undefined syntactic categories in the fragment have the same meaning as in the
unmodifiedComponent Pascalyntax. In particular, procedure headings have the same
syntax as elsewhere in the language.

8 Creating and Using Foreign Definition Modules

This Section is only of relevance if you plan to write your own foreign definition mod-
ules. For most users the information in the previous section on the usage of these
facilities will be sufficient.

Hint:
This section is included for mainly historical reasons.
The need to write foreign definition modules has signif-
icantly decreased with the availablity of theCPSand
J2CPStools. It is usually easier to write the foreign lan-
guage code, use the tool to produce the symbol file,/ and
Browseto produce a human-readable version.
An exception occurs when the same module is required
for both platforms. In that case it may still be simpler
to write a foreign module, and then separately implement
the code inJavaandC#to match the shared definition,

8.1 Syntax of Foreign Definitions

The syntax of foreign definition is shown in Figlirg 12. Unless otherwise defined here,
the meanings of syntactic-category symbols is the same as in the Component Pascal
Report.

The syntax begins with the context sensitive mB@&REIGNor SYSTEMOn the
.NET platform the system marker indicates that the code will be found in the runtime
system assembly. In thB/M, where each class file contains a single class, the marker
has the same semantic effect as the foreign marker.

8.2 Explicit package or namespace names

The way in which runtime names are generated from module names was described in
Sectior] 3.R. In the case of td&M we have the following correspondence —

8 CREATING AND USING FOREIGN DEFINITION MODULES 27

GPModule - Module| ForeignMod.

ForeignMod - (“FOREIGN | “SYSTEM) “MODULEIdent[string] “; "
ImportList DeclSedEND ident”. ” .

DeclSeq - { “CONST {ConstDecl; "}

| “TYPE' {TypeDecl; "}
| “VAR {VarDecl“; "}}
{ ProcHeading'; " | MethodHeadingd; " }
ProcHeading ;- “PROCEDURHdentDef[“[" string“] "] [FormalParg .
MethodHeading ::- “PROCEDUREReceiver IdentDdf[” string“] "]
[FormalParg [*, " “ NEW|
[“,” (“ ABSTRACT | “EMPTY | “EXTENSIBLE)] .
TypeDecl - ldentDef=" Type.
Type - [*POINTER “TO] [Attributeg “RECORD[Super}
FieldList{*; " FieldList }
[“STATIC” StaticDecK"; " StaticDec}] “END
| - - Othertypes as in the Repart

StaticDecl ;- IdList“: " Type| IdentDef*=" ConstExp1 ProcHeading.
Attributes - “ABSTRACT | “EXTENSIBLE’ | “INTERFACE' .
Supers i- Y7 [Qualident {“+"Qualiden*) " .

Figure 12: Syntax of foreign modules

Component Pascal Name JVM Name

MODULE ModNm; CP.ModNm I/l package name
TYPE CIls = RECORD...END; CP.ModNm.ModNm.Cls
VAR varNm : Cls; CP.ModNm.ModNm.varNm
PROCEDURE ProcNm(); CP.ModNm.ModNm.ProcNm()
PROCEDURE (t:CIs)MthNm(); CP.ModNm.Cls.MthNm()

END ModNm.

Notice that in the JVM there are no features that are defined outside of classes, so
that the static featurearNmandProcNmare considered at runtime to belong to an
implicit static class with the same name as the module name. However, so far as an
importing Component Pascglrogram is concerned, these features will be accessed by
the familiarModuleName.memberNaragntax.

Component Pascal Name .NET CLS Name

MODULE ModNm; [ModNm]ModNm // nhamespace namg
TYPE Cls = RECORD...END; [ModNm]ModNm.Cls
VAR varNm : Cls; [ModNm]ModNm.ModNm::varNm
PROCEDURE ProcNm(); [ModNm]ModNm.ModNm::ProcNm()
PROCEDURE (t:Cls)MthNm(); [ModNm]ModNm.Cls::MthNm()

END ModNm.

In the virtual object system oNET the situation is similar, with an implicit static class
being defined with the same name as the module.

If, as a user, you are writing a foreign definition and plan to implement the library
yourself in eitherJavaor in C# (say), then you may define the foreign module in this
way and write the foreign code so as to match the default “name mangling” scheme. In
this case you may even use the same foreign definition for both versigmepfand

8 CREATING AND USING FOREIGN DEFINITION MODULES 28

implement a foreign module on each underlying platform. If on the other hand you are
planning to match a foreign definition to an existing library writtedawaor C#, then
you must override this default naming scheme.

The syntax —

“FOREIGN “ MODULEident*[" string“] "*; "

allows an arbitrary package or namespace name to be defined. For example, in order to
access the facilities of the packagea.lang.Reflect a foreign module might
begin

FOREIGN MODULE java_lang_Reflect["java.lang.Reflect"];

Similarly, in order to access the facilities of the namespagstem.Refledh the as-
semblymscorliba foreign module might begin

FOREIGN MODULE mscorlib_System_Reflect
["[mscorlib]System.Reflect";
Note that the form of the literal string is different on the two platforms, and thus
any such foreign modules will be specific to a particular platform. Notice also that
there is no mechanism to explicitly give a name to an implicit static class.

8.3 Dealing with overloaded names

Each of the underlying platforms allows name overloading for methods. This feature is
deliberately not permitted ifomponent PascalNevertheless, it is hecessary to gain
access to library methods that have overloaded names. The option of using explicit
external method names facilitates this. Suppose we have two methods, both of which
are namedddd) , one with a single integer parameter, and the other with two. We
might define these as follows in a foreign definition.

PROCEDURE (this : CIs)AddI*['Add"](I : INTEGER),NEW;
PROCEDURE (this : Cls)AddI*["Add"](I,J : INTEGER),NEW;

Within the importingComponent Pascgirogram the two names are distinct, but the
program executable will correctly refer to the underlying overloaded methods. This
manually specified name-mangling is rather awkward, particularly in the case of pa-
rameters of object types.

Sincegpcprelease 1.1 users are able to access the unmangled names of overloaded
foreign methods directly. ThH2CPSandJ2CPStools create symbol files that have
overloaded names, and the compiler will match calls to the intended method. Because
this is a language extension, the compiler is strict about matching calls to methods
in the presence of automatic type coercions. If more than one method matches when
taking into account all legal coercions, gpcp will reject the program and require the
user to specify the intended coercions of the actual parameters.

8.4 Interfacing to constructors

If a foreign class has a “no-arg” constructor, then this will be implicitly called when-
ever an object is created by the use of the standard procéiliMe However if it is
necessary to access constructors with arguments, then it is possible to define an alias
for the constructor in a foreign module. In every case the constructor will be accessed
by means of a static, value returning function that returns an object of the constructed
class. The fact that this is a constructoustbe made known tgpcpsince the way

in which these methods are called differs from other methods. On each underlying

8 CREATING AND USING FOREIGN DEFINITION MODULES 29

platform there is a “magic” name that is used for calling a constructor. OdMethe
name is <init> ", while on .NETthe name isttor ”. These two strings are used as
the explicit string that defines such a procedure in the foreign definition. An example
of an interface to a constructor with arguments, in the syntax used [Brtesetool,
might be —

PROCEDURE Init*(width,height : INTEGER) : Rect,CONSTRUCTOR,;

The identifier CONSTRUCTO#S not a reserved word, but a context sensitive mark that
may be used as an ordinary identifier elsewhere in the program.

Note that this declaration would normally appear in the static part of the record
defining the clas®ect Calls to this procedure in @omponent Pascadrogram, such
as —

recl := F.Rect.Init(25,17);

would, depending on the target platform, translate into a call to one or the other of —

namespaceNantect::.ctor(int32,int32)
packageName®&ect.<init>(Il)

Of course, if you extend a foreign class that does not have a public no-arg construc-
tor, then you will not be able to construct values of your own type uBlBY§\, since
this implicitly calls the no-arg constructor of its super-type. In this case, it is necessary
to define a new constructor signature for your extended type. Brmprelease 1.2
there are two ways to do this. If the desired constructor has the same signature as the
constructor of the supertype, then the first method may be used. In the case of the
example above, the required syntax is shown in the following fragment —

TYPE MyRect* = POINTER TO RECORD Mod.Rect) ... END;

PROCEDURE Init*(w,h : INTEGER) : MyRect,CONSTRUCTOR;

The constructor does not define a code body, and simply passes its arguments to the
super-type constructor with matching signature.

The new syntax ilgpcpversion 1.2 is considerably more flexible. TBemponent
Pascalconstructor is not required to have the same signature as the constructor of the
super-type. An example of the syntax defining another constructor for the extended
type defined above is —

PROCEDURE MkMyRect*ormalg : MyRect,BASE(actuals;
(* Local-declarations?)

BEGIN
(* Constructor body cod®
RETURN SELF;

END MkMyRect;

in the code the formal and actual parameter lists have been left un-elaborated.

The identifier BASE' is a not a reserved word, but is a context sensitive mark. Of
all publicly available constructors for the super-type it specifies a call of the one with
signature matching the types of thectuals argument list. This super-type constructor
will be called as the first action of the constructor, before the new fields of the derived
object are initialized. Within the body of the constructor the object under construction
is denoted by the identifielSELF’. The constructomustreturn this object along every
terminating path of the body. It is an error if the actual parameter expression types in
the BASEsuper-call do not choose a unique super-type constructor.

8 CREATING AND USING FOREIGN DEFINITION MODULES 30

8.5 Declaring static features of classes

Classes in foreign modules may be declared either as records or as pointers to records.
However, it is recommended that on tB¥M platform the pointer form be always
used, as a helpful reminder to the user that at runtime the objects will be dynamically
allocated. On theNET platform value classes should be declared as plain records,
with no explicit base type. On both platforms array types should be declared as point-
ers to arrays, again reminding the user that all arrays are dynamically (and explicitly)
allocated.

In order to access static features of foreign classes, the syntax extension of records
given in Figurg IR must be used. In the optional static section of a record declaration
we may define constants, static fields and static (i.e. non type-bound) procedures.

We may consider the following example —

CP Foreign Definition Component Pascal Usage
FOREIGN MODULE ModNm;
TYPE Cls = ModNm.Cls (* class namé)
POINTER TO RECORD
STATIC
statvar* : CHAR; ModNm.Cls.statVar
PROCEDURE StatProc(); ModNm.Cls.StatProc()
END;
END ModNm.

In this example we select the static member by qualifying the designator by the type-
name of the class.

Type-bound methods will be defined lexically outside of the record declaration in
the normalComponent Pascalay, remembering that only the heading is required.
On the.NET platform the distinction between virtual and instance methods is made
automatically. Instance methods &EWbut notEXTENSIBLEON theJVM platform
the possibility of optimizing the calls to such methods is left toilleto determine.

Note that the foreign modules which arise fr&@# on the.NET platform or are
written in Javacan never have static features outside of classes. If you are writing
the foreign module yourself you may use the default class haming scheme described
in Section 3.p. However if you are matching an existing package, you will need to
use the explicit name override described earlier in this Section. This allows you to
control the package name, but does not allow you to name an implicit static class for
static features. Therefore you will need to use the mechanisms of this sub-section if
the package contains any static features.

8.6 Automatic module renaming

Programs written irC# that contain a single class definition only are often created in
files that take their name from the name of the class. If you try to match this same
structure inComponent Pascalou run into a small difficulty on theNET platform.
Suppose you want to export a claBenamegrom a module name&ename In this

case the external class nameNET will be “[Rename]Rename.Rename ", and this

name will clash with the name of the “synthetic static class”. In this circumsigpce

will automatically rename the static class, by pre-pending two underscore characters.
If the module with the renamed class is importgdecpwill find the renamed symbol

file. In both contextgpcpwill issue a warning that the renaming is taking place —

9 INSTALLING AND TRYING THE COMPILER 31

C:\gpcp\work> gpcp Rename.cp UseRename.cp
1 MODULE Rename;
FIIE " Warning: Default static class has name clash
**** Renaming static class to <__Rename>
#gpcp: <Rename> No errors, and one warning
2 IMPORT Rename, CPmain;
HHIE e " Warning: Looking for a auto-renamed module
el " Looking for module "Rename" in <__Rename.cps>
#gpcp: <UseRename> No errors, and one warning

9 Installing and Trying the Compiler

9.1 Installation

The compiler is packaged in a single installer fidettp.exe ”. If you use the installer
version (from version 1.1.4) you should not need to do anything other than make re-
sponses to the installer's queries. Complete instructions for installing and trying out
the compiler are in the separate documéseétting Started with GPCP

Figure[I3 is the complete folder hierarchy of the installed compiler. The six first-

=1 gpep-1vM

w0 cp

23 examples
_I applet
#-_1 hello

=1 libs

----- _I Jvmaystem
2 MetSystem
I'_—'I_I SOUFCE

=1 gpep

----- 3 csharp

=0 lbs
----- Ca cpascal

_I MekSym
----- 1 PEAPI

Figure 13: Distribution File Tree

level subdirectories of the distribution are

10 FUTURE RELEASES 32

* bin — the binary files of the compiler

* CP — the class file tree of the tools and libraries
* docs— the documentation, including this file

* examples— some example programs

* libs — contains the simple library files

* source— the source files

* work — a working directory to play around with

The bin directory needs to be on ydeATH Typical commands to set this variables
are —

set PATH=%PATH%;C:\gpcp\bin

On UNIX systems the environment variables would typically be set using commands
such as —

PATH=$PATH:$CPROOT/gpcp/bin

WhereCPROOQTis the root of thegpcpdistribution. The command filecprun ” will
pass the environment variab#PSYMto the program, and will also set the class path.

The “CP’ directory is the root of the class-file tree. This directory contains a sub-
directory for each module of the system. There are almost 250 class files in the tree, in
the initial distribution. However, when you run programs class files indbal class
file directory take precedence over those in@RROOTdirectory.

The “libs " directory contains the symbol files for the Component Pascal libraries.
There are three subdirectories undilss® ”. The first of these is empty in th&vM
version. The JvmSystem ” directory is for the symbols files to interface to the Java
runtime. The NetSystem " directory contains the symbol files that allow Component
Pascal programs to access the base classes diHIesystem.

10 Future Releases

Release 1.2 still has a very limited range of libraries packaged with it, essentially only
those needed to bootstrap the compiler. The distribution is sufficient to try out the
compiler, and is being updated on a frequent basis. We expect new releases to contain
new tools and new libraries.

Updates are announced and available fratp://www.citi.qut.edu.au/
research/plas/projects/cp _files

10.1 Change summary
Changes from 1.2.0

The following changes and corrections are included in the 1.2.x release.
* Support for boxing and unboxing @fLSvalue types is included.

* The vector types have been included.

http://www.citi.qut.edu.au/research/plas/projects/cp_files
http://www.citi.qut.edu.au/research/plas/projects/cp_files

10 FUTURE RELEASES 33

The parser now allows return types and formal parameters to be anonymous
constructed types. The compiler gives a warning when the type so defined will
be inaccessible and hence useless.

A string library StringLibhas been included.
Some corrections have been made toRlealStribrary.

The “winMain " pseudo-module introduced to mark base modules for windows
executables that do not start a console when launched.

Unsafe facilities in moduleSYSTEM introduced.

Enhanced compatability between native strings, string literals and character lit-
erals.

Correction to the semantics of subset inclusion tests, both versions.

Changes from 1.1.6

The following changes and corrections are included in the 1.2.0 release.

*

The semantics of “super-calls” were incorrect in the case that the immediate
super-type did not define the method being overridden. In version 1.2 the nota-
tion “Foo”™() " denotes the overridden method no matter how distant it is in the
inheritance hierarchy.

New options have been implemented for output directories.

The default behavior for the/fodebug " option is to use the direcPE-file

writer. This is significantly faster than going througasm . Unfortunately,

this new file-writer does not produce debug symbols at this stage. There is sepa-
rate documentation for tHREAPIcomponent included with this release.

The permitted semantics for constructors with arguments is significantly en-
hanced. This is of some importance when deriving from types that do not have
public no-arg constructors.

Changes from 1.1.4

The following changes and corrections are included in the 1.1.6 release.

*

Uplevel addressing of reference parameters is now permitted iNEiErelease,
although this has inexact semantics in some cases.

A number of corrections to th#VM code-emitter have been added.
The new built-in functiorBOXhas been added.
Trapping of types that attempt to indirectly include themselves is improved.

An automatic renaming scheme is implemented for modules that attempt to ex-
port types with the same name as the module onNiE platform.

10 FUTURE RELEASES 34

Changes from 1.1.3
The following changes and corrections are included in the 1.1.4 release.

* The copyright notice has been revisaghcpis still open source, but now has a
“FreeBSD-like” licence agreement.

* A correction to theJavaclass-file emitter now puts correct visibility markers on
package-public members. Appletviewer didn’t care, but most browsers objected!

* |t is now permitted to export type-bound procedures of non-exported types, pro-
vided the procedure overrides an exported method of a super-type.

* More line-markers are emitted tb in .NET. This makes it possible to place a
breakpoint on the predicate of a conditional statement, and have the debugger
stop on the predicate rather than the next executable statement.

* The type-resolution code osymFileRW.cp ” has been radically revised. It is
believed that the code is now immune to certain problems caused by importing
foreign libraries with circular dependencies.

11 APPENDIX: WORKING WITH NATIVE STRINGS 35

11 Appendix: Working with Native Strings

There are some subtleties in converting to native strings. The following example
demonstrates several strategies. The example tries to cadighalg) method of
java.lang.Stringo compare with &£omponent Pascditeral string.

MODULE StringCompare;
IMPORT JL := java _lang, CPmain;

VAR type : JL.Class;
name : JL.String;
[tNm : JL.String;
sObj : JL.Object;
BEGIN
name := type.getName();
(*
* This attempt works because String.equals() is not overloaded
* This binds to the procedure matching
* PROCEDURE (s : JL.String)equals*(JL.Object) : BOOLEAN
*)
IF name.equals("Blah") THEN END;
(*
* Conversions use built-in functions. Here is a non-standard one that converts
* char-arrays to native strings. This works ...
*)
IF name.equals(MKSTR("Blah")) THEN END;
(*
* In the case of assigments (or non-overloaded method calls), the compiler can
* work it out by itself without the MKSTR. Literal char arrays can be assigned to
* objects or strings. This works.
*)
ItNm := "Blah";(* gpcp automatically converts the string to JL.Strif)g
IF name.equals(ltNm) THEN END;
(*
* In the case of reference variables the type-assertion / cast syntax does work —
* the following two calls bind to the same method.
*)
sObj := "Blah"; (* gpcp automatically converts the string to JL.Obj&ct
IF name.equals(sObj) THEN END;
IF name.equals(sObj(JL.String)) THEN END;
END StringCompare.

The eqivalent example using the libraries of tN&ET platform is much more compli-
cated, because thligqualsmethod of the native string type has several overloads. The
release notes for th&lET version treat the example in some detail.

12 Appendix: Overriding the Default Naming

The default naming scheme for th¥M version of gpcp uses the module name as the
stem name for the output files, tli&M package name and the dummy static class
name. All of these defaults may be overridden as described here. This may be neces-
sary if another component expects a particular naming pattern.

12 APPENDIX: OVERRIDING THE DEFAULT NAMING 36

Consider the following short program —

MODULE Modld; (* default naming will be uset)
TYPE Clsld* = RECORD ... END;
END Modid;

In this case the name of the output class files will @®/Modid/Modid.class
and “CP/ModId/Modid _Clsld.class ”. The name of the dummy static class will be
“CP.Modld.Modld”, and the name of the class that represents the record type will be
“CP.Modld.ModId Clsld".

It is allowed to follow the module name with a bracketed string that specifies the
complete package name of the resulting classes. A typical string would be —

MODULE Modld ['CP.Foo"]; (*
TYPE Clsld* = RECORD ...
END Modld;

explicit package nam®
END;

In this case the name of the base class file will 88/Foo/Modid.class ", and the
name of the dummy static class will BEP.Foo.Modld”. The name of the class that
represents the record type will BeP.Foo.Modld Clsld”, which will be found in file
“CP/Foo/Modld _Clsld.class ".

The only special case is that of an empty package name, signified by an explicit
empty string.

MODULE Modid ["]; (*

empty package namg

END Modld;

TYPE Clsld* = RECORD ...

END;

In this case the name of the base class file williedId.class

" and the name of the

dummy static class will bEModld” . The name of the class that represents the record
type will be“Modld _Clsld”, which will be found in file ‘ModlId _Clslid.class .

For the.NET target there is a special case that arises if an explicit class has the
same name as the module. On that platform an automatic renaming of the symbol file
and dummy static class is required. On &M platform the case is innocuous.

MODULE Clsld; (*

END Clsld;

module name clashes with class*)d
TYPE Clsld* = RECORD ...

END;

In this case the name of the base class file will B&/ClsId/Clsld.class

” and

the name of the dummy static class will teP.Clsld.ClIsld”. The name of the class
that represents the record type will teP.Foo.Clsld Clsld”, which will be found in

file “CP/Foo/Clsld _Clsld.class

	Introduction
	Overall Structure
	Input and Output files
	Invoking the compiler
	The cprun script
	Target choice
	Runtime checking
	Listing output
	Statistics output
	Setting the hash table size
	Choosing the Output Directories
	The Make utility
	Module Interface Browser
	Symbol File Generator J2CPS

	Lexical Issues
	Non-standard Keywords
	Java Package and Class Names
	Identifier syntax

	Semantic Issues
	Class files and entry points
	Unimplemented constructs
	Additional Arithmetic Operators
	Semantics of the WITH statement
	Extensible arrays: the vector types
	Implementing foreign interfaces
	Unsigned byte type on .NET platform
	Runtime type descriptors
	Additional built-in functions
	Deprecated features and warnings
	Program executable verification
	Unchecked arithmetic

	Exception Handling
	The RESCUE clause
	The THROW statement

	Facilities of the CP Runtime System
	Supplied libraries
	The runtime system (RTS)
	The ProgArgs library
	The RealStr library
	The StringLib library
	The SYSTEM facilities
	The StdIn library

	Foreign Language Interface
	Accessing the underlying native types
	Compiling dummy definition modules
	Accessing Static Features of Foreign Classes

	Creating and Using Foreign Definition Modules
	Syntax of Foreign Definitions
	Explicit package or namespace names
	Dealing with overloaded names
	Interfacing to constructors
	Declaring static features of classes
	Automatic module renaming

	Installing and Trying the Compiler
	Installation

	Future Releases
	Change summary

	Appendix: Working with Native Strings
	Appendix: Overriding the Default Naming

