
The Midi Kit  – 1

6 The Midi Kit

Introduction   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

BMidi  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

Forming Connections .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
Generating MIDI Messages.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
Spray Functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8
Input Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8

Creating a MIDI Filter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
Time .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .10
Spraying Time.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11

Running in Real Time   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11
Running Ahead of Time  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11

Hook Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .12
Constructor and Destructor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .13
Member Functions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .14
Input and Spray Functions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .17

BMidiPort  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .21
Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .21

Opening the Ports .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .21
Run() and the Input Functions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .22
Looping through a BMidiPort Object.  .  .  .  .  .  .  .  .  .  .  .22

Constructor and Destructor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .22
Member Functions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .23

BMidiStore   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .25
Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .25

Recording .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .25
Timestamps .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .26
Erasing and Editing a Recording .  .  .  .  .  .  .  .  .  .  .26

Playback.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .26
Setting the Current Event.  .  .  .  .  .  .  .  .  .  .  .  .  .  .27

Reading and Writing MIDI Files  .  .  .  .  .  .  .  .  .  .  .  .  .  .28
Constructor and Destructor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .29
Member Functions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .29



2  –  The Midi Kit

BMidiText  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .33
Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .33
Constructor and Destructor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .34
Member Functions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .34

Midi Kit Inheritance Hierarchy

BObject
(Support Kit)

BMidiStoreBMidi

BMidiPort

BMidiText



The Midi Kit  – 3

The Midi Kit

The Musical Instrument Digital Interface (MIDI) is a standard for representing and
communicating musical data.  Its fundamental notion is that instantaneous musical events
generated by a digital musical device can be encapsulated as “messages” of a known
length and format.  These messages can then be transmitted to other computer devices
where they’re acted on in some manner.  The MIDI standard allows digital keyboards to
be de-coupled from synthesizer boxes, lets computers record and playback performances
on digital instruments, and so on.

The Midi Kit understands the MIDI software format (including Standard MIDI Files).
With the Kit, you can create a network of objects that generate and broadcast MIDI
messages.  Applications built with the Midi Kit can read MIDI data that’s brought into the
computer through a MIDI port, process the data, write it to a file, and send it back out
through the same port.  The Kit contains four classes:

• The BMidi class is the centerpiece of the Kit.  It defines the tenets to which all
MIDI-processing objects adhere, and provides much of the machinery that realizes
these ideas.  BMidi is abstract—you never create direct instances of the class.
Instead, you construct and connect instances of the other Kit classes, all of which
derive from BMidi.  You can also create your own classes that derive from BMidi.

• BMidiPort knows how to read MIDI data from and write it to a MIDI hardware port.

• BMidiStore provides a means for storing MIDI data, and for reading, writing, and
performing Standard MIDI Files.

• BMidiText is a debugging aid that translates MIDI messages into text and prints
them to standard output.  You should only need this class while you’re designing
and fine-tuning your application.

To use the Midi Kit, you should have a working knowledge of the MIDI specification;  no
attempt is made here to describe the MIDI software format.

The BeBox comes equipped with four MIDI hardware ports.  These are standard MIDI
ports that accept standard MIDI cables—you don’t need a MIDI interface box.  The ports
are aligned vertically at the back of the computer.  Top-to-bottom they are MIDI-In A,
MIDI-Out A, MIDI-In B, and MIDI-Out B.  Currently, the Midi Kit only talks to the top
set of ports (MIDI-In A and MIDI-Out A).

6



4  –  The Midi Kit



The Midi Kit  – 5

BMidi

Derived from: public BObject

Declared in: <midi/Midi.h>

Overview

BMidi is the centerpiece of the Midi Kit.  It provides base class implementations of the
functions that create a MIDI performance.  BMidi is abstract; all other Kit classes—and
any class that you want to design to take part in a performance—derive from BMidi.
When you create a BMidi-derived class, you do so mainly to re-implement the hook
functions that BMidi provides.  The hook functions allow instances of your class to
behave in a fashion that the other objects will understand.

The functions that BMidi defines fall into four categories:

• Connection functions.  The connection functions let you connect the output of one
BMidi object to the input of another BMidi object.

• Message-generation functions.  Some BMidi objects generate (or otherwise
procure) MIDI data.  To do this, a derived class must implement theRun() hook
function. Run() is the brains of a MIDI performance; other performance functions,
such asStart() andStop() control the performance.

• “Spray” functions.  If a BMidi object wants to send a MIDI message to other BMidi
objects, it does so by calling one of the output, or “spray,” functions.  There’s a
spray function for each type of MIDI message; for example,SprayNoteOn()
corresponds to MIDI’s Note On message.  When a message is sprayed, it’s sent to
each of the objects that are connected to the output of the sprayer.

• Input functions.  When a message is sprayed, the receivers of the message are
notified by the automatic invocation of particular “input” functions.  For example,
when a BMidi object callsSprayNoteOn(), each of the objects that it’s connected to
becomes the target of theNoteOn() function.  How the receiving object responds
depends on the object’s class:  The input functions are virtual; the BMidi class
implementations are empty.

Forming Connections

A fundamental concept of the Midi Kit is that MIDI data should “stream” through your
application, passing from one BMidi-derived object to another.  Each object does



Overview BMidi

6  –  The Midi Kit

whatever it’s designed to do:  Sends the data to a MIDI port, writes it to a file, modifies it
and passes it on, and so on.

You form the chain of BMidi objects that propagate MIDI data by connecting them to each
other.  This is done through BMidi’s Connect() function.  The function takes a single
argument:  The object you want the caller to connect to.  By callingConnect(), you
connect the output of the calling object to the input of the argument object.

For example, let’s say you want to connect a MIDI keyboard to your computer, play it, and
have the performance recorded in a file.  To set this up, you connect  a BMidiPort object,
which reads data from the MIDI port, to a BMidiStore object, which stores the data that’s
sent to it and can write it to a file:

/* Connect the output of a BMidiPort to the input of a
 * BMidiStore.
 */
BMidiPort *m_port = new BMidiPort();
BMidiStore *m_store = new BMidiStore();

m_port->Connect(m_store);

Simply connecting the objects isn’t enough, however; you have to tell the BMidiPort to
start listening to the MIDI port, by calling itsStart() function.  This is explained in a later
section.

Once you’ve made the recording, you could play it back by re-connecting the objects in
the opposite direction:

/* We'll disconnect first, although this isn't strictly
 * necessary.
 */
m_port->Disconnect(m_store);
m_store->Connect(m_port);

In this configuration, a Start() call to m_store would cause its MIDI data to flow into the
BMidiPort (and thence to a synthesizer, for example, for realization).

You can connect any number of BMidi objects to the output of another BMidi object, as
depicted below:

The configuration in the illustration is created thus:

a_object

b_object

c_object

d_object



BMidi Overview

The Midi Kit  – 7

a_object->Connect(b_object);
a_object->Connect(c_object);
a_object->Connect(d_object);

Every BMidi object knows which objects its output is connected to; you can get a BList of
these objects through the Connections() function.  For example,a_object, above, would
list b_object, c_object, andd_object as its connections.

Similarly, the same BMidi object can be the argument in any number ofConnect() calls,
as shown below and depicted in the following illustration:

b_object->Connect(a_object);
c_object->Connect(a_object);
d_object->Connect(a_object);

When you use a BMidi object as the argument to a Connect() method, the argument object
isn’t informed. In the illustration,a_object doesn’tknow about the objects that are
connected to its input.

Generating MIDI Messages

To generate MIDI  messages, you implement theRun() function in a BMidi-derived class.
An implementation ofRun() should include awhile() loop that produces (typically) a
single MIDI message on each pass, and then sprays the message to the connected objects.
To predicate the loop you test the value of theKeepRunning() boolean function.

The outline of aRun() implementation looks like this:

void MyMidi::Run()
{

while (KeepRunning()) {
/* Generate a message and spray it. */

}
}

Although your derived class can generate more than one MIDI message each time through
the loop, it’s recommended that you try to stick to just one.

To tell an object to perform itsRun() function, you call the object’sStart() function—you
never callRun() directly. Start() causes the object to spawn a thread (its “run” thread) and

c_object

b_object

a_object

d_object



Overview BMidi

8  –  The Midi Kit

executeRun() within it.  When you’re tired of the object’s performance, you call itsStop()
function.

TheRun() function is needed in classes that want to introduce new MIDI data into a
performance.  For example, in its implementation ofRun(), BMidiStore sprays messages
that correspond to the MIDI data that it stores.  In itsRun(), a BMidiPort reads data from
the MIDI port and produces messages accordingly.  If you’re generating MIDI data
algorithmically, or reading your own file format (BMidiStore can read standard MIDI
files), then you’ll need to implement Run().  If, on the other hand, you’re creating an object
that “filters” data—that accepts data at its input, modifies it, then sprays it—you won’t
needRun().

Another point to keep in mind is that theRun() function can run ahead of real time.  It
doesn’t have to generate and spray data precisely at the moment that the data needs to be
realized.  This is further explained in the section “Time” on page 10.

Important:  The BMidi-derived classes that you createmust implementRun(), even if they
don’t generate MIDI data; “do-nothing” implementations are acceptable, in this case.  For
example, if you’re creating a filter (as described in a later section), your Run() function
could be, simply

void MidiFilter::Run()
{}

Spray Functions

The spray functions are used (primarily) within aRun() loop to send data to the running
object’s connections (the objects that are connected to the running object’s output).
There’s a separate spray function for each of the MIDI message types:SprayNoteOn(),
SprayNoteOff(), SprayPitchBend(), and so on.  The arguments that these functions take are
the data items that comprise the specific messages.  The spray functions also take an
additional argument that gives the message a time-stamp, as explained later (again, in the
“Time” section).

Input Functions

The input functions take the names of the MIDI messages to which they respond:
NoteOn() responds to a Note On message;NoteOff() responds to a Note Off;
KeyPressure() to a Key Pressure change, and so on.  These are all virtual functions.  BMidi
doesn’t provide a default implementation for any of them; it’s up to each BMidi-derived
class to decide how to respond to MIDI messages.

Input functions are never invoked directly; they’re called automatically when a running
object sprays MIDI data.

Every BMidi object automatically spawns an “input” thread when it’s constructed.  It’s in
this thread that the input functions are executed.  The input thread is always running—the



BMidi Overview

The Midi Kit  – 9

Start() andStop() functions don’t affect it.  As soon as you construct an object, it’s ready to
receive data.

For example, let’s say, once again, that you have a BMidiPort connected to a BMidiStore:

m_port->Connect(m_store);

Now you open the port (a BMidiPort detail that doesn’t extend to other BMidi-derived
classes) and tell the BMidiPort to start running:

m_port->Open("midi1");
m_port->Start();

As the BMidiPort is running, it sends data to its output.  Since the BMidiStore is
connected to the BMidiPort’s output, it receives this data automatically in the form of
input function invocations.  In other words, whenm_port calls its SprayNoteOn() function
(which it does in itsRun() loop),m_store’s NoteOn() function is automatically called.  As
an instance of BMidiStore, the m_store object caches the data that it receives through the
input functions.

You can derive your own BMidi classes that implement the input functions in other ways.
For example the following implementation ofNoteOn(), in a proposed class called
NoteCounter, simply keeps track of the number of times each key (in the MIDI sense) is
played:

void NoteCounter::NoteOn(uchar channel, uchar keyNumber,
uchar velocity, ulong time)

{
/* We’ll assume the class has allocated an array that
 * holds the key counters.
 */
keyCounter[keyNumber]++;

}

Note that theNoteOn() function in the example includes atime argument (the other
arguments should be familiar if you understand the MIDI specification).  This argument is
explained in the “Time” section.

Creating a MIDI Filter

Some BMidi classes may want to create objects that act as filters:  They receive data,
modify it, and then pass it on.  To do this, you call the appropriate spray functions from
within the implementations of the input functions.  Below is the implementation of the
NoteOn() function for a proposed class called Transposer.  It takes each Note On,
transposes it up a half step, and then sprays it:



Overview BMidi

10  –  The Midi Kit

void Transposer::NoteOn(uchar channel, uchar keyNumber,
uchar velocity, ulong time)

{
uchar new_key = max(keyNumber + 1, 127);
SprayNoteOn(channel, new_key, velocity, time);

}

There’s a subtle but important distinction between a filter class and a “performance” class
(where the latter is a class that’s designed to actually realize the MIDI data it receives).
The distinction has to do with time, and is explained in the next section.  An implication of
the distinction that affects the current discussion is that it may not be a great idea to invest,
in a single object, the ability to filterand perform MIDI data.  By way of calibration, both
BMidiStore and BMidiPort are performance classes—objects of these classes realize the
data they receive, the former by caching it, the latter by sending it out the MIDI port.  In
neither of these classes do the input functions spray data.

Time

Every spray and input function takes a finaltime argument.  This argument declares when
the message that the function represents should be performed.  The argument is given as
an absolute measurement inticks, or milliseconds.  Tick 0 occurs when you boot your
computer; the tick counter automatically starts running at that point.  To get the current
tick measurement, you call the global, Kernel Kit-definedsystem_time() function and
divide by 1000.0 (system_time() returns microseconds).

A convention of the Midi Kit holds that time arguments are applied at an object’s input.  In
other words, the implementation of a BMidi-derived input function would look at the time
argument, wait until the designated time, and then do whatever it does that it does do.
However, this only applies to BMidi-derived classes that are designed to perform MIDI
data, as the term was defined in the previous section.  Objects that filter datashouldn’t
apply the time argument.

To apply thetime argument, you call theSnoozeUntil() function, passing the value oftime.
For example, a “performance”NoteOn() function would look like this:

void MyPerformer::NoteOn(uchar channel, uchar keyNumber,
uchar velocity, ulong time)

{
SnoozeUntil(time);
/* Perform the data here. */

}

If time designates a tick that has already tocked,SnoozeUntil() returns immediately;
otherwise it tells the input thread to snooze until the designated tick is at hand.

An extremely important point, with regard to The SnoozeUntil() function, as used here,
may cause spraying objects (objects that are spraying



BMidi Overview

The Midi Kit  – 11

Spraying Time

If you’re implementing theRun() function, then you have to generate a time value yourself
which you pass as the final argument to each spray functionthat you call.  The value you
generate depends on whether you class runs in real time, or ahead of time.

Running in Real Time

If your class conjures MIDI data that needs to be performed immediately, you should use
theB_NOW macro as the value of thetime arguments that you pass to your spray functions.
B_NOW is simply a cover for (system_time()/1000.0) (converted to an integer).  By using
B_NOW as thetime argument you’re declaring that the data should be performed in the
same tick in which it was generated.  This probably won’t happen; by the time the input
functions are called and the data realized, a few ticks will have elapsed.  In this case, the
expectedSnoozeUntil() calls (within the input function implementations) will see that the
time value has passed, and so will return immediately, allowing the data to be realized as
quickly as possible.

The lag between the time that you generate the data and the time it’s realized depends on a
number of factors, such as how loaded down your machine is and how much processing
your BMidi objects perform.  But the Midi Kit machinery itself shouldn’t impose a latency
that’s beyond the tolerability of a sensible musical performance.

Running Ahead of Time

If you’re generating data ahead of its performance time, you need to compute the time
value so that it pinpoints the correct time in the future.  For example, if you want to create
a class that generates a note every 100 milliseconds, you need to do something like this:

void MyTicker::Run()
{

ulong when = B_NOW;
uchar key_num;

while (KeepRunning()) {

/* Make a new note. */
SprayNoteOn(1, 60, 64, when);

/* Turn the note off 99 ticks later. */
when += 99;
SprayNoteOff(1, 60, 0, when);

/* Bump the when variable so the next Note On
 * will be 100 ticks after this one.
 */
when += 1;

}
}



Hook Functions BMidi

12  –  The Midi Kit

When a MyTicker object is told to start running, it generates a sequence of Note On/Note
Off pairs, and sprays them to its connected objects.  Somewhere down the line, a
performance object will apply the time value by callingSnoozeUntil().

Tethering MyTicker

But what, you may wonder, keeps MyTicker from running wild and generating thousands
or millions of notes—which aren’t scheduled to be played for hours—as fast as possible?

The answer is in the mechansim that connects a spray function to an input function:  The
BMidi class creates a port (in the Kernel Kit sense) for every object.  When you invoke a
spray function, the data is encoded in a message and written to each of the connected
objects’ ports.  The input functions (invoked on the connected objects) then read from
their respective ports.  The secret here is that these ports are declared to be 1 (one)
message deep.  So, as long as one of the input function callsSnoozeUntil(), the spraying
object will never be more than one message ahead.

A useful feature of this mechanism is that if you connect a series of BMidi object that
don’t invokeSnoozeUntil(), you can process MIDI data faster than real-time.  For example,
let’s say you want to spray data from one BMidiStore object, pass the data through a filter,
and then store it in another BMidiStore.  The BMidiStore input functions don’t call
SnoozeUntil(); thus, data will flow out of the first object, through the filter, and into its
destination as quickly as possible, allowing you to process hours of real-time data in just a
few seconds.  Of course, if you add a performance object into this mix (so you can hear the
data while it’s being processed), the data flow will be tethered, as described above.

Hook Functions

Run() Contains a loop that generates and broadcasts MIDI
messages.

Start() Starts the object’s run loop.  Can be overridden to provide
pre-running adjustments.

Stop() Stops the object’s run loop.  Can be overridden to perform
post-running clean-up.

The input functions (NoteOn(), NoteOff(), and so on) are also hook functions.  These are
listed in the section “Input and Spray Functions” on page 17.



BMidi Constructor and Destructor

The Midi Kit  – 13

Constructor and Destructor

BMidi()
BMidi(void)

Creates and returns a new BMidi object.  The object’s input thread is spawned and started
in this function—in other words, BMidi objects are born with the ability to accept
incoming messages.  The run thread, on the other hand, isn’t spawned untilStart() is
called.

~BMidi()
virtual ~BMidi(void)

Kills the input and run threads after they’ve gotten to suitable stopping points (as defined
below), deletes the list that holds the connections (but doesn’t delete the objects contained
in the list), then destroys the BMidi object.

The input thread is stopped after all currently-waiting input messages have been read.  No
more messages are accepted while the input queue is being drained.  The run thread is
allowed to complete its current pass through the run loop and then told to stop (in the
manner of theStop() function).

While the destructor severs the connections that this BMidi object has formed, it doesn’t
sever the connections from other objects to this one.  For example, consider the following
(improper) sequence of calls:

/* DON'T DO THIS... */
a_midi->Connect(b_midi);
b_midi->Connect(c_midi);
...
delete b_midi;

Thedelete call severs the connection fromb_midi to c_midi, but it doesn’t disconnect
a_midi andb_midi.  You have to disconnect the object’s “back-connections” explicitly:

/* ...DO THIS INSTEAD */
a_midi->Connect(b_midi);
b_midi->Connect(c_midi);
...
a_midi->Disconnect(b_midi);
delete b_midi;

See also: Stop()



Member Functions BMidi

14  –  The Midi Kit

Member Functions

Connect()
void Connect(BMidi * toObject)

Connects the BMidi object’s output totoObject’s input.  The BMidi object can connect its
output to any number of other objects.  Each of these connected objects receives an input
function call as the BMidi sprays messages.  For example, consider the following setup:

my_midi->Connect(your_midi);
my_midi->Connect(his_midi);
my_midi->Connect(her_midi);

The output ofmy_midi is connected to the inputs ofyour_midi, his_midi, and her_midi.
Whenmy_midi calls a spray function—SprayNoteOn(), for example—each of the other
objects receives an input function call—in this case,NoteOn().

Any object that’s been the argument in aConnect() call should ultimately be disconnected
through a call toDisconnect().  In particular, care should be taken to disconnect objects
when deleting a BMidi object, as described in the destructor.

See also: ~BMidi(), Connections(), IsConnected()

Connections()
inline BList *Connections(void)

Returns a BList that contains the objects that this object has connected to itself.  In other
words, the objects that were arguments in previous calls toConnect().  When a BMidi
object sprays, each of the objects in its connection list becomes the target of an input
function invocation, as explained in the class description.

See also: Connect(), Disconnect(), IsConnected()

Disconnect()
void Disconnect(BMidi * toObject)

Severs the BMidi’s connection to the argument.  The connection must have previously
been formed through a call to Connect() with a like disposition of receiver and argument.

See also: Connect()



BMidi Member Functions

The Midi Kit  – 15

IsConnected()
inline bool IsConnected(BMidi * toObject)

ReturnsTRUE if the argument is present in the receiver’s list of connected objects.

See also: Connect(), Connections()

IsRunning()
bool IsRunning(void)

ReturnsTRUE if the object’sRun() loop is looping; in other words, if the object has received
a Start() function call, but hasn’t been told to Stop() (or otherwise hasn’t fallen out of the
loop).

See also: Start(), Stop()

KeepRunning()
protected:

bool KeepRunning(void)

Used by theRun() function to predicate itswhile loop, as explained in the class
description.  This function shouldonly be called from withinRun().

See also: Run(), Start(), Stop()

Run()
private:

void Run(void)

A BMidi-derived class places its data-generating machinery in theRun() function, as
described in the section “Generating MIDI Messages” on page 7.

See also: Start(), Stop(), KeepRunning()

SnoozeUntil()
void SnoozeUntil(ulongtick)

Puts the calling thread to sleep untiltick milliseconds have elapsed since the computer was
booted.  This function is meant to be used in the implementation of the input functions, as
explained in the section “Time” on page 10.



Member Functions BMidi

16  –  The Midi Kit

Start()
virtual voidStart(void)

Tells the object to begin its run loop and execute theRun() function.  You can override this
function in a BMidi-derived class to provide your own pre-running initialization.  Make
sure, however, that you call the inherited version of this function within your
implementation.

See also: Stop(), Run()

Stop()
virtual voidStop(void)

Tells the object to halt its run loop.  CallingStop() tells theKeepRunning() function to
returnFALSE, thus causing the run loop (in theRun() function) to terminate.   You can
override this function in a BMidi-derived class to predicate the stop, or to perform post-
performance clean-up (as two examples).  Make sure, however, that you invoke the
inherited version of this function within your implementation.

See also: Start(), Run()



BMidi Input and Spray Functions

The Midi Kit  – 17

Input and Spray Functions

The protocols for the input and spray functions are given below, grouped by the MIDI
message to which they correspond  (the input function for each group is shown first, the
spray function is second).

See the class overview for more information on these functions.

Channel Pressure
virtual void ChannelPressure(ucharchannel,

uchar pressure,
ulong time= B_NOW)

protected:

void SprayChannelPressure(ucharchannel,
uchar pressure,
ulong time)

Control Change
virtual void ControlChange(ucharchannel,

uchar  controlNumber,
uchar  controlValue,
ulong time= B_NOW)

protected:

void SprayControlChange(ucharchannel,
uchar  controlNumber,
uchar  controlValue,
ulong time)

Key Pressure
virtual voidKeyPressure(ucharchannel,

uchar note,
uchar pressure,
ulong time= B_NOW)

protected:

void SprayKeyPressure(ucharchannel,
uchar note,
uchar pressure,
ulong time)



Input and Spray Functions BMidi

18  –  The Midi Kit

Note Off
virtual voidNoteOff(ucharchannel,

uchar note,
uchar velocity,
ulong time= B_NOW)

protected:

void SprayNoteOff(ucharchannel,
uchar note,
uchar velocity,
ulong time)

Note On
virtual voidNoteOn(ucharchannel,

uchar note,
uchar velocity,
ulong time= B_NOW)

protected:

void SprayNoteOn(ucharchannel,
uchar note,
uchar velocity,
ulong time)

Pitch Bend
virtual voidPitchBend(ucharchannel,

uchar lsb,
uchar msb,
ulong time= B_NOW)

protected:

void SprayPitchBend(ucharchannel,
uchar lsb,
uchar msb,
ulong time)

Program Change
virtual voidProgramChange(ucharchannel,

uchar programNumber,
ulong time= B_NOW)

protected:

void SprayProgramChange(ucharchannel,



BMidi Input and Spray Functions

The Midi Kit  – 19

uchar programNumber,
ulongtime)

System Common
virtual voidSystemCommon(ucharstatus,

uchar data1,
uchar data2,
ulong time= B_NOW)

protected:

void SpraySystemCommon(ucharstatus,
uchar data1,
uchar data2,
ulong time)

System Exclusive
virtual voidSystemExclusive(void *data,

long dataLength,
ulong time= B_NOW)

protected:

void SpraySystemExclusive(void *data,
long dataLength,
ulong time)

SystemRealTime()
virtual voidSystemRealTime(ucharstatus, ulong time= B_NOW)

protected:

void SpraySystemRealTime(ucharstatus, ulong time)

Tempo Change()
virtual voidTempoChange(longbeatsPerMinute, ulong time= B_NOW)

protected:

void SprayTempoChange(longbeatsPerMinute, ulong time)aa



Input and Spray Functions BMidi

20  –  The Midi Kit



The Midi Kit  – 21

BMidiPort

Derived from: public BObject

Declared in: <midi/MidiPort.h>

Overview

The BMidiPort class provides the mechanisms for reading MIDI data from the MIDI-In
ports, and for writing MIDI data to the MIDI-Out ports.  The BeBox has two pairs of
MIDI-In and MIDI-Out hardware ports, stacked vertically on the back panel:

You can use a single BMidiPort object to communicate with both halves (the input side
and the output side) of a single in/out pair.  Thus, to talk to all four ports, you only need
two BMidiPort objects.  However, you can create and use any number of BMidiPort
objects in your application—multiple BMidiPort objects can open and use the same
hardware ports at the same time.

Opening the Ports

To obtain data from a MIDI-In port or send data to a MIDI-Out port, you must first open
the ports by calling BMidiPort’sOpen() functions.  The function’s single argument is a
string that names the identifies the in/out pair that you’re opening.  The two pairs of MIDI
ports are named “midi1” and “midi2”.  For example, to open the MIDI-In 1 and MIDI-Out
1 pair, you invokeOpen() thus:

BMidiPort *m_port = new BMidiPort();
m_port->Open("midi1");

MIDI-In 1

MIDI-Out 1

MIDI-In 2

MIDI-Out 2



Constructor and Destructor BMidiPort

22  –  The Midi Kit

When you’re finished with the ports, you can close them through theClose() function.
The ports are closed automatically when the BMidiPort object is destroyed.

Run() and the Input Functions

According to the BMidi rules, a BMidi-derived class implementation ofRun() should
create and spray MIDI messages.  Furthermore, the implementations of the input functions
should realize the messages they receive.

The BMidiPort implementation ofRun() produces messages by reading them from the
MIDI-In port and spraying them to the connected objects.  The input functions send MIDI
messages to the MIDI-Out port.  Linguistically, this might seem backwards, but it makes
sense if you think of a BMidiPort as representing not only the hardware port, but whatever
is connected to the port.  For example, if you’re reading data that’s generated by an
external synthesizer, theRun() function can be thought of as encapsulating the synthesizer
itself.  From this perspective, the message-generation description ofRun() is reasonable.
Similarly, the input functions fulfill their message-realization promise when you consider
them to be (for example) the synthesizer that’s connected to the MIDI-Out port.

Looping through a BMidiPort Object

It’s possible to use the same BMidiPort object to accept data from MIDI-In and broadcast
different data to MIDI-Out.  You can even connect a BMidiPort object to itself to create a
“MIDI through” effect:  Anything that shows up at the MIDI-In port will automatically be
sent out the MIDI-Out port.

Constructor and Destructor

BMidiPort()
BMidiPort(void)

Connects the object to the MIDI-In and MIDI-Out ports.  The MIDI-Out connection is
active from the moment the object is constructed   Messages that arrive through the input
functions are automatically sent to the MIDI-Out port.  To begin reading from the MIDI-In
port, you have to invoke the object’sStart() function.

~BMidiPort()
virtual ~BMidiPort(void)

Closes the connections to the MIDI ports.



BMidiPort Member Functions

The Midi Kit  – 23

Member Functions

AllNotesOff()
bool AllNotesOff(boolcontrolOnly, ulongtime= B_NOW)

Commands the BMidiPort object to issue an All Notes Off MIDI message to the MIDI-
Out port.  IfcontrolOnly is TRUE, only the All Notes Off message is sent.  If it’sFALSE, a
Note Off message is also sent for every key number on every channel.

Close()
void Close(void)

Closes the object’s MIDI ports.  The ports should have been previously opened through a
call toOpen().

Open()
long Open(const char *name)

Opens a pair of MIDI ports, as identified byname, so the object can read and write MIDI
data.  The names that correspond to the two set of MIDI ports are “midi1” and “midi2”.
The object isn’t given exclusive access to the ports that it has opened—other BMidiPort
objects, potentially from other applications, can open the same MIDI ports.  When you’re
finished with the ports, you should close them through a (single) call toClose().

The function returnsB_NO_ERROR if the ports were successfully opened.



Member Functions BMidiPort

24  –  The Midi Kit



The Midi Kit  – 25

BMidiStore

Derived from: public BMidi

Declared in: <midi/MidiStore.h>

Overview

The BMidiStore class defines a MIDI recording and playback mechanism.  The MIDI
messages that a BMidiStore object receives (at its input) are stored asevents in anevent
list, allowing a captured performance to be played back later.  The object can also read and
write—or import andexport—standard MIDI files.  Typically, the performance and file
techniques are combined:  A BMidiStore is often used to capture a performance and then
export it to a file, or to import a file and then perform it.

Recording

The ability to record a MIDI performance is vested in BMidiStore’s input functions
(NoteOn(), NoteOff(), and so on, as declared by the BMidi class).  When a BMidiStore
input function is invoked, the function fabricates a discrete event based on the data it has
received in its arguments, and adds the event to its event list.  The event list, in a manner
of speaking,is the recording.

Since the ability to record is provided by the input functions, you don’t need to tell a
BMidiStore to start recording; it can record from the moment it’s constructed.

For example, to record a performance from an external MIDI keyboard, you connect a
BMidiStore to a BMidiPort object and then tell the BMidiPort to start:

/* Record a keyboard performance. */
BMidiStore *MyStore = new BMidiStore();
BMidiPort *MyPort = new BMidiPort();

MyPort->Connect(MyStore);
MyPort->Start();
/* Start playing... */

At the end of the performance, you tell the BMidiPort to stop:

MyPort->Stop();



Overview BMidiStore

26  –  The Midi Kit

Timestamps

Events are added to a BMidiStore’s event list immediately upon arrival.  Each event is
given a timestamp as it arrives; the value of the timestamp is the value of thetime
argument that was passed to the input function by the “upstream” object’s spray function.
For example, the time argument that a BMidiPort object passes through its spray functions
is alwaysB_NOW.  SinceB_NOW is a shorthand for “the current tick,” and since time tends
to move forward at a reasonably steady rate (at least so far), the events that are recorded
from a BMidiPort are guaranteed to be in chronological order (as they appear in the event
list).

There’s no guarantee that other spraying objects will generatetime arguments that procede
in chronological order, however.  And the BMidiStore object doesn’t time-sort its events
as they arrive; thus, after a recording has been made, events in the event list might not be
in chronological order.  If you want to ensure that the events are properly ordered, you
should callSort() after you’ve added events to the event list.

Note that BMidiStore’s input functions don’t callSnoozeUntil():  A BMidiStore writes to
its event list as soon as it gets a new message, it doesn’t  wait until the time indicated by
thetime argument.

Erasing and Editing a Recording

You can’t.  If you make a mistake while you’re recording (for example) and want to try
again, you can simulate emptying the object by disconnecting the input to the
BMidiStore, destroying the object, making a new one, and re-connecting.  For example:

MyPort->Disconnect(MyStore);
delete MyStore;
MyStore = new BMidiStore();
MyPort->Connect(MyStore);

Editing the events in the event list is less than impossible (were such a state possible).  You
can’t do it, and you can’t simulate it, at least not with the default implementation of
BMidiStore.  If you want to edit MIDI data, you have to provide your own BMidi-derived
class.

Playback

To “play” a BMidiStore’s list of events, you call the object’sStart() function.  For
example, by reversing the roles taken by the BMidiStore and BMidiPort objects, you can
send the BMidiStore’s recording to an external synthesizer:



BMidiStore Overview

The Midi Kit  – 27

/* First we disconnect the objects. */
MyPort->Disconnect(MyStore);

/* Now connect in the other direction...*/
MyStore->Connect(MyPort);

/* ...and start the playback. */
MyStore->Start();

As described in the BMidi class specification,Start() invokesRun().  In BMidiStore’s
implementation of Run(), the function reads events in the order that they appear in the
event list, and sprays the appropriate messages to the connected objects.  You can interrupt
a BMidiStore playback by callingStop(); uninterrupted, the object will stop by itself after
it has sprayed the last event in the list.

The events’ timestamps are used as thetime arguments in the spray functions that are
called from withinRun().  But with a twist:  Thetime argument that’s passed in the first
spray call (for a given performance) is alwaysB_NOW; subsequenttime arguments are re-
computed to maintain the correct timing in relation to the first event.  In other words, when
you tell a BMidiStore to start playing, the first event is performed immediately regardless
of the actual value of its timestamp.

Setting the Current Event

A playback needn’t begin with the first event in the event list.  You can tell the
BMidiStore to start somewhere in the middle of the list by callingSetCurrentEvent()
before starting the playback.  The function takes an integer argument that gives the
index of the event that you want to begin with.

If you want to start playing from a particular time offset into the event list, you first have
to figure out which event lies at that time.  To do this, you ask for the event that occurs at
or after the time offset (in milliseconds) through theEventAtDelta() function.  The value
that’s returned by this function is suitable as the argument toSetCurrentEvent().  Here, we
prime a playback to begin three seconds into the event list:

long firstEvent = MyStore->EventAtDelta(3000);
MyStore->SetCurrentEvent(firstEvent);

Keep in mind thatEventAtDelta() returns the index of the first event ator after the desired
offset.  If you need to know the actual offset of the winning event, you can pass its index to
DeltaOfEvent():

long firstEvent = MyStore->EventAtDelta(3000);
long actualDelta = MyStore->DeltaOfEvent(firstEvent);



Overview BMidiStore

28  –  The Midi Kit

Reading and Writing MIDI Files

You can also add events to a BMidiStore’s event list by reading, orimporting, a Standard
MIDI File.  To do this, you locate the file that you want to read, create a BFile to represent
it, and pass the object to the Import() function:

BFile midi_file;

/* We'll assume that a_dir is a legitimate directory.  */
if (a_dir.Contains("myfile.mid"))
{

/* Get the file...*/
a_dir.GetFile("myfile.mid", &midi_file);

/* ...and import it. */
MyStore->Import(&midi_file);

}

Note that the BFile object isn’t open (you shouldn’t call BFile’sOpen() function before
you call Import()).

You can import any number of files into the same BMidiStore object.  After you import a
file, the event list is automatically sorted.

One thing you shouldn’t do is import a MIDI file into a BMidiStore that contains events
that were previously recorded from a BMidiPort (in an attempt to mix the file and the
recording).  Nor does the reverse work:  You can’t import a file andthen record from a
BMidiPort.  The file’s timestamps are incompatible with those that are generated for
events that are received from the BMidiPort; the result certainly won’t be satisfactory.

To write the event list as a MIDI file, you call BMidiStore’sExport() function:

BFile midi_file;

/* We'll assume that a_dir is a legitimate directory. The
 * file should be empty, so we delete it first if it exists.
 */
if (a_dir.Contains("myfile.mid"))
{

a_dir.GetFile("myfile.mid", &midi_file);
a_dir.Remove(&midi_file);

}

/* Create the file. */
a_dir.Create(&midi_file);

/* And export the BMidiStore. */
MyStore->Export(&midi_file, 1);

Export()’s second argument is an integer that declares the format of the file.  The MIDI
specification provides three formats: 0, 1, and 2.  As withImport(), the BFile mustn’t be
open.



BMidiStore Constructor and Destructor

The Midi Kit  – 29

Constructor and Destructor

BMidiStore()
BMidiStore(void)

Creates a new, empty BMidiStore object.

~BMidiText()
virtual ~BMidiStore(void)

Frees the memory that the object allocated to store its events.

Member Functions

BeginTime()
inline ulongBeginTime(void)

Returns the time, in ticks, at which the most recent performance started.  This function is
only valid if the object has actually performed.

CountEvents()
inline ulongCountEvents(void)

Returns the number of events in the object’s event list.

CurrentEvent()
inline ulongCurrentEvent(void)

Returns the index of the event that will be performed next.

See also: SetCurrentEvent()

DeltaOfEvent()
ulongDeltaOfEvent(ulong index)

Returns the “delta time” of theindex’th event in the object’s list of events.  An event’s
delta time is the time span, in ticks, between the first event in the event list and itself.

See also: EventAtDelta()



Member Functions BMidiStore

30  –  The Midi Kit

EventAtDelta()
ulongEventAtDelta(ulongdelta)

Returns the index of the event that occurs on or afterdelta ticks from the beginning of the
event list.

See also: DeltaOfEvent()

Export()
void Export(BFile *aFile, long format)

Writes the object’s event list as a standard MIDI file in the designated format.  The BFile
must be allocated, must refer to an actual file, and its data portion must not be open.  The
events are time-sorted before they’re written.

See also: Import()

Import()
void Import(BFile *aFile)

Reads the standard MIDI file from the BFile given by the argument.  The BFile must not
be open.

See also: Export()

SetCurrentEvent()
void SetCurrentEvent(ulong index)

Sets the object’s “current event”—the event that it will perform next—to the event atindex
in the event list.

See also: CurrentEvent()

SetTempo()
void SetTempo(ulongbeatsPerMinute)

Sets the object’s tempo—the speed at which it performs events—tobeatsPerMinute.  The
default tempo is 60 beats-per-minute.

See also: Tempo()



BMidiStore Member Functions

The Midi Kit  – 31

SortEvents()
void SortEvents(bool force = FALSE)

Time-sorts the events in the BMidiStore.  The object maintains a (conservative) notion of
whether the events are already sorted; ifforce is FALSE (the default) and the object doesn’t
think the operation is necessary, the sorting isn’t performed.  If force isTRUE, the operation
is always performed, regardless of its necessity.

Tempo()
ulongTempo(void)

Returns the object’s tempo in beats-per-minute.

See also: SetTempo()



Member Functions BMidiStore

32  –  The Midi Kit



The Midi Kit  – 33

BMidiText

Derived from: public BMidi

Declared in: <midi/MidiText.h>

Overview

A BMidiText object displays, to standard output, a textual description of each MIDI
message it receives.  You use BMidiText objects to debug and monitor your application; it
has no other purpose.

To use a BMidiText object, you construct it and connect it to some other BMidi object as
shown below:

BMidiText *midiText;

midiText = new BMidiText();
otherMidiObj->Connect(midiText);

/* Start a performance here ... */

BMidiText’s output (the text it displays) is timed:  When it receives a MIDI message that’s
timestamped for the future, the object waits until that time has come to display its textual
representation of the  message.  While it’s waiting, the object won’t process any other in-
coming messages.  Because of this, you shouldn’t connect the same BMidiText object to
more than one BMidi object.  To monitor two or more MIDI-producing objects, you
should connect a separate BMidiText object to each.

The text that’s displayed by a BMidiText follows this general format:

timestamp: MESSAGE TYPE; message data

(Message-specific formats are given in the function descriptions, below.)  Of particular
note is thetimestampfield.  Its value is the number of milliseconds that have elapsed since
the object received its first message.  The time value is computed through the use of an
internal timer; to reset this timer—a useful thing to do between performances, for
example—you call theResetTimer() function.

The BMidiText class doesn’t generate or spray MIDI messages, so the performance and
connection functions that it inherits from BMidi have no effect.



Constructor and Destructor BMidiText

34  –  The Midi Kit

Constructor and Destructor

BMidiText()
BMidiText(void)

Creates a new BMidiText object.  The object’s timer is set to zero and doesn’t start ticking
until the first message is received.  (To force the timer to start, callResetTimer(TRUE).)

~BMidiText()
virtual ~BMidiText(void)

Does nothing.

Member Functions

ChannelPressure()
virtual void ChannelPressure(charchannel,

char pressure,
ulong time= B_NOW)

Responds to a Channel Pressure message by printing the following:

timestamp: CHANNEL PRESSURE; channel =channel, pressure =pressure

Thechannel andpressure values are taken directly from the arguments that are passed to
the function.  Thetimestamp value is the number of milliseconds that have elapsed since
the timer started (seeResetTimer() for more information on time).

ControlChange()
virtual void ControlChange(charchannel,

char ctrl_num,
char ctrl_value,
ulong time= B_NOW)

Responds to a Control Change message by printing the following:

timestamp: CONTROL CHANGE; channel =channel, control =ctrl_num, value =ctrl_value

Thechannel, ctrl_num, andctrl_value values are taken directly from the arguments that
are passed to the function.  Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).



BMidiText Member Functions

The Midi Kit  – 35

KeyPressure()
virtual voidKeyPressure(charchannel,

char note,
char pressure,
ulong time= B_NOW)

Responds to a Key Pressure message by printing the following:

timestamp: KEY PRESSURE; channel =channel, note =note, pressure =pressure

Thechannel, note, andpressure values are taken directly from the arguments that are
passed to the function.  Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

NoteOff()
virtual voidNoteOff(charchannel,

char note,
char velocity,
ulong time= B_NOW)

Responds to a Note Off message by printing the following:

timestamp: NOTE OFF; channel =channel, note =note, velocity =velocity

Thechannel, note, andvelocity values are taken directly from the arguments that are
passed to the function.  Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

NoteOn()
virtual voidNoteOn(charchannel,

char note,
char velocity,
ulong time= B_NOW)

Responds to a Note On message by printing the following:

timestamp: NOTE ON; channel =channel, note =note, velocity =velocity

Thechannel, note, andvelocity values are taken directly from the arguments that are
passed to the function.  Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).



Member Functions BMidiText

36  –  The Midi Kit

PitchBend()
virtual voidPitchBend(charchannel,

char lsb,
char msb,
ulong time= B_NOW)

Responds to a Pitch Bend message by printing the following:

timestamp: PITCH BEND; channel =channel, lsb =lsb, msb =msb

Thechannel, lsb, andmsb values are taken directly from the arguments that are passed to
the function.  Thetimestamp value is the number of milliseconds that have elapsed since
the timer started (seeResetTimer() for more information on time).

ProgramChange()
virtual voidProgramChange(charchannel,

char program_num,
ulong time= B_NOW)

Responds to a Program Change message by printing the following:

timestamp: PROGRAM CHANGE; channel =channel, program =program_num

Thechannel andprogram_num values are taken directly from the arguments that are
passed to the function.  Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

ResetTimer()
void ResetTimer(boolstart = FALSE)

Sets the object’s internal timer to zero.  Lacking astart argument—or with astart of
FALSE—the timer doesn’t start ticking until the next MIDI message is received.  Ifstart is
TRUE, the timer begins immediately.

The timer value is used to compute the timestamp that’s displayed at the beginning of each
message description.

SystemCommon()
virtual voidSystemCommon(charstatus,

char data1,
char data2,
ulong time= B_NOW)

Responds to a System Common message by printing the following:



BMidiText Member Functions

The Midi Kit  – 37

timestamp: SYSTEM COMMON; status =status, data1 =data1, data2=data2

Thechannel, data1, anddata2 values are taken directly from the arguments that are
passed to the function.  Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

SystemExclusive()
virtual voidSystemExclusive(void *data,

long data_length,
ulong time= B_NOW)

Responds to a System Exclusive message by printing the following:

timestamp: SYSTEM EXCLUSIVE;

This is followed by the data itself, starting on the next line.  The data is displayed in
hexadecimal, byte by byte.  Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

SystemRealTime()
virtual voidSystemRealTime(charstatus, ulong time= B_NOW)

Responds to a System Real Time message by printing the following:

timestamp: SYSTEM REAL TIME; status =status

Thestatus value is taken directly from the arguments that are passed to the function.  The
timestamp value is the number of milliseconds that have elapsed since the timer started
(seeResetTimer() for more information on time).



Member Functions BMidiText

38  –  The Midi Kit


