SWIG-1.3 Documentation

SWIG-1.3 Documentation

Table of Contents

SWIG=1.3 DevelopmentDOCUMENEALION.iiii ettt e e e e e e e e ettt ettt e eeeeeaesaa s aateeteeeeeaaeaeaaaasnbbsbeeeeeaaeeeeassaansssbeeseeeeaaaeeesaaannnsssneees 1
ST <03 1) TR

SWIG COIEDOCUMENTATION. ...tuuteeeeeititie e e ettt e et e e ettt e e e e e e et b e e e e e e e ettt aeeeeseestan s aeeeessabanaeesesssaanaaeesessaanaeeesesssnneeeeesrannnss 1
I TaTo [WF=ToT= 1Yl o (] ST B ToTolU 0 0 =101 =i o) o RSP TRTPRRR 1
DSV Le [o] L=y (B Lo Yot U] Ty 0] 7= LA L0 o H U ETRT R PPR 1
Documentatiorthathasnot yet DeenUDAALEM.............uuiiiiiiiiiee e e e e r e e e e e e e e s e ennneeeeeees 1

o (Y = Vo] = TP RPORRY
I L0 (0T 18 T T o PR
1.2 SpeciallntroductioNfOr VEISIONL. 3. .o ittt e ettt e e e e e e e e e ettt e e eaaaeeaesansbbbe e et eeeaeaeeesaaannntbsseeeeeaaaaeeaann 2
L3 SWVIG VEISIONS. .. e eeeetti e e ettt e e e ettt e e e e et ettt e e e e e ettt eaeees e s baa e eeeeeasban s ee s e e s ban e sees e s s banaeesessaban e eessebannaeeessssannsaeeeesssnnnneens.
YN (R (=TS0 U | (o= TSP PORRPPUPRUPRTRRY

RN o (Y (=10 (WIS =P R PP
1.6 OrganizationDf thiS MANUAL..........c..eeieeeei et e et e e e e e e e e ettt ettt e e ee e e e e e aanaenbebeeeeeaaaeeeseaannbneeeeeees 3
1.7 How to avoid readingtie MANUAL...........uuueiiiiiieiee ettt e e ettt et e e e e e e et e s e ebebe et eeaeaeeeesaaannabbseeeeeeaaeeeeseaannneneeees 3
1.8 BaCKWArdSCOMIPALIDIIEY eee ittt e ettt et e e e e e s et be ettt e e e e e e e e e e e e nnbebb e et e et e e e e e e e e nnnnnrnbrreeeaaeens K
e T O 1Yo L1 £SO PUPRSRPN

0 TN o T =] oo TP UURPTRPPP

A AT YA 1T 1AV [R R TSR PRPPRPRRRY
AR AT\ A (e V0] o= T PEURPURRRRTPPRRPIS
I YLV [101 (=T 0 7= (o< 11 UORRRRPPRIN €
2.3.2THE SWIO COMIMAI. ...ttt e e e e e ettt et e e e e e e e e e te bttt e e et e e e e e e s aaasneebebe et e e e aeeeeaesannsbsbeeeeeeeaeaeeesaasnnnbbnbneeeeaaaens ;
ARSI] =T U T o T o Ir= W =Y d 5T 0 T o LU][O PERRRRT 7
2.3.4BUilding 8 PYthONMOAUIE.......ciiiiiiiiei ittt e e e ettt et e e e e e e e e e s abb e be et e e e eaeeeeesaannnnbbnaeneeaaaaaeaannn 7
RS TS] T0] (o] 1| =TT
A BTN o] o ol n(=Te O 0% P T a1 0Tz (o = (e LU (= PP PEPRRRR 8
2.5 NoN=iNtruSIVEINTEITACEDUIGING.veeerieieeee ittt e e e e e ettt e e e e e e e e e s s et b ettt e eeeaaeeeseaannnbbebeeeaaaaaeeaaan 9
2.6 IncorporatingSWIG int0 @ DU SYSTEM.eeiiiiiee ettt ettt e e e e e e e e e et be et eeeeaeeeaesannsnbbeseeeeaaaeaeeaeannnene 9

A A = = VaTo o) 1 oo o [=To =Y a1y ir- Ao) o IO SRR ¢
R IV A [Tz aTo L £=T=T0 (0] o' T

R Tt aTo ISy r= T C=To o) INYAY AT T 01RO T RSP PPPPRRR 1
I a1y =Y | oo T T] AT 0 [0y 1:

I I AT T T o A (=Y o U= o] T 11
3.2 SWIG WINAOWSEXAMPIES.eeeeeeeeeeee ettt e e e ettt et et e e e e e e e e et te ettt e e e e e e s aaannstbeteeeeeeaeeeesesannnbssseeeeeeaaeeeesannnnne 1]
3.2.1Instructionsfor usingthe Examplegnith ViSUal STUAIO.uuueeeiiiieeaiiiiiiiiieeie et e e 11

VN 1 Vi {aTo o PO TP PP PP OPPPPP TN 1
G 2 O TP PP TP PP PP 1

I T =Y PO 1
I I N L= 7= F P OO US PSPPI 1
G IR LU o PP PUPPRRP 1
T I 1O - SO 1
3.2.2Instructionsfor usingthe Exampleswith otherCoOmMPIIErS.........uuuiiiiiiiii e 13
3.3 SWIG 0N CYGWIN ANAMINGWV.eeiieeiie ettt e ettt e e e e e e e e e s eba bttt et e eaeaeaeaaaneabbeeeeeeeaaeeeeaaasnsbnbaneeeaaaaeeaeaannnsnes 13
3.3.1BUIldiNG SWiQ.EXEON WWINAOWSeetteeeeeieaeeeeeeee ettt et eeee e e e e s s s asstbabaeeeeeeeeaeaasaansatbeseeeeaaaaeesseaannnssbanseeeaaaaeeesanannns 13
3.3.1.1Building swig.exeusingMINGW andMSY S......uuiiiiiiiiiieeei ittt e e e et e e e e e e e s e e aanbbebeeeeeeaaaaeeas 13
3.3.1.2Building SWiQ.XEUSINGCYOWINLeeeeeiieiiiiititieeeeeeeeaeeesaaatitaeteeeeaeaaeesassansasbeeeeeeeaaaaeasasaannsssbsneeeaaaaaaessaannnns 13
3.3.1.3BUIldiNG SWiQ.EXEAIEINALIVES. eeiieieeeeie ittt e e e e e e e ettt e et e e e e e e s e s s ebabb et eeeeeaeeeesaaasnbbnbeeeeaaaaeeeaans 13
3.3.2Runningthe exampleon WiNndOWSUSINGCYAWIN.eetiiiieeaieiiiiiiieeeeeeee e e e e e s e aeiteeeeeeeeeeaeeaesaasnsntesaeeeeeaaeaesaaannns 13

SWIG-1.3 Documentation

Table of Contents

A A Y=V o] 1= 118] ox 1T 0 PP PPRRUPPR 1°

A Ak L t= 1 0] (=) 110 T o PRSP PPPRR 1!
R O] 15 7= 1 KT 1

4.2 4 StIUCIUTESANTCIASSES......eevvtiieieeeieite i e e ettt et e e e ettt e e e e e e et et eee s e e et e eeeees st aeesessaaa e eeesessaaneeessssasnnseessestanaaeeeesnes 1€
A oY (0 VA o = 1SS < TP 1
4.3 Building ScriptinglanQUagEEXIENSIONSeetieeete i ittt ettt e e e e e et e e eete et eeeeeeeeaesaa s eabesseeeeeaaeaesaaaasnsbasaeeeaeaaeaesesannnsseneneees 17
4.3.1SharedibrariesanddyNamiClOAAING. eeiieeeeeiieiiiiti e e e ettt e e e e ee e e e e e s bbe e e reeeaeaeeesaaannnbesbeeeeaaaeaeaaaan 17
4.3.2LINKING With SNAr@IDIAIIESeeii e et e et e e e e e e s sttt e e e e e e e e e s e s e nbateeeeeaeaaeeaeas 18
TGS = L] 1101 <2 T PSSP T PRSPPI 1

oSN AV [T 2= 1o O

o A U 0170 AT [TP 2
Lo I T U o 00T PP PRSP 2
LN 2 Y [T 11 1 1 PRSP PPRRURT 2
oI G T 0o 101010 1=] 01 £ PP PRUPPTRPPRt 2
T N L O (=T o] (o 1ol 11T o AT PP TPUPTPPUPPPPTPPIN 2
oI RISV [€T BT =Y od 1LY T PRTORRRPP 2:
oI I O] =YY =) | I 1172 110 1= OO 2:

5.2 WrappingSimPIEC DECIAIATIONS.eeei ittt eeeee e e e ettt e et e e e e e e s e e e eebeeeeeeteeaeaaaaaaansbsbeeeeeeeaeeeassaaannnbeseeeeeaaaeaesanannns 23

oI N o= TS ol Y/ o 1= e =TT |1 o U UR TSP 2°
oI A €1 6] o F= A Z= 1 1 T=1 0] [T TRTTTR 2

IR 0o 0 1] =10 1 £ OSSPSR P
5.2.4A Drief WO ADOUICONSEttt ettt e e e ettt e e e e et et e e e e e e ea b e e e e eesaba e e e s eetbaneeeessssbansaeeeeereen 26
5.2.5A cautionarytale Of CRA™ et e e e e e e ettt e e e e e e e e e e et e e e e aaaeaeaaaann 27
ORCT adol 1 a1 (=T 6=V aTo [ofoTnaT o] [=3to] o] [=Tox £ RSO EPPRPRT 27
LRI T 101 o) (=Y o011 1 (= F PP T RO 2
5.3.2RUNtime POINEITYPE CRECKING. ... ututttieeiteeee e e ettt e e e e ettt et et e e e e e e s e ettt e et e eeaaaaeesasaannnbsbeneeeaaaaaeeeaaaannns 28
5.3.3Derivedtypes.StrUCES ANACIASSES.ccuuieeiieeiieee ettt e e e e e e e e ettt et e ee e e e s e e e nbabe e e e e e eeeaeeesaaannbaeaneeeeaaeens 28
RS 8 LT oY T T=To (o Fo 1Y 6T RSO PPPPURPRP 2€
LR TSI N/ 1= [TP PPRRURT z
oI N @1 T=T o nd = (o1 [07= 11 [F PP 3
5.4.1PaSSINGBIIUCIUIERIY VAIUE ...t e ettt e e e oo e e oottt e et e e e e e e e e s e aabbeteeeeeeaaeeeaesannnnnbesaeeeeaaaeaesanannns 30
B.4.2REIUINDY VAIUE ...ttt e oo oottt et e e e e e e e s e et ta bt e ettt e e e e e e e s aa e s n b bebe et eeaaeeeeeeaannnsbesneeeaaaaeeas 3
5.4.3LINKINQG tO StIUCIUIEVAIADIES.ueeeiiieeie ettt e e e e e e s e ettt et e e e e e e e e e s e nnsbesaeeeaaaaeeasasannnnnnes 31
o 0T o (o o = PR EUT PSRRI 3!
L Y AN £ 1= 1Y F PP PPPPUPPUPTPTPRN K
5.4.6Creatingread—0NIWAIADIES.cooeie ettt et e e e e e e s e s et e e e e e e e e e e e e e b reaaaaaeaaa s 33
5.4.7RenaminandignNoringAECIAIAtIONSc.uuiiiiiiiiieee e ettt e e e e e e e e ettt e e e e e e e e e s sa e e ne b e et e e eeaaeeee e e e e nnnreeneees 34

5.4.8Default/OptioNaBIGUIMENES.uuiiiiii ettt et e e e e e e e e ekttt et e e e aeaesae s nnbabbeeeeeeaeeeeeeaaannnreeeeees 35
5.4.9P0intersto fuNCtiONSANUCAIDACKScueeiiiiie e ettt e et e e et e e e e e e et e e eaa e e s et e e e sba s eeseaaseseaneeeernsss 35

oS RS YA 0 (o1 Ty L0 [T TT0) 1S TR 3
oo A /1= o) 7= T o £S3 (0 od (1 o TR 38
5.5.2CharactestriNgSANASITUCIUIESutiieeeiieee e e ittt et e e e e e e e e ettt et e e e e e e e e s e nee bt e et e eeaaaaaesasannnnbsbeeseeeaaaaeeesaaannn 38

oI Y AN 1= VA 101 0] 0= PR U RO 3
5. 5.4 SITUCIUTEHATAMEIMIIELS. ceeee ettt ettt et ettt e et e e e e e e e et e e eaa e e s eaa e e e et e e s aaa e e s saaessaaeesebaseessaneneen 39

RS O o0 a1 10 [01(0] 5N 10 [0 [STo (10 [01 (0] ¢TI 40

5.5.6 Adding membefunCtioNSIO C SITUCTUIESiiiii ittt ettt e e e e e e e ettt e e e e e e e e e e s et e aeeeeeaaaeeaaean 40
ORI AN ST (=0 Y 1 (U (o1 (0 (=TT 4

5.5.80therthingsto NOteabOUtStIUCTUrEWIAPDING. ... uuvetreeeeeeieeeeeeie ettt et e e e e e et e e ettt et eeeeaaaeeeesaannnbsaneeeeeaaeeeaaaanns 44
oI X @0 Yo (5] [TT=Y o 1T o PP 4

LN A I Y 10 11 0 10 (o S 1A PP PPPPURPRP 4r

SWIG-1.3 Documentation

Table of Contents

5 SWIG Basics
ol A @fa o [=1 A 1Y =T 0 10] 0] 0] [o]od -3 PPPRRR 4E
ol o] 1] ITaT=Yo Koo To [) o] [ood <4< SOOI 4¢
NS A a1 F= 1[4z L1 Te] 41 o] [0To) TSRS 4¢
5.7 AN INterfaCeBUIIAING STEALEOY. ...t eeeetteeeeeei i ittt e e e e e e ettt e e e e e e s e s e betbe e eeeeaaeeeesaaasnebeeaeeeeaaaeeesasaannnntbneeeeeaaaaeens 46

5.7.1Preparingd C Programifor SWWIG. e ittt ettt e e e e e e e s e ettt e e aeea e e e s e aesbeeeeeeaeaaeeesaaasnbbsbneeeeaaeeesaeannnnenes 46
D 7.2 THE SWIGINEEITACETIIE.ccee ettt et e et e e et e et e e e et e e e e et e e s aaa e e e et eeesaneesaaasesebaeeeenasans 47

5.7.4Gettingthe rght NEAAEHIIEScoe ittt e e e e e e s e sttt e e e e e e e e e e ae e s nnbaaeeeeeeaaaeeaas 48
5.7.5Whatto dOWIth MAIN(Y.....cuveiieeiiiiiiee ettt ettt e e e ettt et e e e e et e e e e e s eeab e e e e e eesaa s eeesesbaaaaesesssbannaeesessssannseeseees 48

B SWIG BN Crrhio ittt h e s s b e e s a e e £ oh b e e e o b e e oo R b e e oo b e e e e b e e e s R E e e e R e e e e R R e e aa b e e e R e e e e b e e e e b e e s e r e e e s nee e s nee s

6.1 CoMMENTIIN Ctt WIAPPING .. ceeeeeeeeeee ittt ee e e e e e e e e e ettt et e eeeeeaeasaaasanbaeeeeeeaeaeeeaesaannnsbeeseeeeaaeeessesannsenbseneeeaaaaeeesaaannns 49
ST Y o] 01 (0 Y- T o PR UUUP R TUPOUPPPPPPE
OGRS U] 0] o o]0 (=0 Ol (Y- LU (=Y TR SPPR 5(
6.4 Commandine optioNSANACOMPIIATIONLuvieiiieiiee e e e ettt e e e e e e e e ettt e et e e e e e e e s e s e anbebaeeeeeeaeaeaesaaannnsbnaeeeaeaeaaaaaeas 51

OISR Y1001 0] (=Y O a1 =T o] o 11 o (TR 5.
(SRS TM N Ofe] a1 ({8 [0 (0] 1 aTe [0 [STo) ({1 03 (0] ST 51

(RSB I<] =10 L {od0] A1y (U 010] =TT 57
6.5.3WhenconstructomrapperSareN ICrEAtEM.c.eii it e ettt e e e et e e e e e e e e e s e r e e e e e e e e e an 52

R 1 @ 0] o)V AeT0] 0 -1 1 (U (01 10] £ TR 5:
(SRS 1] 0] oYY 10T Yo 1] 0 =TT 5

SN IS] F= N1 [0] 10 1=1 001 0= £ PRSPPIt 5.
6.5.7MemberfunctionsanddefaultargUMENTS...........oiiiiiiiiii e e e e e e e e e s r e e e e e e e e an 54
(OISR <11V (=T 001 0]=T (0 F- 7= PSR PTORN 5
(SN SX =d (01 (=Y o1 110) o P UUUORPPTTR !
(OO = a1 00 =Yg Te [ole] 1S =1 0 £ T OSSPSR 5
(SRSl 11T 10 [PO UPPSRPR
O REa (= =T A3 L L0 | 0101 1= o F PP URT RSP 5
6.10PaSANAIEIUINDY VAIUG.oii ittt ettt e e e e e e e e e ettt ettt e e eeaeeaesaa s e abee bt eeeeeaeeeesesannsbsbeeeeaaeaeeeeesannnneenneees 5¢
ST [o 1=T 1 7= T o] = PO EPUUUUPRRNE.
6.12A brief discussiorof multiple inheritancepointers.andtype CheCKiNg..........ccueeiiiiiiiiiiiiiiiiiiee e 60
Lo] =T 0= V0 11T PR UR PR (
6.14WrappingOverloaded=unctioNSANAMETNOASciieiie it e e e e et e e e e e e e e s e e nneb e e e e eaaeeaeeaean 62
6.14.1DiSpatChfUNCLION QENEIALION ii i ettt e e e e e e e ettt et e e e e e e e e s aa e sabbe bt e e eeeaaeesaeaannnbnbaeeeeaeeens 63
LoT 2 N g0 o Lo 0T YA T I @AY= o (0= To [T U PRTRR PP 64
6.14.3AMDbIiguity reSOIUtIONANATENAMING. ... uteeeeieeeeeeie ittt ee e e e e e e e e e e e aeebeeeeeeeeeeeeasasaaneebeaseeeeaeaeaesaaannnnbsseeeeeaaaaaasens 65
6.14.4CoMMENIDN OVEIOAING.veeieeiiiieee e ettt e e e e e e ettt et e e e e e e e s e s s e bbbttt e eeeaaeaeaasaannbasbeeeeeeeeaeeeesannsnneneseees 68
R S AY] =T oT o] T Te [o)VZ=Ta (o F=To [STa o] o 1T - 0] A=Y PRSPPI 68
(SR ST O P TS A (=T 0 1T (0] o PP 6
N A =100 o] P =S PR PRSP |
oM RS N =T =TT 0T Lol = TP 1
LT] o= 01100 'S 0Ty o 11 R UT PP 8
(oI 0] o] 101 (=1 (oMY (=Y 1 0] =) £ RPN 8.
SN RSTa T aroTo][ale=Tas =T a o [o] o L=] =1] el (O TP PP PPP T PPPRPP 82

6.22UsingdeclaratioNBNAINNEIITANCE.uuuiiiiiieie ettt e e e ettt e e e e e e e s s s e e eebe et eeeaaeeeaesaa e nnbbeteeeaaaaeeeeaeaannane 84
(I ACT =T A= [=TS e (=) (AT 1] T 8

6.24 A Drief raNt ADOUICONSE=COITECINMESS. .. v v e eiiiitiee e ettt e e e ettt e e e et e e e e e e e ettt s e e e e eeaabaeeeseetaa s eeessabaanseeeesessanseeeeens 86

OS] o (0 A VA o F= 1SS = F USSP PPPRRRRR €
6.25.1CONStIUCIONDT PIrOXY ClASSES ittt e e ettt e e e e e e e ettt et e et e e e e e e s e et e be e e e e eeaaaeeessaannnbasbeeeeeaaeaaeaaanns 87
6.25.2ReS0UrcaNaNAQEMEITI PIOXIES ... it uutteeieeiteaeeeesaaaittetieeeeeeaeaeaasaaaanebeteeeeeeaaeaeseaannssabesseeeeaaaeeesaaannnsassneeeaaeeens 88
6.25.3LanguagESPECITICABLAILS.ii ittt e e oo e ettt ettt e e e e e e e e e sttt te e et e e aae e e e e e e nnnbeetreaeaeaeeeeaaann 89

6.26 Whereto 9o for MOreiNfOrMATIONttt et e e e e e e e e e e st e et e e e e e e e s e e nnsbnbaeeeeaaaaeeaeas 90

SWIG-1.3 Documentation

Table of Contents

A (=] o] o oSS o P UUURR T OPOUPPPPRPRRPP
A 1L T Tl [V o T RUURRRRPIN ¢
A 11T 00T 0T TP PPPPRPRPR (
AT o] aTo [14[o] =1 (0] na] o)1 F= 11T o PRSP PPPPPERRPTR 9]

A Y = e (0] =T T [o PR TP 9
ARSI VAT LY, F= T T ¢

7.6 COOANUGINU EXEEINSIONS .. .ceeuieetieeiete e eete e e et eeeet e e s et e eee et eseeaa s e s s s eesaaeseeaa s e s s s ee s e b essaaa s e s s aasesabesesansessaansesatassanensanes 9:
7.7 PreprocesSIiNANAY0] ... Y01 DIOCKS.iiii ettt e e et e e et e e e e e et e e e et e e e sae e et et e e esaa e ssaaeesabaeananaes 94

AR STl (=] o) o TodoXSIST [T= Lo K RSO R PP 9
7.9 VIEeWINQG PrePIrOCESSODULDULtetttteteeetteiatttteeeeeeteeeesesaaasteteeseeeaaaaeaessaaasaseeteeeeeaaaeassasanssssseseeeeaaaeeesaaannnssesseeeaaaaeeesesnnns 94

LT O AN 1 - VA X= LA 10 | o011 1 (=Y £ R RSP 9!
T2 o o Yo 0 (Y TR TSP PPPPRPR C

T o L - \ A= T S UTT TP C
IR To] 1 1= 11 (0T o N T C

oI Yol o = v= N [T 1(

RS O 11T F= 10 o 11T RO 10

8.3.1Default StHNGNANAIINGee e ettt e e e oo ettt et e e e e e e e e e s e eet b be e eeeeaaaeeesaeannnbbnbeeeaaaaaeeeeeaaannns 101
oI I o= To1Y 1 10 011 AT=1 VA6 =1 - TR 102

Lo T 51 (0 1 1110 1 PRSPPI 10
8.4.2std vector.i ... 10

o I A [0 UL o F= U= 100 [(=] € PSPPI 11!
I G @ U 11 01U 1 o=V r= T A1) (] A< TP 117
9.1.4INPUL/OULDUIDAIBIMETEIS. .. ettt ee et et ittt e e e e e e e e e ettt ettt e eeeaeeeeaaaasaebeteeeeeaeaeaeseaaanesbbeeeeeeeeaeeeesaasnnbsbnneeaaaaaaeaens 113
oI Y W ST T To Mo (T =T) = L1 1= PR 113
9.2 Applying CONSEIAINE0 INPULVAIUES.eeiiiieeee ettt et e e e e ettt e et e e e e e e e s e e et e e e e e e aeeeeaesaannanbaeaeeeeeaeeeesaaannnnsenees 114
9.2.1 SIMPIECONSITAINEXAMPIE ...ttt e e ettt et e e e e e e e ettt ettt eeeaaee e s e e s nnbbateeeeeaaaeesaeaansnnbeneeeaaaaeeesaanannns 114
I A O10] 4 Y1 = 11011 T=11 010 PR 114

9.2.3Applying cONStraiNtd0 NEW ALY DES ... o eetiiieieeieie e e ettt e e e e e e e e e ettt e e e eeeeaeeaansanbeeeeeeeaaaeeeesaannnneeeeees 114

O YA oT<T 0 02T o TP]

O 000 I 0 (o Yo [0 o3 1o RO 1]

O I I =T oo 0 177 1[0 PR PPRRURTR 11¢

O A 1Y 1= 110 1= 1 ST P PP 11

OS] = L e=T o n 0.0 = N (o] 11 0o USRS PPRRURTR 11¢

10.1.AREUSINGEYDEIMAIS .. utttteteeeeeeteeaeasaaatetbeeeeeaaaeaaaasaaannteeeeeeeeaaaaasaesansssbesseeeeaaaeaesaaassnbesbeeeeaeaeeeeeeaannnnbsseeaeaaaaeens 11¢
10.1.5WhatcanbedoneWith tYPEMADS?oi ittt e ettt e e e e e e e e e e ettt et e e e e e e e e s s s nnnbe et e e e aaeeee e e e e nenreneeees 119
10.1.6Whatcan'tbe donewith tYPEIMAPS?. ... cuiiiie ettt e et e e e e e e e e e e e e b ettt eeeeaaeeaesaannnbbnaeeaeaaaeeeaaaan 120

O A N 1Y (=TS (o) TS o] A=) (= RO PERRPRR 121

O 2 Y] o=t 00T o ST o T=Tod o= 110 0 PP EURR PRSP 12:

02 B =) il T aTo =AY 01T 0= PRSPPI 121

OB Y] o =T 10 F= T 0 ol] o= PO USUUPPPPPPPTPUPTPTRPIN 12!

O ZRe 0o o)/l aTo F= HAYA 0 1=T 1.0 T- o ST PPPPRURPTRR: 12s

SWIG-1.3 Documentation

Table of Contents

10 Typemaps
O B L= (=) T aTo = HAYA 0 1=T 1.0 T= o PRSP PPPRURPTRR: 12s
Q2T ol P Tol =TTy L) MY 01T 0 T oL RO PERRPRR 123
10.3PatterIMAtCRINGIUIES. ...ttt e e e oo oottt et e e e e e e e sa s aa e be ettt eeaeeaeeae s e nbnbbe e et eeeaaeeeeaeannnnbnbeneeeaeaens 12
10.3.1BASICMALCHINAIUIES ... eeeeeieie ettt ettt e e e e e e oo e et e et et e eaeeeee s e s bbb be e e e eeeaaeeesaaannbesbeeeaaaaaeaeaeaanns 124
O RS A Y] o =T =) =T U)o o RSP PPPEURPTRR: 12°F
QR IRC B =) o1 |10V 01=T0 7= o 1 PSRRI 12°
10.3. 4AMUlti=argQUMENTEYDEIMADS. ... euvteteeeieeaeeeeieaaiteteeeeeeeeaeesasaaaeetbeeeeeeaaaaeeasaaansasbeeeeaeaaaaeasaaaannnbanseeeaeaaaeesssannsnnes 128
O oo T <o [T =T = Lo (1 = RSP TR 12
O N ST o o] oL ST PP 12
10.4.2DeclaringnNeWI0Cal VAIADIESciii ittt e e e e e e e s e e et e e e e e e e e e s aannnnrbeeeees 129
10.4.3SPECIAINANIADIES. ... ettt ettt et e e e e e s oo ettt et et e e e e e e e e e e R a b ettt e teeaeeeeaeeaaannnbaetreeaaaaeeeeaaaann 13(
10.5CoMMONtYPEMAPMETNOUS. .. .ot eie ettt e oo e ettt et e e e e e e e e e st b ettt eeeeaaaeaeeaannbbenrreeeaeaeeeeaaannn 132
O R T00 T 1Y 0= 0 7= o U PSRUPT TP 13
ORI Y] o T=Tod a1 o (YA 0 =10 T o PR PRPPRRRR 132
O TRC o U A1 01=T010 =1 TP STSPURPPP 13.
O T - o [T TS 01T A= PR 13:
ORI oNo (=) =101 Y 01T 010 Y o P ST 133
ORI SR o] 0 T=T ol LAY 0 1) 7= o U UTPOPPPRRURTR 13:
O A= To [0 101 Y 1< 0 1F=T o TSP PUPTUPPRUPPTPRIN 13
ORI ((Ye Lo AV 01T 0 7T o TR PP PPPRT 134
ORI I oA (=T YA 01=T0 0= o PR PPPEURPTRR: 134
O RS T KO aT=T 0] o]= T Y 0 1=T 010 =T o P PRPERT 135
O T B V7 V[1Y 0= 0 7= o PR PRRRT R 13¢
O Y7 T (o 10 | YA 01T 10 F= o PP PT PP 13¢
ORI e 1 (0 (01Tl Y/ 0 1=T 0 1= o DS PPPEURPTRR: 13F
10.6 SOMELYPEMAPEXAMIPIES. ... vttteeeeeeiee e et e i itettete ittt e e aeeeeeaaaaeeeteeeeeeeaaaaeesaaasanbeteeeeeaaaeaeaessanssbbeeeeeeeaaaeeeaaaannstsbeneeaaeaeaaaeas 13F
10.6. 1 TYPEMAPTOE BITAYS .. teteeetteeeeeeieiautteteeeeeeaaeeaaaaaaasaeteeaeeataaaaaaaaaaasnsbeeeeeaeeeaeaesaaaasssbesseeaeaaaeaesaaasnsbsssneeaaaaeessssnnns 13€
10.6.2ImplementingconStraintSVIth tYPEIMADS.vveeeeiieiee e ettt e et e e e e e e e e e e s et e e eeeeaeeesaeannneeeneees 138
10. 7 MUlti=argQUMENEYDEIMAS ..ot eettteteeeeeeee e e e e e aateebeeeeeaeeeeeaasaaaseebeeaeeeeaaaeaasaaanneesbeeeeeeaaeeesesansssbseaeeaeeaaeeesaaannssnnneeeeens 13¢
10.8The ruN—tiMEtYPE CRECKEE. e ettt e ettt et e e e e e e e e s e nba b e et e e e aeeeaeeaaannbbebneeeaaaaens 142
ORI/ oT=Tnar=To ks T le [V=T (0= Lo 1 aTo TR ORI 144
10.10More aboUtYOaPPIY ANAYOCIEAL eeeeeeeee e ettt e e e e e e e ettt e e ee e e e e s s e seebe e et e eeaeeeeeaaaannnbsbaeeeeaeaeeeeesaansnsenneees 147
10.11REAUCINONTIAPPEICOUESIZE. ... eetieeeeeiiiieittteeeeeee e e e e e e s e e aeebeeteeeteeeeeeaaeaaaaebbee et eeeaaaeaeaasannbebbeeeeeeaeaaeessaasnsbsssneeaaaaaeaanns 148
10.12PassiNglatabEtWEEIEYDEIMEBIS teeetetteeeteeiiitttteeeeeetaeaaeasaaaenteeaeeeeeaaaeaaasaaansssbeeeeaaaaaaeessaaassnessaeeeeaaaaeeeasannnsnseesenees 149
10.13Whereto do for MOreinformMatiON?. i ittt e e e e e ettt e e e e e e e e e s e e s st e e e e eeeaaeaeeeeaaannne 149
11 CUSIOMIZALION FEALUIES.ccieeitiiee et et e e e ettt e e e ettt e e e et et ee e e e e e e et eeeeee s s baaeesee s aaa e aees e s s ban e eeeessaban s eeesesbaanaeeessssbaneeeesssnnnnss 15
11.1ExceptionhandliNQWith Y0EXCEPLION.cii ittt e e e e e e e e ettt e et e e e e e e e saananbe e e e e e e aaaaeessaannrereeeeees 151
I oV Lo | T To T o=t o] 1 T I O oo Yo [U PP RO 151
11.1.2ExceptionhandlingWith IONGJMD(). ... «.xeeeeereteeeeeeiiaiiieeie et e e e e e e e ettt e e e e e e e e e s s e bnbbe st e eeaaaaeesasannsbsbneeeeeaaaeeaans 152
11.1.3HANANNGC H+ EXCEPIIOMS. .. ettteteeeeteeeee et as ettt et eeeeaeeeesaaaaebeeaeeeeaeaeaesaaannnbasbeeeaaeaaeeeassansesbeseeeeeeaeseesanannsrsnseees 153
11.1.4Defining differenteXCeptioNNANAIELS.iiiii ittt e e e e e e e e e e e e e e e e e s eeeaeaaaeeas 153
11.1.5USINgThe SWIG @XCOPHIOMIDIAIYuteeeieeieeeeeee ettt e e e e e e e e ettt e e e e e e e e e s saaaebb e et e eeaaaaeeessannnnbsbneeeeeaaaaeaass 155
11.2 ObjectownershipBNAYONEWODJECE.co ittt e e e e e e e ettt et e e ae e e e e e s e sbsbbeteeeeaaaeeesaaannrbnnneeeaaaeens 156
11. 3FeatureRNAtNE Y EatUIEAITECTIVE e eeeeeete ettt ettt e e e e ettt e e e e e e st b e e e e s eeaaa e e e e e s asaba s eeeeesbaaeeeesesranns 157
O] 111 = (1 1= TSP UPPRUPPTRPRt i
o R 1SN0] 011 = oa 0 [(=Y o1 1LY/~ RPN 15¢
A ToT0] 011 =103 "= 100 (0] F- Fo1T =Y O PUPORRR 15¢
12.3Constanfigdregatio@nd%agaregate ChECK. i it e e e e e e e e e e e e s eee s 160
L2 AN O S ..ottt e et eaeeeeteeeteteestaaeeeetaeeesttaeesttaeeettaaeeetteetttaeeeetaaeeretaeeataaeaetaaerataaes 1

SWIG-1.3 Documentation

Table of Contents

RSV Z= 1= o] [T =T o 1 I A o T8 0.0 T=T 01U PPPPRPTR 16
G I T Yo 0 o oo T 1¢

T N 1Y (0] o] =T 1 T 1€

SRR T Do) o T8IV Z= 1= U0 1o U] 0160 ¢ PO PPPPRRPRR 16¢
13.4 ArgumentreplacemMENUSINGYOVAIAITS.eeee et i eauetteteeeeeeeaeeeaaaaaeeeteeeeeeeaaaeaasaaasnsbseeeeaaaaaaeesasansssbesseeaeaaaeeesseannnnseneees 164

ROV A= 1=V o 1S T a0 [NV 1<) 0T o LS T U P TR POPPP 16!
13.6 VarargswrappinQWIth ioooiii o e e e e e e e e e e e e e 166

RS A YA =T o] o1 T T Y= W 1) PR TR 16
IR T O 1T U1 17

RIS B Tl U113 o o 1

LA NVAINING MESSBUES. « -t teeeteeteeeeetiaaaiuiteteeettetaeeeaaaaaaaatteeeeeeaaaaeeaaaaaantesbeeeeeeeaaeaeesaannssteseeeeeaeaeeeaeeannsetbeseeeeaaeaeeeaaaasnsbstseneaaaaeaesesannnnnes 1
0 I (o Yo [0 o3 1o PSRRI 17
14.2\WarningmMeESSAQBUDDIESSION. ... i iuuitettieieetteeeeaeaaaaeeteeeeetaeaaeeasasaasaeteeeeeaaaaaeeeaaaasnsbssseeeeaaaeeeassansssbssseeeeaaaeeesasannnsnnes 172
14.3ENablinQadditiONAIVEININGS ... eeeieeeeeiieiiitttee ettt e e e e e e e ettt et et e e eeeeaasaaaaasbee e e eeaaaeeeaas e nnbsbbeeeeaeaeaeeessaasnsbsssneeeaaaaeaaens 173
14.41SSUINQAWAININGMIESSAGE - tttttteeeteeaeeesaaaauseeteeeeeaaaaaaaaaaaassneesseeeeaaaaaasasaaassssteseeeeeaaaeassasaanssssssseeaeaeaesessaansnssssseeeeaeeens 173
Y 0o] A1) 0172 PP PP P P PP PPPPPPTPPTT 17
Y= T a0 = TS =Y 0] PRSP PPPRURPTR 17
14. 7 MeSSAQ@ULDULTOIMIAL. eetieeiiiiie e ettt e ettt et e e e e e e e e st at bt e et et e eaeeeaeaaneeebe e e eeeeaeaeaesaaannnbbaneeeaaaaaeaeaaannns 17:
14.8WarningNUMBDEMEIEIENCE.ueiiieiii ettt e e e e e ettt e e e e e e e s e s e ababee et e e e eeaeaesaaannbbebneeeeeaeens 174

14.8.1DeprecatedeaturedL00=199). uuuiiiei ittt e sttt ettt e e r e e e 174
14.8.2PreproceSSA200m=299)... . .eeeeiiiteiee ettt e e e ettt e et ah e oo 4o b e oo e o R b et e e oo e R e et e e e o bR e e e e e e e bb e e e e e et e e e e nane 175
14.8.3C/CH+PArSeIB00=390) ... i et iiiiiiittiitieitete e e e e e e a e tebe e et tae e e e e s e e _— e et et ataaaeeaeaaaa_hateeteeeaeaeeeeaaaaanretrreeaaaaeaeaaaannns 175
14.8.4TypesandtypemapF400=2499)......cceeiiuueeeeeiiteeee e ettt e e e ettt e e e e bt e e et e e e e ek e e e e e o b e e e e e ah e e e e e e b e e e e anbr e e e 176

14.8.5C0odedeneration500=599)......cciitriiiee ittt ettt a et e e et e e e e e e e e s 176

SV Yo T Yo Yo LU [PO PPPRURPRP 17
15. 1 THE SWIG TUNIIMECOUEceeeeeiete e et e et e ettt ettt e e et e e et e e e et e e e e et e e s e e e e e et e e e e et ee s e e e e e e baeeee b s e e saae e e s aaeessbnsessannseneen 17¢

15.2CompilingMUltiple SWIG MOAUIES. ...ttt e e e e e e e ettt et e e e e e e e e s aa s eatbeee et eeaaaeesseaannsnbbeneeeaaaaeens 178
15.3A word of CautioNabOULSIALICHIDIAIIESiieee ettt e et et e e et e e et e e e et e e e et e s ssaa e e s eaneeesaneesnrneees 179
SR R (<Y (=T A== 1

15.5ReduCiNANEWIAPPEITIE SIZE......eeeeiiiiiie et e ettt e et e e e e e e s e e e bt e e e e e e e e e e e e e r e eeeaeaeas 179

RSN A RV oo O OO PP PT P UPPPPPPTPPPPRTT 1

AT AL I= T aTo O o113 =T T 1¢
A = [T TR = T T 1€

17.2.2RUNNINGSWIG N C MO, .. ce e e ettt e e e e e ettt et e e e e e e e s e et be ettt e e e e aeeeae s s nbnbbeseeeeeaaeeeesaaannsbsbaeeeaaaaaaaaens 183
17.1.2RUNNINGSWIG N Gt MOAE . etetieiieetee e e ettt e e e e e e e e e ettt e e e e e e e e s aaaansb bt beeeeeeaeeeeeeaannssbasneeeaaaaeaesaaannn 184
A Ofo o (=] CT=T 01T = L1 o) U 18
17.2. 1NAMINGCONVEINTIONS. .. oteteeeiie ittt ettt e e e e e e s e e e ettt et eeaaaeaasaaaseebeeeeeeeeaaeeeaesaasesebsseeeeeaaeaeesesannsbsbeneeaaaaaaaeesanannns 184
17.2.2MOAUIESANAPTETIXESeevveiiee et e ettt et ettt e e e ettt e e e e e e aab et e e e s ee b e e e e e e sebaa e e e e eessaa s eeeessbateaeeesesbannnnns 184
17.2.3CoNStaNtRINAVANIADIES.........vuiieieeieiii ettt e e e ettt e e e e e e e et e e e e e e e e st e e e e e e ssba s eeseesbanaeaeeeesnranes 184
TN o Tod (o] 1P 18
RS T T 1O 1 SRR PPEPPRPR 1¢
A o111 o)1= L1 T o T PPPRRRT 16
AR Vo [T PRSPPI {

A IV 0 T=T01 =T o S S PP PUUUTRTPTPR 1¢
AR T8 (=T T :

SWIG-1.3 Documentation

Table of Contents

17 SWIG and Chicken
AR ST 8 L STUT o] oo =Ta (=T (=P EURPTRT 18

L8 SWIG AN GUILE.....ceeeeieieee et ee ettt ettt ettt e ettt e e e e e e e et e e e et e e e e e e e s et ee s et e e e e aas e s e e s ee s et e s e s aa e e s aaa e s s e ta e e saansessbnassebassenennsanes 1
18.1MeaningOf "IMOAUIE ...ttt e e e e oo oo ettt et et ee e e e e e s e n e aebbe et e e e e e eeaesaannnbbebeeeeeeaeeeeee e nnnnrneeeees 18t

TR T 0T 1= R T RSO PPRI {
SRS T AT 0] o) =T I 0= Lo = TP 18
SR I e 1SSV BT 1= Lo = U RPN PPEURRTR 19(
18.3.3Native GUIlE MOAUIE LINKAGE. ... eeeeeeeeeeiiiiiitieie et e e e e e e e ettt ettt e e e e e e s e ettt ettt eeeaaeeesa s e nnbasaeeeeeeaeaeaesaannnnsbeneeees 190
18.3.40Id Auto—LoadingGuile MOAUIE LINKAGE.uuveiriieeee ittt e e e e e e s ettt e et e e e e e e e se et eeeeeeaaaeeeaaaannnnnes 190
18.3.5HODDIAD LINKAGE. ... eeeeeeeeeeeee ittt e ettt et e e e e e e e ettt et e e e e e e e aa e e ab bt e e e e eeaaeeeeseaannnbsbneeeeaaaeeeeeaannnnne 19(¢
18.3.6GeneraRemarkson Multiple SWIG MOGUIES.eeiieiae ittt et et e e e e e e e e s e e snnbe e eeeeeaeeeeeaaannnnes 191

S O T =Y STl o = o) [0 10T F PR UP PR 19

S ANV 7=T00 =T o S S PR PP PUUTTPT TP 1¢

18.6 Representationf POINTErSASSIMODS. ... iiiiiiiiiiii et e e e e e e e ettt e e e e e e e e e e e sannbnbe e e eeaeaeaeeas 192
R T KT ST 1210 L 19

18.6.2SCIM SIMODS. ... eeeeee itttk e e h e e o4kt e oo h b e e R e et e o R b e e e e e o b e et e e ek b et e e e e e b e e e e e e anbr e e e e 19

RS RC T T o= Vo < 9] 11T ox 1T o PRSP PPPRURPTRR: 192

S A St CoT=T o) o] 01 =TT | o PP TRR PR 19
MRS T nd (Yol (U] o (oY o Nl naT=)] =N A (0] A TR 193

MRS ad (o Tol o [=T N AT 1 (< TR 19:

18. 100G OOP SPIOXY ClASSES . . tttteeeeteiiiiitutttteeetaaaaeet e e e tteteeeaeeeaaaaaaaaaasaabeeseeeaaaaeeasaaannte s beeeeaeaeeeeeeaansasbeseeeaeaaaeessaaannnrnnneees 19¢
18,10, INAIMINGISSUEBS ...ttt et e e e e e et ettt ettt e e e e e e s s e s atbete et eeeeaeeese s e asbabee e e e e eeeaeeesaansebbeeeeeeaaaeeeeseaannnbsbbeneaaaaeeeaaaanns 19!
ST B2 I o USSR 19

MR XYLV AL Ir= T aTo [N o V2= T 1
e T @ Y VLY TR 1
R A = [T TR = AT ST 2(

19.2. TRUNNINGSWVIG ... ttiiee e ettt e e ettt e e e ettt e e e e sttt e e e e tbe e e e e e aateeeeeeassbee e e e e steeeeeeessaeeeeeeasbeeeeeeansbeeeeeansbeeeeesnnteeeeeannsres 20(
19.2.2Additional ComMMANAINEDPIIONSeieieeeeee ittt e e e e e e e e e ettt e e e eeaeaaesaaatsbeeteeeeeaaeeessaannesnbseeeeeaaaaseeaaannnns 200
19.2.3Gettingthe right NEAAEHIIEScoi ittt e e e e e e e et e e e e e e e e e e e s e e annnbbnneeeeaaaeeas 201
19.2.4CompilingadyNamiCMOAUIE.ceiieiiiiiiie ettt e e e e e e e e ettt e e e e e e e e e s e nnbaraeeeeeeaeaeeesaannsnnbeeeeees 201
19.2.5USINGYOUI MIOUUIE.eeeeeei ittt et e e e e ettt et e e e e e e s e e e ate e be et e e eeaaeeeeaaannnbeeeeeeeeeaeeeeesaansssbsseeaeaaaeeeeseaannnnne 201
19.2.6DYNamiCliNKING PrODIEIMS ... ettt ettt e e e e e e e ettt et e e e e e e e e e s e b e bt e s e e e eeaeeeeeseaannsbsbaeeeeaaaaaeaeas 202
19.2.7CompilationproblemsandcompiliNGWIth CH......vviieeiiiiiee et e et r e e e enbre e e e enees 202
2] =W T o T To o T o MY AYAT T [0 PR USRS 203
19.2.8.1RUNNINGSWIG from ViSUATSTUTIO.ueeteeiieiieeeee ettt e e e ettt e e e e e e e s e e st e neaaeaaeeesaannnes 203
19.2.8.2USINGINIMAKEceiiittiite e ittt e e e ettt e e e e et e e e e st e e e e s tta e e e e s asbaeeeeesstteeeeeeasteeeeeeansbeeeeesasbaaeaeeantbeaeeesnsbeaeeenns 204
19.3A tour Of DASICC/CH+WIADDPING. «.eetuvveeeeeiittteeeesaiteeeeesettaeeeesasereeeessssseeeeaasseeaeeaassseeeesaassseeeesasssseeesaassaeeessassteeaessnssees 205

19.3.1Modules.packagesndgenerate@aVaCIaSSES .. . uuuuiiiia ettt e e e e e e e e e e e e e e e e annne 205
R R U [Tod 1) =S TTRT 20

MR R R € (0] 0T AV =N = o] (< T 20!
S R IRO 0] 1) £ 15T 20
R RS 10T aaT=] = L (o) 0 T 20

19.3.5. LANONYIMIOUSEIIUITIS. ¢ eeeeeeeeaeaeaaaeataeeeeteeesseatsbabaea o oa o a4 o2 e e e e e aeeeeeeaeeaeeeeeessbebebabbeb e a e e e e e e e e eaeaaaaaaas 208
19.3.5. 2TYPESATERIUMIS.eeiieieee ettt ettt e e e e e e oottt et e e e e e e e e e e b ab b et e e e e e e e e e e e e e e e nnbatreeneaeaeaeaans 208
19.3.5. 3P OPEIJAVEEIIUINIS. ..ot eeeeeeeeeee e e et eeeeeeeetetbebe b et oo 4o 454444 e 222 e e e e e eeee e et e eeeeaeee e be bbb e bsb e a e e e e e e e e e e e e e aaaaaaaeas 209
19.3.5.4TYPEUNSAIEENUIMIS.ttt et e e e e e e e ettt et e e e e e e e e e e s nbb st e e e e eeaeaeeeeaannnnnbneneees 210

SR ST ST T a1 o) [=T=T 1000 TR PPPRURPR 210
R R] L0101 (=) T 21

S RT3 U [(TR 21
R O ol = o1 <t PR 21
R R [O 0] A T=Y ¢ o] =TT 21

SWIG-1.3 Documentation

Table of Contents

19 SWIG and Java

19.3.10PointersreferencesarraysandpPassy VBIUE.coeiiiiiiiiiiiiiiie e ee e e ettt e e e e e e e e e s st eeeeeeaaeeeeaeaannnnnes 214
19,310 INUI POINEEIS .t teteeeeeei e ettt et e e e e e et ettt e e ee e e e e s s s aabbe e eeeeeaaaeaeaeaaanseebbeeeeeeaeeeaesaaanssbbnbneeeaaaaeeeaeaanns 214
19.3.11C++ 0VErlOAUEAUNCLIONS.cevuueeieeeiitee e e et eee e e e et e e e e e e e et e e e e e e aa e eeeeseetbae e aeeseasbansaeesessasnnaaeesesrannaaaees 215
TN Ol 4 1T 1T 0= (o = F TP P SR SRUPPPPP 21¢
R TR G Ol (=T 1101 01 = L= TP 21
I (O ST 11T T 1 01011 £ TP 217
19.4Furtherdetailson the geNerateaVaCIASSES.oiiiuuiiiiiiiii e ettt e e e e e e e sttt e e e e e e e s e s snnbbbaeeeeaeaeaeeesaaannnes 218
19.4.1TheinterMediarydNI CIASS. .. .cci ittt e e e e e e e ettt e e e e e e e e e e s be bt et e e e e eeaeeeesaaannsbsbaneeaaaeaaaaens 218
19.4.1.1TheintermediaryINI ClaSSPIAGIMAS. .. . utiieeeeeeiiaiiitetieeeteaae e e s e e aebebbe e e eeeeaeeeasaasnnnbeeeeeaeaaaeeaseaaannrnraeeeees 219
19.4.2THEJAVAMOUUIECIASS cceeeitiee ettt et ettt e e ettt e e e e e e e ettt e e e e s e eat s e e e e e e s aa s eeesesbaaaeeeesesbaanseeeesssaannseeseesrnes 220
19.4.2.1The JavamOdUIECIaSSPIAGIMAS.uuuureeeiieeeeeee e ettt eeeeeeeeeesaa e ettt et eeeaaaeeessaannbebaeeeeeaaeeesesaannnnsenneeees 220
RGN A7 o] 0) VA o o TS = T ST PPPRT 22(
19.4.3. 1MEMOIY MEANAGEIMIEIAL ...ttt e e e e e e e e e e e e e et et eeeeeeeeeesesbebabees s o e o e o e e e e e e eaeaeaaaeteeeeeanssbsbbbbebnnnnn e e ee s 221
e I R A 1] 4 1Y 11 7= 1 1o = O PUUPORRPN 22
19.4.3.3Proxy classe@nddarbag@EOllECiON.ooueiiiiieeie e a e e 224
R Y] o T =Y o] 1=y (o P TS = RO PRPPRRRR 225
e I oY 10 g o] P oYY PR 22
19.4.5.1TYPESAEENUMICIASSES. ttteeeeeteee e e ittt e e e e e e e ettt ettt e e e e e e e e s b ettt et e eeeaaeeeeaeannnsbnbeneeeaeaaaeeesanannn 226
19.4.5.2ProperJaVaBNUMICIASSES. .. ccie e e e ittt e e e e e e e e ettt et et e e e e e e s e s e abae bt e et eeeeeaeeeaaannnebeseeeeaaaeeeesesannesrenes 227
19.4.5.3TYPEUNSAfEENUMCIASSES. ... ittt ettt e e ettt et e e e e e e e s et et e e e e e e aaaeeeeaaannnbbeeneeaaaaaens 228
19.5 Crosslanguagepolymorphismusingdirectors(eXperimental)...........ooveereeiiiiiee e 228

SR T =a F= o] [T T fo [T =Tod (o] F TP SRR 22
R RS B (=T o1 (o] o F= T oY 22!

(R ROV <Y daly=Te ;T ale [efaYo <] o] 0= | T 230

19.5.4SIMPlEedirECtOrSEXAIMPIE tetieiiieeee ettt e e e e e e ettt ettt e e e e e e s e e s s ebae bt e et eeeeeeaessannsebbeseeeeeeeeeeeaannnnnrenneees 230
19.6 COMMONCUSIOMIZATIOITEAIUIES.ieteeeeet e ettt ettt e e e e e e et e e e et e e s et e e et e e s eba s e e e e s e s et eeeeba s e s saaeesesesesbnseesannenees 230

S ST KOO 1= [0= 118 T ox 1T U UPT SR 231
19.6.2CI1asSeXtENSIONNITN YOEXIENM.vvuieieeeeiiiee ettt e ettt e e e e et e e e e e e e et e e e e e s esab s e e eseebaaneeeeessbaannnns 231
19.6.3Exceptionhandlingwith YoexceptiomNdY0jaVvaeXCePLION.ueeei ettt e e e e e et er e e e e e e e e e e 232
19.6.4Methodaccessvith %javamethodMOIfIErS.uuuiiiiiiieeei e a e e e e 234
A T o FSF= VT =T o] T o LU= PP PR 23
19.7.1Inputandoutputparametersisingprimitive pointersandreferences...........cccvvvvieiiieeeeiiiiiiieee e 234
S AT 1001 o) =T oo 1= TR 23!
19.7.3WrappingC arraySWith JAVBAITAYS.uuieeeetiiiiiiieieeeeteaae e e s e e atatteeeeetaaaeaasaaasnsbeteeeaeaaaeeeaesaassnbbsseeeaaaaaeesaann 236
AR 18] o Lo ¥ aTo [=Ta O N = | RO PRPPRRRR 237

19.8.7Typemapdor bothC andC++ COMPIALIONceeeeiiiiiiiiie e e e e e e s s eee s 244
NSRS A7 (oo e (=AY =Y 10T oL PRSPPI 24/
19.8.9DireCtOr SPECIfICTYPEIMAIS. ... e e i ettt e e e e e et e ettt ettt e e e e e e s e e et e ettt e e eaeeeae e e nbebbe st e eeeaaeeeesaaannnbsbaeeneaaaaeeaans 247
SR Y o=t 0T o = 11410 S PP RRR PP 24
19.9.1SimplerJavaenumsfor enUMSWIthOUEINIEIALIZEIS.evviiieeieeiiiiiieee e e e 248
19.9.2HandlingC++ exceptionspecificationsas JaVAEXCEPLIONS.ccuurriiiiieiieee e e e ettt e e e e e e e e e e ereeeaaaeaeas 249
19.9.3NaN Exception- exceptionhandlingfor @ partiCulatype...........ccooui it 251
19.9.4ConvertingJavaStringarraystO CHAI ™ooi e e e e e et e e e e e e e e e e e e ennneeeeees 252
19.9.5Expandinga Javaobjectto MUItiPIe ArgUMENTSooiii it ee ettt e e e e e e e e e s s eeeeeaeeeeeeannnnenes 254
19.9.6Usingtypemapao retUrNArQUIMEIESoiieeeeiieiieeeeeeeeeeeaetatbeeeeeeeeaeeeesaaansnbebeeeeeeeaeeeaesaaannnbeeseeeeeaaeeesseannnsesreees 255
19.9.7Adding Javadowncastdo POlYMOrPhiCrEtUINMEYPESueeeieiiee ettt e e e e e e e e e e e e e eeeeeeeas 256

SWIG-1.3 Documentation

Table of Contents

19 SWIG and Java

19.9.8Adding anequalSmethodto the JAVACIASSESuuuiiiiiieeeee ittt e e e e e e e e s eeeaeeaeaeeaaannes 259
19.9.9Void pointersanda COMMONJAVADASECIASS.uverriiieeeeeeiieiitiiie it e e e e e e e e e s et et e e aaae e e s e s e nbebesaeeaaeeaeaeeaaannns 259

19.10LIVING WIth JAVADITECIOIS. ...eetiiieeeie ittt ettt e e e e e e ettt ettt e e e e e e s e s e ete b bttt e eeeeaeaeaaa e s nbbebeeeeeeeaeeeeesansssbbsseeeaaaaaeesaaannns 260
e R @ o Lo o= aTe [T 0 [T 26

I I N oY= 1 Lo T o0 1 1= 11 262

19.11 .2FunctionalinterfacewithOUt PrOXY CIASSES.uuuriiiiiiieie ettt e e e e e e e et eeeaaaeeeeaanns 263
19.11.3UsIingyour OWN INTFUNCHIONSutiieiiiiiie ettt e e e e e e e ettt e e e e e e e e e e e e snnb et e eeaaaaeeeaeas 263
19.11.4PerformanC®0ONCEINSANUNINTS.iiee it e et e e e e e e e e et e e e et e e e ea e e e et e e s aa e e s eaa e sebaeeseansesenneeeren 264

T2 = V0 1] o] 1= TR PPEPPRPR 2

P2 RS T K @o 111 o1 Y RSP PSPRRT 26
PAORSIVY.Xo [o [1iToTa P K @] a0 F-VaTe | 1T aTs ©] o) iTo] T YT SORPPRPRR 268
AR V(oo LU= 1 AV 1=y 0 T 0K P EUP TR 26
20.4. 1INPUESANAOUEPULS. ... e ettt e e e e e e ettt et e e e e e e s e e s et ete e et e e aaeeaaeaannebabeeeeeeeaaaeeesaaannnbesbeeeeeeaeeeaeeaannnnbenneees 26¢
20.4.25Ubrange g NUMEIAtIONSSELS. .. eiiiiieiii ittt ettt e e e e e e sttt e et e e e e e e e s et tbe e et e eeeaeaeeaeaasnnbebeeeeeaeaeeesesannnenrsnaeeeas 270
PO 1@] o] = ox £ U PP R ORI 27
AR B 0] 0T S PP UUPUPTPPPTTTRR 27
P] (el =] 01 1[0 1L PP PEURPRR 27
PO G =V 1] o] = PRSP PPPRPRTRR 27
A R Y V[T C=T a1 a1 ESS (o aT=Yo =T 1= = Lo) P ERPPR R 271
20 . 5. A EALUIES.een ittt e e eee et eeetaeeeeeteeeeaaeettaeeeetaaeettteeettaaeeetaeeettaeraaaaaees 27

AT = To |10 T2 TP 27
O T =] 1 =1 TR 2

YAV (=T aTe Y AT od 1<) 0 11 T 27
21.1CreatingnativeMZSChEMESIIUCTUIES.oii ittt e e e ettt et e e e e e e e e ettt e e e e e e e e e e s aanesbbe et e eeaaaeeeeasannnesbeeeeaeas 273

X YA (CIR= 1o To @ 7= o1 T 2
A N (= LR AT =TT 27

P N U 1011 Te RS LY TP PRPPPPPRP 27"
2 By @fe] 1] o1 TaTe 1o T=Y oo Yo [T PPEPRPTRR: 27"
22.1.3TheCAMIPAMOAUIE. ..ottt e ettt e e e e e e e e e e ettt et e e e e e e e e s aa s antbeeeeeeeeeaeeesesannnbsbesseeeeaaaeeesaaannnnnnes 27¢
22.1.4AUSINGYOULMOAUIE.eeeiiieeeeii ittt ettt e e e e e e e ettt et e e ee e e e s e s e ebebb e et e eeaeeeaesaaneabbseeeeaeaaeeeeaaansnsbsbeeeeeaaaeeasesannnnne 27¢
22.1.5CompilationproblemsandcompilingWiIth Cr....ciiviiiee i e e e e st e e e s enbaaeae e 276
22.2TheloW—1eVEl OCAMI/CINIEITACE. e eeeeeiee ettt e e e e et e e e e e e st e e e e e e eab e e e e eessbaeeeeseerraannns 276

22.2.1Thegenerate@NOAUIE.uu i ittt e e e e ettt ettt e e e e e e s e s s abbebe et e eeeaaeeeesaasnsbeeeeeeeaaaeeesesannnnsnnnneees 277

A = 110 |1 11 SO R P PTORPPRORN 27

A AR N -\ TR PSPPI 27
22.2.3.1Simpletypesof DOUNAEMRITAYS.........ciiiiiiieiieie et e e ettt e e e e e e e e e snb e eeeeeeeeeeeaannnnes 278
22.2.3.2ComplexandunbOUNAE@ITAYS iiiieiriiiieieeeee e et e e ettt eeeeaeaeaasaaaesbbeeeeeeeaaaeeesaaannbssaeeeeeeaeaeaasanannes 278
A R TG ST =T Ko) [T o A PSRRI 279

22.2.3.4Exampletypemapfor afunctiontakingfloat* andint..............ooooeiiiiiiiiiiiii e 279
A | O O [1Y =Y TR 27

SWIG-1.3 Documentation

Table of Contents

22 SWIG and Ocaml|
22.2.4.1STL vectorandStrNG EXAMIPIE.eeieie e e ettt e ettt e et e e e e e e s e et e et e e e e eaeaeeeesannanbeneeeeeaaaeens 280
Ay O e O 1= 1SS = 1111][TSR TR 281
22.2.4.3C0MPIINGTNE EXAMIPIE ... eeeeeeeeeee ettt e e e e e e e e ettt e e e e e e e e e e e e e e nnbbebeeeeeaaeaeeeeaaanne 281

A ST 1101 0] (Y= o PP RRP SRR 281
AR B (<o (] O P 1T oYY YT 28:

RS T 1B (=Yos (o) 111 (Yo [U o110 N 282

22.2.5.20verridingMethodsin OCAIMI........oiiiiiiiiieii et e et e e e e e e s e e bbb r e e e e e e e e e e e aannnnereees 282
22.2.5.3DIreCtOrUSAgEEXAIMPIE. ... it e ettt e e e e e e ettt e e e e e e e e e e e bbbt e e e e e e e e e e e e e et b e b e raeaaaaeaaaan 282
22.2.5.4CreatingdireCtOrODJECES. ...ttt e e ettt e e e e e e ettt e nnnbnbrrraeaaaaeaaaan 283
22.2.5.5Typemapdor directorsdirectorin,directorout direCtorargouLeevveieeerer i e e 283
A R o o L1 (=To (o] § 0101 1= AT o PR PR OPPRPPI 283
A R (o [(=To (o (011 18Y] 0 1=T0 0T o PR TRSTR 284
YRR o L[(=Tei(o] v Ve (0101 Y 1<) 1A= 8 N PP PURPRRTR 284
A 6] (el =] 0] [0 L RSP PEURPRRN 28

I AV [Tz T aTo LT o 5 T 2
AT R O LYY= ST 2
A I od (= [T TR F= LTS TR 2¢€

23.2.1Gettingthe rght NEAAEHKIIESceeiieiee ettt e e e e e e s e e ettt e e e e e e e e e e e e annneeeeees 286
23.2.2CompilingadyNamiCMOAUIE.ueiiiiie ettt e e e e e ettt e e e ee e e e e e saaae e b ee e e e eaeaaeaesaaannbssbneeeeaaaaeeesaaannnn 286
23.2.3Building adynamicmodulewith MaKeMAaKEE.............cuuuiiiiiiiiieee ettt e e e e e e e e e e 287
23.2.4Building @ StatiCVerSIONOT PEIL......... et e e e e e e e e r e e e e e e e e e aaan 287
23.2.5USINGINEIMOAUIE.ottt e e e e e e e oottt et e e e e e e e e e e b e bbe bt et eeaaeeeeaeaannbnbaeeeeaaaaaeeeaaaannn 28¢
23.2.6CompilationproblemsandcompilingWiIth Cr....oiiviiieii i s s e e e srree e e e enbraeee e 289
23.2.7Compilingfor 64=Dit PIAtFOIMIS. ...t e e e e e et e e e e e e e e e eeeeas 290
23.3Building PerlEXtensSioNSINAENVINAOWS.ceiiiiiiiiieiieeeeeeae e e e e ettt e e eeeeeaaesasaannbesaeeeaaaaeeeaasaannnnsbsseeaeeaaaaasaasannnsnes 291
23.3.1RUNNINGSWIG from DEVEIOPEISTUTIO. ... vvvveeeieieeeeieiiititiee et e e e e e e e e ettt e e e e e e e e e s ettt e e e e e e e e e e s e s annnebebeeeeeeas 291

ARSI 8 ST To [) (1T o] 0] o] =T o O T P PRPPRRR 291
A N W 1Y (o (YL N A1 (=) 7= (o < T 29!

A I U o3 1o T PRSPPI 29
23.4.2GI0DAIVATIADIES.oei ettt e e e e e e e e et a e e e e et et e e eraa e eaerarr s 29:
A I e 1 00] 4151 v= |1 K= PSPPSRI 29
AR o101 (=] £ T PUPPRRR 26
A B o1 Y 1 €1 (o1 11 | (=Y PSPPSRI 29
AR 1 O ol I oo == Y PUTORRRY 29
23.4.7C++ ClasseRNAtYPE=CRECKING.uvtteeiiiiiiee ettt e ettt e e e st e e e sttt e e s sae e e e e sessaeeeesassseeeeessseeeaesasssneeeeansneeas 296
AR R <] O o 01 V/=) 1 [0F=T0 [=Yo U] 103 (10) 0 RSOOSR 296
AT e (O] o 1] = L0 TSRO PP PUPUPPPPPRPRN 29
23.4.10MOdUIESANAPACKAGES. ..o oo eeetteieeeei e e e e ettt ettt e e e e e e e e e ettt ettt e e aaeeeseaannebe e e ateeeaaeeeeaaaannnbbsaeeeeaaaeeeeaeannnnnee 297
23.51INPUt ANAOULPULDATAIMEIEESee e et e e ittt e et e e e e e e ettt ettt e ee e e e s s ettt ettt e eteeaeaeaaaassnbbeaeeeeeaaeeesaesannsasbsseeaaaaaeaessannnnns 297
A o] = ded=T o1 1[0] /= o |1 TP PPERURT 29
23.7RemappinalatatyPeSVItN LYPEMADS.cvvuieieeiiettie et ee et e e e e et e e e e e et e e e e e e s et e s eeeees b e eeeeesstaaaeeseerabeaeesenrrannns 301
23.7. 1A SIMPIEtYPEMAPEXAMIPDIE ... ettt e ettt e e e e e e e e s e e aa bttt et e e aeeeeaeaannbebeeeeeaeaeeeee e e e nnbreanteeaaaeeeaaaan 301
AT Y Y 1 511 1= 1T 01 TR PPRRPRTRRN 30:

AT R N Y] 01T 10 =T N V= | o] (USRS PRPRTT 30:
A L Y 1 KU Lo 10 1T 30«

23.8.3Returningvaluesfrom argUIMEINTS. ittt e e e e e ettt e e et e e e e e e s e s s b be e e e e eeeaaeeesasannbnsbeaeeaeaaaaeens 306
23.8.4ACCESSINCAITAYSITUCIUNEIMEIMIDBES. ... ettt e e ettt e e e e e e e e e ettt e e e e e e e e e s aaannntbeeeeeeeaaeeeeaeaannsenteneeeeas 307
23.8.5TurningPerlreferenCcesnto C POINLELS.cc.uuriiiiiiieeie e e ettt ettt e e e e e e s e e et eeeeaeeeeesaaasnbbeaneeeaeaeaeesesannnene 307
PAC R S I o] o101 (=Y 1 =TT |1 o TR 30¢

SWIG-1.3 Documentation

Table of Contents
23 SWIG and Perl5

A] o (0 A VA o F= 1SS F TP PEPETRRT 3(
AT I N ad (=] 110 01T P 1Y USRI 30
23.9.2StrUCtUrEANACIASSUWIAPPETS. .. e etteeeeeei ettt e et e e e e e e e e ettt et e e eeeeaesaanaebbe e e eeeeeaaeeessaannsbsbbeeeeaeaeaeeeaaaannnsanneees 309
AR S 1] o] [=To (@111 1T 6] 11 o PSRRI 31!
ARSI N 1151 (T0 @ o] [T ol £ TP PUPRRRPR 31
AT S] d (0)1V U 101 1 T SRRSO 31
AT o1 101 1<) 117= 1o (o =TSP 31
23.9.7Modifying the ProXy METNOAS.ueeeeiiiiie ettt e e e e e e sttt e e e e e e e e s e e e nbbtbeeeeeeaaaeeeeaaannnns 313

AV (= La Yol nd w | OSSR 3

N e (= 110 Y10 =V =T OSSP 31

A V1o [T Tl d (=T 4 1S T 0 P ERR PR 314
24.2.1BUildiNg 8108daBIEEXIENSION uutieiiiiie e ettt e e e e e e ettt et ee e e e e e s e et b ettt e e e e eaeee e e e e nbbrbeereeaaaeeeeeaaanne 315
24,2, 2BaSICP HP AINIEITACE e ittt ettt ettt e et et e e e et e e e e e et e e e ettt e e e e e aa e e eeeera e aeraarann 315
R T U o3 10] TR PUPOSR PRI 31
R € o] o | AV A= L= o] [TR 31
Y o 1101 (=) =TT PURPRRR 31
R Y (A0 [0 (0 (=Y 0 [O e o F= LYo =t PSP 316
A A 0] 4151 v= 11 K= PSSP 31
R | (0 VA o F= 1SS = TP RR TR 31
24.2.9C0NSIUCIOIEINAD ESIIUCIEIS. .. .iiivvtiee e et et e e e e ettt e e ettt et e e e e et e e e e ee sttt aeseeeeesbaa e eeeeessb e eeseessaneeeesssrranens 318
24.2. 10StatiCMEMBDEIVANIADIESccceeeii ettt ettt e e ettt e e e e et e e e e e e sa b e e e e e eeaaaeeeeeerabaaeeaees 318
P N | o =T | T T SRRSO 31
24.2.12Building eXteNSIONSNEO PRIuveteeeiiiieeee ettt e e e e e e e e ettt e e e ee e e e e s saaaebbee e et eeeaaeaesaaannnbssbeneeaaaaaeeeeaaanne 319
A R o Y o 12N 0110 1=] (=10 PR 32(

A IV [CI= 1 aTo I ad 1 (SRR 3

AT e (= 1100110 oY= OO 37
A U T T T 0o S 1L R PPRRPPTRR 32
25.1.2Gettingthe right NEAAEHKIIESceeiiiiee et e e e e e e e e e e ettt e e e e e e e e e e e e annneereees 321
25.1.3USINGYOUIMOAUIE. ... ceeeeeee ettt e e e e e e e ettt et e e ee e e e e s s n et bebe e e eeeaaaeeaeaanesbbeeeeeeaaaeeesaaansnsbsbeeeeaaaaeeaaesannnnne 327

AT A T S (o] O[O ol Vi F= o o1 T PP PRURP PR 32:
ATz N o To [1 1= PSP 32
DAY A U1 o3 10] 41 PP 32
AR €] o] o= | AV Z= T =1 o] (=TSRRI 32:
25.2.4C0oNStantBNdeNUMEIAEAYPES. .. .eeiii e ettt e e e ettt e e e e e e e e e ettt be et eeeaeaeeeesaa s bnbbe et e eeaaaeeeeaeannnaeereees 323
25.2. 5C0ONSIUCIOIEINA D ESIIUCIONS. .1uu i eeeeeetie e e et ettt e e e e ettt e e e ettt e e e e e e ee b e eeeesssbaseeseesbaaaseessasbanaeessesstanseeeseeranns 323
AT I v= 110 1Y [T 0] 1= T PSPPI 32:

A RSN TAYA L= T o N YA (o o TR OSSP 3

A ST @ Y=Y VA -\ PSPPI 3!

A ST o (= 1100110 =V =T OO 37
26.2. TRUNNMINGSWVIG ...t teeeteetee e ettt e e e e oottt ettt e e e e e e s e e s st et be e eeeeeaaeeeesa e s s ebetbeeeeeeaeeeeesaannssbbsseeeaaaaeeesaeannnnnne 32!
26.2.2Gettingthe rght NEAAEHIIESceeiiiieeee ittt e e e e e e s e ettt e e e e e e e e e e e e annneereees 326
26.2.3CompilingadyNamiCMOAUIE.ueiiiiii ettt e e e e e ettt e e e e e e e e e s saaaeebaeeaeeaeaaeaesaaannntssbneeeaeaaaeaesaaannnn 326
26. 2. AUSINGAISIULILS.ee et ettt e oo e e oottt e e ee e e e e e e eabbe e et e e e e e eeeeeaaannnbe e be e e e e aeeee e e e e nnnnbeneeeeaaaeeeas 32
A IR 1] = L Tod 10142V PP RPPPPPRRURPR 32
26.2.6USINGYOUIMOAUIE.eeiiieeeeii ittt ittt e e e e e ettt ettt e ee e e e s e e ebeb et et e eeaeeeaesannesbbeeeeeeaaaeeessaansnsbsseeeeaaaaeeasesannnnne 327
26.2.7ComMPIlatioNOf CH+ EXEENSIONSei ittt e ettt e e e e e e e e e s e ettt e e e e e e e e e s e s e nbbbbeseeeeeaaeeesaaannnrnreeeeeeas 329
26.2.8Compilingfor 64—Dit PIAtFOIMIS. ... e e s et e e e e e e e e e aee s 329
26.2.9Building PythonEXtenSioNSINAENWINAOWS.uutuiiiiiiieeeee ittt eeeeee e e e e e seteebee et e aeeaeeaesaaannnbbsaeeeeaaaaeeaaaannns 330

26.3A tour Of DASICC/CH+WIAPDPING: ..ttt etivttreeeeetteeeeeastteeeeessttereeasastaeaeesasteeeaeasasteaaeaaastaseeeaasteeeeesassseeesaassseeeessssseeeessnssees 330
2 ST T N o Lo [1 1= 33

SWIG-1.3 Documentation

Table of Contents

26 SWIG and Python

A ST I U1 o3 10 1 PP 33
AR] €] o] o T 1AV T =1 o] [T PPT ORI 33:
AR I L OL0] 41 F= Y 151 L0 [=) 01010 0 F OO RPPRST 332
A R I SY o 101 (=] £ TP UU T PPPRRR 33
ARG S 11 (01 11 | (=Y PSPPSRI 33
A R I A 0% s ol I oYL YRR 33
AR R <1 O 111 41 117-1 o = DTSRRI 33
26.3.9PointersreferenCesyalueS ANUAITAYS.cc.uuvueiiiiieeee e ettt e e e e e e e e et s e aabebteeeeeaaaeeaeaaaasnbbeteeaeaaaaeeesesaanenes 337
26.3.10C++ 0VErOAEAUNCLIONS.ovveiieeieiite et e et ettt e e e ettt e e e e et e e e e e et eeeeesee bt e eeeeessbanseeseesbanaaeessesbansaeeeeesees 338
A TS T B O 0] =T = (0] £ PSPPI 33
A TS T Ol = V1 111 01 (o] 1 T TSR PPPPPPPTRPPROPON 33¢
P T S (O (T 1410 = () YR PPRRPRTRRN 34
A SR T O e T 1 =11 01101 (=1 £ PSPPSR 341
26.4Furtherdetailson the PythonClasSSINtEITACEuuuiiiiiiie e 341
P N N 0V o F= 1SS = TP UR PP 34
26.4.2MEMOIY MANAUEIMIENL. ... eeeeeeeieitteteteee oo e e e e e e e e e e e ee e et et eeeeeaeasbebebbeb s e o e oo oo oo e e e e e e aeeeeeaeeeeeeeasbnsebbsbnbnnnn i ns 342
26.4.3PythoN2.2 ANACIASSICOIASSES. ... vtteeeteeiieeei e ittt et e e e e e et e e ettt e e eeeeeessa e anbbeeeeeeeeaaeeesaaannnbbsbneeeeaaaaeaesaaannnns 344
26.5CrosslanguagepolymorphiSm{EXPErMENTAL)..........cciiuriiieiiiiiii et e s 345
A RSN A = g F= o] T T o [T (Yol (o PSSR 34!
ARSI A B[(=01 (0] ol = Fo 1Y =)= VPPN 34¢
ARSI @Y aT=T 6]l 0=V aTo (o] o] [=Tod (o [S1S] 1 8 [od 1T o FEN PR SOPPPRPRR 346
26.5.4EXCEPUONUNIOIINGi e ettt e ettt e e e e e e e e ettt e e e e e e e e e e aanaatb e eeeeeeeeaaeesesannnbsbeeseeeeaaaeeeaaaannnnnnes 347
ARSI OAV/=1da1=Y: (010 0 [o10)0 (<) o] (o - | SRR 347
A TSN X Y/ 01T 1A F= o T TR SRURRPP 34
A SRS A Y [1YoT = | F=T =T 01 £ 34
26.6 COMMONCUSTOMIZALIOEALUIES .. . ieeeeetie e ee ettt ee e e e e et e e et et e e e e e s e et s e e e e e eaat e seeesesbaa e eeeeessbaanseeseesabnaeessessransaneeees 348
26.6.1C/CH+NEIPEIMUNCHIONS. ...t ettt e ettt e e e e e e e e ettt et e e eaeeeseaannebe e e et e eeaaaeeesaaassnbesaeeeeaaaeeesasannnnnnes 348
26.6.2Adding additioNalPYINONCOAE. ..ottt ettt e e e e e e s e s et bt e e e e e e e e e e e e e eeeeas 349
26.6.3C1assexXteNSIONNVITN YOEXIENM.ii it e ettt e e e e e e e e e e e ee e e e e e e e sab e e e e s eessaa e eeesessbanaaeeeees 349
26.6.4ExceptionhandlingWith Y0@XCEPLION.utiiiiieieeie e ettt e e e e e e e e ettt e e e e e e e e e aansae e e e e eeeaaaeeesaaannneeeeeees 350
A A I o 1SX= Lo L (=Tod 0 0 10 U 1= PP PR 35
26.7.11INPUt ANAOULPULDAIAIMIETIELS eeeeeeiee e et e ettt et e e e e e e s e e bbbttt eeaaeeese s e saebeeaeeeeeeaeeesaaasnsbssaeeeeeaeeeeseaannenneees 352
A I A ST 1101 o] 1= o To 10 (=T TR PPRUPRPRR 35:
26.7.3UNDOUNAEAT ATTAYS. . ..ttetttieeeeeieaiittetee et e eee e e e e aaataebeeaeeeeeaaeaasaa e s steeeeeeaeaaeaeeaaaannsbsbeeeeeaaaaeeeesaasssbesseeeeaaaeeesanannns 354
A A S ([To] =T | T T PPRUPRTRRN 35!
A AR SY N =\ T PP P TP 3E
A A 1S ([0 To = 1 = Y PRSPPI 35
A A AN I BT =T o] 1= £ T TP SRUPURPPP 35!
AR I YA 0= 110 F= oL S TR TRRPPP 3!
AR I ALY T LA ST WY 01T 1A= 1 1S PPUERURTRRN: 35¢€
AR I A aTe] 1Y 01T 1T 1 TSP PRPRTRRT 357
26.8.3TYPEMAVAIADIES. ... ettt ettt e oottt et e e e e e e s e e st ettt e eeeeeeeeeeeaa e nnnb e bttt ee e e e e e e e e e e nnnnteeteaeaaeaaean 357
26.8.4USefUl PYtNONEUNCHONSeiiiiieeei ittt ettt et e e e e e e s ettt et eeeeeeaee s nnbebeeeeeeeaeeeeeaanannnbbsbeeeeaaaeans 358
26.9 TYPEMAPEXAMIPIES ... ttteeeeetee e e e e e ettt e e e e e e e e e ettt e ittt eeee e e e e e saa e aebe e et e eeeeaeeeaeaannnea e eeeeeeeeeeeeee e nnebbeeeeeeeaaeeeeaaannnrneeeees 35
26.9.1ConvertingPYthoNIISt 10 @ CNAI™ ™ ... o e e e e e e e e e et e e e e e e e e e e eeeeas 359
26.9.2Expandinga Pythonobjectinto multiple argUMENTS.coc.uuiiiiiiiieee et e e e e e e e e e e e e snnneees 360
26.9.3Usingtypemapgo retUrMaIrQUMENESceeeeeiiiiittttieeeeeeeeeesasaaseetbeeeeeeeaaaaeesaaanneetbeaeeaeaaaaaesaaasnsbsaseeeeaaaeesasannns 361
26.9.4MappingPythontupleSinto SMAITAITAYS ... cceeeeeiieeiee e e e ettt et e e e e e e e e ettt e e e e aeeaeaesaanbnbenseeeeaaaaeeaaaanns 362
26.9.5MappPiNgSEQUENCEED C BITAYS . .eeeiiiiuutteteeeteetaaaeaaaaaaueteeteeaaeaaaaaaasaaasasbeseeeeeaaaeaeaaaannbssaeseeeeaaaaeesaaannnesseeeeees 362
A IS o] o101 (=Y 1 =V aTo |1 TR PO T PPI 36

Xii

SWIG-1.3 Documentation

Table of Contents

AT T T T T 0o 1L R PPRUPRPRRN 36¢
27.1.2Gettingthe right NEAAEHKIIESceiiiieeeee ettt e e e e e e s e e ettt e e e e e e e e e e e e annneeeeees 366
27.1.3CompilingadyNamiCMOAUIE.ueeiiiiieee ettt e e e e e ettt e e ee e e e e s sa s aeebeeeeeeaeaaeaesaaannnsssbneeeeeaaaeaesaaannnn 366
27.1.AUSINGYOULMOAUIE.ceetieeeee ittt ettt e e e e e e e ettt et e e ee e e e sa s s e be bttt eeeaeeeesasaaneabeeeeeeeeaaeeesaaansnsbsbneeeaaaaeeeseaannnnne 367
AT 1S = Lo 11T TP PPPPRPURPR 36
27.1.6C0oMPIlatioNOf CH4 EXEENSIONS ... ettt e et e e e e ettt e e e e e e e e e s e et ettt e e eeeaeeeaa s e nbebaeeeeeeeaaeeeeaeannnrnreeeeeens 368
27.2Building Ruby ExtensionsiNdenWVINAOWS O5/NTceiiieeeeeieiiiiiie et e e e e e e e e e ettt e e e e e e e e e e s s nnnbbeaeeeeaeaeeeeaeaannnenenees 368
27.2.1RUNNINGSWIG from DEVEIOPEISTUGIO. ... vvvveeeieeeeeeieiiiititiee et e e e e e e e ettt e e ae e e e e e s enee e e e e e eaaeeeaasannebnbeeeeeeas 368

27.3The RUDY—10—C/CHHVIAPPDING. .. v tteeeeeeeeetieaiititeeeeeeteeeeeesaaaaebeeteeeeeeaeaesasaaaneeeteeeaeaaaeeeaesaansssbasseeeeaaaeeesaaannnttnseeeeaaaeens 369
A AR T 1Y, o Lo V][RR 36

ARG T U1 o3 10 TP PRSPPI 37
AR R V4 U r= 1o (=Y T 1T PR PRRRRTR 37
PRI L G0] 4151 v= |1 KSR 37
AR TS Y o 101 (=] £ TS PPPRRR 37
PRI SIS 11 (o1 10 | (=Y PSPPI 37
R I A 0% s ol YoYU 37
AR R <1 0%l |21 =T 417 1 o] =T PR SRR 37:
AR R L O% X @V =11 (o= (o [=To U] 4Tt (1] o - USRI 375

AR T R0 O @ 01T - o] T TR O SRR 371

A T Ol =V 11T o1 Lol 1 TP PPPPPPPTUPPURPIN 37¢

A TN O (=Y 1410 = (S YRR PPRRPPTRR 37

AR T O T 1 1= 111 01101 (=1 £ PSSR 378
27.3.14Cross=LanguagBolyMOIPRISITI.......uui it e et e e e e e e e et e e e e e e e e e e e e e reeaeaaaeeas 379
27.3.14. JEXCEPUHONUNIOIING ... eteeeeeeeee e e e ettt e e ettt e e e e e e s e e e s nebe et e eeeeaaeeaesaanenbbeeeeeeeeaeeeesesannnenenees 379

27.41NPUt ANAOULPULDAIAIMEIEES .. .eee e ettt ittt et e e e e e e e ettt ettt e e ee e e e s s s neeebe e et e eteeaeeesaasnsbbeaeeeeaaaeeeaaeannnsasbseeeaeaaaeeeesaannnns 379

AT 00T o] (TSN (ot=T o iToTn nF= U o 11T P ERR PR 381

27.6.4.1C Datatyped0 RUDY OBJECES .. .euiiiiiieeeei ittt ettt et e e e e e e e e sttt e e e e e e e e e e s e e nanbeeaeeeeaaaaaaaaean 386
27.6.4.2RUDY ODJECISIO € DAIAIYPES. . veveteiieeeeeiieiiiitiieeiie e e e e e e e e e ettt et e e aeeeesa s nbbebeeeeeaeaeeeeeaaaananbaeaeeeeaaaaaesanan 386
27.6.4.3MACIOSION WALUE ... oottt et e ettt e ettt e et e e e et e e e e et e e eeaa e e s et e e sat e s esaa e ssaaeesenass 386

A (ol =] 01 1[0 TP EPUP PR 38t
QA S R (<] 7= 100 - 38

AR Y o V7= VYot =Te | o] o) o3P PEERPRR 39
27.8.1CreatingMulti=MOAUIE PACKAGES. ueeeiieiee ettt e e ettt e e e e e e e e e s et e e eeeaaeeesae s nebtbeeaeeeaaaaeens 395
27.8. 2D fINING ALIBSES. ...ttt et ettt e e e e e et oottt ettt e e e e e e e e s ot b e bee e et e eeeeeee e e Rbnbe ettt eteaeeeeeaaannbanbeeeaeeaeeeeaaaanns 39¢
AR BT nd (=10 o7z 1 (=1 1= {00 PR 397
27.8.4SpeCifyiNngMIXiN MOAUIBScoiiiieeiii ittt e e e e e e e ettt e e e ee e e e e s s nebbbe e e e eeeaaaeeeseannnnsneeeeeeeas 398
27.8.5Interactingwith RUDY'SGarbagECOIECIOL.uuiiiiiiiiiee ettt e e e e e e e s e s eeeeaeeeeesannnnes 398

Xiii

SWIG-1.3 Documentation

Table of Contents

A S BT A [CI= Vo I o) TR 4
oI (= 110 0T 10 =V =T OO 4(
28.1.1Gettingthe rght NEAAEHKIIESceiiieieee ettt et e e e e e e s e s ettt eeeeeae e e e e e annneereees 402
28.1.2CompilingadyNamiCMOMUIE.ueiiiiii ettt e e e e e ettt e e e ee e e e e e sa s aebbeeeeeeeeaaeeesasannnsssbneeeeeaaaeaesaaannnn 402
P T I 151 = LT 1014 PRSP PPPPRPURPR 40
28.1.4USINGYOUIMOAUIE.eeetiieeeeie ettt ettt e e e e e e e ettt ettt e e ae e e e s s e a e ebebb e e e e eaaeeeaesanesbeseeeeeeaaeeesaaansnsbsbeeneeaaaeeaseaannnnne 40¢
28.1.5C0omMPIlatioNOf CH+ EXEENSIONScei ittt ee e ee e e e ettt e e e e e e e e e s e et ettt e e eeaaeeesa s e nbebbeseeeeeeaeeesaaannnnrnreeeeeeas 404
28.1.6Compilingfor 64—Dit PIAtFOIMIS. ..o e e e e st r e e e e e e e e e e e eee s 405
28.1.7Settinga PACKAGEIIETIX ... ettt e e et e e e e e e e e e e e a b e bt e e e e e aeeeeaeannnenaaees 405
28.1 . 8USINONAMESDACES. 1. ttttttteeeteaaaeataaaaatttteeeteeaaaaaasaaaasasteeeeeaaaaaaaasaaaanststeeeeeaeaaeeeasaaasssbssseeeeaaaeeesaaannnbnsbseeeaeaaaaaeas 40¢
28.2Building Tcl/Tk ExtensiongiNdeWINAOWSOS/NTuuuuiiiiiiieeeeie ittt e ee e e e e e e s e s aeibbebe e e e e e aeeessssannbsbeeeeeeeeeaaeesaaannns 405
28.2.1RUNNINGSWIG from DEVEIOPEISTUGIO.vvveeeteeeeeeieiiititie ettt e e e e e e e ettt e e e e e e e e e s eeee e e e e eeeeaeeeaasannnebebeeeeeeas 406
28. 2. 2USINANIMAKEt eeette e ettt ettt e e oo oo oottt ettt e e e e e e s e e s ate e be e eeeeeaaeeeeaa e s s e be b beeeeaeaeeeeeeaannnbeeeeeeaaaaeeeeaeaannnne 40
28.3A tour Of DASICC/CH+WIAPDING: ..ttt etittreeeeeetteeeeeestteeeeesstteeeessastaeaeesastaeeaeasssberaeaaastsseeeaastesaesaassseeeesassseeeessssseeeessnssens 407
2o T T N1 o To [1 1= 40
S TR I U o3 1o] 1 PPN 40
28.3.3GI0DAIVATIADIES.o ettt ettt e et e et e e e e et e e e et e aerea e e arrar s 40!
28.3.4C0ONSIANTEINTENUITIS .. .uuuieeiieitit et e eeeeit et e eeeeetat e eeeesestt it eeeeeesaateeesestaaaaeeess st seeseessanaeeesssssanaeessersrnnsaeesenranns 408
A SR ST o101 (=] =TT TR PPPRRRRI 4C
A s I SIS 11 (01 11| (=Y PSPPI 41
s R I A 0% ol I T oY L YRR 41
AR <L O 111 01=) 117-1 o =D PPT SRR 41
28.3.9PointersreferenCesyalueS ANUaITAYS.cc.uuueiieiieiae e et ettt e e e e e e e s s s e bbbt eeeeeaeaeaeaaaasnsbeseeeeaaaaeeesesannnene 413
28.3.10C++ 0VErOAEAUNCLIONS.ovvueieeiieite et e et et e e e e ettt e e e e e ettt e e e e eet e e e e e s eabaa e eeeeessbaseeseesbanaaeessestansaeeeeesnes 414
P T T B O 0] =T = (0] £ PSPPI 41!
P T T Ol = V1 111 01 (o0 1 TSRO PPPPPPPURPPUOPON 41¢€
P T S (O (Y1410] = (S YRR PPEUPPPRRN 41
AT T O e) 1 1= 1 01101 (=1 £ PSP 417
28.4Furtherdetailson the TCl CIASSINIEITACE...........uuii ettt e e e e et e e e e e e et e e e e s e et e e e e eessabnseeeeens 418
P T 1 0 VA o F= 1SS < TR TR 41
28.4.2MEMONY MANAUEIMIENL. ... eeeeeieeeittetette e e e e e e e e e e e e e e aeeee et eteee e e aebebebbes s e o s oo oo oo e e e e e eaeaeaeeeeeeeseasansenbsbnnnnnn i ns 4109
28.5INPUt ANAOULPULDATAIMEIEES ... et e et ittt ettt e e e e e e e ettt ettt e e ee e e e s e s e tte ettt e eteeaeaeaaassnbbeaeeeeaaaeeesseaannsasbseeeaaaaaeeessannnnns 420
28.6 EXCEPLONNANAING....... ittt ete e e et e ettt e e e e e e e e e ettt ettt eeeeeeesaaaaeatbeteeeeeeaeeeeaeaannbbebe e et e eeaeeeeeeaannnbbneeeeeaaaeeeeaeann 42
P T Y] 0= 110 F= o1 S PP TRRPPP 4.
P I ALY T LRS- WY 01T 1A= 1 1SS PURRURTRRRN: 42/
A T e Y 01T 7= T U RE RPN 42
28.7. 3TYPEMAVAIADIES. ... ettt ettt e oottt e e e e e e s e e s et ettt e ee et eaeeeeeaa e an bbb beeeeeeeee e e e e e e nnannreereaeaaaeaeas 42¢
28.7.4Convertinga TCl ISt 10 @ CHAI ettt e e e e e e e e ettt e e e e e e e e e e s e nnnnbetbeeeeeeaeeas 427
28.7.5ReturNiNQVAlUESIN @FQUMIENES. .. .eieeee ettt eee e e e e e e e e e ebebeeeeeeeaeeesesaaneetbetaeeeeeaeaesaaaasnsbaseeeeeaeaeaesesannnenrenneeeas 428
28. 7. BUSEIUITUNCIIONS.cvvii ettt ettt et e e e et e e e e e e et e e e e e e e etb e e e e s e s abn e e e e e e aabseessesbaanaeeeeessrannenss 42
A T 51 = T a0 F= 10 1Y/ 0 1=T 010 = 1o 1 PP SOS P PRPRTT 42¢
A AR] o101 (=Y 1 =TT | TR TSP 42
28.8Turninga SWIG ModuleintO @ TCI PACKAGE. ...« uttieeei ittt ettt e e e e ettt e e e e e e e s e e et eeeaeaeaeeeas 430
28.9Building newkinds of TCl iNterfaCeIIN T . uuueiieieeei ittt ettt e e e e e e e e s e e s eeaeeeaeeeas 431
P I 1 0)V o F= 1SS < PR 43
Al =TT [T o TS PR PPPPPPRRRRR 4.
A I a1 oY 18 o3 1o o FO PO RSPORREPN 4
A I o (=T (=0 1 T2 R RSO RTPPPPR 4
A RS I 1= o T o (= RSO PEPRRRPRR 43
29. 4 EXECULIONIMOTEL.vieieiieeiieee ettt ettt e e ettt e e e e e ettt e e e e e e taa e e e e s e et e e e e e e ss b s eeseesbaa e aeesessban s aeesesbabansaeesserannnnns 43
A T =] 0] (01011 ST AT O OO U PP PP PRPPN 43
A = U511 2T P U EUP TSRO PRP 42
A R e | e 1<) W (=1=Y TSSO 43

SWIG-1.3 Documentation

Table of Contents

29 Extending SWIG
29.4. AAHITDULE NAMESPACES. .. ettt eeeeei ettt et et e e e e e e e et te ettt eteeaeaeaaa e e e tbeeeeeeeeaeeesaaaannsbebeeeeeaeaaeeeesaassnbesbeeeeaaaaeesaaannns 441

A I RS 1SVA0 1] 1o I I o] =TT PRPRRRPR 44
A R N M N ATE A (Y= N0 1= o [T (Y03 1AV 442

A A OTe o (ST CT=Y =] =1 110 RSP 44:
29.4.BSWIG ANAXIMLeeeeiiieie et e e e ettt e e et et e e e e e e s e et b eeeee e s s st s e e e s ee bbb e eaes s s baan e eeeess st seeesesbanneeeesenranns 44
29, S P IMILIVE DALASIIUCIUIESvu e eeeeeti e e e e ettt e e e e ettt et e e e e ettt e e e e e e aab s e e e e e e baa e e eeesesbaa e e e s e e s aaa s eessasbaneeesesssbanaeeseerannnnns 441
A BTN S (10T [SO PPPPRRRRP 44
A oI b= o) £ 1= VPSPPI 44
A ST T I 1S 1= 4

A RS @fe] 010 0T0]0 0] 1<) r- A0] 0 LS TSP PPPRRURTRRN: 447
29.5.51teratingoVver ListS aNAHASNES. ..ottt e e e e e e s et r et e e e e e e e e eeeeeas 448
A ST 211 PPN 4
29.6 NavigatingandmanipUIAtiNODAISEIIEES.uuueiiiiiieee e e ettt e e e e e e e e e e ettt e eeeaeeaesa s s nnbasbeeeeeaaeeesesaannnnnbaseeaeeaaaeans 449
29.7WOrKINGWIth @EIIDULESeeeeeeiiee e e ettt e e ettt e et e e e e e e e e kbbbt et eeeeaeeeeeaa e nnbbebeeeeeeaaeeeeeaannnnbsnneeeaaaaeeesaaannns 45]
A B I Y] 0111 (=] 1 O PP 45
AS R I S ([aTo =T a oToTe [1aTo o) iV o1t PSSR 452
A RS T2 Y] o 1= oo 0 1S) (0 [o3 11 o PSRRI 45;
A IR TGl] 61N (ST £ TSRO PUPUPPURPRPRN 45
A R Y] o 1=Te (=) =V a o [T aT=Y o1 T = PP ESURTRR 455
A R RS Y= |11 1 T PPPRRR 4E

29.8.60ULPULIUNCIIONS. ...ttt e ettt e e e e e e oottt et e e e e e e e e e o atte e et e e e eaeeesesannnbebeeeeeeeaaaeeesaaannnbbsbeneeaaaeeeeaaannns 45¢
P IR =T = 1 1) (= 5NN 4t

29.10Writing @ LanQUAGEVMIOTUIE.ceiiie ettt e e e ettt e et e e e e e e s s eee bttt e e eaaaeaesaaansnbbeteeeeeeaaaeesesannsbsbeneeeaaaaeaaens 457
29.10. 1EXECULIONMMIOUEL ittt ettt e e ettt e e e e ettt e e e e e e ettt e e e e e asaa e e e e e esbaa e eeeesssban s eeseesaansaaeessssransaneeens 45¢
A T 022 = T o 11 PRSP PPPPRRURPR 45
29.10.3COMMANAINE OPLIONS ... ittt ettt e e e e e e e bbbt eeeee e e e e e s e s s aetbebeeeeeeaaeessaaaansbsbeeaeeeeaaeeeesaannsnsbsaeeeeaaaeaesaeaannnnnes 459
29.10.4CoNfigurationaNdPIEPIOCESSIMG. ... v eeetuetrrreeruttretesatteeeeeaaasteeeesasbbe e e e aaasbe e e e s asbb et e e aansbe e e e e anbbe e e e eannbreeeeaannees 460
29.10.5Entry pOiNtt0 COABUENEIALION.uueieeiieeee e e i e ittt et e e e e e e e e ettt et e e e e e e s e s e nbat bttt eeaeaaeeesseannsbssseeeeaaaeeesesanns 460
29.10.6Module /O andWrapPEISKEIBION.ueeiiiiiieiee e e ettt e e e e e e e e et e e e e e e e e e s e s aabbeteeeeeaaeeeeaeaannsenbeneeeeas 461
A I O oY (oY =T Koo T =T o [T 1= = L () S EUPPRR P 461
29.10.8CONTGUIBLIONTIES ee e ettt e e oottt e e e e e e e e e e e ettt et e e e e aeeeeeeaannbbbeeereaeaaaeeeeaaannnenee 461
29.10. ORUNTIMESUDIIOIL ..ttt ettt ettt e ae e e e e e ettt bttt eeeeeaaeaesaaaasabeeaeeeeeeaeeeaaeaaansbebeeeeeeeaaaeeesaaaannbesbeeeaaaaeeeaeeaannnnbnnneees 46
29.10.10StandardiDrary filES.........oii ettt e oot e e e e e e e e et e et e e e e e e e e aaan b e e arraaaaaeeeeaeannnane 462
A I O = T 4] 0] S Va0 | (oS (o= Lo < U RSP 462
A IO T 2B o Yol U /1 1= 0] 7= ([0 PR 46

A TR N Y/ 01T 10T o PP U PR 4¢
A I I (0)Y o] = TS T PRSPPI 46.

A W TN (o (] (ol oY= 6T = ((=T=T 0100 [T PRPETURPR 467

30.3.4Performanc®f thetyPE—CRECKE et e e et e e e e e e e e s et eeeaeaeeas 472

XV

SWIG-1.3 Development Documentation

Last update : SWIG-1.3.22 (September 4, 2004)

Sections

The SWIG documentation is being updated to reflect new SWIG features and enhancements. However, this update process is
quite finished—-there is a lot of old SWIG-1.1 documentation and it is taking some time to update all of it. Please pardon our dt
(or volunteer to help!).

SWIG Core Documentation

 Preface

« Introduction

« Getting started on Windows
» SWIG Basics (Read this!)

* SWIG and C++

e The SWIG preprocessor

e The SWIG Library

» Argument handling

» Typemaps
« Customization features

e Contracts

« Variable length arguments
» Warning messages

» Working with Modules

Language Module Documentation

o C# support
 Chicken support
 Guile support

« Java support

» Ocaml support
« Perl5 support

* PHP support
 Python support
« Ruby support

e Tcl support

Developer Documentation
« Extending SWIG
Documentation that has not yet been updated
This documentation has not been completely updated from SWIG-1.1, but most of the topics still apply to the current release.
Make sure you read the SWIG Basics chapter before reading any of these chapters. Also, SWIG-1.3.10 features extensive

changes to the implementation of typemaps. Make sure you read the Typemaps chapter above if you are using this feature.

« Advanced topics (see Modules for updated information).

SWIG-1.3 Development Documentation 1

1 Preface

« Introduction

« Special Introduction for Version 1.3
* SWIG Versions

« SWIG resources

« Prerequisites

« Organization of this manual

« How to avoid reading the manual

» Backwards Compatibility

* Credits

o Bug regorts
1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces tc
C and C++ programs. Originally developed in 1995, SWIG was first used by scientists in the Theoretical Physics Division at Lo
Alamos National Laboratory for building user interfaces to simulation codes running on the Connection Machine 5
supercomputer. In this environment, scientists needed to work with huge amounts of simulation data, complex hardware, and &
constantly changing code base. The use of a scripting language interface provided a simple yet highly flexible foundation for
solving these types of problems. SWIG simplifies development by largely automating the task of scripting language
integration——allowing developers and users to focus on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is usec
in a wide variety of applications——in fact almost anything where C/C++ programming is involved.

1.2 Special Introduction for Version 1.3

Since SWIG was released in 1996, its user base and applicability has continued to grow. Although its rate of development has
varied, an active development effort has continued to make improvements to the system. Today, nearly a dozen developers ar
working to create SWIG-2.0——-a system that aims to provide wrapping support for nearly all of the ANSI C++ standard and
approximately ten target languages including Guile, Java, Mzscheme, Ocaml, Perl, Pike, PHP, Python, Ruby, and Tcl.

1.3 SWIG Versions

For several years, the most stable version of SWIG has been release 1.1p5. Starting with version 1.3, a new version numberin
scheme has been adopted. Odd version numbers (1.3, 1.5, etc.) represent development versions of SWIG. Even version numt
(1.4, 1.6, etc.) represent stable releases. Currently, developers are working to create a stable SWIG-2.0 release (Maybe in 20(
Don't let the development status of SWIG-1.3 scare you——-it is much more stable (and capable) than SWIG-1.1p5.

1.4 SWIG resources

The official location of SWIG related material is

http://www.swig.org

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and
implementation tricks.

You can also subscribe to the SWIG mailing list by visiting the page

http://www.swig.org/mail.html

1 Preface 2

http://www.swig.org
http://www.swig.org/mail.html

SWIG-1.3 Documentation

The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and
future work.

CVS access to the latest version of SWIG is also available. More information about this can be obtained at:

http://www.swig.org/cvs.html

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages suc
Tcl, Python, and Perl. A detailed knowledge of these scripting languages is not required although some familiarity won't hurt. N
prior experience with building C extensions to these languages is required——-after all, this is what SWIG does automatically.
However, you should be reasonably familiar with the use of compilers, linkers, and makefiles since making scripting language
extensions is somewhat more complicated than writing a normal C program.

Recent SWIG releases have become significantly more capable in their C++ handling——especially support for advanced featur
like namespaces, overloaded operators, and templates. Whenever possible, this manual tries to cover the technicalities of this
interface. However, this isn't meant to be a tutorial on C++ programming. For many of the gory details, you will almost certainly
want to consult a good C++ reference. If you don't program in C++, you may just want to skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining
chapters are devoted to specific SWIG language modules and are self contained. Thus, if you are using SWIG to build Python
interfaces, you can probably skip to that chapter and find almost everything you need to know. Caveat: we are currently workin
on a documentation rewrite and many of the older language module chapters are still somewhat out of date.

1.7 How to avoid reading the manual

If you hate reading manuals, glance at the "Introduction” which contains a few simple examples. These examples contain abou
95% of everything you need to know to use SWIG. After that, simply use the language—specific chapters as a reference. The
SWIG distribution also comes with a large directory of examples that illustrate different topics.

1.8 Backwards Compatibility

If you are a previous user of SWIG, don't expect recent versions of SWIG to provide backwards compatibility. In fact, backwarc
compatibility issues may arise even between successive 1.3.x releases. Although these incompatibilities are regrettable,
SWIG-1.3 is an active development project. The primary goal of this effort is to make SWIG better——-a process that would
simply be impossible if the developers are constantly bogged down with backwards compatibility issues.

On a positive note, a few incompatibilities are a small price to pay for the large number of new features that have been
added-—-—-namespaces, templates, smart pointers, overloaded methods, operators, and more.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION
preprocessor symbol which holds the version of SWIG being executed. SWIG_VERSION is a hexadecimal integer such as
0x010311 (corresponding to SWIG-1.3.11). This can be used in an interface file to define different typemaps, take advantage ¢
different features etc:

#if SWIG_VERSION >= 0x010311
/* Use some fancy new feature */
#endif

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined
SWIG_VERSION since SWIG-1.3.11.

1.5 Prerequisites 3

http://www.swig.org/cvs.html

SWIG-1.3 Documentation
1.9 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people. Most recent SWIG
development has been supported by Matthias Képpe, William Fulton, Lyle Johnson, Richard Palmer, Thien—-Thi Nguyen, Jasor
Stewart, Loic Dachary, Masaki Fukushima, Luigi Ballabio, Sam Liddicott, Art Yerkes, Marcelo Matus, and Harco de Hilster.

Historically, the following people contributed to early versions of SWIG. Peter Lomdahl, Brad Holian, Shujia Zhou, Niels Jenser
and Tim Germann at Los Alamos National Laboratory were the first users. Patrick Tullmann at the University of Utah suggestet
the idea of automatic documentation generation. John Schmidt and Kurtis Bleeker at the University of Utah tested out the early
versions. Chris Johnson supported SWIG's developed at the University of Utah. John Buckman, Larry Virden, and Tom Schwa
provided valuable input on the first releases and improving the portability of SWIG. David Fletcher and Gary Holt have providec
a great deal of input on improving SWIG's Perl5 implementation. Kevin Butler contributed the first Windows NT port.

1.10 Bug reports

Although every attempt has been made to make SWIG bug-free, we are also trying to make feature improvements that may
introduce bugs. To report a bug, either send mail to the SWIG developer list at the swig—dev mailing list or report a bug at the
SWIG bug tracker. In your report, be as specific as possible, including (if applicable), error messages, tracebacks (if a core dur
occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG generated wrapper ct
We can only fix bugs if we know about them.

1.9 Credits 4

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

2 Introduction

* What is SWIG?

» Why use SWIG?

« A SWIG example
+ SWIG interface file
¢ The swig command
¢ Building a Perl5 module
¢ Building a Python module
¢ Shortcuts

 Supported C/C++ language features
» Non-intrusive interface building
« Incorporating SWIG into a build system

« Hands off code generation
* SWIG and freedom

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a
nutshell, SWIG is a compiler that takes C declarations and creates the wrappers needed to access those declarations from oth
languages including including Perl, Python, Tcl, Ruby, Guile, and Java. SWIG normally requires no modifications to existing
code and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG include:

« Building interpreted interfaces to existing C programs.

* Rapid prototyping and application development.

« Interactive debugging.

« Reengineering or refactoring of legacy software into a scripting language components.

» Making a graphical user interface (using Tk for example).

* Testing of C libraries and programs (using scripts).

« Building high performance C modules for scripting languages.

« Making C programming more enjoyable (or tolerable depending on your point of view).

* Impressing your friends.

 Obtaining vast sums of research funding (although obviously not applicable to the author).

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software
without having to get a degree in software engineering. Because of this, the use of SWIG tends to be somewhat informal and
ad-hoc (e.g., SWIG does not require users to provide formal interface specifications as you would find in a dedicated IDL
compiler). Although this style of development isn't appropriate for every project, it is particularly well suited to software
development in the small; especially the research and development work that is commonly found in scientific and engineering
projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other
programming languages. However, why would anyone want to do that? To answer that question, it is useful to list a few strengf
of C/C++ programming:

« Excellent support for writing programming libraries.

« High performance (number crunching, data processing, graphics, etc.).
« Systems programming and systems integration.

* Large user community and software base.

Next, let's list a few problems with C/C++ programming

2 Introduction 5

SWIG-1.3 Documentation

» Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other
libraries).

« Testing is time consuming (the compile/debug cycle).

» Not easy to reconfigure or customize without recompilation.

» Modularization can be tricky.

 Security concerns (buffer overflow for instance).

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programr
languages for different tasks. For instance, writing a graphical user interface may be significantly easier in a scripting language
like Python or Tcl (consider the reasons why millions of programmers have used languages like Visual Basic if you need more
proof). An interactive interpreter might also serve as a useful debugging and testing tool. Other languages like Java might grea
simplify the task of writing distributed computing software. The key point is that different programming languages offer different
strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect. Therefore, by
combining languages together, you can utilize the best features of each language and greatly simplify certain aspects of softwe
development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C
programming model which usually results in programs that resemble this:

* A collection of functions and variables that do something useful.
« A main() program that starts everything.
« A horrible collection of hacks that form some kind of user interface (but which no—one really wants to touch).

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less
code, better flexibility, and increased programmer productivity.

SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C
program and using the high-level language interface, but not the tedious and complex chore of making the two languages talk
each other. At the same time, SWIG recognizes that all applications are different. Therefore, it provides a wide variety of
customization features that let you change almost every aspect of the language bindings. This is the main reason why SWIG h,
such a large user manual ;-).

2.3 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:
/* File : example.c */
double My_variable =3.0;

/* Compute factorial of n */
int fact(int n) {
if (n <=1) return 1,
else return n*fact(n-1);

}

/* Compute n mod m */
int my_mod(int n, int m) {
return(n % m);

}

Suppose that you wanted to access these functions and the global variable My _variable from Tcl. You start by making a
SWIG interface file as shown below (by convention, these files carry a .i suffix) :

2.3.1 SWIG interface file

/* File : example.i */
%module example

2.3 A SWIG example 6

SWIG-1.3 Documentation

%
/* Put headers and other declarations here */
9%}

extern double My_variable;
extern int fact(int);
extern int my_mod(int n, int m);

The interface file contains ANSI C function prototypes and variable declarations. The %module directive defines the name of tt
module that will be created by SWIG. The %{,%]} block provides a location for inserting additional code such as C header files ¢
additional C declarations.

2.3.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Tcl module (under Linux) as follows :

unix > swig —tcl example.i

unix > gcc —c —fpic example.c example_wrap.c —l/usr/local/include
unix > gcc —shared example.o example_wrap.o —0 example.so
unix > tclsh

% load ./example.so

% fact 4

24

% my_mod 23 7

2

% expr $My_variable + 4.5

7.5

%

The swig command produced a new file called example_wrap.c that should be compiled along with the example.c file.

Most operating systems and scripting languages now support dynamic loading of modules. In our example, our Tcl module has
been compiled into a shared library that can be loaded into Tcl. When loaded, Tcl can now access the functions and variables
declared in the SWIG interface. A look at the file example_wrap.c reveals a hideous mess. However, you almost never need
to worry about it.

2.3.3 Building a Perl5 module

Now, let's turn these functions into a Perl5 module. Without making any changes type the following (shown for Solaris):

unix > swig —perl5 example.i

unix > gcc —c example.c example_wrap.c \
—l/usr/local/lib/perl5/sun4-solaris/5.003/CORE

unix > Id -G example.o example_wrap.o —o example.so # This is for Solaris

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my_mod(23,7), "\n";

print $example::My_variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

unix >

2.3.4 Building a Python module

Finally, let's build a module for Python (shown for Irix).

unix > swig —python example.i

unix > gcc —¢ —fpic example.c example_wrap.c —l/usr/local/include/python2.0
unix > gcc —shared example.o example_wrap.o -0 _example.so

unix > python

2.3.2 The swig command 7

SWIG-1.3 Documentation

Python 2.0 (#6, Feb 21 2001, 13:29:45)

[GCC egcs—2.91.66 19990314/Linux (egcs—1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.

>>> import example

>>> example.fact(4)

24

>>> example.my_mod(23,7)

2

>>> example.cvar.My_variable + 4.5

75

2.3.5 Shortcuts

To the truly lazy programmer, one may wonder why we needed the extra interface file at all. As it turns out, you can often do
without it. For example, you could also build a Perl5 module by just running SWIG on the C header file and specifying a module
name as follows

unix > swig —perl5 —module example example.h

unix > gcc —c example.c example_wrap.c \
—l/usr/local/lib/perl5/sun4-solaris/5.003/CORE

unix > Id -G example.o example_wrap.o —o example.so

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my_mod(23,7), "\n";

print $example::My_variable + 4.5, "\n";

<ctrl-d>

24

2

75

2.4 Supported C/C++ language features

A primary goal of the SWIG project is to make the language binding process extremely easy. Although a few simple examples
have been shown, SWIG is quite capable in supporting most of C++. Some of the major features include:

* Full C99 preprocessing.

< All ANSI C and C++ datatypes.
 Functions, variables, and constants.
* Classes.

* Single and multiple inheritance.

« Overloaded functions and methods.
« Overloaded operators.

« C++ templates (including member templates, specialization, and partial specialization).
* Namespaces.

* Variable length arguments.

* C++ smart pointers.

Currently, the only major C++ feature not supported is nested classes——a limitation that will be removed in a future release.

It is important to stress that SWIG is not a simplistic C++ lexing tool like several apparently similar wrapper generation tools.
SWIG not only parses C++, it implements the full C++ type system and it is able to understand C++ semantics. SWIG generate
its wrappers with full knowledge of this information. As a result, you will find SWIG to be just as capable of dealing with nasty
corner cases as it is in wrapping simple C++ code. In fact, SWIG is able handle C++ code that stresses the very limits of many
C++ compilers.

2.3.5 Shortcuts 8

SWIG-1.3 Documentation
2.5 Non-intrusive interface building

When used as intended, SWIG requires minimal (if any) modification to existing C or C++ code. This makes SWIG extremely
easy to use with existing packages and promotes software reuse and modularity. By making the C/C++ code independent of th
high level interface, you can change the interface and reuse the code in other applications. It is also possible to support differel
types of interfaces depending on the application.

2.6 Incorporating SWIG into a build system

SWIG is a command line tool and as such can be incorporated into any build system that supports invoking external
tools/compilers. SWIG is most commonly invoked from within a Makefile, but is also known to be invoked from from popular
IDEs such as Microsoft Visual Studio.

If you are using the GNU Autotools (Autoconf/ Automake/ Libtool) to configure SWIG use in your project, the SWIG Autoconf
macros can be used. The primary macro is ac_pkg_swig, see

http://www.gnu.org/software/ac—archive/htmldoc/ac_pkag_swig.html. The ac_python_devel macro is also helpful for
generating Python extensions. See the Autoconf Macro Archive for further information on this and other Autoconf macros.

There is growing support for SWIG in some build tools, for example CMake is a cross—platform, open—-source build manager w
built in support for SWIG. CMake can detect the SWIG executable and many of the target language libraries for linking against.
CMake knows how to build shared libraries and loadable modules on many different operating systems. This allows easy cross
platform SWIG development. It also can generate the custom commands necessary for driving SWIG from IDE's and makefiles
All of this can be done from a single cross platform input file. The following example is a CMake input file for creating a python
wrapper for the SWIG interface file, example.i:

This is a CMake example for Python

FIND_PACKAGE(SWIG REQUIRED)
INCLUDE(${SWIG_USE_FILE})

FIND_PACKAGE(PythonLibs)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_PATHY})

INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
SET(CMAKE_SWIG_FLAGS ")

SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES CPLUSPLUS ON)
SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES SWIG_FLAGS "-includeall’)

SWIG_ADD_MODULE(example python example.i example.cxx)
SWIG_LINK_LIBRARIES(example ${PYTHON_LIBRARIES})

The above example will generate native build files such as makefiles, nmake files and Visual Studio projects which will invoke
SWIG and compile the generated C++ files into _example.so (UNIX) or _example.dll (Windows).

2.7 Hands off code generation
SWIG is designed to produce working code that needs no hand—-maodification (in fact, if you look at the output, you probably
won't want to modify it). You should think of your target language interface being defined entirely by the input to SWIG, not the

resulting output file. While this approach may limit flexibility for hard—core hackers, it allows others to forget about the low-level
implementation details.

2.8 SWIG and freedom

No, this isn't a special section on the sorry state of world politics. However, it may be useful to know that SWIG was written wit!

2.5 Non-intrusive interface building 9

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
http://www.gnu.org/software/ac-archive/htmldoc/ac_pkg_swig.html
http://www.gnu.org/software/ac-archive/htmldoc/index.html
http://www.cmake.org

SWIG-1.3 Documentation

a certain "philosophy" about programming——-namely that programmers are smart and that tools should just stay out of their we
Because of that, you will find that SWIG is extremely permissive in what it lets you get away with. In fact, you can use SWIG to
go well beyond "shooting yourself in the foot" if dangerous programming is your goal. On the other hand, this kind of freedoom
may be exactly what is needed to work with complicated and unusual C/C++ applications.

Ironically, the freedom that SWIG provides is countered by an extremely conservative approach to code generation. At it's core
SWIG tries to distill even the most advanced C++ code down to a small well-defined set of interface building techniques based
on ANSI C programming. Because of this, you will find that SWIG interfaces can be easily compiled by virtually every C/C++
compiler and that they can be used on any platform. Again, this is an important part of staying out of the programmer’s
way——--the last thing any developer wants to do is to spend their time debugging the output of a tool that relies on nhon—portat
or unreliable programming features.

2.5 Non-intrusive interface building 10

3 Getting started on Windows

« |nstallation on Windows
+ Windows Executable
+ SWIG Windows Examples
¢ Instructions for using the Examples with Visual Studio
¢ Python
OICL
O Perl
¢ Java
¢ Ruby
OC#
¢ Instructions for using the Examples with other compilers
+ SWIG on Cygwin and MinGW
¢ Building swig.exe on Windows
¢ Building swig.exe using MinGW and MSYS
¢ Building swig.exe using Cygwin
¢ Building swig.exe alternatives
¢ Running the examples on Windows using Cygwin

This chapter describes SWIG usage on Microsoft Windows. Installing SWIG and running the examples is covered as well as
building the SWIG executable. Usage within the Unix like environments MinGW and Cygwin is also detailed.

3.1 Installation on Windows

SWIG does not come with the usual Windows type installation program, however it is quite easy to get started. The main steps
are:

» Download the swigwin zip package from the SWIG website and unzip into a directory. This is all that needs
downloading for the Windows platform.

 Set environment variables as described in the SWIG Windows Examples section in order to run examples using Visual
C++.

3.1.1 Windows Executable

The swigwin distribution contains the SWIG Windows executable, swig.exe, which will run on 32 bit versions of Windows, ie
Windows 95/98/ME/NT/2000/XP. If you want to build your own swig.exe have a lgok at Building swig.exe on Windows.

3.2 SWIG Windows Examples

Using Microsoft Visual C++ is the most common approach to compiling and linking SWIG's output. The Examples directory has
a few Visual C++ project files (.dsp files). These were produced by Visual C++ 6, although they should also work in Visual C++
5. Later versions of Visual Studio should also be able to open and convert these project files. The C# examples come with .NE
2003 solution (.sIn) and project files instead of Visual C++ 6 project files. The project files have been set up to execute SWIG ir
custom build rule for the SWIG interface (.i) file. Alternatively run_the examples using Cygwin.

More information on each of the examples is available with the examples distributed with SWIG (Examples/index.html).

3.2.1 Instructions for using the Examples with Visual Studio

Ensure the SWIG executable is as supplied in the SWIG root directory in order for the examples to work. Most languages requi
some environment variables to be set before running Visual C++. Note that Visual C++ must be re—started to pick up any chan

in environment variables. Open up an example .dsp file, Visual C++ will create a workspace for you (.dsw file). Ensure the
Release build is selected then do a Rebuild All from the Build menu. The required environment variables are displayed with the

3 Getting started on Windows 11

http://www.swig.org

SWIG-1.3 Documentation

current values.

The list of required environment variables for each module language is also listed below. They are usually set from the Control
Panel and System properties, but this depends on which flavour of Windows you are running. If you don't want to use
environment variables then change all occurences of the environment variables in the .dsp files with hard coded values. If you
interested in how the project files are set up there is explanatory information in some of the language module's documentation.

3.2.1.1 Python

PYTHON_INCLUDE : Set this to the directory that contains python.h
PYTHON_LIB : Set this to the python library including path for linking

Example using Python 2.1.1:
PYTHON_INCLUDE: d:\python21\include
PYTHON_LIB: d:\python21\libs\python21.lib
3.2.12TCL

TCL_INCLUDE : Set this to the directory containing tcl.h
TCL_LIB : Set this to the TCL library including path for linking

Example using ActiveTcl 8.3.3.3
TCL_INCLUDE: d:\tchinclude
TCL_LIB: d:\tchlib\tcl83.lib
3.2.1.3 Perl

PERL5_INCLUDE : Set this to the directory containing perl.h
PERL5_LIB : Set this to the Perl library including path for linking

Example using nsPerl 5.004_04:

PERL5_INCLUDE: D:\nsPerl5.004_04\lib\CORE
PERL5_LIB: D:\nsPerl5.004_04\lib\CORE\perl.lib

3.2.1.4 Java

JAVA_INCLUDE : Set this to the directory containing jni.h
JAVA_BIN : Set this to the bin directory containing javac.exe

Example using JDK1.3:
JAVA_INCLUDE: d:\jdk1.3\include
JAVA_BIN: d:\jdk1.3\bin

3.2.1.5 Ruby

RUBY_INCLUDE : Set this to the directory containing ruby.h
RUBY_LIB : Set this to the ruby library including path for linking

Example using Ruby 1.6.4:

RUBY_INCLUDE: D:\ruby\lib\ruby\1.6\i586—mswin32
RUBY_LIB: D:\ruby\lib\mswin32-ruby16.lib

3.2.1.1 Python 12

SWIG-1.3 Documentation
3.2.1.6 C#

The C# examples do not require any environment variables to be set as a C# project file is included. Just open up the .sln solu

file in Visual Studio .NET 2003 and do a Rebuild All from the Build menu. The accompanying C# and C++ project file are
automatically used by the solution file.

3.2.2 Instructions for using the Examples with other compilers
If you do not have access to Visual C++ you will have to set up project files / Makefiles for your chosen compiler. There is a

section in each of the language modules detailing what needs setting up using Visual C++ which may be of some guidance.
Alternatively you may want to use Cygwin as described in the following section.

3.3 SWIG on Cygwin and MinGW

SWIG can also be compiled and run using Cygwin or MinGW which provides a Unix like front end to Windows and comes free
with gcc, an ANSI C/C++ compiler. However, this is not a recommended approach as the prebuilt executable is supplied.

3.3.1 Building swig.exe on Windows

If you want to replicate the build of swig.exe that comes with the download, follow the MinGW instructions below. This is not
necessary to use the supplied swig.exe. This information is provided for those that want to modify the SWIG source code in a
Windows environment. Normally this is not needed, so most people will want to ignore this section.

3.3.1.1 Building swig.exe using MinGW and MSYS
* Install MinGW and MSYS from the MinGW site. This provides a Unix environment on Windows.

* Follow the usual Unix instructions in the README file in the SWIG root directory to build swig.exe from the MinGW
command prompt.

3.3.1.2 Building swig.exe using Cygwin

Note that SWIG can also be built using Cygwin. However, the SWIG will then require the Cygwin DLL when executing. Follow
the Unix instructions in the README file in the SWIG root directory. Note that the Cygwin environment will also allow one to
regenerate the autotool generated files which are supplied with the release distribution. These files are generated using the
autogen.sh script and will only need regenerating in circumstances such as changing the build system.

3.3.1.3 Building swig.exe alternatives

If you don't want to install Cygwin or MinGW, use a different compiler to build SWIG. For example, all the source code files can
be added to a Visual C++ project file in order to build swig.exe from the Visual C++ IDE.

3.3.2 Running the examples on Windows using Cygwin

The examples and test-suite work as successfully on Cygwin as on any other Unix operating system. The modules which are
known to work are Python, Tcl, Perl, Ruby, Java and C#. Follow the Unix instructions in the README file in the SWIG root
directory to build the examples.

3.2.1.6 C# 13

http://www.cygwin.com
http://www.mingw.org
http://www.mingw.org

4 Scripting Languages

« The two language view of the world
« How does a scripting language talk to C?
+ Wrapper functions

¢ Variable linking
¢ Constants

+ Structures and classes

¢ Proxy classes
« Building scripting language extensions
¢ Shared libraries and dynamic loading
¢ Linking with shared libraries
+ Static linking

This chapter provides a brief overview of scripting language extension programming and the mechanisms by which scripting
language interpreters access C and C++ code.

4.1 The two language view of the world

When a scripting language is used to control a C program, the resulting system tends to look as follows:

Scripting Language
Y

Collection of C/C++ functions

In this programming model, the scripting language interpreter is used for high level control whereas the underlying functionality
of the C/C++ program is accessed through special scripting language "commands.” If you have ever tried to write your own
simple command interpreter, you might view the scripting language approach to be a highly advanced implementation of that.
Likewise, If you have ever used a package such as MATLAB or IDL, it is a very similar model-—the interpreter executes user
commands and scripts. However, most of the underlying functionality is written in a low—-level language like C or Fortran.

The two-language model of computing is extremely powerful because it exploits the strengths of each language. C/C++ can be
used for maximal performance and complicated systems programming tasks. Scripting languages can be used for rapid
prototyping, interactive debugging, scripting, and access to high—level data structures such associative arrays.

4.2 How does a scripting language talk to C?

Scripting languages are built around a parser that knows how to execute commands and scripts. Within this parser, there is a
mechanism for executing commands and accessing variables. Normally, this is used to implement the builtin features of the
language. However, by extending the interpreter, it is usually possible to add new commands and variables. To do this, most
languages define a special API for adding new commands. Furthermore, a special foreign function interface defines how these
new commands are supposed to hook into the interpreter.

Typically, when you add a new command to a scripting interpreter you need to do two things; first you need to write a special
"wrapper" function that serves as the glue between the interpreter and the underlying C function. Then you need to give the
interpreter information about the wrapper by providing details about the name of the function, arguments, and so forth. The nex
few sections illustrate the process.

4 Scripting Languages 14

SWIG-1.3 Documentation

4.2.1 Wrapper functions

Suppose you have an ordinary C function like this :

int fact(int n) {
if (n <=1) return 1,
else return n*fact(n-1);

}

In order to access this function from a scripting language, it is necessary to write a special "wrapper" function that serves as the
glue between the scripting language and the underlying C function. A wrapper function must do three things :

« Gather function arguments and make sure they are valid.
* Call the C function.
 Convert the return value into a form recognized by the scripting language.

As an example, the Tcl wrapper function for the fact() function above example might look like the following :

int wrap_fact(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
int result;
int argo;
if (argc 1= 2) {
interp—>result = "wrong # args";
return TCL_ERROR;

}

arg0 = atoi(argv[1]);

result = fact(arg0);
sprintf(interp—>result,"%d", result);
return TCL_OK;

Once you have created a wrapper function, the final step is to tell the scripting language about the new function. This is usually
done in an initialization function called by the language when the module is loaded. For example, adding the above function to
Tcl interpreter requires code like the following :

int Wrap_Init(Tcl_Interp *interp) {
Tcl_CreateCommand(interp, "fact", wrap_fact, (ClientData) NULL,
(Tcl_CmdDeleteProc *) NULL);
return TCL_OK;
}

When executed, Tcl will now have a new command called "fact" that you can use like any other Tcl command.

Although the process of adding a new function to Tcl has been illustrated, the procedure is almost identical for Perl and Python
Both require special wrappers to be written and both need additional initialization code. Only the specific details are different.

4.2.2 Variable linking

Variable linking refers to the problem of mapping a C/C++ global variable to a variable in the scripting language interpeter. For
example, suppose you had the following variable:

double Foo = 3.5;
It might be nice to access it from a script as follows (shown for Perl):

$a = $Foo * 2.3; # Evaluation
$Foo = $a + 2.0; # Assignment

4.2.1 Wrapper functions 15

SWIG-1.3 Documentation

To provide such access, variables are commonly manipulated using a pair of get/set functions. For example, whenever the vall
of a variable is read, a "get" function is invoked. Similarly, whenever the value of a variable is changed, a "set" function is callec

In many languages, calls to the get/set functions can be attached to evaluation and assignment operators. Therefore, evaluatin
variable such as $Foo might implicitly call the get function. Similarly, typing $Foo = 4 would call the underlying set function
to change the value.

4.2.3 Constants

In many cases, a C program or library may define a large collection of constants. For example:

#define RED 0xff0000
#define BLUE 0x0000ff
#define GREEN 0x00ff00

To make constants available, their values can be stored in scripting language variables such as $RED, $BLUE, and $GREEN.
Virtually all scripting languages provide C functions for creating variables so installing constants is usually a trivial exercise.

4.2.4 Structures and classes

Although scripting languages have no trouble accessing simple functions and variables, accessing C/C++ structures and class
present a different problem. This is because the implementation of structures is largely related to the problem of data
representation and layout. Furthermore, certain language features are difficult to map to an interpreter. For instance, what does
C++ inheritance mean in a Perl interface?

The most straightforward technique for handling structures is to implement a collection of accessor functions that hide the
underlying representation of a structure. For example,

struct Vector {
Vector();
~Vector();
double x,y,z;

can be transformed into the following set of functions :

Vector *new_Vector();

void delete_Vector(Vector *v);

double Vector_x_get(Vector *v);
double Vector_y_get(Vector *v);
double Vector_y_get(Vector *v);

void Vector_x_set(Vector *v, double x);
void Vector_y_set(Vector *v, double y);
void Vector_z_set(Vector *v, double z);

Now, from an interpreter these function might be used as follows:

% set v [new_Vector]
% Vector_x_set $v 3.5
% Vector_y_get $v

% delete_Vector $v

% ...

Since accessor functions provide a mechanism for accessing the internals of an object, the interpreter does not need to know
anything about the actual representation of a Vector.

4.2.3 Constants 16

SWIG-1.3 Documentation

4.2.5 Proxy classes

In certain cases, it is possible to use the low-level accessor functions to create a proxy class, also known as a shadow class. £
proxy class is a special kind of object that gets created in a scripting language to access a C/C++ class (or struct) in a way that
looks like the original structure (that is, it proxies the real C++ class). For example, if you have the following C definition :

class Vector {
public:
Vector();
~Vector();
double x,y,z;

%

A proxy classing mechanism would allow you to access the structure in a more natural manner from the interpreter. For examp
in Python, you might want to do this:

>>>v = Vector()
>>>y.Xx=3

>>> vy =4
>>>v.z=-13
>>>

>>> del v

Similarly, in Perl5 you may want the interface to work like this:

$v = new Vector;
$v—>{x} = 3;
Sv—>{y} = 4;
$v—>{z} = -13;

Finally, in Tcl :

Vector v
v configure -x 3 -y 4 -z 13

When proxy classes are used, two objects are at really work——one in the scripting language, and an underlying C/C++ object.
Operations affect both objects equally and for all practical purposes, it appears as if you are simply manipulating a C/C++ objec

4.3 Building scripting language extensions

The final step in using a scripting language with your C/C++ application is adding your extensions to the scripting language itse
There are two primary approaches for doing this. The preferred technique is to build a dynamically loadable extension in the fo
a shared library. Alternatively, you can recompile the scripting language interpreter with your extensions added to it.

4.3.1 Shared libraries and dynamic loading

To create a shared library or DLL, you often need to look at the manual pages for your compiler and linker. However, the
procedure for a few common machines is shown below:

Build a shared library for Solaris
gcc —c example.c example_wrap.c —l/usr/local/include
ld -G example.o example_wrap.o —o example.so

Build a shared library for Linux
agcc —fpic —c example.c example_wrap.c —l/usr/local/include
gcc —shared example.o example_wrap.o —0 example.so

Build a shared library for Irix

4.2.5 Proxy classes 17

SWIG-1.3 Documentation

gcc —c example.c example_wrap.c —l/usr/local/include
ld —shared example.o example_wrap.o —o example.so

To use your shared library, you simply use the corresponding command in the scripting language (load, import, use, etc...). Thi
will import your module and allow you to start using it. For example:

% load ./example.so
% fact 4

24

%

When working with C++ codes, the process of building shared libraries may be more complicated——primarily due to the fact the
C++ modules may need additional code in order to operate correctly. On many machines, you can build a shared C++ module
following the above procedures, but changing the link line to the following :

c++ —shared example.o example_wrap.o -0 example.so
4.3.2 Linking with shared libraries

When building extensions as shared libraries, it is not uncommon for your extension to rely upon other shared libraries on your
machine. In order for the extension to work, it needs to be able to find all of these libraries at run—time. Otherwise, you may get
an error such as the following :

>>> import graph
Traceback (innermost last):

File "<stdin>", line 1, in ?

File "/home/sci/datal/beazley/graph/graph.py", line 2, in ?

import graphc

ImportError: 1101:/home/sci/datal/beazley/bin/python: rld: Fatal Error: cannot
successfully map soname 'libgraph.so' under any of the filenames /usr/lib/libgraph.so:/
lib/libgraph.so:/lib/cmplrs/cc/libgraph.so:/ust/lib/cmplrs/cc/libgraph.so:
>>>

What this error means is that the extension module created by SWIG depends upon a shared library called "libgraph.so" that
the system was unable to locate. To fix this problem, there are a few approaches you can take.

« Link your extension and explicitly tell the linker where the required libraries are located. Often times, this can be done
with a special linker flag such as —R, —rpath, etc. This is not implemented in a standard manner so read the man page:
for your linker to find out more about how to set the search path for shared libraries.

« Put shared libraries in the same directory as the executable. This technique is sometimes required for correct operatiol
non-Unix platforms.

* Set the UNIX environment variable LD_LIBRARY_PATH to the directory where shared libraries are located before
running Python. Although this is an easy solution, it is not recommended. Consider setting the path using linker options
instead.

4.3.3 Static linking
With static linking, you rebuild the scripting language interpreter with extensions. The process usually involves compiling a shol
main program that adds your customized commands to the language and starts the interpreter. You then link your program witt

library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language extension
In fact, there are very few practical reasons for doing this——consider using shared libraries instead.

4.3.2 Linking with shared libraries 18

5 SWIG Basics

e Running SWIG
¢ Input format
¢ SWIG Output
+ Comments
¢ C Preprocessor
+ SWIG Directives
+ Parser Limitations
» Wrapping Simple C Declarations

¢ Basic Type Handling
¢ Global Variables

+ Constants
+ A brief word aboutonst
¢ A cautionary tale ofhar *
- Pointers and complex objects
¢ Simple pointers
¢ Run time pointer type checking
¢ Derived types, structs, and classes
¢ Undefined datatypes
¢ Typedef
» Other Practicalities
¢ Passing structures by value
¢ Return by value
¢ Linking to structure variables
¢ Linking tochar *
¢ Arrays
¢ Creating read-only variables
¢ Renaming and ignoring declarations
¢

Default/optional arguments
+ Pointers to functions and callbacks

« Structures and unions

¢ Typedef and structures
¢ Character strings and structures

¢ Array members
+ Structure data members

+ C constructors and destructors

¢ Adding member functions to C structures
+ Nested structures

¢ Other things to note about structure wrapping
 Code Insertion

¢ The output of SWIG
¢ Code insertion blocks
¢ Inlined code blocks
+ Initialization blocks
« An Interface Building Strategy
¢ Preparing a C program for SWIG
+ The SWIG interface file
+ Why use separate interface files?

¢ Getting the right header files
¢ What to do with main()

This chapter describes the basic operation of SWIG, the structure of its input files, and how it handles standard ANSI C

declarations. C++ support is described in the next chapter. However, C++ programmers should still read this chapter to unders
the basics. Specific details about each target language are described in later chapters.

5 SWIG Basics 19

SWIG-1.3 Documentation

5.1 Running SWIG

To run SWIG, use the swig command with one or more of the following options and a filename like this:

swig [options] filename

—chicken Generate CHICKEN wrappers

—csharp Generate C# wrappers

—guile Generate Guile wrappers

—java Generate Java wrappers

—-mzscheme Generate Mzscheme wrappers

—ocaml Generate Ocaml wrappers

—perl Generate Perl wrappers

-php Generate PHP wrappers

—pike Generate Pike wrappers

—-python Generate Python wrappers

—-ruby Generate Ruby wrappers

-sexp Generate Lisp S—Expressions wrappers

—tcl Generate Tcl wrappers

—xml Generate XML wrappers

—Cct++ Enable C++ parsing

—Dsymbol Define a preprocessor symbol

—Fstandard Display error/warning messages in commonly used format
—Fmicrosoft Display error/warning messages in Microsoft format
-help Display all options

—Idir Add a directory to the file include path

—Ifile Include a SWIG library file.

-module name Set the name of the SWIG module

—noruntime Generate raw wrapper code (omit supporting code)
-o outfile Name of output file

—outdir dir Set language specific files output directory

—-swiglib Show location of SWIG library

—version Show SWIG version number

This is a subset of commandline options. Additional options are also defined for each target language. A full list can be obtaine
by typing swig —help or swig —lang —help.

5.1.1 Input format

As input, SWIG expects a file containing ANSI C/C++ declarations and special SWIG directives. More often than not, this is a
special SWIG interface file which is usually denoted with a special .i or .swg suffix. In certain cases, SWIG can be used
directly on raw header files or source files. However, this is not the most typical case and there are several reasons why you m
not want to do this (described later).

The most common format of a SWIG interface is as follows:

%module mymodule

%{

#include "myheader.h"

%}

/I Now list ANS| C/C++ declarations
int foo;

int bar(int x);

The name of the module is supplied using the special %module directive (or the —-module command line option). This directive
must appear at the beginning of the file and is used to name the resulting extension module (in addition, this name often define
namespace in the target language). If the module name is supplied on the command line, it overrides the name specified with t
%module directive.

5.1 Running SWIG 20

SWIG-1.3 Documentation

Everything in the %({ ... %} block is simply copied verbatim to the resulting wrapper file created by SWIG. This section is
almost always used to include header files and other declarations that are required to make the generated wrapper code comp
is important to emphasize that just because you include a declaration in a SWIG input file, that declaration does not automatice
appear in the generated wrapper code——-therefore you need to make sure you include the proper header files in the %{ ... %}
section. It should be noted that the text enclosed in %{ ... %} is not parsed or interpreted by SWIG. The %({...%} syntax and
semantics in SWIG is analogous to that of the declarations section used in input files to parser generation tools such as yacc o
bison.

5.1.2 SWIG Output

The output of SWIG is a C/C++ file that contains all of the wrapper code needed to build an extension module. SWIG may
generate some additional files depending on the target language. By default, an input file with the name file.i is transformed
into a file file_wrap.c or file_wrap.cxx (depending on whether or not the —c++ option has been used). The name of the

output file can be changed using the —o option. In certain cases, file suffixes are used by the compiler to determine the source
language (C, C++, etc.). Therefore, you have to use the —o option to change the suffix of the SWIG—-generated wrapper file if yi
want something different than the default. For example:

$ swig —c++ —python —o example_wrap.cpp example.i

The C/C++ output file created by SWIG often contains everything that is needed to construct a extension module for the target
scripting language. SWIG is not a stub compiler nor is it usually necessary to edit the output file (and if you look at the output,
you probably won't want to). To build the final extension module, the SWIG output file is compiled and linked with the rest of
your C/C++ program to create a shared library.

Many target languages will also generate proxy class files in the target language. The default output directory for these languag
specific files is the same directory as the generated C/C++ file. This can can be modified using the —outdir option. For
example:

$ swig —c++ —python —outdir pyfiles —o cppfiles/example_wrap.cpp example.i

If the directories cppfiles and pyfiles exist, the following will be generated:

cppfiles/example_wrap.cpp
pyfiles/example.py

5.1.3 Comments

C and C++ style comments may appear anywhere in interface files. In previous versions of SWIG, comments were used to
generate documentation files. However, this feature is currently under repair and will reappear in a later SWIG release.

5.1.4 C Preprocessor

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor featur
are supported including file inclusion, conditional compilation and macros. However, #include statements are ignored unless
the —includeall command line option has been supplied. The reason for disabling includes is that SWIG is sometimes used to
process raw C header files. In this case, you usually only want the extension module to include functions in the supplied heade
file rather than everything that might be included by that header file (i.e., system headers, C library functions, etc.).

It should also be noted that the SWIG preprocessor skips all text enclosed inside a %f{...%]} block. In addition, the preprocessor

includes a number of macro handling enhancements that make it more powerful than the normal C preprocessor. These extens
are described in the "Preprocessor” chapter.

5.1.5 SWIG Directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "%" to distinguish them from normal
declarations. These directives are used to give SWIG hints or to alter SWIG's parsing behavior in some manner.

5.1.2 SWIG Output 21

SWIG-1.3 Documentation

Since SWIG directives are not legal C syntax, it is generally not possible to include them in header files. However, SWIG
directives can be included in C header files using conditional compilation like this:

/* header.h ——- Some header file */

/* SWIG directives —— only seen if SWIG is running */
#ifdef SWIG

%module foo

#endif

SWIG is a special preprocessing symbol defined by SWIG when it is parsing an input file.

5.1.6 Parser Limitations

Although SWIG can parse most C/C++ declarations, it does not provide a complete C/C++ parser implementation. Most of thes
limitations pertain to very complicated type declarations and certain advanced C++ features. Specifically, the following features
are not currently supported:

» Non-conventional type declarations. For example, SWIG does not support declarations such as the following (even
though this is legal C):

/* Non—conventional placement of storage specifier (extern) */
const int extern Number;

/* Extra declarator grouping */
Matrix (foo); // A global variable

/* Extra declarator grouping in parameters */
void bar(Spam (Grok)(Doh));

In practice, few (if any) C programmers actually write code like this since this style is never featured in programming
books. However, if you're feeling particularly obfuscated, you can certainly break SWIG (although why would you want
to?).

* Running SWIG on C++ source files (what would appear in a .C or .cxx file) is not recommended. Even though SWIG
can parse C++ class declarations, it ignores declarations that are decoupled from their original class definition (the
declarations are parsed, but a lot of warning messages may be generated). For example:

/* Not supported by SWIG */
int foo::bar(int) {
... whatever ...

}
« Certain advanced features of C++ such as nested classes are not yet supported. Please see the section on using SWI

with C++ for more information.

In the event of a parsing error, conditional compilation can be used to skip offending code. For example:

#ifndef SWIG
... some bad declarations ...
#endif

Alternatively, you can just delete the offending code from the interface file.

One of the reasons why SWIG does not provide a full C++ parser implementation is that it has been designed to work with
incomplete specifications and to be very permissive in its handling of C/C++ datatypes (e.g., SWIG can generate interfaces eve
when there are missing class declarations or opaque datatypes). Unfortunately, this approach makes it extremely difficult to
implement certain parts of a C/C++ parser as most compilers use type information to assist in the parsing of more complex
declarations (for the truly curious, the primary complication in the implementation is that the SWIG parser does not utilize a
separate typedef-name terminal symbol as described on p. 234 of K&R).

5.1.6 Parser Limitations 22

SWIG-1.3 Documentation

5.2 Wrapping Simple C Declarations

SWIG wraps simple C declarations by creating an interface that closely matches the way in which the declarations would be us
in a C program. For example, consider the following interface file:

%module example

extern double sin(double x);

extern int strcmp(const char *, const char *);
extern int Foo;

#define STATUS 50

#define VERSION "1.1"

In this file, there are two functions sin() and strcmp(), a global variable Foo, and two constants STATUS and VERSION.
When SWIG creates an extension module, these declarations are accessible as scripting language functions, variables, and
constants respectively. For example, in Tcl:

% sin 3

5.2335956

% strcmp Dave Mike
-1

% puts $Foo

42

% puts $STATUS
50

% puts $VERSION
11

Or in Python:

>>> example.sin(3)

5.2335956

>>> example.strcmp('Dave’,'Mike")
-1

>>> print example.cvar.Foo

42

>>> print example.STATUS

50

>>> print example.VERSION

1.1

Whenever possible, SWIG creates an interface that closely matches the underlying C/C++ code. However, due to subtle
differences between languages, run—time environments, and semantics, it is not always possible to do so. The next few sectior
describes various aspects of this mapping.

5.2.1 Basic Type Handling

In order to build an interface, SWIG has to convert C/C++ datatypes to equivalent types in the target language. Generally,
scripting languages provide a more limited set of primitive types than C. Therefore, this conversion process involves a certain
amount of type coercion.

Most scripting languages provide a single integer type that is implemented using the int or long datatype in C. The following
list shows all of the C datatypes that SWIG will convert to and from integers in the target language:

int

short

long

unsigned
signed
unsigned short
unsigned long

5.2 Wrapping Simple C Declarations 23

SWIG-1.3 Documentation

unsigned char
signed char
bool

When an integral value is converted from C, a cast is used to convert it to the representation in the target language. Thus, a 16
short in C may be promoted to a 32 bit integer. When integers are converted in the other direction, the value is cast back into tt
original C type. If the value is too large to fit, it is silently truncated.

unsigned char and signed char are special cases that are handled as small 8-bit integers. Normally, the char datatype
is mapped as a one—character ASCII string.

The bool datatype is cast to and from an integer value of 0 and 1 unless the target language provides a special boolean type.

Some care is required when working with large integer values. Most scripting languages use 32-bit integers so mapping a 64—
long integer may lead to truncation errors. Similar problems may arise with 32 bit unsigned integers (which may appear as larg
negative numbers). As a rule of thumb, the int datatype and all variations of char and short datatypes are safe to use. For
unsigned int and long datatypes, you will need to carefully check the correct operation of your program after it has been
wrapped with SWIG.

Although the SWIG parser supports the long long datatype, not all language modules support it. This is because long long
usually exceeds the integer precision available in the target language. In certain modules such as Tcl and Perl5, long long
integers are encoded as strings. This allows the full range of these numbers to be represented. However, it does not allow long
long values to be used in arithmetic expressions. It should also be noted that although long long is part of the ISO C99
standard, it is not universally supported by all C compilers. Make sure you are using a compiler that supports long long before
trying to use this type with SWIG.

SWIG recognizes the following floating point types :

float
double

Floating point numbers are mapped to and from the natural representation of floats in the target language. This is almost alway
C double. The rarely used datatype of long double is not supported by SWIG.

The char datatype is mapped into a NULL terminated ASCII string with a single character. When used in a scripting language if
shows up as a tiny string containing the character value. When converting the value back into C, SWIG takes a character string
from the scripting language and strips off the first character as the char value. Thus if the value "foo" is assigned to a char
datatype, it gets the value °f'.

The char * datatype is handled as a NULL-terminated ASCII string. SWIG maps this into a 8-bit character string in the target
scripting language. SWIG converts character strings in the target language to NULL terminated strings before passing them int
C/C++. The default handling of these strings does not allow them to have embedded NULL bytes. Therefore, the char *
datatype is not generally suitable for passing binary data. However, it is possible to change this behavior by defining a SWIG
typemap. See the chapter_on Typemaps for details about this.

At this time, SWIG does not provide any special support for Unicode or wide—character strings (the C wchar_t type). This is a
delicate topic that is poorly understood by many programmers and not implemented in a consistent manner across languages.
those scripting languages that provide Unicode support, Unicode strings are often available in an 8-bit representation such as
UTF-8 that can be mapped to the char * type (in which case the SWIG interface will probably work). If the program you are
wrapping uses Unicode, there is no guarantee that Unicode characters in the target language will use the same internal
representation (e.g., UCS-2 vs. UCS-4). You may need to write some special conversion functions.

5.2.2 Global Variables
Whenever possible, SWIG maps C/C++ global variables into scripting language variables. For example,

%module example

5.2.2 Global Variables 24

SWIG-1.3 Documentation

double foo;

results in a scripting language variable like this:

Tcl

set foo [3.5] ;# Set foo to 3.5

puts $foo ;# Print the value of foo
Python

cvar.foo = 3.5 # Set foo to 3.5
print cvar.foo # Print value of foo

Perl

$foo = 3.5; # Set foo to 3.5

print $foo,"\n"; # Print value of foo

Ruby

Module.foo = 3.5 # Set foo to 3.5
print Module.foo, "\n" # Print value of foo

Whenever the scripting language variable is used, the underlying C global variable is accessed. Although SWIG makes every
attempt to make global variables work like scripting language variables, it is not always possible to do so. For instance, in Pyth
all global variables must be accessed through a special variable object known as cvar (shown above). In Ruby, variables are
accessed as attributes of the module. Other languages may convert variables to a pair of accessor functions. For example, the
module generates a pair of functions double get_foo() and set_foo(double val) that are used to manipulate the

value.

Finally, if a global variable has been declared as const, it only supports read-only access. Note: this behavior is new to
SWIG-L1.3. Earlier versions of SWIG incorrectly handled const and created constants instead.

5.2.3 Constants

Constants can be created using #define, enumerations, or a special %constant directive. The following interface file shows a
few valid constant declarations :

#define |_CONST 5 /I An integer constant
#define PI 3.14159 /I A Floating point constant
#define S_CONST "hello world" // A string constant
#define NEWLINE \n' /I Character constant

enum boolean {NO=0, YES=1};
enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC};
%constant double BLAH = 42.37;
#define F_CONST (double) 5 /I A floating pointer constant with cast
#define PI_4 Pl/4
#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax. For example, a number with a decimal point is assumed to
be floating point. In addition, SWIG must be able to fully resolve all of the symbols used in a #define in order for a constant to
actually be created. This restriction is necessary because #define is also used to define preprocessor macros that are definitely
not meant to be part of the scripting language interface. For example:

#define EXTERN extern

EXTERN void foo();

In this case, you probably don't want to create a constant called EXTERN (what would the value be?). In general, SWIG will no
create constants for macros unless the value can be completely determined by the preprocessor. For instance, in the above

5.2.3 Constants 25

SWIG-1.3 Documentation

example, the declaration

#define PI_4 Pl/4
defines a constant because Pl was already defined as a constant and the value is known.

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes them through to the output fil
lets the C compiler perform the final evaluation (SWIG does perform a limited form of type—checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the interface file (either in a header fil
or in the %{,%]} block). SWIG only translates the enumeration into code needed to add the constants to a scripting language. It
needs the original enumeration declaration in order to get the correct enum values as assigned by the C compiler.

The %constant directive is used to more precisely create constants corresponding to different C datatypes. Although it is not
usually not needed for simple values, it is more useful when working with pointers and other more complex datatypes. Typically
%constant is only used when you want to add constants to the scripting language interface that are not defined in the original
header file.

5.2.4 A brief word about const

A common confusion with C programming is the semantic meaning of the const qualifier in declarations——especially when it is
mixed with pointers and other type modifiers. In fact, previous versions of SWIG handled const incorrectly——a situation that
SWIG-1.3.7 and newer releases have fixed.

Starting with SWIG-1.3, all variable declarations, regardless of any use of const, are wrapped as global variables. If a
declaration happens to be declared as const, it is wrapped as a read—only variable. To tell if a variable is const or not, you
need to look at the right-most occurrence of the const qualifier (that appears before the variable name). If the right-most
const occurs after all other type modifiers (such as pointers), then the variable is const. Otherwise, it is not.

Here are some examples of const declarations.

const char a; /I A constant character
char const b; /I A constant character (the same)
char *const c; /I A constant pointer to a character

const char *const d; // A constant pointer to a constant character
Here is an example of a declaration that is not const:

const char *e; /I A pointer to a constant character. The pointer
/I may be modified.

In this case, the pointer e can change——-it's only the value being pointed to that is read-only.

Compatibility Note: One reason for changing SWIG to handle const declarations as read-only variables is that there are many
situations where the value of a const variable might change. For example, a library might export a symbol as const in its

public API to discourage modification, but still allow the value to change through some other kind of internal mechanism.
Furthermore, programmers often overlook the fact that with a constant declaration like char *const, the underlying data being
pointed to can be modified—-it's only the pointer itself that is constant. In an embedded system, a const declaration might refer
to a read—only memory address such as the location of a memory—mapped I/O device port (where the value changes, but writi
to the port is not supported by the hardware). Rather than trying to build a bunch of special cases into the const qualifier, the
new interpretation of const as "read—only" is simple and exactly matches the actual semantics of const in C/C++. If you really
want to create a constant as in older versions of SWIG, use the %constant directive instead. For example:

%constant double Pl = 3.14159;
or

#ifdef SWIG

5.2.4 A brief word about const 26

SWIG-1.3 Documentation

#define const %constant
#endif

const double foo = 3.4;
const double bar = 23.4;
constint spam =42;
#ifdef SWIG

#undef const

#endif

5.2.5 A cautionary tale of char *

Before going any further, there is one bit of caution involving char * that must now be mentioned. When strings are passed
from a scripting language to a C char *, the pointer usually points to string data stored inside the interpreter. It is almost always
a really bad idea to modify this data. Furthermore, some languages may explicitly disallow it. For instance, in Python, strings ar
supposed be immutable. If you violate this, you will probably receive a vast amount of wrath when you unleash your module on
the world.

The primary source of problems are functions that might modify string data in place. A classic example would be a function like
this:

char *strcat(char *s, const char *t)

Although SWIG will certainly generate a wrapper for this, its behavior will be undefined. In fact, it will probably cause your
application to crash with a segmentation fault or other memory related problem. This is because s refers to some internal data |
the target language———data that you shouldn't be touching.

The bottom line: don't rely on char * for anything other than read-only input values. However, it must be noted that you could
change the behavior of SWIG using typemaps.

5.3 Pointers and complex objects
Most C programs manipulate arrays, structures, and other types of objects. This section discusses the handling of these dataty

5.3.1 Simple pointers

Pointers to primitive C datatypes such as

int*
double ***
char **

are fully supported by SWIG. Rather than trying to convert the data being pointed to into a scripting representation, SWIG simp
encodes the pointer itself into a representation that contains the actual value of the pointer and a type-tag. Thus, the SWIG
representation of the above pointers (in Tcl), might look like this:

~10081012_p_int
~1008e124 ppp_double
_f8ac_pp_char

A NULL pointer is represented by the string "NULL" or the value 0 encoded with type information.
All pointers are treated as opaque objects by SWIG. Thus, a pointer may be returned by a function and passed around to othet
functions as needed. For all practical purposes, the scripting language interface works in exactly the same way as you would u

the pointer in a C program. The only difference is that there is no mechanism for dereferencing the pointer since this would
require the target language to understand the memory layout of the underlying object.

5.2.5 A cautionary tale of char * 27

SWIG-1.3 Documentation

The scripting language representation of a pointer value should never be manipulated directly. Even though the values shown |
like hexadecimal addresses, the numbers used may differ from the actual machine address (e.g., on little—endian machines, th
digits may appear in reverse order). Furthermore, SWIG does not normally map pointers into high-level objects such as
associative arrays or lists (for example, converting an int * into an list of integers). There are several reasons why SWIG does
not do this:

 There is not enough information in a C declaration to properly map pointers into higher level constructs. For example, ¢
int * may indeed be an array of integers, but if it contains ten million elements, converting it into a list object is
probably a bad idea.

» The underlying semantics associated with a pointer is not known by SWIG. For instance, an int * might not be an
array at all-—perhaps it is an output value!

« By handling all pointers in a consistent manner, the implementation of SWIG is greatly simplified and less prone to errc

5.3.2 Run time pointer type checking

By allowing pointers to be manipulated from a scripting language, extension modules effectively bypass compile—time type
checking in the C/C++ compiler. To prevent errors, a type signature is encoded into all pointer values and is used to perform
run—time type checking. This type—checking process is an integral part of SWIG and can not be disabled or modified without
using typemaps (described in later chapters).

Like C, void * matches any kind of pointer. Furthermore, NULL pointers can be passed to any function that expects to receive &
pointer. Although this has the potential to cause a crash, NULL pointers are also sometimes used as sentinel values or to deno
missing/empty value. Therefore, SWIG leaves NULL pointer checking up to the application.

5.3.3 Derived types, structs, and classes
For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :
Everything else is a pointer

In other words, SWIG manipulates everything else by reference. This model makes sense because most C/C++ programs mak
heavy use of pointers and SWIG can use the type—checked pointer mechanism already present for handling pointers to basic
datatypes.

Although this probably sounds complicated, it's really quite simple. Suppose you have an interface file like this :

%module fileio

FILE *fopen(char *, char *);

int fclose(FILE *);

unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE *);
void *malloc(int nbytes);

void free(void *);

In this file, SWIG doesn't know what a FILE is, but since it's used as a pointer, so it doesn't really matter what it is. If you
wrapped this module into Python, you can use the functions just like you expect :

Copy a file
def filecopy(source,target):
f1 = fopen(source,"r")
f2 = fopen(target,"w")
buffer = malloc(8192)
nbytes = fread(buffer,8192,1,f1)
while (nbytes > 0):
fwrite(buffer,8192,1,f2)
nbytes = fread(buffer,8192,1,f1)
free(buffer)

5.3.2 Run time pointer type checking 28

SWIG-1.3 Documentation

In this case f1, f2, and buffer are all opaque objects containing C pointers. It doesn't matter what value they contain——our
program works just fine without this knowledge.

5.3.4 Undefined datatypes

When SWIG encounters an undeclared datatype, it automatically assumes that it is a structure or class. For example, suppose
following function appeared in a SWIG input file:

void matrix_multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a "Matrix" is. However, it is obviously a pointer to something so SWIG generates a wrapper using its
generic pointer handling code.

Unlike C or C++, SWIG does not actually care whether Matrix has been previously defined in the interface file or not. This
allows SWIG to generate interfaces from only partial or limited information. In some cases, you may not care what a Matrix
really is as long as you can pass an opaque reference to one around in the scripting language interface.

An important detail to mention is that SWIG will gladly generate wrappers for an interface when there are unspecified type
names. However, all unspecified types are internally handled as pointers to structures or classes! For example, consider the
following declaration:

void foo(size_t num);

If size_t is undeclared, SWIG generates wrappers that expect to receive a type of size_t * (this mapping is described
shortly). As a result, the scripting interface might behave strangely. For example:

foo(40);
TypeError: expected a _p_size_t.

The only way to fix this problem is to make sure you properly declare type names using typedef.

5.3.5 Typedef

Like C, typedef can be used to define new type names in SWIG. For example:
typedef unsigned int size_t;

typedef definitions appearing in a SWIG interface are not propagated to the generated wrapper code. Therefore, they either
need to be defined in an included header file or placed in the declarations section like this:

%f
/* Include in the generated wrapper file */
typedef unsigned int size_t;

%}

/* Tell SWIG about it */

typedef unsigned int size_t;

or
%inline %{
typedef unsigned int size_t;
96}

In certain cases, you might be able to include other header files to collect type information. For example:

%module example
%import "sys/types.h"

5.3.4 Undefined datatypes 29

SWIG-1.3 Documentation

In this case, you might run SWIG as follows:
$ swig —l/usr/include —includeall example.i

It should be noted that your mileage will vary greatly here. System headers are notoriously complicated and may rely upon a
variety of non—standard C coding extensions (e.g., such as special directives to GCC). Unless you exactly specify the right incl
directories and preprocessor symbols, this may not work correctly (you will have to experiment).

SWIG tracks typedef declarations and uses this information for run—time type checking. For instance, if you use the above
typedef and had the following function declaration:

void foo(unsigned int *ptr);

The corresponding wrapper function will accept arguments of type unsigned int * or size_t *.

5.4 Other Practicalities

So far, this chapter has presented almost everything you need to know to use SWIG for simple interfaces. However, some C
programs use idioms that are somewhat more difficult to map to a scripting language interface. This section describes some of
these issues.

5.4.1 Passing structures by value

Sometimes a C function takes structure parameters that are passed by value. For example, consider the following function:
double dot_product(Vector a, Vector b);

To deal with this, SWIG transforms the function to use pointers by creating a wrapper equivalent to the following:

double wrap_dot_product(Vector *a, Vector *b) {
Vector x = *a;
Vector y = *b;
return dot_product(x,y);

}

In the target language, the dot_product() function now accepts pointers to Vectors instead of Vectors. For the most part, this
transformation is transparent so you might not notice.

5.4.2 Return by value

C functions that return structures or classes datatypes by value are more difficult to handle. Consider the following function:
Vector cross_product(Vector v1, Vector v2);

This function wants to return Vector, but SWIG only really supports pointers. As a result, SWIG creates a wrapper like this:

Vector *wrap_cross_product(Vector *v1, Vector *v2) {
Vector x = *v1;
Vector y = *v2;
Vector *result;
result = (Vector *) malloc(sizeof(Vector));
*(result) = cross(x,y);
return result;

}
or if SWIG was run with the —c++ option:

Vector *wrap_cross(Vector *v1, Vector *v2) {
Vector x = *v1;

5.4 Other Practicalities 30

SWIG-1.3 Documentation

Vector y = *v2;
Vector *result = new Vector(cross(x,y)); // Uses default copy constructor
return result;

}

In both cases, SWIG allocates a new object and returns a reference to it. It is up to the user to delete the returned object when
no longer in use. Clearly, this will leak memory if you are unaware of the implicit memory allocation and don't take steps to free
the result. That said, it should be noted that some language modules can now automatically track newly created objects and
reclaim memory for you. Consult the documentation for each language module for more details.

It should also be noted that the handling of pass/return by value in C++ has some special cases. For example, the above code
fragments don't work correctly if Vector doesn't define a default constructor. The section on SWIG and C++ has more
information about this case.

5.4.3 Linking to structure variables

When global variables or class members involving structures are encountered, SWIG handles them as pointers. For example,
global variable like this

Vector unit_i;
gets mapped to an underlying pair of set/get functions like this :

Vector *unit_i_get() {
return &unit_i;

}
void unit_i_set(Vector *value) {
unit_i = *value;

}

Again some caution is in order. A global variable created in this manner will show up as a pointer in the target scripting languac
It would be an extremely bad idea to free or destroy such a pointer. Also, C++ classes must supply a properly defined copy
constructor in order for assignment to work correctly.

5.4.4 Linking to char *

When a global variable of type char * appears, SWIG uses malloc() or new to allocate memory for the new value.
Specifically, if you have a variable like this

char *foo;

SWIG generates the following code:

/* C mode */

void foo_set(char *value) {
if (foo) free(foo);
foo = (char *) malloc(strlen(value)+1);
strepy(foo,value);

}

/* C++ mode. When —c++ option is used */
void foo_set(char *value) {
if (foo) delete [] foo;
foo = new char[strlen(value)+1];
strcpy(foo,value);

}

If this is not the behavior that you want, consider making the variable read—only using the %immutable directive. Alternatively,
you might write a short assist—function to set the value exactly like you want. For example:

5.4.3 Linking to structure variables 31

SWIG-1.3 Documentation

%inline %f{
void set_foo(char *value) {
strncpy(foo,value, 50);

}
96}

Note: If you write an assist function like this, you will have to call it as a function from the target scripting language (it does not
work like a variable). For example, in Python you will have to write:

>>> set_foo("Hello World")
A common mistake with char * variables is to link to a variable declared like this:

char *VERSION = "1.0";

In this case, the variable will be readable, but any attempt to change the value results in a segmentation or general protection f
This is due to the fact that SWIG is trying to release the old value using free or delete when the string literal value currently
assigned to the variable wasn't allocated using malloc() or new. To fix this behavior, you can either mark the variable as
read-only, write a typemap (as described in Chapter 6), or write a special set function as shown. Another alternative is to decle
the variable as an array:

char VERSION[64] = "1.0";

When variables of type const char * are declared, SWIG still generates functions for setting and getting the value. However,
the default behavior does not release the previous contents (resulting in a possible memory leak). In fact, you may get a warnir
message such as this when wrapping such a variable:

example.i:20. Typemap warning. Setting const char * variable may leak memory
The reason for this behavior is that const char * variables are often used to point to string literals. For example:
const char *foo = "Hello World\n";

Therefore, it's a really bad idea to call free() on such a pointer. On the other hand, it is legal to change the pointer to point to
some other value. When setting a variable of this type, SWIG allocates a new string (using malloc or new) and changes the poi
to point to the new value. However, repeated modifications of the value will result in a memory leak since the old value is not
released.

5.4.5 Arrays

Arrays are fully supported by SWIG, but they are always handled as pointers instead of mapping them to a special array object
list in the target language. Thus, the following declarations :

int foobar(int a[40]);
void grok(char *argv[]);
void transpose(double a[20][20]);

are processed as if they were really declared like this:
int foobar(int *a);
void grok(char **argv);

void transpose(double (*a)[20]);

Like C, SWIG does not perform array bounds checking. It is up to the user to make sure the pointer points a suitably allocated
region of memory.

Multi-dimensional arrays are transformed into a pointer to an array of one less dimension. For example:
int [10]; /I Maps to int *

5.4.5 Arrays 32

SWIG-1.3 Documentation

int [10][20]; /I Maps to int (*)[20]
int [10][20][30]; // Maps to int (*)[20][30]

It is important to note that in the C type system, a multidimensional array a[][] is NOT equivalent to a single pointer *a or a
double pointer such as **a. Instead, a pointer to an array is used (as shown above) where the actual value of the pointer is the
starting memory location of the array. The reader is strongly advised to dust off their C book and re-read the section on arrays
before using them with SWIG.

Array variables are supported, but are read-only by default. For example:
int a[100][200];

In this case, reading the variable 'a’ returns a pointer of type int (*)[200] that points to the first element of the array
&a[0][0]. Trying to modify 'a’ results in an error. This is because SWIG does not know how to copy data from the target
language into the array. To work around this limitation, you may want to write a few simple assist functions like this:

%inline %f{
void a_set(int i, int j, int val) {
a[ilj] = val;

int a_get(int i, intj) {
return a[i][j];

96}

To dynamically create arrays of various sizes and shapes, it may be useful to write some helper functions in your interface. For
example:

/I Some array helpers
%inline %f{
/* Create any sort of [size] array */
int *int_array(int size) {
return (int *) malloc(size*sizeof(int));
}
/* Create a two—dimension array [size][10] */
int (*int_array_10(int size))[10] {
return (int (*)[10]) malloc(size*10*sizeof(int));
}
%}

Arrays of char are handled as a special case by SWIG. In this case, strings in the target language can be stored in the array. F
example, if you have a declaration like this,

char pathname[256];
SWIG generates functions for both getting and setting the value that are equivalent to the following code:

char *pathname_get() {
return pathname;

}
void pathname_set(char *value) {
strncpy(pathname,value,256);

}

In the target language, the value can be set like a normal variable.

5.4.6 Creating read-only variables

A read-only variable can be created by using the %immutable directive as shown :

/I File : interface.i

5.4.6 Creating read-only variables 33

SWIG-1.3 Documentation

int a; /I Can read/write
%immutable;

int b,c,d /I Read only variables
%mutable;

double x,y /I read/write

The %immutable directive enables read—only mode until it is explicitly disabled using the %mutable directive. As an
alternative to turning read—only mode off and on like this, individual declarations can also be tagged as immutable. For exampl

%immutable Xx; /I Make x read-only
double x; /I Read-only (from earlier %immutable directive)
double y; /I Read—write

Read-only variables are also created when declarations are declared as const. For example:

const int foo; /* Read only variable */
char * const version="1.0"; /* Read only variable */

Compatibility note: Read-only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

5.4.7 Renaming and ignoring declarations

Normally, the name of a C declaration is used when that declaration is wrapped into the target language. However, this may
generate a conflict with a keyword or already existing function in the scripting language. To resolve a name conflict, you can us
the %rename directive as shown :

[/l interface.i

%rename(my_print) print;
extern void print(char *);

%rename(foo) a_really _long_and_annoying_name;
extern int a_really_long_and_annoying_name;

SWIG still calls the correct C function, but in this case the function print() will really be called "my_print()" in the target
language.

The placement of the %rename directive is arbitrary as long as it appears before the declarations to be renamed. A common
technique is to write code for wrapping a header file like this:

[/l interface.i

Y%rename(my_print) print;
%rename(foo) a_really _long_and_annoying_name;

%include "header.h"
%rename applies a renaming operation to all future occurrences of a name. The renaming applies to functions, variables, class
and structure names, member functions, and member data. For example, if you had two—-dozen C++ classes, all with a membe
function named “print' (which is a keyword in Python), you could rename them all to “output' by specifying :

%rename(output) print; // Rename all “print' functions to “output'

SWIG does not normally perform any checks to see if the functions it wraps are already defined in the target scripting language
However, if you are careful about namespaces and your use of modules, you can usually avoid these problems.

5.4.7 Renaming and ignoring declarations 34

SWIG-1.3 Documentation

Closely related to %rename is the %ignore directive. %ignore instructs SWIG to ignore declarations that match a given
identifier. For example:

%ignore print; /I lgnore all declarations named print
%ignore _HAVE_FOOQO_H; // Ignore an include guard constant

%include "foo.h" /I Grab a header file

One use of %ignore is to selectively remove certain declarations from a header file without having to add conditional
compilation to the header. However, it should be stressed that this only works for simple declarations. If you need to remove a
whole section of problematic code, the SWIG preprocessor should be used instead.

More powerful variants of %rename and %ignore directives can be used to help wrap C++ overloaded functions and methods.
This is described in the C++ chapter.

Compatibility note: Older versions of SWIG provided a special %name directive for renaming declarations. For example:
%name(output) extern void print(char *);

This directive is still supported, but it is deprecated and should probably be avoided. The %rename directive is more powerful
and better supports wrapping of raw header file information.

5.4.8 Default/optional arguments

SWIG supports default arguments in both C and C++ code. For example:

int plot(double x, double y, int color=WHITE);

In this case, SWIG generates wrapper code where the default arguments are optional in the target language. For example, this
function could be used in Tcl as follows :

% plot -3.4 7.5 # Use default value
% plot -3.4 7.5 10 # set color to 10 instead

Although the ANSI C standard does not allow default arguments, default arguments specified in a SWIG interface work with bo
C and C++.

Note: There is a subtle semantic issue concerning the use of default arguments and the SWIG generated wrapper code. When
default arguments are used, the default values are emitted into the wrappers and the function is invoked with a full set of
arguments. This behavior is not 100% compatible with all uses of default arguments in C++. Please refer to the C++ chapter fo
further details.

5.4.9 Pointers to functions and callbacks

Occasionally, a C library may include functions that expect to receive pointers to functions——possibly to serve as callbacks.
SWIG provides full support for function pointers provided that the callback functions are defined in C and not in the target
language. For example, consider a function like this:

int binary_op(int a, int b, int (*op)(int,int));

When you first wrap something like this into an extension module, you may find the function to be impossible to use. For
instance, in Python:

>>> def add(x,y):
return x+y

5.4.8 Default/optional arguments 35

SWIG-1.3 Documentation

>>> binary_op(3,4,add)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_f int_int__int
>>>

The reason for this error is that SWIG doesn't know how to map a scripting language function into a C callback. However,
existing C functions can be used as arguments provided you install them as constants. One way to do this is to use the
%constant directive like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%constant int add(int,int);
%constant int sub(int,int);
%constant int mul(int,int);

In this case, add, sub, and mul become function pointer constants in the target scripting language. This allows you to use them
as follows:

>>> binary_op(3,4,add)
7

>>> binary_op(3,4,mul)
12

>>>

Unfortunately, by declaring the callback functions as constants, they are no longer accesible as functions. For example:

>>> add(3,4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object is not callable: '_ff020efc_p_f int_int__int'
>>>

If you want to make a function available as both a callback function and a function, you can use the %callback and
%nocallback directives like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%callback("%s_cb")

int add(int,int);

int sub(int,int);

int mul(int,int);

%nocallback

The argument to %callback is a printf-style format string that specifies the naming convention for the callback constants (%s
gets replaced by the function name). The callback mode remains in effect until it is explicitly disabled using %nocallback.
When you do this, the interface now works as follows:

>>> bhinary_op(3,4,add_cb)
7

>>> binary_op(3,4,mul_cb)
12

>>> add(3,4)

7

>>>mul(3,4)

12

Notice that when the function is used as a callback, special names such as add_cb is used instead. To call the function normal
just use the original function name such as add().

5.4.8 Default/optional arguments 36

SWIG-1.3 Documentation

SWIG provides a number of extensions to standard C printf formatting that may be useful in this context. For instance, the
following variation installs the callbacks as all upper-case constants such as ADD, SUB, and MUL:

/* Some callback functions */
%callback("%(upper)s")

int add(int,int);

int sub(int,int);

int mul(int,int);

%nocallback

A format string of "%(lower)s" converts all characters to lower—case. A string of "%(title)s" capitalizes the first
character and converts the rest to lower case.

And now, a final note about function pointer support. Although SWIG does not normally allow callback functions to be written in
the target language, this can be accomplished with the use of typemaps and other advanced SWIG features. This is described
later chapter.

5.5 Structures and unions

This section describes the behavior of SWIG when processing ANSI C structures and union declarations. Extensions to handle
C++ are described in the next section.

If SWIG encounters the definition of a structure or union, it creates a set of accessor functions. Although SWIG does not need
structure definitions to build an interface, providing definitions make it possible to access structure members. The accessor
functions generated by SWIG simply take a pointer to an object and allow access to an individual member. For example, the
declaration :

struct Vector {
double x,y,z;
}

gets transformed into the following set of accessor functions :

double Vector_x_get(struct Vector *obj) {
return obj—>x;

}

double Vector_y_get(struct Vector *obj) {
return obj—>y;

}

double Vector_z_get(struct Vector *obj) {
return obj—>z;

}

void Vector_x_set(struct Vector *obj, double value) {
obj—>x = value;

}

void Vector_y_set(struct Vector *obj, double value) {
obj—>y = value;

}

void Vector_z_set(struct Vector *obj, double value) {
obj—>z = value;

}
In addition, SWIG creates default constructor and destructor functions if none are defined in the interface. For example:

struct Vector *new_Vector() {
return (Vector *) calloc(1,sizeof(struct Vector));

}

void delete_Vector(struct Vector *obj) {
free(obj);
}

5.5 Structures and unions 37

SWIG-1.3 Documentation

Using these low-level accessor functions, an object can be minimally manipulated from the target language using code like thit

v = new_Vector()
Vector_x_set(v,2)
Vector_y_set(v,10)
Vector_z_set(v,~5)

delete_Vector(v)

However, most of SWIG's language modules also provide a high—level interface that is more convenient. Keep reading.

5.5.1 Typedef and structures

SWIG supports the following construct which is quite common in C programs :

typedef struct {
double x,y,z;
} Vector;

When encountered, SWIG assumes that the name of the object is "Vector' and creates accessor functions like before. The only
difference is that the use of typedef allows SWIG to drop the struct keyword on its generated code. For example:

double Vector_x_get(Vector *obj) {
return obj—>Xx;

}
If two different names are used like this :

typedef struct vector_struct {
double x,y,z;
} Vector;

the name Vector is used instead of vector_struct since this is more typical C programming style. If declarations defined
later in the interface use the type struct vector_struct, SWIG knows that this is the same as Vector and it generates the
appropriate type—checking code.

5.5.2 Character strings and structures

Structures involving character strings require some care. SWIG assumes that all members of type char * have been dynamical
allocated using malloc() and that they are NULL-terminated ASCII strings. When such a member is modified, the previously
contents will be released, and the new contents allocated. For example :

%module mymodule

struct Foo {
char *name;

This results in the following accessor functions :

char *Foo_name_get(Foo *obj) {
return Foo—>name;
}

char *Foo_name_set(Foo *obj, char *c) {
if (obj—>name) free(obj—>name);
obj—>name = (char *) malloc(strlen(c)+1);

5.5.1 Typedef and structures 38

SWIG-1.3 Documentation

strcpy(obj—>name,c);
return obj—->name;

}

If this behavior differs from what you need in your applications, the SWIG "memberin" typemap can be used to change it. See t
typemaps chapter for further details.

Note: If the —c++ option is used, new and delete are used to perform memory allocation.

5.5.3 Array members

Arrays may appear as the members of structures, but they will be read—only. SWIG will write an accessor function that returns
pointer to the first element of the array, but will not write a function to change the contents of the array itself. When this situatior
is detected, SWIG may generate a warning message such as the following :

interface.i:116. Warning. Array member will be read—only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter. In many cases, the warning
message is harmless.

5.5.4 Structure data members

Occasionally, a structure will contain data members that are themselves structures. For example:

typedef struct Foo {
int x;
} Foo;

typedef struct Bar {

inty;

Foo f; [* struct member */
} Bar;

When a structure member is wrapped, it is always handled as a pointer. For example:

Foo *Bar_f_get(Bar *b) {
return &b—>f;

void Bar_f_set(Bar *b, Foo *value) {

b—>f = *value;

}

The reasons for this are somewhat subtle but have to do with the problem of modifying and accessing data inside the data
member. For example, suppose you wanted to modify the value of f.x of a Bar object like this:

Bar *b;
b—>f.x = 37;

Translating this assignment to function calls (as would be used inside the scripting language interface) results in the following
code:

Bar *b;
Foo_x_set(Bar_f_get(b),37);

In this code, if the Bar_f_get() function were to return a Foo instead of a Foo *, then the resulting modification would be
applied to a copy of f and not the data member f itself. Clearly that's not what you want!

It should be noted that this transformation to pointers only occurs if SWIG knows that a data member is a structure or class. Fo
instance, if you had a structure like this,

5.5.3 Array members 39

SWIG-1.3 Documentation

struct Foo {
WORD w;

h
and nothing was known about WORD, then SWIG will generate more normal accessor functions like this:

WORD Foo_w_get(Foo *f) {
return f=>w;

void Foo_w_set(FOO *f, WORD value) {
f->w = value;
}

Compatibility Note: SWIG-1.3.11 and earlier releases transformed all non—primitive member datatypes to pointers. Starting in
SWIG-1.3.12, this transformation only occurs if a datatype is known to be a structure, class, or union. This is unlikely to break
existing code. However, if you need to tell SWIG that an undeclared datatype is really a struct, simply use a forward struct
declaration such as "struct Foo;".

5.5.5 C constructors and destructors

When wrapping structures, it is generally useful to have a mechanism for creating and destroying objects. If you don't do
anything, SWIG will automatically generate functions for creating and destroying objects using malloc() and free(). Note:
the use of malloc() only applies when SWIG is used on C code (i.e., when the —c++ option is not supplied on the command
line). C++ is handled differently.

If you don't want SWIG to generate constructors and destructors, you can use the %nodefault directive or the —no_default
command line option. For example:

swig —no_default example.i
or

%module foo
%nodefault; /I Don't create default constructors/destructors

... declarations ...
%makedefault; // Reenable default constructors/destructors

If you need more precise control, %nodefault can selectively target individual structure definitions. For example:

%nodefault Foo; /I No default constructor/destructors for Foo
struct Foo { /I No default generated.

h

struct Bar { /I Default constructor/destructor generated.

3

Compatibility note: Prior to SWIG-1.3.7, SWIG did not generate default constructors or destructors unless you explicitly turned
them on using -make_default. However, it appears that most users want to have constructor and destructor functions so it has
now been enabled as the default behavior.

5.5.6 Adding member functions to C structures

Most languages provide a mechanism for creating classes and supporting object oriented programming. From a C standpoint,
object oriented programming really just boils down to the process of attaching functions to structures. These functions normally
operate on an instance of the structure (or object). Although there is a natural mapping of C++ to such a scheme, there is no di
mechanism for utilizing it with C code. However, SWIG provides a special %extend directive that makes it possible to attach
methods to C structures for purposes of building an object oriented interface. Suppose you have a C header file with the follow

5.5.5 C constructors and destructors 40

SWIG-1.3 Documentation
declaration :
/* file : vector.h */
ﬁ/.pedef struct {

double x,y,z;
} Vector;

You can make a Vector look alot like a class by writing a SWIG interface like this:

/I file : vector.i
%module mymodule

%
#include "vector.h"
96}
%include vector.h /I Just grab original C header file
%extend Vector { /I Attach these functions to struct Vector
Vector(double x, double y, double z) {
Vector *v;
v = (Vector *v) malloc(sizeof(Vector));
V=>X = X;
V=Y =Y,
V—>7 = z;
return v;
}
~Vector() {
free(self);
}
double magnitude() {
return sqrt(self->x*self->x+self->y*self->y+self->z*self->z);
}
void print() {
printf("Vector [%g, %g, %g]\n", self->x,self->y,self->z);
}
h

Now, when used with proxy classes in Python, you can do things like this :

>>>v = Vector(3,4,0) # Create a new vector
>>> print v.magnitude() # Print magnitude
5.0

>>> v.print() # Print it out

[3,4,0]

>>> del v # Destroy it

The %extend directive can also be used inside the definition of the Vector structure. For example:

/I file : vector.i
%module mymodule
%

#include "vector.h"
%}

typedef struct {
double x,y,z;
%extend {
Vector(double x, double y, double z) { ... }
~Vector() { ... }

}

} Vector;

5.5.5 C constructors and destructors

41

SWIG-1.3 Documentation

Finally, %extend can be used to access externally written functions provided they follow the naming convention used in this
example :

/* File : vector.c */
/* Vector methods */
#include "vector.h"
Vector *new_Vector(double x, double y, double z) {
Vector *v;
v = (Vector *) malloc(sizeof(Vector));
V=>X = X;
V=2y =Y,
v—>z = Z;
return v;

void delete_Vector(Vector *v) {
free(v);

}

double Vector_magnitude(Vector *v) {
return sqrt(V—>x*v—>x+v—>y*v—>y+v—>z*y->z);
}

/I File : vector.i

/I Interface file
%module mymodule
%

#include "vector.h"
%}

typedef struct {
double x,y,z;
%extend {
Vector(int,int,int); / This calls new_Vector()
~Vector(); /I This calls delete_Vector()
double magnitude(); // This will call Vector_magnitude()

}

} Vector;

A little known feature of the %extend directive is that it can also be used to add synthesized attributes or to modify the behavio
of existing data attributes. For example, suppose you wanted to make magnitude a read-only attribute of Vector instead of a
method. To do this, you might write some code like this:

/I Add a new attribute to Vector
%extend Vector {
const double magnitude;

}
/I Now supply the implementation of the Vector_magnitude_get function
9%{
const double Vector_magnitude_get(Vector *v) {

return (const double) return sqrt(v—>X*v—>x+v->y*v—>y+v->7*v—>7);
}
9%}

Now, for all practial purposes, magnitude will appear like an attribute of the object.

A similar technique can also be used to work with problematic data members. For example, consider this interface:

struct Person {
char name[50];

5.5.5 C constructors and destructors 42

SWIG-1.3 Documentation

By default, the name attribute is read—only because SWIG does not normally know how to modify arrays. However, you can
rewrite the interface as follows to change this:

struct Person {
%extend {
char *name;

}

/I Specific implementation of set/get functions
%
char *Person_name_get(Person *p) {

return p—>name;

}

void Person_name_set(Person *p, char *val) {
strncpy(p—>name,val,50);

96}

Finally, it should be stressed that even though %extend can be used to add new data members, these new members can not
require the allocation of additional storage in the object (e.qg., their values must be entirely synthesized from existing attributes ¢
the structure).

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

5.5.7 Nested structures

Occasionally, a C program will involve structures like this :

typedef struct Object {
int objtype;
union {
int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;
} intRep;
} Object;

When SWIG encounters this, it performs a structure splitting operation that transforms the declaration into the equivalent of the
following:

typedef union {

int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;

} Object_intRep;

typedef struct Object {
int objType;
Object_intRep intRep;
} Object;

SWIG will then create an Object_intRep structure for use inside the interface file. Accessor functions will be created for both
structures. In this case, functions like this would be created :

Object_intRep *Object_intRep_get(Object *o0) {
return (Object_intRep *) &o—>intRep;

5.5.7 Nested structures 43

SWIG-1.3 Documentation

}

int Object_intRep_ivalue_get(Object_intRep *0) {
return o—>ivalue;

}

int Object_intRep_ivalue_set(Object_intRep *o, int value) {
return (o—>ivalue = value);

double Object_intRep_dvalue_get(Object_intRep *0) {
return o—>dvalue;
}

... etc ...

Although this process is a little hairy, it works like you would expect in the target scripting language—-especially when proxy
classes are used. For instance, in Perl:

Perl5 script for accessing nested member
$0 = CreateObject(); # Create an object somehow
$o0—>{intRep}—>{ivalue} = 7 # Change value of o.intRep.ivalue

If you have a lot nested structure declarations, it is advisable to double—check them after running SWIG. Although, there is a g«
chance that they will work, you may have to modify the interface file in certain cases.

5.5.8 Other things to note about structure wrapping

SWIG doesn't care if the declaration of a structure in a .i file exactly matches that used in the underlying C code (except in the
case of nested structures). For this reason, there are no problems omitting problematic members or simply omitting the structut
definition altogether. If you are happy passing pointers around, this can be done without ever giving SWIG a structure definitior

Starting with SWIG1.3, a number of improvements have been made to SWIG's code generator. Specifically, even though struc
access has been described in terms of high—level accessor functions such as this,

double Vector_x_get(Vector *v) {
return v—>x;

}

most of the generated code is actually inlined directly into wrapper functions. Therefore, no function Vector_x_get()
actually exists in the generated wrapper file. For example, when creating a Tcl module, the following function is generated
instead:

static int
_wrap_Vector_x_get(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[]) {
struct Vector *argl ;
double result ;

if (SWIG_GetArgs(interp, objc, objv,"p:Vector_x_get self ",&arg0,
SWIGTYPE_p_Vector) == TCL_ERROR)
return TCL_ERROR,;
result = (double) (argl->x);
Tcl_SetObjResult(interp, Tcl_NewDoubleObj((double) result));
return TCL_OK;

}

The only exception to this rule are methods defined with %extend. In this case, the added code is contained in a separate
function.

Finally, it is important to note that most language modules may choose to build a more advanced interface. Although you may
never use the low-level interface described here, most of SWIG's language modules use it in some way or another.

5.5.8 Other things to note about structure wrapping 44

5.6 Code Insertion

SWIG-1.3 Documentation

Sometimes it is necessary to insert special code into the resulting wrapper file generated by SWIG. For example, you may wan
include additional C code to perform initialization or other operations. There are four common ways to insert code, but it's useft

to know how the output of SWIG is structured first.

5.6.1 The output of SWIG

When SWIG creates its output file, it is broken up into four sections corresponding to runtime code, headers, wrapper functions

and module initialization code (in that order).

* Runtime code.

This code is internal to SWIG and is used to include type—checking and other support functions that are used by the re

of the module.
* Header section.

This is user—defined support code that has been included by the %({ ... %} directive. Usually this consists of header

files and other helper functions.
» Wrapper code.

These are the wrappers generated automatically by SWIG.

* Module initialization.

The function generated by SWIG to initialize the module upon loading.

5.6.2 Code insertion blocks

Code is inserted into the appropriate code section by using one of the following code insertion directives:

%runtime %({
... code in runtime section ...
9%}

%header %f{
... code in header section ...
%}

Y%wrapper %f{
... code in wrapper section ...
96}

%init %{
... code in init section ...
9%}

The bare %({ ... %} directive is a shortcut that is the same as %header %f{ ... %]}.

Everything in a code insertion block is copied verbatim into the output file and is not parsed by SWIG. Most SWIG input files
have at least one such block to include header files and support C code. Additional code blocks may be placed anywhere in a

SWIG file as needed.

%module mymodule

%{

#include "my_header.h"
%}

... Declare functions here
%

void some_extra_function() {

=
96}

5.6 Code Insertion

45

SWIG-1.3 Documentation

A common use for code blocks is to write "helper" functions. These are functions that are used specifically for the purpose of
building an interface, but which are generally not visible to the normal C program. For example :

%{
/* Create a new vector */
static Vector *new_Vector() {
return (Vector *) malloc(sizeof(Vector));

}

9%}
/I Now wrap it
Vector *new_Vector();

5.6.3 Inlined code blocks

Since the process of writing helper functions is fairly common, there is a special inlined form of code block that is used as follov

%inline %f{
/* Create a new vector */
Vector *new_Vector() {
return (Vector *) malloc(sizeof(Vector));

}
%)

The %inline directive inserts all of the code that follows verbatim into the header portion of an interface file. The code is then
parsed by both the SWIG preprocessor and parser. Thus, the above example creates a new command new_Vector using only
one declaration. Since the code inside an %inline %{ ... %} block is given to both the C compiler and SWIG, it is illegal to
include any SWIG directives inside a %f{ ... %} block.

5.6.4 Initialization blocks

When code is included in the %init section, it is copied directly into the module initialization function. For example, if you
needed to perform some extra initialization on module loading, you could write this:

%init %{
init_variables();
%}

5.7 An Interface Building Strategy

This section describes the general approach for building interface with SWIG. The specifics related to a particular scripting
language are found in later chapters.

5.7.1 Preparing a C program for SWIG

SWIG doesn't require modifications to your C code, but if you feed it a collection of raw C header files or source code, the resu
might not be what you expect——-in fact, they might be awful. Here's a series of steps you can follow to make an interface for a
program :

« Identify the functions that you want to wrap. It's probably not necessary to access every single function in a C
program—-thus, a little forethought can dramatically simplify the resulting scripting language interface. C header files
are particularly good source for finding things to wrap.

« Create a new interface file to describe the scripting language interface to your program.

« Copy the appropriate declarations into the interface file or use SWIG's %include directive to process an entire C
source/header file.

« Make sure everything in the interface file uses ANSI C/C++syntax.

5.6.3 Inlined code blocks 46

SWIG-1.3 Documentation

» Make sure all necessary “typedef' declarations and type-information is available in the interface file.
« If your program has a main() function, you may need to rename it (read on).
* Run SWIG and compile.

Although this may sound complicated, the process turns out to be fairly easy once you get the hang of it.

In the process of building an interface, SWIG may encounter syntax errors or other problems. The best way to deal with this is
simply copy the offending code into a separate interface file and edit it. However, the SWIG developers have worked very hard
improve the SWIG parser—-you should report parsing errors to the swig—dev mailing list or to the SWIG bug tracker.

5.7.2 The SWIG interface file

The preferred method of using SWIG is to generate separate interface file. Suppose you have the following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

A typical SWIG interface file for this header file would look like the following :

/* File : interface.i */
%module mymodule

%

#include "header.h"

%}

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

Of course, in this case, our header file is pretty simple so we could have made an interface file like this as well:

/* File : interface.i */
%module mymodule
%include header.h

Naturally, your mileage may vary.
5.7.3 Why use separate interface files?

Although SWIG can parse many header files, it is more common to write a special .i file defining the interface to a package.
There are several reasons why you might want to do this:

« It is rarely necessary to access every single function in a large package. Many C functions might have little or no use ir
scripted environment. Therfore, why wrap them?

» Separate interface files provide an opportunity to provide more precise rules about how an interface is to be constructe

« Interface files can provide more structure and organization.

* SWIG can't parse certain definitions that appear in header files. Having a separate file allows you to eliminate or work
around these problems.

« Interface files provide a more precise definition of what the interface is. Users wanting to extend the system can go to t
interface file and immediately see what is available without having to dig it out of header files.

5.7.2 The SWIG interface file 47

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

SWIG-1.3 Documentation

5.7.4 Getting the right header files

Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to compile properly. Make sure
include certain header files by using a %{,%} block like this:

%module graphics
9%{

#include <GL/gl.h>
#include <GL/glu.h>
96}

/I Put rest of declarations here

5.7.5 What to do with main()

If your program defines a main() function, you may need to get rid of it or rename it in order to use a scripting language. Most
scripting languages define their own main() procedure that is called instead. main() also makes no sense when working with
dynamic loading. There are a few approaches to solving the main() conflict :

* Get rid of main() entirely.

* Rename main() to something else. You can do this by compiling your C program with an option like
—Dmain=oldmain.

* Use conditional compilation to only include main() when not using a scripting language.

Getting rid of main() may cause potential initialization problems of a program. To handle this problem, you may consider
writing a special function called program_init() that initializes your program upon startup. This function could then be
called either from the scripting language as the first operation, or when the SWIG generated module is loaded.

As a general note, many C programs only use the main() function to parse command line options and to set parameters.
However, by using a scripting language, you are probably trying to create a program that is more interactive. In many cases, th
old main() program can be completely replaced by a Perl, Python, or Tcl script.

Note: If some cases, you might be inclined to create a scripting language wrapper for main(). If you do this, the compilation
will probably work and your module might even load correctly. The only trouble is that when you call your main() wrapper,
you will find that it actually invokes the main() of the scripting language interpreter itself! This behavior is a side effect of the
symbol binding mechanism used in the dynamic linker. The bottom line: don't do this.

5.7.4 Getting the right header files 48

6 SWIG and C++

» Comments on C++ Wrapping
» Approach
 Supported C++ features
« Command line options and compilation
+ Simple C++ wrapping
¢ Constructors and destructors
+ Default constructors

+ When constructor wrappers aren't created

¢ Copy constructors
+ Member functions

+ Static members
¢+ Member functions and default arguments
¢+ Member data
* Protection
» Enums and constants
* Friends
» References and pointers
« Pass and return by value
« Inheritance
« A brief discussion of multiple inheritance, pointers, and type checking
« Renaming
» Wrapping Overloaded Functions and Methods
¢ Dispatch function generation
+ Ambiguity in Overloading
¢ Ambiguity resolution and renaming
+ Comments on overloading

» Wrapping overloaded operators
» Class extension

» Templates

+ Namespaces

» Exception specifiers

 Pointers to Members

« Smatrt pointers and operator=>()

« Using declarations and inheritance
 Partial class definitions

« A brief rant about const—correctness
 Proxy classes
¢ Construction of proxy classes
+ Resource management in proxies
¢ Language specific details
» Where to go for more information

This chapter describes SWIG's support for wrapping C++. As a prerequisite, you should first read the chapter SWIG Basics to
how SWIG wraps ANSI C. Support for C++ builds upon ANSI C wrapping and that material will be useful in understanding this
chapter.

6.1 Comments on C++ Wrapping

Because of its complexity and the fact that C++ can be difficult to integrate with itself let alone other languages, SWIG only
provides support for a subset of C++ features. Fortunately, this is now a rather large subset.

In part, the problem with C++ wrapping is that there is no semantically obvious (or automatic) way to map many of its advance
features into other languages. As a simple example, consider the problem of wrapping C++ multiple inheritance to a target

6 SWIG and C++ 49

SWIG-1.3 Documentation

language with no such support. Similarly, the use of overloaded operators and overloaded functions can be problematic when 1
such capability exists in a target language.

A more subtle issue with C++ has to do with the way that some C++ programmers think about programming libraries. In the
world of SWIG, you are really trying to create binary—level software components for use in other languages. In order for this to
work, a "component" has to contain real executable instructions and there has to be some kind of binary linking mechanism for
accessing its functionality. In contrast, C++ has increasingly relied upon generic programming and templates for much of its
functionality. Although templates are a powerful feature, they are largely orthogonal to the whole notion of binary components
and libraries. For example, an STL vector does not define any kind of binary object for which SWIG can just create a wrapper.
To further complicate matters, these libraries often utilize a lot of behind the scenes magic in which the semantics of seemingly
basic operations (e.g., pointer dereferencing, procedure call, etc.) can be changed in dramatic and sometimes non-obvious we
Although this "magic" may present few problems in a C++-only universe, it greatly complicates the problem of crossing langua
boundaries and provides many opportunities to shoot yourself in the foot. You will just have to be careful.

6.2 Approach

To wrap C++, SWIG uses a layered approach to code generation. At the lowest level, SWIG generates a collection of procedur
ANSI-C style wrappers. These wrappers take care of basic type conversion, type checking, error handling, and other low-leve
details of the C++ binding. These wrappers are also sufficient to bind C++ into any target language that supports built—in
procedures. In some sense, you might view this layer of wrapping as providing a C library interface to C++. Optionally, SWIG
can also generate proxy classes that provide a natural OO interface to the underlying code. These proxies are built on top of th
low-level procedural wrappers and are typically written in the target language itself. For instance, in Python, a real Python clas
used to provide a wrapper around the underlying C++ object.

It is important to emphasize that SWIG takes a deliberately conservative and non-intrusive approach to C++ wrapping. SWIG
does not encapsulate C++ classes inside special C++ adaptor or proxy classes, it does not rely upon templates, nor does it use
inheritance when generating wrappers. The last thing that most C++ programs need is even more compiler magic. Therefore,
SWIG tries to maintain a very strict and clean separation between the implementation of your C++ application and the resulting
wrapper code. You might say that SWIG has been written to follow the principle of least surprise——it does not play sneaky trick
with the C++ type system, it doesn't mess with your class hierarchies, and it doesn't introduce new semantics. Although this
approach might not provide the most seamless integration with C++, it is safe, simple, portable, and debuggable.

Most of this chapter focuses on the low-level procedural interface to C++ that is used as the foundation for all language modul;
Keep in mind that most target languages also provide a high—level OO interface via proxy classes. A few general details about
proxies can be found at the end of this chapter. However, more detailed coverage can be found in the documentation for each
target language.

6.3 Supported C++ features
SWIG's currently supports the following C++ features :

* Classes.

* Constructors and destructors

* Virtual functions

* Public inheritance (including multiple inheritance)
* Static functions

 Function and method overloading.

» Operator overloading for many standard operators
* References

» Templates (including specialization and member templates).
* Pointers to members

* Namespaces

The following C++ features are not currently supported :

6.2 Approach 50

SWIG-1.3 Documentation

* Nested classes
» Overloaded versions of certain operators (new, delete, etc.)

SWIG's C++ support is an ongoing project so some of these limitations may be lifted in future releases. However, we make no
promises. Also, submitting a bug report is a very good way to get problems fixed (wink).

6.4 Command line options and compilation

When wrapping C++ code, it is critical that SWIG be called with the "—c++' option. This changes the way a number of critical
features such as memory management are handled. It also enables the recognition of C++ keywords. Without the —c++ flag,
SWIG will either issue a warning or a large number of syntax errors if it encounters C++ code in an interface file.

When compiling and linking the resulting wrapper file, it is normal to use the C++ compiler. For example:

$ swig —c++ —tcl example.i
$ c++ —c example_wrap.cxx
$ c++ example_wrap.o $(OBJS) —o example.so

Unfortunately, the process varies slightly on each machine. Make sure you refer to the documentation on each target language
further details. The SWIG Wiki also has further details.

6.5 Simple C++ wrapping
The following code shows a SWIG interface file for a simple C++ class.

%module list
%

#include "list.h"
%}

/I Very simple C++ example for linked list

class List {
public:
List();
~List();
int search(char *value);
void insert(char *);
void remove(char *);
char *get(int n);
int length;
static void print(List *I);

%

To generate wrappers for this class, SWIG first reduces the class to a collection of low—level C-style accessor functions. The r
few sections describe this process. Later parts of the chapter decribe a higher level interface based on proxy classes.

6.5.1 Constructors and destructors

C++ constructors and destructors are translated into accessor functions such as the following :

List * new_List(void) {
return new List;

void delete_List(List *I) {
delete [;
}

6.4 Command line options and compilation 51

SWIG-1.3 Documentation

6.5.2 Default constructors

If a C++ class does not define any public constructors or destructors, SWIG will automatically create a default constructor or
destructor. However, there are a few rules that define this behavior:

« A default constructor is not created if a class already defines a constructor with arguments.

 Default constructors are not generated for classes with pure virtual methods or for classes that inherit from an abstract
class, but don't provide definitions for all of the pure methods.

« A default constructor is not created unless all bases classes support a default constructor.

« Default constructors and destructors are not created if a class defines constructors or destructors in a private or
protected section.

 Default constructors and destructors are not created if any base class defines a private default constructor or a private
destructor.

SWIG should never generate a constructor or destructor for a class in which it is illegal to do so. However, if it is necessary to
disable the default constructor/destructor creation, the %nodefault directive can be used:

%nodefault; // Disable creation of constructor/destructor
class Foo {

)

%makedefault;

%nodefault can also take a class name. For example:

%nodefault Foo; // Disable for class Foo only.

Compatibility Note: The generation of default constructors/destructors was made the default behavior in SWIG 1.3.7. This may
break certain older modules, but the old behavior can be easily restored using %nodefault or the —nodefault command line
option. Furthermore, in order for SWIG to properly generate (or not generate) default constructors, it must be able to gather
information from both the private and protected sections (specifically, it needs to know if a private or protected
constructor/destructor is defined). In older versions of SWIG, it was fairly common to simply remove or comment out the private
and protected sections of a class due to parser limitations. However, this removal may now cause SWIG to erroneously genere
constructors for classes that define a constructor in those sections. Consider restoring those sections in the interface or using
%nodefault to fix the problem.

6.5.3 When constructor wrappers aren't created

If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will not generate a construct
wrapper if it thinks that it will result in illegal wrapper code. There are really two cases where this might show up.

First, SWIG won't generate wrappers for protected or private constructors. For example:

class Foo {
protected:
Foo(); /I Not wrapped.
public:
%

Next, SWIG won't generate wrappers for a class if it appears to be abstract-—that is, it has undefined pure virtual methods. Hel
are some examples:

class Bar {

public:
Bar(); /I Not wrappped. Bar is abstract.
virtual void spam(void) = 0;

k

6.5.2 Default constructors 52

SWIG-1.3 Documentation
class Grok : public Bar {
public:
Grok(); /I Not wrapped. No implementation of abstract spam().

3

Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost all cases, this is caus
when classes are determined to be abstract. To see if this is the case, run SWIG with all of its warnings turned on:

% swig —Wall —python module.i
In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be non-abstract using this:

%feature("notabstract") Foo;

class Foo : public Bar {
public:
Foo(); /I Generated no matter what——-not abstract.

h
More information about %feature can be found in the Customization features chapter.

6.5.4 Copy constructors

If a class defines more than one constructor, its behavior depends on the capabilities of the target language. If overloading is
supported, the copy constructor is accessible using the normal constructor function. For example, if you have this:

class List {
public:
List();
List(const List &); // Copy constructor

h
then the copy constructor can be used as follows:

X = new_List() # Create a list
y = new_List(x) # Copy list x

If the target language does not support overloading, then the copy constructor is available through a special function like this:

List *copy_List(List *f) {
return new List(*f);

}

Note: For a class X, SWIG only treats a constructor as a copy constructor if it can be applied to an object of type X or X *. If
more than one copy constructor is defined, only the first definition that appears is used as the copy constructor——other definitio
will result in a name—clash. Constructors such as X(const X &), X(X &), and X(X *) are handled as copy constructors in

SWIG.

Note: SWIG does not generate a copy constructor wrapper unless one is explicitly declared in the class. This differs from the
treatment of default constructors and destructors.

Compatibility note: Special support for copy constructors was not added until SWIG-1.3.12. In previous versions, copy
constructors could be wrapped, but they had to be renamed. For example:

class Foo {
public:
Foo();
%name(CopyFoo) Foo(const Foo &);

6.5.4 Copy constructors 53

SWIG-1.3 Documentation
k

For backwards compatibility, SWIG does not perform any special copy—constructor handling if the constructor has been manue
renamed. For instance, in the above example, the name of the constructor is set to new_CopyFoo(). This is the same as in old:
versions.

6.5.5 Member functions

All member functions are roughly translated into accessor functions like this :

int List_search(List *obj, char *value) {
return obj—>search(value);

}

This translation is the same even if the member function has been declared as virtual.

It should be noted that SWIG does not actually create a C accessor function in the code it generates. Instead, member access
as obj—>search(value) is directly inlined into the generated wrapper functions. However, the name and calling convention
of the wrappers match the accessor function prototype described above.

6.5.6 Static members

Static member functions are called directly without making any special transformations. For example, the static member functic
print(List *l) directly invokes List::print(List *I) in the generated wrapper code.

Usually, static members are accessed as functions with names in which the class name has been prepended with an undersco
For example, List_print.

6.5.7 Member functions and default arguments

SWIG allows member functions to accept default arguments. For example:

class Foo {
public:

void bar(int x, inty = 3);
%

However, the implementation restricts the use of default arguments to values that are public. The following example illustrates .
very subtle semantic incompatibility between SWIG and C++:

class Foo {
private:
int spam;
public:
void bar(int x, int y = spam); // lllegal in SWIG. Private default value

h
When this occurs, you will get a couple of warning messages like this:

example.i:15. Warning 'spam’ is private in this context.
example.i:15. Warning. Can't set default argument (ignored)

This incompatibility arises because default values in C++ are evaluated in the same scope as the member function whereas S\
evaluates them in the scope of a wrapper function (meaning that the values have to be public). The full set of arguments are
needed in the wrappers in order to support a number of advanced customization features and the use of default arguments in /
C (which is not part of the ANSI standard).

6.5.5 Member functions 54

SWIG-1.3 Documentation

There are several somewhat clumsy ways to work around this problem (which are not discussed here). However, a simpler
solution may be to reconsider your design—-is it really that critical to make the default argument private?

6.5.8 Member data
Member data is handled in exactly the same manner as for C structures. A pair of accessor functions are created. For example

int List_length_get(List *obj) {
return obj—>length;
}

int List_length_set(List *obj, int value) {

obj—>length = value;
return value;

A read-only member can be created using the %immutable and %mutable directives. For example, we probably wouldn't
want the user to change the length of a list so we could do the following to make the value available, but read-only.

class List {
public:

%immutable;
int length;
%mutable;

b
Alternatively, you can specify an immutable member in advance like this:
%immutable List::length;
.c.l-ass List {
|nt length; /I Immutable by above directive
h

Similarly, all data attributes declared as const are wrapped as read—only members.

There are some subtle issues when wrapping data members that are themselves classes. For instance, if you had another clas
this,

class Foo {
public:
List items;

then access to the items member actually uses pointers. For example:

List *Foo_items_get(Foo *self) {
return &self->items;

}

void Foo_items_set(Foo *self, List *value) {
self->items = *value;

}

More information about this can be found in the "Structure data members" section of the SWIG Basics chapter.

Compatibility note: Read-only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to

6.5.8 Member data 55

SWIG-1.3 Documentation

silence the warning. Don't forget the extra semicolon!

Compatibility note: Prior to SWIG-1.3.12, all members of unknown type were wrapped into accessor functions using pointers.
For example, if you had a structure like this

struct Foo {
size_t len;

I3

and nothing was known about size_t, then accessors would be written to work with size_t *. Starting in SWIG-1.3.12, this
behavior has been modified. Specifically, pointers will only be used if SWIG knows that a datatype corresponds to a structure c
class. Therefore, the above code would be wrapped into accessors involving size_t. This change is subtle, but it smooths over
few problems related to structure wrapping and some of SWIG's customization features.

6.6 Protection

SWIG can only wrap class members that are declared public. Anything specified in a private or protected section will simply be
ignored (although the internal code generator sometimes looks at the contents of the private and protected sections so that it ¢
properly generate code for default constructors and destructors).

By default, members of a class definition are assumed to be private until you explicitly give a “public:' declaration (This is the
same convention used by C++).

A subtle access problem relates to default values of member functions. Specifically, default values must be public. Please go b
to the section on default arguments for further details.

6.7 Enums and constants

Enumerations and constants placed in a class definition are mapped into constants with the classname as a prefix. For exampl

class Swig {
public:
enum {ALE, LAGER, PORTER, STOUT},
h
Generates the following set of constants in the target scripting language :
Swig_ALE = Swig::ALE
Swig_LAGER = Swig::LAGER

Swig_PORTER = Swig::PORTER
Swig_STOUT = Swig::STOUT

Members declared as const are wrapped as read—only members and do not create constants.

6.8 Friends

Friend declarations are ignored by SWIG. For example, if you have this code:

class Foo {
public:

friend void blah(Foo *f);

6.6 Protection 56

SWIG-1.3 Documentation

then the friend declaration does not result in any wrapper code. On the other hand, a declaration of the function itself will work
fine. For instance:

class Foo {
public:

friend void blah(Foo *f); /I lgnored

Eo

void blah(Foo *f); /I Generates wrappers

Unlike normal member functions or static member functions, a friend declaration does not define a method that operates on an
instance of an object nor does it define a declaration in the scope of the class. Therefore, it would make no sense for SWIG to
create wrappers as such.

6.9 References and pointers

C++ references are supported, but SWIG transforms them back into pointers. For example, a declaration like this :

class Foo {
public:
double bar(double &a);
}
is accessed using a function similar to this:
double Foo_bar(Foo *obj, double *a) {
obj—>bar(*a);

}

As a special case, most language modules pass const references to primitive datatypes (int, short, float, etc.) by value
instead of pointers. For example, if you have a function like this,

void foo(const int &x);
it is called from a script as follows:
foo(3) # Notice pass by value
Functions that return a reference are remapped to return a pointer instead. For example:

class Bar {
public:
Foo &spam();
%
Generates code like this:
Foo *Bar_spam(Bar *obj) {
Foo &result = obj—>spam();

return &result;

}

However, functions that return const references to primitive datatypes (int, short, etc.) normally return the result as a value
rather than a pointer. For example, a function like this,

const int &bar();

will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.

6.9 References and pointers 57

SWIG-1.3 Documentation

Don't return references to objects allocated as local variables on the stack. SWIG doesn't make a copy of the objects so this wi
probably cause your program to crash.

Note: The special treatment for references to primitive datatypes is necessary to provide more seamless integration with more
advanced C++ wrapping applications——-especially related to templates and the STL. This was first added in SWIG-1.3.12.

6.10 Pass and return by value

Occasionally, a C++ program will pass and return class objects by value. For example, a function like this might appear:

Vector cross_product(Vector a, Vector b);

If no information is supplied about Vector, SWIG creates a wrapper function similar to the following:

Vector *wrap_cross_product(Vector *a, Vector *b) {
Vector x = *a,
Vector y = *b;
Vector r = cross_product(x,y);
return new Vector(r);

}

In order for the wrapper code to compile, Vector must define a copy constructor and a default constructor.

If Vector is defined as class in the interface, but it does not support a default constructor, SWIG changes the wrapper code by
encapsulating the arguments inside a special C++ template wrapper class. This produces a wrapper that looks like this:

Vector cross_product(Vector *a, Vector *b) {
SwigValueWrapper<Vector> x = *a;
SwigValueWrapper<Vector> y = *b;
SwigValueWrapper<Vector> r = cross_product(x,y);
return new Vector(r);

}
This transformation is a little sneaky, but it provides support for pass—by-value even when a class does not provide a default
constructor and it makes it possible to properly support a number of SWIG's customization options. The definition of
SwigValueWrapper can be found by reading the SWIG wrapper code. This class is really nothing more than a thin wrapper
around a pointer.

Note: this transformation has no effect on typemaps or any other part of SWIG—--it should be transparent except that you may
see this code when reading the SWIG output file.

Note: This template transformation is new in SWIG-1.3.11 and may be refined in future SWIG releases. In practice, it is only
necessary to do this for classes that don't define a default constructor.

Note: The use of this template only occurs when objects are passed or returned by value. It is not used for C++ pointers or
references.

Note: The performance of pass—by-value is especially bad for large objects and should be avoided if possible (consider using
references instead).

6.11 Inheritance

SWIG supports C++ public inheritance of classes and allows both single and multiple inheritance. The SWIG type-checker
knows about the relationship between base and derived classes and allows pointers to any object of a derived class to be usec
functions of a base class. The type—checker properly casts pointer values and is safe to use with multiple inheritance.

SWIG does not support private or protected inheritance (it is parsed, but it has no effect on the generated code). Note: private

6.10 Pass and return by value 58

SWIG-1.3 Documentation

protected inheritance do not define an "isa" relationship between classes so it would have no effect on type—checking anyways

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has been omitted.

/I shapes.i
%module shapes
%

#include "shapes.h"
96}

class Shape {
public:
double x,y;
virtual double area() = 0;
virtual double perimeter() = O;
void set_location(double x, double y);

h
class Circle : public Shape {
public:
Circle(double radius);
~Circle();
double area();
double perimeter();
h
class Square : public Shape {
public:
Square(double size);
~Square();
double area();
double perimeter();
}

When wrapped into Python, we can now perform the following operations :

$ python

>>> import shapes

>>> circle = shapes.new_Circle(7)

>>> square = shapes.new_Square(10)
>>> print shapes.Circle_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(square)
100.00000000000000000

>>> shapes.Shape_set_location(square,2,—3)
>>> print shapes.Shape_perimeter(square)
40.00000000000000000

>>>

In this example, Circle and Square objects have been created. Member functions can be invoked on each object by making ca
Circle_area, Square_area, and so on. However, the same results can be accomplished by simply using the Shape_area
function on either object.

One important point concerning inheritance is that the low—level accessor functions are only generated for classes in which the
are actually declared. For instance, in the above example, the method set_location() is only accessible as
Shape_set_location() and not as Circle_set_location() or Square_set_location(). Of course, the

Shape_set_location() function will accept any kind of object derived from Shape. Similarly, accessor functions for the
attributes x and y are generated as Shape_x_get(), Shape_x_set(), Shape_y get(), and Shape_y_set().

Functions such as Circle_x_get() are not available——instead you should use Shape_x_get().

Although the low-level C-like interface is functional, most language modules also produce a higher level OO interface using
proxy classes. This approach is described later and can be used to provide a more natural C++ interface.

6.10 Pass and return by value 59

SWIG-1.3 Documentation

Note: For the best results, SWIG requires all base classes to be defined in an interface. Otherwise, you may get an warning
message like this:

example:18. Nothing known about class 'Foo'. Ignored.

If any base class is undefined, SWIG still generates correct type relationships. For instance, a function accepting a Foo * will
accept any object derived from Foo regardless of whether or not SWIG actually wrapped the Foo class. If you really don't want
to generate wrappers for the base class, but you want to silence the warning, you might consider using the %import directive tc
include the file that defines Foo. %import simply gathers type information, but doesn't generate wrappers. Alternatively, you
could just define Foo as an empty class in the SWIG interface.

Note: typedef-names can be used as base classes. For example:

class Foo {
h

typedef Foo FooObj;
class Bar : public FooObj { // Ok. Base class is Foo

b
Similarly, typedef allows unnamed structures to be used as base classes. For example:
typedef struct {
} Igc')o;
class Bar : public Foo { // Ok.
B

Compatibility Note: Starting in version 1.3.7, SWIG only generates low-level accessor wrappers for the declarations that are
actually defined in each class. This differs from SWIG1.1 which used to inherit all of the declarations defined in base classes at
regenerate specialized accessor functions such as Circle_x_get(), Square_x_get(), Circle_set_location(), and
Square_set_location(). This behavior resulted in huge amounts of replicated code for large class hierarchies and made it
awkward to build applications spread across multiple modules (since accessor functions are duplicated in every single module)
is also unnecessary to have such wrappers when advanced features like proxy classes are used. Future versions of SWIG ma
apply further optimizations such as not regenerating wrapper functions for virtual members that are already defined in a base
class.

6.12 A brief discussion of multiple inheritance, pointers, and type checking

When a target scripting language refers to a C++ object, it normally uses a tagged pointer object that contains both the value o
pointer and a type string. For example, in Tcl, a C++ pointer might be encoded as a string like this:

_808fea88_p_Circle

A somewhat common question is whether or not the type—tag could be safely removed from the pointer. For instance, to get be
performance, could you strip all type tags and just use simple integers instead?

In general, the answer to this question is no. In the wrappers, all pointers are converted into a common data representation in t
target language. Typically this is the equivalent of casting a pointer to void *. This means that any C++ type information
associated with the pointer is lost in the conversion.

The problem with losing type information is that it is needed to properly support many advanced C++ features——especially
multiple inheritance. For example, suppose you had code like this:

class A {

6.12 A brief discussion of multiple inheritance, pointers, and type checking 60

SWIG-1.3 Documentation

public:
int x;

I3

class B {

public:
inty;

h

class C : public A, public B {
h

int A_function(A *a) {
return a—>x;

}

int B_function(B *b) {
return b—>y;

}
Now, consider the following code that uses void *.

C *c = new C();
void *p = (void *) c;

int x = A_function((A *) p);
inty = B_function((B *) p);

In this code, both A_function() and B_function() may legally accept an object of type C * (via inheritance). However,

one of the functions will always return the wrong result when used as shown. The reason for this is that even though p points tc
object of type C, the casting operation doesn't work like you would expect. Internally, this has to do with the data representatior
C. With multiple inheritance, the data from each base class is stacked together. For example:

Because of this stacking, a pointer of type C * may change value when it is converted to a A * or B *. However, this adjustment
does not occur if you are converting from a void *.

The use of type tags marks all pointers with the real type of the underlying object. This extra information is then used by SWIG
generated wrappers to correctly cast pointer values under inheritance (avoiding the above problem).

One might be inclined to fix this problem using some variation of dynamic_cast<>. The only problem is that it doesn't work
with void pointers, it requires RTTI support, and it only works with polymorphic classes (i.e., classes that define one or more
virtual functions).

The bottom line: learn to live with type—tagged pointers.

6.13 Renaming

C++ member functions and data can be renamed with the %name directive. The %name directive only replaces the member
function name. For example :

class List {

public:
List();

%name(ListSize) List(int maxsize);
~List();
int search(char *value);

6.13 Renaming 61

SWIG-1.3 Documentation

%name(find) void insert(char *);
%name(delete) void remove(char *);
char *get(int n);
int length;
static void print(List *I);

%

This will create the functions List_find, List_delete, and a function named new_ListSize for the overloaded
constructor.

The %name directive can be applied to all members including constructors, destructors, static functions, data members, and
enumeration values.

The class name prefix can also be changed by specifying

%name(newname) class List {
}

Although the %name() directive can be used to help deal with overloaded methods, it really doesn't work very well because it
requires a lot of additional markup in your interface. Keep reading for a better solution.

6.14 Wrapping Overloaded Functions and Methods

In many language modules, SWIG provides partial support for overloaded functions, methods, and constructors. For example,
you supply SWIG with overloaded functions like this:

void foo(int x) {
printf("x is %d\n", x);

}

void foo(char *x) {
printf("x is '%s"\n", x);

}
The function is used in a completely natural way. For example:

>>> foo(3)

xis 3

>>> foo("hello")
x is 'hello’

>>>

Overloading works in a similar manner for methods and constructors. For example if you have this code,

class Foo {
public:
Foo();
Foo(const Foo &); // Copy constructor
void bar(int x);
void bar(char *s, int y);

h
it might be used like this

>>> f = Foo() # Create a Foo
>>> f.bar(3)

>>> g = Foo(f) # Copy Foo
>>> f.bar("hello",2)

6.14 Wrapping Overloaded Functions and Methods 62

SWIG-1.3 Documentation

6.14.1 Dispatch function generation

The implementation of overloaded functions and methods is somewhat complicated due to the dynamic nature of scripting
languages. Unlike C++, which binds overloaded methods at compile time, SWIG must determine the proper function as a runtir
check for scripting language targets. This check is further complicated by the typeless nature of certain scripting languages. Fo
instance, in Tcl, all types are simply strings. Therefore, if you have two overloaded functions like this,

void foo(char *x);
void foo(int x);

the order in which the arguments are checked plays a rather critical role.

For statically typed languages, SWIG uses the language's method overloading mechanism. To implement overloading for the
scripting languages, SWIG generates a dispatch function that checks the number of passed arguments and their types. To cre:
this function, SWIG first examines all of the overloaded methods and ranks them according to the following rules:

1. Number of required arguments. Methods are sorted by increasing number of required arguments.
2. Argument type precedence. All C++ datatypes are assigned a numeric type precedence value (which is determined by
the language module).

Type Precedence
TYPE * 0 (High)
void * 20

Integers 40

Floating point 60

char 80

Strings 100 (Low)

Using these precedence values, overloaded methods with the same number of required arguments are sorted in incre:
order of precedence values.

This may sound very confusing, but an example will help. Consider the following collection of overloaded methods:

void foo(double);

void foo(int);

void foo(Bar *);

void foo();

void foo(int x, inty, int z, int w);
void foo(int x, inty, int z = 3);
void foo(double x, double y);
void foo(double x, Bar *z);

The first rule simply ranks the functions by required argument count. This would produce the following list:

[0] foo()

[1] foo(double);

[2] foo(int);

[3] foo(Bar *);

[4] foo(intx, inty, intz = 3);
[5] foo(double x, double y)
[6] foo(double x, Bar *z)

[7] foo(intx, inty, int z, int w);

The second rule, simply refines the ranking by looking at argument type precedence values.

[0] foo()

6.14.1 Dispatch function generation 63

SWIG-1.3 Documentation

[1] foo(Bar *);

[2] foo(int);

[3] foo(double);

[4] foo(intx, inty, intz = 3);
[5] foo(double x, Bar *z)

[6] foo(double x, double y)
[7] foo(intx, inty, int z, int w);

Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply checked in the same ordk
they appear in this ranking.

If you're still confused, don't worry about it———SWIG is probably doing the right thing.
6.14.2 Ambiguity in Overloading

Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider the following example:

void foo(int x);
void foo(long x);

In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer object. Therefore,
which one of these functions do you pick? Clearly, there is no way to truly make a distinction just by looking at the value of the
integer itself (int and long may even be the same precision). Therefore, when SWIG encounters this situation, it may generate
a warning message like this for scripting languages:

example.i:4: Warning(509): Overloaded foo(long) is shadowed by foo(int) at example.i:3.

or for statically typed languages like Java:

example.i:4: Warning(516): Overloaded method foo(long) ignored. Method foo(int)
at example.i:3 used.

This means that the second overloaded function will be inaccessible from a scripting interface or the method won't be wrapped
all. This is done as SWIG does not know how to disambiguate it from an earlier method.

Ambiguity problems are known to arise in the following situations:

« Integer conversions. Datatypes such as int, long, and short cannot be disambiguated in some languages. Shown
above.

* Floating point conversion. float and double can not be disambiguated in some languages.

« Pointers and references. For example, Foo * and Foo &.

« Pointers and arrays. For example, Foo * and Foo [4].

« Pointers and instances. For example, Foo and Foo *. Note: SWIG converts all instances to pointers.

* Qualifiers. For example, const Foo * and Foo *.

« Default vs. non default arguments. For example, foo(int a, int b) and foo(int a, int b = 3).

When an ambiguity arises, methods are checked in the same order as they appear in the interface file. Therefore, earlier meth
will shadow methods that appear later.

When wrapping an overloaded function, there is a chance that you will get an error message like this:

example.i:3: Warning(467): Overloaded foo(int) not supported (no type checking
rule for 'int’).

This error means that the target language module supports overloading, but for some reason there is no type—checking rule th:
can be used to generate a working dispatch function. The resulting behavior is then undefined. You should report this as a bug

the_ SWIG bug tracking database.

6.14.2 Ambiguity in Overloading 64

http://www.swig.org/bugs.html

SWIG-1.3 Documentation

If you get an error message such as the following,

foo.i:6. Overloaded declaration ignored. Spam::foo(double)

foo.i:5. Previous declaration is Spam::foo(int)

foo.i:7. Overloaded declaration ignored. Spam::foo(Bar *,Spam *,int)
foo.i:5. Previous declaration is Spam::foo(int)

it means that the target language module has not yet implemented support for overloaded functions and methods. The only wa
fix the problem is to read the next section.

6.14.3 Ambiguity resolution and renaming

If an ambiguity in overload resolution occurs or if a module doesn't allow overloading, there are a few strategies for dealing witt
the problem. First, you can tell SWIG to ignore one of the methods. This is easy——-simply use the %ignore directive. For
example:

%ignore foo(long);

void foo(int);
void foo(long); /I lgnored. Oh well.

The other alternative is to rename one of the methods. This can be done using %rename. For example:

%rename(foo_long) foo(long);

void foo(int);
void foo(long); /I Accessed as foo_long()

The %ignore and %rename directives are both rather powerful in their ability to match declarations. When used in their simple
form, they apply to both global functions and methods. For example:

/* Forward renaming declarations */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

void foo(int); /I Becomes ‘foo_i'
void foo(char *c); /I Stays 'foo' (not renamed)

class Spam {
public:

void foo(int); // Becomes 'foo_1i'
void foo(double); // Becomes ‘foo_d'

h
If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used. For example:

%rename(foo_i) ::foo(int); // Only rename foo(int) in the global scope.
/I (will not rename class members)

%rename(foo_i) Spam::foo(int); // Only rename foo(int) in class Spam

When a renaming operator is applied to a class as in Spam::foo(int), it is applied to that class and all derived classes. This
can be used to apply a consistent renaming across an entire class hierarchy with only a few declarations. For example:

%rename(foo_i) Spam::foo(int);
%rename(foo_d) Spam::foo(double);

class Spam {

public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

6.14.3 Ambiguity resolution and renaming 65

SWIG-1.3 Documentation

h
class Bar : public Spam {
public:

virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

%
class Grok : public Bar {
public:

virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

h
It is also possible to include %rename specifications in the class definition itself. For example:

class Spam {
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

B

class Bar : public Spam {

public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

3

In this case, the %rename directives still get applied across the entire inheritance hierarchy, but it's no longer necessary to
explicitly specify the class prefix Spam:..

A special form of %rename can be used to apply a renaming just to class members (of all classes):
%rename(foo_i) *::foo(int); // Only rename foo(int) if it appears in a class.

Note: the *:: syntax is non—-standard C++, but the "' is meant to be a wildcard that matches any class name (we couldn't think ¢
a better alternative so if you have a better idea, send email to the swig—dev mailing list.

Although this discussion has primarily focused on %rename all of the same rules also apply to %ignore. For example:

%ignore foo(double); /I lgnore all foo(double)

%ignore S