[ Contents ]
4. Packet Syntax This section describes the packets used by OpenPGP. 4.1. Overview An OpenPGP message is constructed from a number of records that are traditionally called packets. A packet is a chunk of data that has a tag specifying its meaning. An OpenPGP message, keyring, certificate, and so forth consists of a number of packets. Some of those packets may contain other OpenPGP packets (for example, a compressed data packet, when uncompressed, contains OpenPGP packets). Each packet consists of a packet header, followed by the packet body. The packet header is of variable length. 4.2. Packet Headers The first octet of the packet header is called the "Packet Tag." It determines the format of the header and denotes the packet contents. The remainder of the packet header is the length of the packet. Note that the most significant bit is the left-most bit, called bit 7. A mask for this bit is 0x80 in hexadecimal. +---------------+ PTag |7 6 5 4 3 2 1 0| +---------------+ Bit 7 -- Always one Bit 6 -- New packet format if set PGP 2.6.x only uses old format packets. Thus, software that interoperates with those versions of PGP must only use old format packets. If interoperability is not an issue, either format may be used. Note that old format packets have four bits of content tags, and new format packets have six; some features cannot be used and still be backward-compatible. Old format packets contain: Bits 5-2 -- content tag Bits 1-0 - length-type New format packets contain: Bits 5-0 -- content tag 4.2.1. Old-Format Packet Lengths The meaning of the length-type in old-format packets is: 0 - The packet has a one-octet length. The header is 2 octets long. 1 - The packet has a two-octet length. The header is 3 octets long. 2 - The packet has a four-octet length. The header is 5 octets long. 3 - The packet is of indeterminate length. The header is 1 octet long, and the implementation must determine how long the packet is. If the packet is in a file, this means that the packet extends until the end of the file. In general, an implementation SHOULD NOT use indeterminate length packets except where the end of the data will be clear from the context, and even then it is better to use a definite length, or a new-format header. The new-format headers described below have a mechanism for precisely encoding data of indeterminate length. 4.2.2. New-Format Packet Lengths New format packets have four possible ways of encoding length: 1. A one-octet Body Length header encodes packet lengths of up to 191 octets. 2. A two-octet Body Length header encodes packet lengths of 192 to 8383 octets. 3. A five-octet Body Length header encodes packet lengths of up to 4,294,967,295 (0xFFFFFFFF) octets in length. (This actually encodes a four-octet scalar number.) 4. When the length of the packet body is not known in advance by the issuer, Partial Body Length headers encode a packet of indeterminate length, effectively making it a stream. 4.2.2.1. One-Octet Lengths A one-octet Body Length header encodes a length of from 0 to 191 octets. This type of length header is recognized because the one octet value is less than 192. The body length is equal to: bodyLen = 1st_octet; 4.2.2.2. Two-Octet Lengths A two-octet Body Length header encodes a length of from 192 to 8383 octets. It is recognized because its first octet is in the range 192 to 223. The body length is equal to: bodyLen = ((1st_octet - 192) << 8) + (2nd_octet) + 192 4.2.2.3. Five-Octet Lengths A five-octet Body Length header consists of a single octet holding the value 255, followed by a four-octet scalar. The body length is equal to: bodyLen = (2nd_octet << 24) | (3rd_octet << 16) | (4th_octet << 8) | 5th_octet 4.2.2.4. Partial Body Lengths A Partial Body Length header is one octet long and encodes the length of only part of the data packet. This length is a power of 2, from 1 to 1,073,741,824 (2 to the 30th power). It is recognized by its one octet value that is greater than or equal to 224, and less than 255. The partial body length is equal to: partialBodyLen = 1 << (1st_octet & 0x1f); Each Partial Body Length header is followed by a portion of the packet body data. The Partial Body Length header specifies this portion's length. Another length header (of one of the three types -- one octet, two-octet, or partial) follows that portion. The last length header in the packet MUST NOT be a partial Body Length header. Partial Body Length headers may only be used for the non-final parts of the packet. 4.2.3. Packet Length Examples These examples show ways that new-format packets might encode the packet lengths. A packet with length 100 may have its length encoded in one octet: 0x64. This is followed by 100 octets of data. A packet with length 1723 may have its length coded in two octets: 0xC5, 0xFB. This header is followed by the 1723 octets of data. A packet with length 100000 may have its length encoded in five octets: 0xFF, 0x00, 0x01, 0x86, 0xA0. It might also be encoded in the following octet stream: 0xEF, first 32768 octets of data; 0xE1, next two octets of data; 0xE0, next one octet of data; 0xF0, next 65536 octets of data; 0xC5, 0xDD, last 1693 octets of data. This is just one possible encoding, and many variations are possible on the size of the Partial Body Length headers, as long as a regular Body Length header encodes the last portion of the data. Note also that the last Body Length header can be a zero-length header. An implementation MAY use Partial Body Lengths for data packets, be they literal, compressed, or encrypted. The first partial length MUST be at least 512 octets long. Partial Body Lengths MUST NOT be used for any other packet types. Please note that in all of these explanations, the total length of the packet is the length of the header(s) plus the length of the body. 4.3. Packet Tags The packet tag denotes what type of packet the body holds. Note that old format headers can only have tags less than 16, whereas new format headers can have tags as great as 63. The defined tags (in decimal) are: 0 -- Reserved - a packet tag must not have this value 1 -- Public-Key Encrypted Session Key Packet 2 -- Signature Packet 3 -- Symmetric-Key Encrypted Session Key Packet 4 -- One-Pass Signature Packet 5 -- Secret Key Packet 6 -- Public Key Packet 7 -- Secret Subkey Packet 8 -- Compressed Data Packet 9 -- Symmetrically Encrypted Data Packet 10 -- Marker Packet 11 -- Literal Data Packet 12 -- Trust Packet 13 -- User ID Packet 14 -- Public Subkey Packet 60 to 63 -- Private or Experimental Values
Updated: 1999-09-30 wkoch