
Datasoft® ODBCExpress

White Paper

Programming ODBC: An Introduction

The information contained in this document represents the current view of Datasoft on the issues discussed as of the date of publication. Because
Datasoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Datasoft, and Datasoft cannot
guarantee the accuracy of any information presented after the date of publication. Copyright  1996-98 Datasoft. All rights reserved. Microsoft,
Windows, Windows NT and SQL Server are registered trademarks of Microsoft Corporation in the United States and/or other countries. Other
trademarks and tradenames mentioned herein are the property of their respective owners. This document is for informational purposes only. Datasoft
makes no warranties, express or implied, in this document.

March 1998

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 2

Contents

Introduction ... 3

What is ODBC? .. 3

What is ODBCExpress? ... 3

ODBC Architecture .. 4

Implementation.. 4

ODBC Constants and Functions ... 5

Establishing an ODBC Environment .. 5
Error Handling ..5

Connecting to a Database.. 6
DataSource Connections ..6
DataSource-less Connections ...7
Connection Pooling..7

Transactioning .. 8

SQL Operations .. 9
Data Manipulation using the THstmt ...10
Data Manipulation using the TOEDataSet ...12

Result Set Models.. 13
Cursor Types..14
Concurrency Types ..16
Positional Operations ...16

Blob Handling ... 18

Bulk Operations .. 18

Threading.. 19

Stored Procedures... 19

Other Components .. 19

Non-Visual Development... 19

Future of ODBCExpress.. 19

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 3

Introduction
The main objectives of this white paper is to provide Delphi and C++Builder users with a clear, high-level
understanding of the Open Database Connectivity (ODBC) architecture as well as the context in which
ODBCExpress fits into this architecture. The ultimate aim is to provide existing and potential users of
ODBCExpress with a solid understanding of how ODBCExpress works.

Most Delphi or C++Builder users with little or no concept of the ODBC SQL-oriented programming model find it
difficult to move from a non-SQL-oriented programming model such as the Borland Database Engine (BDE) to
ODBCExpress. This white paper will therefore also attempt to highlight the fundamental differences between
ODBCExpress and the BDE.

What is ODBC?
ODBC is an acronym for 'Open DataBase Connectivity'. It is a standard first developed by Microsoft for accessing
data in both relational and non-relational database management systems, based on the X/Open and ISO/IEC Call-
Level Interface (CLI) specifications for database APIs and the Structured Query Language (SQL) specification for
database access languages. The ODBC standard is widely used by all major database vendors. Databases driven by
database engines include Oracle, Microsoft SQL Server, Sybase, Informix and DB2, while you also get a lot of so-
called 'flat-file' databases with no stand-alone database engines, such as Microsoft Access, dBase, Paradox and
BTrieve. All these and other databases can be accessed via ODBC.

Why was ODBC created? You need a way to communicate with a database and transfer data to and from a
database, as well as perform some queries on the data in the database. The problem is that each database vendor has
his own set of methods (called an API) to perform all these functions. So, if you write an application which for
example uses the Oracle API, that same application can’t be used to access a SQL Server database, since the API’s
of Oracle and SQL Server are different. So you have to duplicate all your code if you want to access two different
databases from the same application. Imagine if you want to access 5 or 10 different databases!

Now this is where ODBC comes into the picture and makes life a whole lot easier for you. ODBC is an API that
allows you to talk to any database you want. Instead of writing a data access application using a specific database
API, such as Oracle’s, you can now write your application using the ODBC API, which can perform virtually any
function that you can do with the Oracle API. The best part is that now you can use the same code to access any
other database too! How is this possible? Well, ODBC is basically a very thin layer between your application and
the database API. It makes use of an ODBC driver to access a specific database. An ODBC driver is basically a
DLL which maps each function in the ODBC API to similar functions in the API of the specific database the driver
was written for. For example, the Oracle ODBC driver maps the ODBC API into the Oracle API. Each database
has its own ODBC driver or drivers, written either by the database vendor or a third-party ODBC driver vendor.

What is ODBCExpress?
Even though you now only have to write to one API to access any database, the ODBC API isn’t a simple API by
any means. It has to cater for almost any functionality that any database out there can support, so you can imagine
that the ODBC API is quite complex. ODBCExpress wraps the ODBC API into a set of easy-to-use classes for
Delphi and C++Builder, so that you don’t even have to know much (if anything) about the low-level ODBC API to
fully make use of ODBC in your applications! However, the application programmer still has access to all low level
ODBC functions, giving the programmer the flexibility of the ODBC API.

ODBCExpress provides you with access to the entire ODBC API. Source code availability gives you full control
over the database middleware and allows you to trace down as far as the low-level ODBC call. This transparency
means you can avoid the pains of impenetrable database engines during debugging. In the BDE for example ODBC
calls are hidden by the BDE, which adds another layer adding complexity and problems to your database interface.
So if you for example hit a problem when using BDE-ODBC you have no idea if the problem lies with the BDE or
with your ODBC driver.

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 4

ODBCExpress compiles completely into your executable, which means no distribution of an external database
engine is necessary. You will need to distribute the ODBC driver or drivers used by your application, and of course
you need ODBC installed on the client's machine, however this is normally distributed with the operating system,
and is also freely available for download from various web locations. Because ODBCExpress talks directly to
ODBC, and ODBCExpress's architecture is optimized for performance, there is no other database middleware for
Delphi which can match the speed of ODBCExpress. ODBCExpress was designed for the express purpose of
writing large and responsive industrial-strength data access applications.

ODBC Architecture
The ODBC Architecture consists of four main components:

• The Application calls ODBC functions to submit SQL statements and retrieve results.

• The ODBC Driver Manager loads and unloads ODBC drivers on behalf of the application. It also processes
ODBC function calls from the application or passes them to an ODBC driver for processing.

• The ODBC Driver processes ODBC function calls, submits SQL requests to a specific Data Source and returns
results to the application. If necessary the driver will modify the application’s request to syntax supported by
the associated database.

• The Data Source consists of the data the application wants to access and the associated operating system,
DataBase Management System (DBMS) and network platform (if any) used to access the database. The ODBC
Administrator (which is not a required part of ODBC when you run the application) allows you to set up and
manage Data Source Names (DSNs or DataSources), each identifying a Data Source and its properties.

In other words you need the ODBC Driver Manager and the appropriate ODBC drivers installed on the machine
running the application to access the appropriate databases via ODBC.

ODBC interaction from an application are done via three types of handles:

• The Environment handle is used to establish an ODBC environment for your application, by setting up a
communication link from your application to the ODBC Driver Manager. You normally only need one of these
handles in your application.

• For each Environment handle, you can have a number of Connection handles in your application. Each
Connection handle gives you a different connection to a database. You can have multiple Connection handles
to the same database or multiple Connection handles to multiple databases in your application. It is at this level
at which transactioning is done and at which transaction isolation is managed.

• For each Connection handle, you can have a number of Statement handles. These handles allow you to
manipulate the data in your database. Because you can have multiple Statement handles for each Connection
handle, each Statement handle can perform a different function at the database and can be in a different state
than the other Statement handles.

After you have all the handles you need, you can use them together with the ODBC functions in the ODBC API to
make calls to the ODBC Driver Manager. And manipulate data in a single or multiple databases.

Implementation
Now let’s take a more in-depth look at the ODBC architecture by investigating how ODBCExpress implements it.

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 5

ODBC Constants and Functions
The ODBC API consists of a number of constants and functions. In ODBCExpress the constants are contained by
the ODBC Call-Level Interface Header (OCIH) unit. The ODBC functions are contained by the ODBC Call-Level
Interface (OCI) unit. To hide the complexity of the ODBC calls from the ODBCExpress user, the ODBC Class
Library (OCL) unit defines a number of classes which make use of the ODBC constants and functions.

Establishing an ODBC Environment
An ODBC environment (of which you only need one per application) is automatically established for your
application by ODBCExpress. The THenv environment component (a class defined in the OCL) encapsulates the
environment handle (the communication link between your application and the ODBC Driver Manager) and all
other properties and methods associated with the environment handle. ODBCExpress automatically creates the
global variable GlobalHenv (located in the OCL) needed by any ODBC-enabled application. For BDE users, the
THenv component can roughly be equated to the TSession component, which manages a database session for
your application. As for the THenv component, a default TSession component is also automatically created for
your BDE-enabled application and also only one is really needed by your application.

Error Handling
As with any other API, ODBC includes error handling methods. An ODBC driver returns two sets of error codes:

• The database-specific error codes.

• A standard set of ODBC error codes.

The standard error codes (or ODBC states) give applications a standard way of dealing with errors. The ODBC
driver maps each database error code to one of these standard error codes, and passes both to the application (if
requested) when an ODBC function fails. But how do you determine if an ODBC function failed? An ODBC
function returns a so-called “return code” which indicates if the function executed successfully or not. This return
code together with the ODBC handle on which the error occurred is then used to determine the database error code,
the ODBC error state, and the default error message from the ODBC driver.

ODBCExpress defines two classes to handle ODBC errors and map them to the standard Delphi exception
environment. The TODBCError class allows you to check the validity of a return code from an ODBC function,
and raise an exception if necessary. The exception raised is the EODBC exception class defined by ODBCExpress.
This exception can be trapped using a try-except block and its properties referenced to retrieve the database error,
ODBC state and error message values. Because only one TODBCError class is needed per application, this class is
automatically created for you and can be accessed via the Error property of the GlobalHenv class. For example,
say we want to execute the SQLCancel ODBC function:

RetCode:= SQLCancel(Hstmt.Handle);

where RetCode is the return code from the function, Hstmt is the class containing the statement handle accessed
via the Handle property of the Hstmt class. Then we use the GlobalHenv class to check the return code and
raise an error if necessary:

if not GlobalHenv.Error.Success(RetCode) then
 GlobalHenv.Error.RaiseError(Hstmt, RetCode);

We use the RaiseError method of the TODBCError class to raise an EODBC exception. The RaiseError
method will query the ODBC driver for the error information given the return code and the handle class (Hstmt in
this case) which caused the exception, and then create and raise an EODBC exception class. This exception can then

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 6

be trapped in a try-except block if necessary (otherwise it will be trapped by the global Delphi error handling
routines):

try

 //code above

except
 on E: EODBC do
 ShowMessage(E.Message);
end;

Normally you would let the default error handler display the error message, however if you wish to test for a specific
ODBC state or database error to perform some specific action, you will need a try-except block.

Connecting to a Database
Now let’s see how ODBCExpress establishes a connection with a database. The THdbc database connection class
(another class defined in the OCL) encapsulates an ODBC connection handle which allows you to communicate
with a specific database through ODBC. For BDE users this component can be compared with the TDatabase BDE
component, which is also used to establish persistent connections with a database (in ODBCExpress all connections
are persistent, in other words they won’t be dropped unless instructed to do so by the application programmer,
whereas the BDE also allows non-persistent connections which are automatically dropped when all result sets are
closed). When a connection is established, the ODBC Driver Manager loads the appropriate ODBC driver into
memory (if not in memory already because of a previous connection made through the specific ODBC driver) and
instructs the driver to establish a connection with the appropriate database. But how does the ODBC Driver
Manager knows which ODBC driver to load, which database to connect to and what login details to use? All this
information has to be provided to the ODBC Driver Manager when wanting to connect to a database.

There are a number of different ways to provide these details. The most common way is to create an ODBC
DataSource (or DSN) which contains all this information and then connect to the database via the DataSource.
Such a DataSource can be created using the ODBC Administrator utility shipped with ODBC, or the DataSource
can be created programmatically from your application before using it to establish the connection. The second way
used to connect to a database is by establishing a DataSource-less connection, passing all the details required to
establish the connection directly to the ODBC Driver Manager without first creating a DataSource containing these
details.

Now which is the better way, making DataSource or DataSource-less connections? Both have their advantages and
disadvantages. If you use a DataSource to establish your connection, it means the connection information is not
hard-coded into your application and can be modified using a utility such as the ODBC Administrator without re-
compiling your application. If you don’t use a DataSource to establish your connection, the connection information
is somewhat hard-coded, however this method don’t require you to manually or programmatically set up a
DataSource, and avoids anyone from fiddling with your connection information.

DataSources can be registry based or file based. Registry based DataSources can be system wide (seen by all users
on a machine) or user wide (only seen by a specific user on a machine). When registry based, only users on the
current machine can make use of the DataSource (whether it’s system wide or user wide). When file based, the file
containing the DataSource information can be placed on a network path and can be accessed by multiple users.
Updating the file will then affect all the users making use of it. Another way of achieving this in a client/server
environment is to do a DataSource-less connection, retrieving the connection details from the server side.

DataSource Connections
Suppose we’ve set up a DataSource to an Oracle database. The DataSource defines the database server and database
to connect to, so all we need to do is to provide the login details to connect:

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 7

Hdbc.DataSource:= 'dsnOracle';
Hdbc.UserName:= 'scott';
Hdbc.Password:= 'tiger';

To connect we then just call the Connect method of the class:

Hdbc.Connect;

If the connection fails (e.g. because the login details were wrong) an EODBC exception will automatically be raised.

DataSource-less Connections
Let’s connect to a Microsoft SQL Server database without using a DataSource. First we specify the database server
and database to connect to:

Hdbc.Attributes.Clear;
Hdbc.Attributes.Add('SERVER=MyDBServer');
Hdbc.Attributes.Add('DATABASE=MyDB');

The SERVER and DATABASE keys are MS SQL Server specific. Different databases require different connection
information (or attributes) before a connection can be established, so you will need to reference your database or
ODBC driver documentation to see which keys can be used together with the THdbc.Attributes property.
Now we need to specify the login details:

Hdbc.UserName:= 'sa';
Hdbc.Password:= 'mypw';

The UserName and Password properties are common to all databases, therefore they are provided as properties
of the THdbc class. Of course these two properties can also be specified as key-value pairs in the
THdbc.Attributes property using the standard UserName and Password keys valid for all databases. Now
we need to specify the ODBC driver to connect to:

Hdbc.Driver:= 'SQL Server';

The ODBC Driver Manager will pass all the above information to the specified ODBC driver. Then you just call
the THdbc.Connect method to establish the DataSource-less connection.

Connection Pooling
Establishing a connection through ODBC is not always instantaneous. This is because the ODBC Driver Manager
first has to load the appropriate ODBC driver into memory before it can instruct the driver to establish the
connection with the database. Then there is also the delay in establishing the connection (verifying of login
information, etc.). This can be a problem when establishing multiple connections to a database (e.g. in a
client/server environment requiring one connection per user on the server).

To bypass this problem ODBC provides the concept of connection pooling, whereby the ODBC Driver Manager
keeps a pool of connections, and then when you try to establish a new connection, it first checks if an appropriate
connection is not in the pool before a new connection is established. If the ODBC Driver Manager finds a suitable
connection in the connection pool which matches a connect request, it will use this connection rather than creating
a new connection, resulting in virtually instantaneous connection time. In this way a single connection can be
shared by any number of users or applications. Connections are also kept in the connection pool for a long time
after it’s not in use any more, only dropping the connection after its “not-in-use” time in the pool has expired or
when the application with the ODBC environment controlling the connection pool is closed. In other words
connection pooling is also advantages in a client application where a connection to a database is established and
dropped multiple times. It will reduce re-connection times drastically.

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 8

For example, say we want to create a server application with connection pooling enabled. We can enable
connection pooling either by setting the ConnectionPooling property of the THdbc component or the
ConnectionPooling property of the GlobalHenv component to True. Setting ConnectionPooling to
True at either the THenv or THdbc level will affect all connection components used in the application.
ConnectionPooling is actually an environment-level function, however it can be set a THdbc level also to
allow setting of this property via the Object Inspector.

Transactioning
Transactioning in ODBC is done at connection handle level. The connection component in ODBCExpress provides
methods to start, end, commit and rollback transactions. By default, the connection component is in auto-commit
mode. This means that all operations done at a DataSource using the child statement components of a connection
component are automatically committed. Starting transaction mode takes the connection component out of auto-
commit mode and starts a new transaction. Performing multiple operations in transaction mode is much faster than
performing the operations out of transaction mode, since an auto-commit won't be done after each operation.

A new transaction is started after each call to THdbc.StartTransact , THdbc.Commit and
THdbc.RollBack, while a transaction is ended by each call to THdbc.Commit, THdbc.RollBack and
THdbc.EndTransact . Note that a transaction only starts at the first statement call made after
StartTransact, Commit or RollBack was called. Also, calling Commit, RollBack or EndTransact
without preceding it with transactional operations has no effect and won't cause any errors. Always match each
StartTransact with an EndTransact, preferably as part of a try-finally statement, otherwise your application
will end up in an invalid transaction state when an exception occurs. For example:

//start manual commit mode
Hdbc.StartTransact;

try

 try

 //perform database operations

 //commit transaction
 Hdbc1.Commit;

 except
 on EODBC do
 //rollback transaction when an ODBC exception occurs
 Hdbc.Rollback;
 end;

finally
 //end manual commit mode in finally block
 Hdbc.EndTransact;
end;

Because transactioning is done at connection component level, it means that the transactions done on different
connection components within the same application are isolated from each other, as well as transactions done from
different applications. Care must therefore be taken when using multiple connection components in the same
application to avoid locking problems. However, different statement components on the same connection
component aren't isolated from each other when in transaction mode, which means you can make use of multiple
statement components within a single transaction to perform the operations you require at a DataSource. The type
of transaction isolation done can be set using the THdbc.IsolationLevel property. It can be one of the
following four values:

• Read Uncommited - Dirty reads, non-repeatable reads and phantom reads are possible.

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 9

• Read Comitted - Dirty reads are not possible. Non-repeatable reads and phantom reads are possible.

• Repeatable Read - Dirty reads and non-repeatable reads are not possible. Phantom reads are possible.

• Serializable - Transactions are serializable. Dirty reads, non-repeatable reads and phantom reads are not
possible.

The following terms are used to define the isolation levels:

• Dirty Read - Transaction 1 changes a row. Transaction 2 reads the changed row before transaction 1 commits
the change. If transaction 1 rolls back the change, transaction 2 will have read a row that is considered to have
never existed.

• Non-repeatable Read - Transaction 1 reads a row. Transaction 2 updates or deletes that row and commits this
change. If transaction 1 attempts to reread the row, it will receive different row values or discover that the row
has been deleted.

• Phantom Read - Transaction 1 reads a set of rows that satisfy some search criteria. Transaction 2 inserts a row
that matches the search criteria. If transaction 1 re-executes the statement that read the rows, it receives a
different set of rows.

Of course, the transaction isolation level you choose influences the concurrency level between different transactions.
A “read uncommitted” isolation level provides the most concurrency, while the concurrency reduces using “read-
committed” through “repeatable read” until “serializable” which provides the least amount of concurrency.

To make transactioning a bit easier, make use of a small number of transactioned connection components within
your application (preferably one if the type of application allows it) to avoid locking problems between these
connections in your application. Also make use of a transaction isolation level which provides the highest level of
concurrency, without compromising the integrity of your data, to provide less opportunity for locking problems.

SQL Operations
Data at a DataSource is manipulated through ODBC via SQL operations. SQL operations form a main part of the
ODBC client/server architecture and it is therefore important that you have a good knowledge of how to perform
SQL operations. In fact, ODBC is completely SQL driven and doesn’t allow you to manipulate data in other forms.
This is one of the main differences between ODBC and the BDE, and also accounts for a lot of the
misunderstanding when attempting to move from the BDE to ODBCExpress.

The BDE does a lot of data manipulation on the front-end, and allows you to manipulate data in non-SQL-oriented
fashions, whether using a SQL-oriented database or not. While this provides a lot of advantages for non-SQL-
oriented databases, this also presents some performance problems for SQL-oriented databases. Because the Delphi
database component architecture hides the obvious differences between SQL-oriented and non-SQL-oriented data
manipulation, it makes it very difficult for the Delphi database developer to distinguish between the two depending
on what type of database they’re using, and results in the development of poor client/server applications.

ODBC (and therefore ODBCExpress) on the other hand mainly use SQL operations to manipulate data, and will
therefore not provide you with direct access to non-SQL databases functionality, however it provides all the SQL
functionality necessary to get the best performance out of SQL databases. Both methods of manipulating data at a
database have their merits depending on the type of database you’re using, and we will therefore attempt to
highlight the differences between SQL and non-SQL operations throughout this white paper.

Data manipulation can basically be divided into two main sections:

• Manipulation without direct visual user involvement.

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 10

• Manipulation through direct visual user involvement.

ODBCExpress distinguishes between these two types of data manipulation by providing a main component
(THstmt) which is geared towards non-visual or indirect visual development (with its own unique syntax), and a
component (TOEDataSet) based on the previously mentioned component which is geared towards direct visual
development (though this second component also allows you to do non-visual or indirect visual development using a
more familiar BDE-like syntax).

The ODBCExpress THstmt statement component (another class defined in the OCL) encapsulates the ODBC
statement handle, and is used to manipulate data at a DataSource. For BDE users, this component is equivalent to
the TQuery BDE component, which also allows you to manipulate data at a DataSource given a SQL statement.
The BDE TTable component on the other hand manipulates data at a DataSource in a non-SQL-oriented fashion,
i.e. it allows you to manipulate not only the data in a specific table in a non-SQL-oriented manner, but also the table
structure. While this component works very well for certain flatfile databases, it performs poorly against SQL
databases and it’s therefore better to use the TQuery component in such cases.

The ODBCExpress TOEDataSet statement component (a class defined in the ODSI) is derived from the virtual
Delphi TDataSet component, which allows you to connect ODBCExpress with the standard Delphi data-aware
controls, as well as data-aware controls (which conforms to the Open Database Architecture of Delphi) developed by
third-party developers. This component is very similar to the BDE TQuery component, though the implementation
is somewhat different.

General SQL operations include inserts, updates, deletes and selects. However SQL can also be used to perform any
other function at the database, such as manipulation of databases, tables, views, indexes and stored procedures.

Data Manipulation using the THstmt
The THstmt component provides all the operations necessary to perform SQL operations at a database. Let’s take
a typical example of building a result set. First we set the SQL statement to select all the students registered in a
certain year:

Hstmt.SQL:= 'SELECT SNo, SName, SAge FROM Students WHERE SNo LIKE ?';

Now we can prepare the SQL statement. Preparing SQL statements aren’t always necessary – in fact if you are only
going to execute the SQL statement once, then it will be faster without preparing it (since the SQL statement will be
parsed on the execute in this case), however if you’re going to execute the SQL statement multiple times (as we’re
going to do), then preparing it once and then executing it multiple times will be faster (since you are avoiding
parsing of the SQL statement each time you execute):

Hstmt.Prepare;

Now we must bind in the parameter indicated by the ? in the SQL statement. The ? indicates an un-named
parameter. The THstmt class allows you to specify both named and un-named parameters. Let’s change the above
SQL statement with a named parameter:

Hstmt.SQL:= 'SELECT SNo, SName, SAge FROM Students WHERE SNo LIKE :SNum';

The named parameter starts with a : and can be followed by A..Z, a..z, 0..9, the _ and @ characters. By the
way, all colons : in the SQL statement will be passed as parameters, so in a case like the following you will get
some problems:

Hstmt.SQL:= 'SELECT * FROM Files WHERE Path = ''C:\Program Files''';

To specify single colons in you SQL statement you must use a double colon ::, as follows:

Hstmt.SQL:= 'SELECT * FROM Files WHERE Path = ''C::\Program Files''';

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 11

If you specify a named parameter, you can bind the parameter either by name or by number, for example the
following are equivalent statements:

Hstmt.BindStringByName('SNum', ASNum);
Hstmt.BindString(1, ASNum);

By the way, this is also equivalent to:

Hstmt.BindString(Hstmt.ParamByName('SNum'), ASNum);

However if you’ve used an un-named parameter ? in the SQL statement, then you can only bind the parameter by
number:

Hstmt.BindString(1, ASNum);

Now let’s bind our parameter. The THstmt component (unlike the TQuery and TOEDataSet components)
requires you to bind in physical memory to a parameter, for example the following is valid because an integer has
physical memory allocated up front:

var
 i: Integer;

Hstmt.BindInteger(3, MyInt);

However binding a string directly after it’s declared is not valid:

var
 s: String;

Hstmt.BindString(3, s);

This is because strings in 32bit Delphi and C++Builder are dynamic and don’t have memory allocated at the time
they are being bound. However allocating memory to the string, binding it and then assigning a value to the string
is also not valid:

Setlength(s, 100); //max field length is 100

Hstmt.BindString(3, s); //valid because memory allocated for string

s:= 'xyz';

This last statement is not valid since assigning a new value to a string might cause the string to be re-allocated,
making the bound memory invalid. You will have to copy the value in the string:

StrPCopy(PChar(s), 'xyz');

If you only going to assign one value to the string, then of course the following strategy is the best - assign the value
to the string before binding it:

s:= 'xyz';

Hstmt.BindString(3, s); //valid because memory allocated for string

If you’re going to execute the SQL statement multiple times with multiple values for the parameter, then you only
need to bind the parameter once, assigning new values to the bound parameter each time you execute. In this case
you will have to set the maximum length of the string up front and copy the values in the string before executing, as
illustrated above. Or you can make use of a standard-length string structure such as the NullString type
declared in the OCIH unit:

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 12

var
 s: NullString;

Hstmt.BindNullString(3, s); //valid since the NullString type is not dynamic
 and has memory allocated

s:= 'xyz'; //valid since no dynamic re-allocation of memory can occur.

Let’s go back to our Students example and bind in the ASNum variable:

var
 ASNum: NullString;

Hstmt.BindNullStringByName('SNum', ASNum);

Now let’s assign a value to ASNum and execute to return the result set of, say, all the students registered in 1998:

ASNum:= '98%'; //all student numbers starting with 98

Hstmt.Execute;

Now we can fetch the rows in the result set and for example add them to a TListBox:

ListBox.Clear;
while Hstmt.FetchNext do
 ListBox.Items.Add(Hstmt.ColString[1],

 Hstmt.ColString[2],
 IntToStr(Hstmt.ColInteger[3]));

Of course, we can also reference the columns by name, and retrieve the SAge integer column directly as a string:

ListBox.Clear;
while Hstmt.FetchNext do
ListBox.Items.Add(Hstmt.ColStringByName['SNo'],

Hstmt.ColStringByName['SName'],
Hstmt.ColStringByName['SAge']);

Data Manipulation using the TOEDataSet
Now let’s do the same using the TOEDataSet component (for BDE users this component has similar syntax to the
TQuery component):

OEDataSet.SQL:= 'SELECT SNo, SName, SAge FROM Students WHERE SNo LIKE :SNum';

In the TOEDataSet component you can only use named parameters in the SQL statement, and not un-named ?
parameters. This is because the TOEDataSet (and TQuery) builds parameter objects which need to be named.
However you can still reference parameters by name or by number:

OEDataSet.ParamByName('SNum').AsString:= '98%';
OEDataSet.Params[0].AsString:= '98%';

Parameters in the TOEDataSet are zero-based, unlike the THstmt component in which they are one-based.
Physical memory for a parameter is created and bound automatically, and a statement like the above will then
automatically copy the value to the bound memory.

Now we need to open the dataset and retrieve all the rows in the result set:

OEDataSet.Open

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 13

ListBox.Clear;
while not OEDataSet.EOF do
 ListBox.Items.Add(OEDataSet.FieldByName('SNo').AsString,

 OEDataSet.FieldByName('SName').AsString,
 OEDataSet.FieldByName('SAge').AsString);

The advantage of Delphi 3 and C++Builder 3 over the previous versions of these products is the new Open Database
Architecture, which allows third-party database middleware products such as ODBCExpress to make use of the
Delphi data-aware control architecture. By deriving a descendant such as the TOEDataSet from the new virtual
TDataSet, it gives such descendants the ability to make use of the standard Delphi and other 3rd-party data-aware
controls. The TOEDataSet was therefore implemented for two main reasons:

• To give existing ODBCExpress users access to the standard Delphi and other 3rd-party data-aware controls and
reporting tools which complies to the Open Database Architecture in Delphi 3 and C++Builder 3.

• To allow existing BDE and other database engine users to take advantage of ODBC and ODBCExpress
performance and features, without losing the visual aspect of their applications.

Additionally the TOEDataSet provides TQuery-like properties and methods, to allow some level of code
compatibility with existing applications, to ease the move from other database engines to ODBCExpress. The
TOEDataSet also contains a Hstmt sub-property, which contains all the appropriate properties and methods of
the ODBCExpress THstmt statement class relevant to the TOEDataSet.

Result Set Models
One of the biggest differences between ODBCExpress and the BDE is the way in which they provide result set
scrolling capabilities to your application. There are basically two models which provide you with result set
scrolling:

• Cursor Model - Scrollable database cursors are used to provide scrolling through a database result set.

• Cache Model - The database result set is retrieved to a front-end cache using a non-scrollable cursor, and then
scrolling is provided via a cursor kept on the cache.

The BDE makes use of the cache model only, while ODBCExpress provides both the cache model (via the ODBC
Cursor Library) and also the cursor model. The full ODBC driver cursor support provided by ODBCExpress
eliminates the need for a resource-heavy front-end cache as used by database engines such as the BDE. Cursor-
support allows you to move backwards in your result set without having to cache the rows on the front-end. This
means scrolling to the last row in your result set takes about the same time as scrolling to the first or next row in
your result set. Also, since blobs are fetched from the database as they are needed, this means that you can have as
many blobs as you want in your result set, no matter what the size of the blobs or how many rows you have in your
result set. The cache model is fine for pretty small result sets with few or none blobs, however imagine building a
10 000+ row result set (which might contain blob columns) with a cache model - this means retrieving all the rows
(including the blobs) to the front-end cache. The cursor model therefore allows you to work with very large result
sets.

The cache model also has its advantages. Non-scrollable database cursors are generally much faster than scrollable
cursors, so if you have a relatively small result set, the cache model will be a better choice. For example, when
doing direct visual interaction with users, result sets tend to be smaller. Because the non-scrollable cursor used by
the cache model is faster than scrollable cursors used by the cursor model, functionality such as Locates, Lookups
and Filters should be much faster than with the cursor model. The BDE also takes advantage of the cache model to
do complex matching (which in a SQL-oriented cursor model would generally be done as part of the WHERE-
clause in your SQL statement). This functionality used by Locates, Lookups and Filters are therefore implemented
in the BDE itself and does not form part of the TDataSet in any way, in other words it's not handled by the Delphi
portion of the BDE code. Because ODBCExpress make use of the ODBC Cursor Library to implement a cache
model, it cannot access the cache to do complex row matching and therefore has to simplify the type of row

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 14

matching allowed. The same goes for the cursor model provided by ODBCExpress. Locates, Lookups and Filters
are therefore implemented by ODBCExpress and not by ODBC, and will work best with a fast cursor, as used by the
ODBC Cursor Library.

A cursor model provides a lot of advantages, especially when it comes to performance. To quote from a Microsoft
white paper on using server cursors:

"There are several advantages to using server cursors:

• Performance - If you are going to access a small fraction of the data in the cursor (typical of many browsing
applications), using server based cursors will give you an optimal performance because only required data (and
not the entire results set) is sent over the network.

• Additional cursor types - Keyset and dynamic cursor types are only available if you use server cursors. In
addition, the cursor library only supports forward only with read-only concurrency and static with read-only and
optimistic concurrency. With server based cursors, you can use the full range of concurrency values with the
different cursor types.

• Memory usage - When using server based cursors, the client does not need to cache large amounts of data or
maintain information about the cursor position; the server provides that functionality.

• Multiple open cursors - When using server based cursors, the connection between the client and the server does
not remain busy between cursor operations. This allows you to have multiple cursor hstmts active at the same
time"

So you can see the cursor model gives you better performance and more control over concurrency and resource
usage, which is pretty obvious if you ponder about the differences between a cache and cursor model. This is the
fundamental difference between ODBCExpress and the BDE.

Cursor Types
Let's take a look at the different cursors types ODBCExpress provides for the cursor model:

• Forward-Only - Because this is a non-scrollable cursor, the cursor only moves in a forward direction. It is
generally much faster than the scrollable cursors listed below. This cursor does not build a result set at the
database, therefore rows not fetched yet will reflect any changes made to them by the time they are fetched.

• Static - This is a scrollable cursor and the data and rows which makes up the result set is static. In other words
all rows modified, added or deleted at the database by other users do not influence the result set. To achieve
this effect a result set is built at the database (probably by duplicating the rows in a temporary database),
making this the slowest of the scrollable cursors.

• Keyset-Driven - The data in the result set is dynamic, but the rows which makes up the result set is static. In
other words all rows in the result set modified by other users are reflected by the result set, however the rows
that make up the result set are not influenced by inserts or deletes made by other users. To achieve this only a
result set of key values which identify all the rows in the result set is built at the database, making this a very
fast scrollable cursor.

• Dynamic - The data and rows which makes up the result set is dynamic. In other words all rows modified,
added or deleted at the database by other users are reflected by the result set. As the forward-only cursor this
cursor does not built a result set at the database, but only keeps a scrollable cursor on the data in the result set,
also making this a very fast (probably the fastest) scrollable cursor.

Since the rows which make up the result sets in Static and Keyset-Driven cursors remains static, it's possible to
retrieve bookmark values for these cursors, since bookmarks are generally based on position in a result set and
remains valid for the duration of the result set only. Forward-only and Dynamic cursors generally aren't able to

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 15

return bookmark values for rows (since the rows which make up the result set does not remain static), unless
bookmarks are based on positions within the database tables (which is a rare occurrence). In this last case the
bookmarks will probably remain valid even after the result sets are closed.

Where possible forward-only cursors should be used, since these cursors will provide you with the best retrieval
performance. However if scrolling is required (normally during direct user-interaction), then one of the scrollable
cursors can be used in the following order:

• Dynamic, if bookmarking isn't required and changes made by other users has to be fully reflected. Also this is
a very fast scrollable cursor.

• Keyset-Driven, if bookmarking is required and changes made to the values of rows must be reflected. This is
also a very fast scrollable cursor.

• Static, if bookmarking is required, as well as complete isolation from changes made by other users.

In the THstmt component any of these cursor types can be used. When using the TOEDataSet for non-visual
purposes, and no scrolling is required, then the forward-only cursor is the best option. However if scrolling in the
TOEDataSet is required (for visual or non-visual purposes), then any scrollable cursor which provides bookmarks
can be used, since the TOEDataSet requires a bookmarked cursor to provide scrolling (where as the THstmt
doesn't require a bookmarked cursor to provide scrolling). This is because the virtual TDataSet needs some sort
of bookmarking for its scrolling functionality to work correctly. Because the TOEDataSet requires a bookmarked
cursor for scrolling, this generally rules out the Dynamic scrollable cursor. However some databases (e.g. MS
Access) does provide bookmark values for the Dynamic cursor, which means you can use the Dynamic cursor
together with the TOEDataSet and these databases.

So which is the best scrollable cursor to use with the TOEDataSet? This depends on the type of functionality you
are implementing. For example say we want to populate a TDBGrid using the TOEDataSet. Suppose we use a
Dynamic cursor which supports bookmarks. This will work fine in a single-user environment, however what will
happen in a muti-user environment when another user deletes one of the rows which are visible in the grid? When
you scroll back to that row (which were just deleted), the row won't exist in the result set anymore (because the rows
which make up the result set of a Dynamic cursor aren't static), so the grid in that position will be filled with the
values of the next or previous row in the grid (depending on whether you are scrolling down or up respectively).
This will result in a duplicate-row effect in which the current and next or previous row in the grid will have the
same values (since they indicate the same row in the result set). So in a multi-user environment it will be better to
use a Static or Keyset-Driven cursor with the TDBGrid, which will guarantee that the rows which make up the
result set remains static. Of course if you're only using single-row controls (e.g. TDBEdit controls) which only
display one row at a time the duplicate-row effect does not occur. So you can see that either a Static or Keyset-
Driven cursor can safely be used with the TDBGrid.

Now let's take a look at the cursor types that can be used with the cache model in ODBCExpress. Because the cache
model retrieves the rows in the result set to a front-end cache (on demand of course), it won't be influenced by any
changes made by other users for the duration of the result set – the rows and values of the rows that makes up the
result set remains static. You thereby have the options of forward-only or static-like cursors only in both the
ODBCExpress and BDE cache models.

The cache model in ODBCExpress makes use of the ODBC Cursor Library. To enable the cache model in
ODBCExpress, you have to set the CursorLib property of the THdbc connection component. Also, if the ODBC
driver you're using doesn't support scrollable cursors, you can make use of the ODBC Cursor Library. The cursor
library not only provides you with a scrollable cursor for your result set, but also enables the ODBC driver to
perform positional operations (which we'll discuss later) if your ODBC driver doesn't support it directly. Let's take
a look at the possible values of the THdbc.CursorLib property:

• Use Driver - Use the cursor model and the ODBC driver's scrolling capabilities.

• Use ODBC - Use the ODBC Cursor Library to enable the cache model or provide scrolling capabilities to your
ODBC driver.

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 16

• Use If Needed - Use the ODBC Cursor Library only if the ODBC driver doesn't support scrollable cursors.
Though this is a useful option, it's better practice to make the decision yourselve.

Concurrency Types
There are two distinct ways in which you can modify data at a database in a SQL-oriented environment. The most
common way is by specifying INSERT, UPDATE or DELETE SQL statements and execute it to insert, update or
delete rows. The other way is by building a result set using a SELECT SQL statement, and then positionally insert,
update or delete rows in the result set. Whether you can perform this last set of positional operations on the result
set depends on whether the result set is modifiable. In the terminology of BDE users, whether you can perform
deletes in the dataset or post inserts and updates in the dataset depends on whether you have a "live" dataset or not.
The ODBC cursor model used by ODBCExpress allows you to set the following concurrency types, which also
controls the modifiability of the result set:

• Read-Only - The cursor is read-only. No positional updates or deletes are allowed (however you can still do
updates and deletes via normal SQL). This option has a high concurrency level.

• Locking - The cursor uses the lowest level of locking sufficient to ensure that rows can be updated or deleted.
This option results in the lowest concurrency levels of the four types of concurrency, however it ensures that a
row can be updated or deleted.

• Optimistic Concurrency using Row Versions - The cursor uses optimistic concurrency control, comparing row
versions to detect changes. The updates or deletes are performed only if the row has not changed since the last
read. It provides a high level of concurrency, however there is no guarantee that a specific row can be updated
or deleted.

• Optimistic Concurrency using Row Values - The cursor uses optimistic concurrency control, comparing row
values to detect changes. The updates or deletes are performed only if the row have not changed since the last
read. It provides a high level of concurrency, however there is no guarantee that a specific row can be updated
or deleted.

When using the cache model, concurrency can only be controlled by comparing row values before updates or deletes
are done. You thereby have the options of read-only or row-values-like concurrency types only in both the
ODBCExpress and BDE cache models.

Positional Operations
Let's take a closer look at the positional way of updating data at a database. Because this can only be done via a
result set, we first have to build the result set on which we wish to perform these operations. We can now perform
an insert, update or delete positional operation in one of the following 3 ways:

• Using no SQL

• Using automatically generated SQL

• Using manually constructed SQL

These three options form the basis of ODBCExpress' so-called SQL Generation functionality for positional
operations. When doing a positional insert, update or delete, the success of the operation depends on if the ODBC
driver supports the operation and, as discussed in the previous section, if the result set is modifiable. These two
issues can be are addressed by using the correct level of SQL Generation (provided of course that the user has the
appropriate rights to modify the data in the result set). Four levels of SQL Generation are provided by
ODBCExpress:

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 17

• Level 1 - SQL-less operations using ODBC functions are done to perform inserts, updates and deletes in the
result set. This requires the least effort and control, but requires a concurrency type which allows result set
modification, and also uses Level 2 ODBC functionality (which aren't always supported by all ODBC drivers).

• Level 2 - Automatically generated SQL, together with result set cursor positions, are used to perform inserts,
updates and deletes in the result set. Complete SQL statements are generated to perform each operation,
making use of the result set cursor to determine the row affected by the operation. It might be necessary to
supply the name of the table which will be affected, but only if the ODBC driver is not able to detect it
automatically. This level also requires a concurrency type which allows result set modification.

• Level 3 - Automatically generated SQL, together with supplied primary keys (and affected table if necessary) ,
are used to perform inserts, updates and deletes in the result set. Complete SQL statements are also generated
to perform each operation, but in this case the supplied primary key columns are used to determine the rows
affected by the operation. The biggest advantage of this level is that you don't need a concurrency type allowing
result set modification to perform this operation. This is essentially not a positional operation and as said in the
previous section, concurrency types don't affect non-positional operations.

• Level 4 - Manual SQL construction via events are used to perform inserts, updates and deletes in the result set.
This is done by supplying your own SQL statements to perform the operations using the OnInsert, OnUpdate or
OnDelete events of the THstmt and TOEDataSet components. This is also a non-positional operation and
therefore doesn't require a modifiable result set.

Levels 2 and 3 can be compared to the functionality performed by the BDE TUpdateSQL component, which of
course eliminates the need for such a component in ODBCExpress.

As explained levels 3 and 4 can be used to modify potentially non-modifiable result sets. A result set is non-
modifiable when the concurrency type of the result set is read-only, or if the result set was returned by a query which
makes it non-modifiable, such as a join. Using these two levels will allow you to bypass the non-modifiable state of
the result set, allowing the user to do non-positional inserts, updates and deletes (provided of course that the user
has the appropriate rights to modify the data at the DataSource).

Positional inserts, updates and deletes are performed using the DoInsert, DoUpdate and DoDelete methods of
the THstmt statement component, or the Insert, Edit, Delete and Post methods of the TOEDataSet
component (or TQuery component for BDE users).

So how do you specify in ODBCExpress which level of SQL Generation must be used to perform the desired
positional operation? Let's take a closer look at that:

• Level 4 SQL Generation can override any of the other levels by implementing the appropriate operation inside
the OnInsert, OnUpdate or OnDelete events, and then returning False from each event to avoid
performing any of the first 3 levels. As an aside these events can therefore also be used to confirm an insert,
update or delete operation, by returning the appropriate boolean value from each event.

• When Level 4 SQL Generation isn't done, by default Level 1, 2 or 3 is done, depending on the first level
supported by the ODBC driver used. ODBCExpress will try to detect which of these 3 levels can be performed
by the ODBC driver. If Level 1 SQL Generation is not supported by the driver, Level 2 is attempted and if
Level 2 is also not supported by the driver, then Level 3 is done. Level 3 SQL Generation will work for any
ODBC driver, no matter what the API conformance level of the ODBC driver is.

• Level 1 SQL Generation can be completely bypassed by setting the SkipByPosition property of the
THstmt or TOEDataSet component to True. Then only Level 2 or Level 3 will be attempted when Level 4
isn't done.

• Level 2 SQL Generation can be completely bypassed by setting the SkipByCursor property of the THstmt
or TOEDataSet component to True. Then only Level 1 or Level 3 will be attempted when Level 4 isn't
done.

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 18

• Level 1 and Level 2 SQL Generation can be completely bypassed by setting both the SkipByPosition and
SkipByCursor properties of the THstmt or TOEDataSet component to True. Then only Level 3 will be
attempted when Level 4 isn't done.

Now let's quickly take a look at what happens to the result set when you positionally insert, update or delete a row in
a static-type result set as normally used with the TOEDataSet component. When you insert or delete a row from
the result set, the row is not physically added to or removed from the result set, because the rows which make up the
result set is static. Visually this means that rows that you insert into the result set will disappear from view and
rows that you delete from the result set will not disappear from view. Also, when updating a row using a static
result set in which the values in the result set also remain static, visually this means scrolling off the row and then
back onto the row, the row would display its original values.

The required behavior for TDataSet descendants is however that inserted rows must always stay for the duration
of the open dataset at the position they were inserted, deleted rows must disappear from the open dataset and
modified rows must reflect the modifications for the duration of the dataset. Now the last two cases are pretty easy
to implement in the TOEDataSet, ODBCExpress' descendant of the TDataSet. The TOEDataSet just keeps
track of the deleted and modified rows and adjust the visual display of the dataset accordingly. However, because in
a SQL-oriented static-type result set inserted rows have no physical position and existing rows in the result set also
has no physical positions, there is no way to manually keep track of inserted rows, causing the so-called
"disappearing inserts" effect with the TOEDataSet. The only way this problem can be bypassed is to keep track of
the primary keys of the inserted row, close and re-open the result set, and then position to the inserted row which
might now form part of the new result set. Of course if the inserted row doesn't match the search-criteria of the new
result set, then this won't be possible. The TOEDataSet has a LocateInsert boolean property which does just
this. If set to True, it uses the target primary keys to extract the primary keys of the inserted row, then closes and
re-opens the dataset and locates the inserted row doing a multiple-field Locate on the dataset with the extracted
primary keys.

Blob Handling
Storing and retrieving blob fields at a DataSource with ODBCExpress is just as easy as manipulating any other field
at the DataSource. Fields in a database which can hold information larger than 256 bytes are generally BLObs
(Binary Large Objects). You usually get two types of blobs:

• Text blobs - consist of a string of readable characters which can't be fitted into a normal 256 character-limited
string field.

• Binary blobs - consist of a stream of unreadable characters which is to be stored in binary format at the
database.

The ODBCExpress statement classes also provide various properties and methods to allow you to customize blob
handling for a specific database, if necessary.

Bulk Operations
The THstmt statement component allows you to perform operations not possible through the Open Database
Architecture of Delphi and C++Builder. It allows you to perform bulk fetches (retrieving multiple rows with each
fetch) and bulk inserts (inserting multiple rows with one execute) to help you speed up data-intensive operations and
reduce network traffic.

Copyright © 1996-98 Datasoft (Pty) Ltd. All rights reserved. ODBCExpress White Paper - Page 19

Threading
Both ODBC and ODBCExpress are thread safe. Also, because ODBC is thread safe at environment level for all
ODBC drivers, only one THenv environment component (GlobalHenv) is needed when using multiple threads.
Whether you can also split a THdbc or THstmt component across threads depends on whether the ODBC driver you
are using is thread safe at these levels. ODBCExpress also provides built-in functionality to allow cancelable
queries with both the THstmt and TOEDataSet component, all which can be done from a single thread if necessary.

Stored Procedures
ODBCExpress provides you with integrated stored procedure handling on the statement components – it's as easy
and works the same as with any other query performed against these components.

Other Components
ODBCExpress contains a number of components which helps you with database schema manipulation
(TOESchema), database catalog querying (TOECatalog), DataSource querying and manipulation
(TOEAdministrator) and ODBC and ODBC driver installation and setup (TOESetup).

Non-Visual Development
ODBCExpress also excels in non-visual environments such as web development and server-side applications,
because of its distinct division between non-visual and visual code, providing the full functionality needed in both
portions of the code to perform any database operation.

Future of ODBCExpress
Currently ODBCExpress is tied to the Borland Development Languages which support the Visual Component
Library (VCL), namely Delphi and C++Builder. However because of Delphi's unprecedented support for the
Component Object Model (COM), the platform and language independent binary standard that defines how objects
are created and destroyed and how they interact with each other, the next step will be to design a set of automation
objects and ActiveX controls around the ODBCExpress architecture. This will allow ODBCExpress to be used in
other development languages such as Microsoft's Visual C++ and Visual Basic, but especially from web servers and
Java applications.

Of course because the COM version will be completely based on the current Delphi and C++Builder versions, it
means that continued development on these current versions will form a very important part of the process. In fact
the COM version will justify much more resources and support behind ODBCExpress.

