DELPHI®��GUIDELINES�&�Notes

James D. Clokey�Najic Inc.

� DATE \@ "MMMM D, YYYY"�December 30, 1995��
Table of Contents

� TOC \t "SECTION HEADER,1,SUBSECTION HEADER 3,3,SUBSECTION HEADER 2,2,SUBSECTION HEADER 4,4,SUBSECTION HEADER 5,5" �INTRODUCTION	� GOTOBUTTON _Toc344951178 � PAGEREF _Toc344951178 �1—1��

APPLICATION DEVELOPMENT CHECKLIST	� GOTOBUTTON _Toc344951179 � PAGEREF _Toc344951179 �2—1��

INITIAL APPLICATION SCREEN	� GOTOBUTTON _Toc344951180 � PAGEREF _Toc344951180 �2—1��

ALIASES	� GOTOBUTTON _Toc344951181 � PAGEREF _Toc344951181 �2—1��

COLOR SCHEME	� GOTOBUTTON _Toc344951182 � PAGEREF _Toc344951182 �2—1��

HELP	� GOTOBUTTON _Toc344951183 � PAGEREF _Toc344951183 �2—2��

EXIT / RETURN	� GOTOBUTTON _Toc344951184 � PAGEREF _Toc344951184 �2—2��

CODING CONVENTIONS	� GOTOBUTTON _Toc344951185 � PAGEREF _Toc344951185 �3—1��

WHAT IS A CODING CONVENTION?	� GOTOBUTTON _Toc344951186 � PAGEREF _Toc344951186 �3—1��

CODE READABILITY GUIDELINES	� GOTOBUTTON _Toc344951187 � PAGEREF _Toc344951187 �3—1��

INDENTATION	� GOTOBUTTON _Toc344951188 � PAGEREF _Toc344951188 �4—1��

INTRODUCTION	� GOTOBUTTON _Toc344951189 � PAGEREF _Toc344951189 �4—1��

STANDARDS	� GOTOBUTTON _Toc344951190 � PAGEREF _Toc344951190 �4—1��

NAMING CONVENTIONS	� GOTOBUTTON _Toc344951191 � PAGEREF _Toc344951191 �5—1��

HUNGARIAN NOTATION	� GOTOBUTTON _Toc344951192 � PAGEREF _Toc344951192 �5—1��

VARIABLE NAMING CONVENTIONS	� GOTOBUTTON _Toc344951193 � PAGEREF _Toc344951193 �5—1��

VISUAL CONTROL NAMING	� GOTOBUTTON _Toc344951194 � PAGEREF _Toc344951194 �5—2��

CAPITALIZATION STYLE	� GOTOBUTTON _Toc344951195 � PAGEREF _Toc344951195 �5—3��

FIELD NAMES	� GOTOBUTTON _Toc344951196 � PAGEREF _Toc344951196 �5—3��

PROGRAMMING STYLE	� GOTOBUTTON _Toc344951197 � PAGEREF _Toc344951197 �6—5��

LINE LENGTH	� GOTOBUTTON _Toc344951198 � PAGEREF _Toc344951198 �6—5��

HEADERS	� GOTOBUTTON _Toc344951199 � PAGEREF _Toc344951199 �6—5��

Units	� GOTOBUTTON _Toc344951200 � PAGEREF _Toc344951200 �6—5��

Procedures / Functions	� GOTOBUTTON _Toc344951201 � PAGEREF _Toc344951201 �6—5��

SECTION SEQUENCE	� GOTOBUTTON _Toc344951202 � PAGEREF _Toc344951202 �6—6��

Private, Protected	� GOTOBUTTON _Toc344951203 � PAGEREF _Toc344951203 �6—6��

Public	� GOTOBUTTON _Toc344951204 � PAGEREF _Toc344951204 �6—6��

GRAPHICAL USER INTERFACE	� GOTOBUTTON _Toc344951205 � PAGEREF _Toc344951205 �7—7��

INTRODUCTION	� GOTOBUTTON _Toc344951206 � PAGEREF _Toc344951206 �7—7��

GUIDELINES	� GOTOBUTTON _Toc344951207 � PAGEREF _Toc344951207 �7—7��

Major Elements of Good GUI Design	� GOTOBUTTON _Toc344951208 � PAGEREF _Toc344951208 �7—7��

GUI Factors That Increase Productivity	� GOTOBUTTON _Toc344951209 � PAGEREF _Toc344951209 �7—7��

Radio Buttons, Check Boxes and Push Buttons	� GOTOBUTTON _Toc344951210 � PAGEREF _Toc344951210 �7—7��

The Low Mileage Mouse	� GOTOBUTTON _Toc344951211 � PAGEREF _Toc344951211 �7—8��

Error Messages	� GOTOBUTTON _Toc344951212 � PAGEREF _Toc344951212 �7—8��

Modal Dialogs	� GOTOBUTTON _Toc344951213 � PAGEREF _Toc344951213 �7—8��

No Screen Activity	� GOTOBUTTON _Toc344951214 � PAGEREF _Toc344951214 �7—8��

VERSION NUMBERS	� GOTOBUTTON _Toc344951215 � PAGEREF _Toc344951215 �8—1��

INTRODUCTION	� GOTOBUTTON _Toc344951216 � PAGEREF _Toc344951216 �8—1��

HIERARCHY AND FORMAT	� GOTOBUTTON _Toc344951217 � PAGEREF _Toc344951217 �8—1��

SPECIFIC VERSION NUMBERS	� GOTOBUTTON _Toc344951218 � PAGEREF _Toc344951218 �8—1��

DATABASE NORMALIZATION,,	� GOTOBUTTON _Toc344951219 � PAGEREF _Toc344951219 �10-1��

WHAT IS NORMALIZATION?	� GOTOBUTTON _Toc344951220 � PAGEREF _Toc344951220 �10-1��

GOOD DATABASE DESIGN	� GOTOBUTTON _Toc344951221 � PAGEREF _Toc344951221 �10-2��

WHY KEYING TABLES IS NECESSARY	� GOTOBUTTON _Toc344951222 � PAGEREF _Toc344951222 �10-3��

WHY BREAK DATA INTO SEPARATE TABLES	� GOTOBUTTON _Toc344951223 � PAGEREF _Toc344951223 �10-4��

PROBLEMS WITH AN UNNORMALIZED DESIGN	� GOTOBUTTON _Toc344951224 � PAGEREF _Toc344951224 �10-5��

FIRST NORMAL FORM	� GOTOBUTTON _Toc344951225 � PAGEREF _Toc344951225 �10-5��

Problems with first normal form	� GOTOBUTTON _Toc344951226 � PAGEREF _Toc344951226 �10-6��

SECOND NORMAL FORM	� GOTOBUTTON _Toc344951227 � PAGEREF _Toc344951227 �10-6��

Problems with second normal form	� GOTOBUTTON _Toc344951228 � PAGEREF _Toc344951228 �10-7��

THIRD NORMAL FORM	� GOTOBUTTON _Toc344951229 � PAGEREF _Toc344951229 �10-7��

REMEMBERING THE THREE NORMAL FORMS	� GOTOBUTTON _Toc344951230 � PAGEREF _Toc344951230 �10-8��

UNDERSTANDING THE RELATIONSHIPS	� GOTOBUTTON _Toc344951231 � PAGEREF _Toc344951231 �10-8��

One:One Relationships	� GOTOBUTTON _Toc344951232 � PAGEREF _Toc344951232 �10-8��

One:Many Relationships	� GOTOBUTTON _Toc344951233 � PAGEREF _Toc344951233 �10-9��

Many:One Relationships	� GOTOBUTTON _Toc344951234 � PAGEREF _Toc344951234 �10-9��

Many:Many Relationships	� GOTOBUTTON _Toc344951235 � PAGEREF _Toc344951235 �10-10��

DATA MODELS USING THESE RELATIONSHIPS	� GOTOBUTTON _Toc344951236 � PAGEREF _Toc344951236 �10-10��

FOURTH NORMAL FORM	� GOTOBUTTON _Toc344951237 � PAGEREF _Toc344951237 �10-11��

THE DANGER OF “OVERNORMALIZING”	� GOTOBUTTON _Toc344951238 � PAGEREF _Toc344951238 �10-11��

DECOMPOSING ONE:ONE RELATIONSHIPS	� GOTOBUTTON _Toc344951239 � PAGEREF _Toc344951239 �10—12��

THE TIME VALUE OF INFORMATION	� GOTOBUTTON _Toc344951240 � PAGEREF _Toc344951240 �10—13��

CODD’S TWELVE RULES OF RELATIONAL INTEGRITY	� GOTOBUTTON _Toc344951241 � PAGEREF _Toc344951241 �11—1��

��

Introduction

This document is a compilation of my ideas as well as information gathered from others, who are recognized in footnotes when I can remember the source. It is intended as a contribution to the developer community. Any comments would be appreciated. Comments can be sent to me via the Internet [master@pipeline.com]. I hope you find some useful thoughts.

The primary purpose of these GUIDELINES & STANDARDS is to suggest ways of handling elements that are common to all application development projects. The intent is to make an application as easy to maintain and enhance as possible without imposing an inflexible set of rules on developers. Incorporating these guidelines into day-to-day development will make their implementation almost effortless and add minimally to the development effort. The secondary purpose is to provide a learning tool for developers.

This document provides a solid starting point for development efforts. It should be considered as a living outline. It is intended to be flexible to allow for creativity, improvement, and personal expression.

Although there are elements in here that may be applicable to other development environments, the document is intended primarily for Delphi© developers.

This material is NOT intended for commercial use or distribution and any such use is expressly prohibited. Permission is granted to anyone to distribute this document by any means for no more than a nominal copying charge.

�

APPLICAtion development CHECKLIST

Whenever a new project is started. a checklist should be used as a guide to the features to be included in the application. This aids in developing clearer, more professional applications. Over time, a programmer or group develops its own application checklist. Many times the basic elements of an application checklist are incorporated in templates or reusable objects which speeds development and assures consistency.

The elements of the checklist are:

Initial Application Screen

One of the major questions to be addressed is the look of the screen that introduces the application. In general, an application that has to do a lot of behind the scenes processing before showing its first User interface screen should start with a splash screen which also indicates the progress of the load

A good rule is to never leave a blank or unchanging screen displayed for longer than 5 seconds and preferably for 2 or 3 seconds

The look and feel of many applications� is changing. Regardless of the application, there is usually a menu line and a tool bar that is displayed along with any other initial or login screens.

Login screens are frequently integrated with a security system.

What ever screen is used as the initial screen of the application, the code behind that screen should include all the code necessary to get the application up and running with all necessary directory / alias / file pointers properly set, all directory changes made, all global variables initialized, the application INI file opened and ready for use and the main menu / toolbar displayed.

Aliases

All references to directories should be by alias to permit easy translation to other configurations or up / down sizing. Determine the aliases which are required for the application and define how they will be setup.

Color Scheme

The color scheme should be consistent from form to form within the application.

In developing a color scheme, several points should be kept in mind:

Do not use too many colors

Because these tend to create eye strain:

Avoid the use of large areas of white space.

Avoid the use of bright colors. [For a good example of what should not be done, see the “Hot Dog Stand” color configuration for Windows.]

Help

At the very least, use “fly-over” or “balloon” help for each button and each major element on the form. Be sure to provide the user with a capability of not displaying these help balloons.

Every form should have a help button or menu choice [preferably both].

Take the time to develop a context-sensitive help system as part of the application.

If the application includes any kind of text or Write file, include a button or menu choice [preferably both] so that the user can launch the file in Notepad or Write.

Exit / Return

There is a clear distinction between “EXIT” and “RETURN”. Exit should be reserved for leaving the application, while return means to go back to a prior form from which this form was reached.

Include a button or menu option [preferably both] so the user can exit the application.

Exit should also include the standard short cut key of A-$.

If Exit is on a menu choice it should be in the standard File|Exit location.

Exit should close the application properly and courteously. This means assuring that:

All records are posted.

All files are closed.

All forms are closed.

The drive and directory are reset, if necessary.

Do not use the system bar in the title bar as the exit mechanism.

�

Coding Conventions�

What is a Coding Convention?

A coding convention is a set of rules or guidelines that you use to format your code and name objects and variables. Using a consistent coding convention is an important contributor to productivity, as well as making code much easier to read, maintain and enhance.

Code Readability Guidelines

It is not code that obfuscates readability, it is the programmer. Readable code is the result of consistent use of a specific coding convention coupled with formatting and commenting the code itself.

DO use descriptive names (Within the rules of the language being used, make the variable and object names as descriptive as possible. Many development languages and environments permit names to have enough characters to make the names themselves quite descriptive, take fu;; advantage of this self-documenting feature. In addition, use of the prefixes [defined in the Naming Conventions sections] provides and easy, standardized way to indicate the type for each element of a program.

DO NOT use reserved words (The names of commands, keywords, functions, system variables, operators and system constants are all reserved words and should be avoided in naming variables and objects. In some circumstances reserved words will not cause a syntactic error, but may well cause a run-time error. In addition, it significantly reduces the readability of code to not know whether a particular word refers to a variable / object or to a command.

DO NOT use method names (To avoid confusion, the names of built-in methods, functions, procedures and other language elements should not be used in naming your own variables and objects, even if the language permits it.

DO use white space and indentation (Most languages permit the free use of white space without impacting the efficacy of the code. Make liberal use of white apace and indentation to make your code more readable. In variable declaration sections and similar segments of code, readability is greatly enhanced if the variables are declared one per line, are in alphabetical order within type and are aligned. In various code structures which extend over one line, alignment conventions substantially enhance readability and understanding

DO use comments liberally. Comments describe what a small number of lines of code is designed to accomplish. Some general guidelines for comments are:

In order to assure that comments are readily apparent, use “comment indicators” at the beginning of the comment line. A “comment indicator” is a “*****“ immediately following the character which denotes a comment in the language you are using.

Indent comment lines to the same level as the code to which they apply.

Comments should be in complete sentences starting with a capital and ending with a period to aids in setting comments apart from code.

At a minimum, each major block of code more than five lines long which performs a distinct function be commented.

In-line comments are not recommended.

�

Indentation

Introduction

The purpose of an indentation style is to make the code as readable as possible

Standards

The standard indentation is three spaces. This is enough to make the indentation readily identifiable on the screen and on paper. Larger indentation is acceptable if it is consistent.

Continuation line indentation should be one indentation level plus one space.

Delphi / Pascal Section Headings (e.g. program, uses, var, begin, end; etc.) begin at the margin. Code within a Section is indented one standard indentation.

Procedures and Section Headings within Procedures begin at the margin.

Begin and end; statements delineating blocks should be at the same indentation level. The following are examples:

If expression then

	statement;

{endIf}

If expression then

	begin

		statement1;

		statement2;

	end;

{endIf}

If expression then

	statement

else

	statement;

{endIf}

If expression then

	begin

		statement1;

		statement2;

	end

else

	statement;

{endIf}

If expression then

	begin

		statement1;

		statement2;

	end

else

	begin

		statement3;

		statement4;

	end;

{endIf}

Use of an {endIf} comment at the end of the block is recommended. Similarly for other kinds of blocks.

�

Naming Conventions

This section provides guidelines for naming various elements and objects connected with an application. While many conventions impose an artificial limitation of 3 characters for the prefix, we have chosen to use as many characters as necessary in order to make the mnemonic easier to use and read.

Hungarian Notation

“Hungarian Notation” is intended to make distinctions between similar objects of different types apparent when the declarations for those objects are not readily available. For example, having the prefix “frm” on the variable helps the reader immediately know that the variable refers to a form. We have extended the notation to define prefixes for common variable / object / component types. Thus, names are in the format “xVariableName” where “x” is the object type indicator for the variable.

Every object on a form that is referenced in code that you write (as opposed to Delphi-generated code) should be named using these guidelines. If an object is staticly displayed on the form and never used in code other than in the declaration it need not be named. [On forms with many objects, it is usually best to name all objects so they can be readily identified.]

Variable Naming Conventions�

All variables that have a predefined type should be prefixed with the following:

Predefined Type�
Prefix�
�
Ordinal Types�
�
�
	Integer�
int�
�
	ShortInt�
sht�
�
	LongInt�
lng�
�
	Byte�
byt�
�
	Word�
wrd�
�
	Boolean�
bol�
�
	ByteBool�
bytbol�
�
	WordBool�
wrdbol�
�
	LongBool�
lngbol�
�
	Char�
chr�
�
Real Types�
�
�
	Real�
real�
�
	Single�
sng�
�
	Double�
dbl�
�
	Extended�
ext�
�
	Comp�
cmp�
�
String�
�
�
	String�
str�
�

Visual Control Naming�

When naming visual controls, either programatically or using the Property Manager, the control name should be prefixed with the following:

Control Type�
Prefix�
�
TBevel�
bvl�
�
TBitBtn�
btnbit�
�
TButton�
btn�
�
TCheckBox�
chk�
�
TComboBox�
cmb�
�
TDBCheckBox�
dck�
�
TDBComboBox�
dcb�
�
TDBEdit�
ded�
�
TDBGrid�
dgr�
�
TDBImage�
dig�
�
TDBListBox�
dls�
�
TDBLookupCombo�
dlucmb�
�
TDBLookupList�
dlulst�
�
TDBMemo�
dme�
�
TDBNavigator�
nav�
�
TDBRadioGroup�
dbtngrp�
�
TDBText�
dtx�
�
TDirectoryListBox�
dirlst�
�
TDrawGrid�
drwgrd�
�
TDriveComboBox�
drv�
�
TEdit�
edt�
�
TFileListBox�
filelst�
�
TFilterComboBox�
fltr�
�
TForm�
frm�
�
TGroupBox�
grp�
�
THeader�
hdr�
�
TImage�
img�
�
TLabel�
lbl�
�
TListBox�
lst�
�
TMaskEdit�
msk�
�
TMediaPlayer�
plyr�
�
TMemo�
mem�
�
TNotebook�
nbk�
�
TOLEContainer�
olecont�
�
TOutline�
otl�
�
TPaintBox�
pnt�
�
TPanel�
pnl�
�
TRadioButton�
btnrad�
�
TRadioGroup�
btnradgrp�
�
TScrollBar�
scrlbar�
�
TScrollBox�
scrlbx�
�
TShape�
shp�
�
TSpeedButton�
btnspd�
�
TStringGrid�
strgrd�
�
TTabbedNotebook�
tabnbk�
�
TTabSet�
tabs�
�

Note that this set only includes the standard VCL controls. It is suggested that each developer include a suggested prefix with each new visual control developed. This prefix should be included in the component’s About box.

Capitalization Style�

In order to assist in reading a program listing, a consistent capitalization style should be used, as follows:

Element�
Style�
Example�
�
Reserved Words�
All lower case�
procedure, begin, end�
�
Class Fields�
Starts with capital ‘F’, mixed case name.�
FIndex, FMaxCount�
�
Constants�
All capital letters�
PI, MAXIMUM�
�
Types�
Start with capital ‘T’, balance is camel capitalization��
TMyType, TYourType�
�
Procedure/Function�
If used to read or write properties, they should start with ‘Get’ or “Set’ respectively. Names should be in camel capitalization.�
GetMax, SetMax, CalcMax,�
�

Field Names

Field names should always be in camel capitalization format (the field name starts with a capital letter and each individual word within the field name starts with a capital letter. All other letters are lower case and words have no separator between them. [For example, AuthorizerName]

Programming Style

Line Length

The length of a line of code should be kept to 100 characters to a full line to be printed in landscape mode.

Headers

Units

Every unit should have a header which has the following format:

{---

Application Name:

Unit Name:

Purpose:

Copyright Notice:

Programmer: Date:

Reviewers:

 Coding: Date:

 Compliance with Standards: Date:

Other Comments and Special Requirements:

---}

Procedures / Functions

Every procedure / function within a unit should have a header which has the following format:

{--}

Procedure Name:

Unit Name:

Purpose:

Copyright Notice:

Programmer: Date:

 Reviewers: }

 Coding: Date:

 Compliance with Standards: Date:

Call and Return:

Other Comments and Special Requirements:

---}

Section Sequence�

Private, Protected

The private declaration block should be structured in the following order:

1) Field declarations

2) General procedure and function declarations.

3) Property Get, Set functions and procedures.

For example:

private

	FIndex

	FMax

procedure CalcMax(Value:Integer);

function GetMax:Integer;

procedure SetMax(Value:Integer);

Public

The public declaration block should be structured in the following order:

Public Methods

Properties

For example:

public

	procedure Create; override;

	procedure Free:Override;

	property Max:Integer read GetMax write SetMax;

Graphical User Interface

Introduction

The Graphical User Interface [GUI for short] refers to the part of any Windows application which is seen by the user and with which the user interacts. Numerous books and articles have been published on the subject of GUI Guidelines and building a better interface. Perhaps the best is a set of guidelines, rules and recommendations originally developed by Corporate Consulting, Inc. [Now part of LBMS]. This product is in the form of an almost 200 page Word document and a Help file for on-line access. The material here includes some very rudimentary tips for better interface design.

Guidelines�

Major Elements of Good GUI Design

There are several major keys to good GUI design:

Screens should be symmetrical.

Symmetry, carried to excess can be mind-numbing, lead to decreased productivity and increased errors. Use asymmetry with a purpose.

Consistency, consistency, consistency. Do the same thing the same way on every screen.

Align objects or misalign them dramatically.

Build a stable base for your screen elements.

To make an item stand out, break the pattern.

Group like items and make them of a similar size and color.

Screens should read from left to right and top to bottom.

GUI Factors That Increase Productivity

Radio Buttons, Check Boxes and Push Buttons

Radio buttons and check boxes are, to most users, tiny little things that require tight targeting to select. This leads to a greater effort to make a selection and reduces productivity. Rather than radio buttons or check boxes, use push buttons and make them behave as either radio buttons [select one and only one] or check boxes [select as many as you wish] through your code.

One way to indicate to your user which push button has been selected is to change the color of the caption on a selected push button to boldface red which is quite readable against the gray of a 3-D button.

The Low Mileage Mouse

Make sure that the mouse does not have to go from New York to Chicago via Los Angeles. Group together those things that have to be sequentially selected with the mouse.

Error Messages

Error messages content should not make the user feel incompetent.

The text of the message should gently inform the user of the error, the color should not be intrusive, and the message should indicate the corrective action

Modal Dialogs

Requiring the user to click on an OK button, as is the case with most modal dialogs is simply not sensible. For mundane informative messages, use a custom message screen which automatically times out and disappears. Use a default time-out global constant of 3 seconds but give the screen the ability to accept a different number of seconds as a parameter. As a general rule, add about 2 seconds for each additional message box line.

To make sure the user reads the screen, set the time-out parameter to a much higher value.

Only use modal dialogs when it is absolutely necessary to get a response from the user.

No Screen Activity

For any process that takes longer then 2 or 3 seconds, display a message. The message should tell them why the screen has stopped and indicate the expected duration of the stop. The message should change as does, for example, a progress bar or thermometer if the delay is going to be more than 3 seconds. That way your user knows that the process is proceeding and that the system has not simply stopped.

�

Version Numbers

Introduction

The purpose of version numbering is to provide an easy means of keeping track of changes made to application programs.

Hierarchy and Format

Version numbers are hierarchical in nature and in the format XX.YY.ZZZ, where:

XX changes sequentially when there is a major change in the functionality of the application.

YY changes sequentially when their is a minor change in the functionality of the application.

ZZZ changes when a bug in the application system is corrected.

In general, each module will have its own version number.

Specific Version Numbers

Specific version numbers are reserved, as follows:

All pre-release development changes have XX.YY set to 00.00. The ZZZ element changes with different “alpha” or “beta” releases of the product.

The initial installed version of the application always has 01.00.000 as its version number.

�

Documentation

User Requirements

Probably the most important element of documentation and the one on which the application’s success depends is the definition of User Requirements. This information is obtained via interviews with ALL current and potential users of the application as well as gaining a thorough understanding of the functionality of the existing system and its shortcomings in the eyes of the users.

Internal Program Documentation

The best way to document a program is to have complete internal documentation, including a header comment block, in-line comments and meaningful variable names.

Documentation Components

There are a number of published documentation components which comprise a full set of application system documentation. These are in addition to the internal program documentation described in the above section. The documents are:

User’s Manual, including

Instructions for using the application.

A description of the feeds or input to the application.

A description of the feeds from this application to other applications.

A description [including samples] of all reports produced by the system and the destination of each report.

Application Administrator’s Manual, including

Instructions for administering the system.

Backup and Recovery procedures.

Technical Manual including

Definition of the database and associated tables and fields.

Definition of data mapping from the prior system.

Definition of all objects that comprise the system, including properties and code.

�

Database Normalization�,�,�

In the last two chapters, you explored the fundamentals of the relational model, the reasons it is so important to observe these basic principles, and how various operations can be performed on relational tables. This section explains database normalization in terms that anyone can understand and helps to understand why a normalized database is better in every respect when compared to an unnormalized one.

What Is Normalization?

A fundamental property of a relational table is that every row and column intersection contains one and only one value, and never a list of values. If a table contains more than one value at a position, it is said to have repeating groups. This means that the element at a logical intersection does not contain a single atomic value, but instead contains either

Many instances of that single value. For example, if you have many telephone numbers for a customer, it is mistake to put each number in the same field, since you would need different mechanisms to extract a phone number when there is one of them or when there are many.

A complex object, which should otherwise be divided into separate fields. For example, it is a mistake to place all information for a line item in a single field of an ORDERS table.

This applies whether or not these values are all contained in one field (which is an obvious violation of the theory), or in adjacent fields (which is less obvious). Repeating groups also exist when more than one field contains essentially the same type of information.

If tables have repeating groups, then fundamental operations must be performed in different ways. For example, if an ORDERS table contains five groups of fields for line items, then adding a new line item is a fundamentally different process from adding a new order. And if an order already has five line items, and you need to add a sixth, the problems are different again.

But if repeating groups are removed to a separate table, then adding a new order is fundamentally the same operation as adding a new line item. Furthermore, you don’t have to worry if there are 1, 5, or 20 line items.

Tables with repeating groups are said to be unnormalized. Tables without repeating groups are said to be normalized. The process of moving from an unnormalized table to one that is normalized is called normalization.

Five normal forms are commonly recognized, together with a number of special variations. The first four of these are of general interest; the others are much more esoteric and will not be discussed in this book.

Normalization allows you to perform the same fundamental operations on tables, no matter what their structure. Relational database management systems (RDBMS) strive for consistency in accessing relational tables, and normalization is a means of achieving this consistency.

Normalized databases usually comprise a number of relatively narrow but long tables, which are linked together on common fields (often ID or code numbers) to perform typical operations. RDBMS’s are optimized to handle tables with this structure; they use indexes on the physical tables to provide speedy access to your data.

There are a number of significant side-effects of normalization:

It invariably results in less duplication of identical values, which in turn leads to smaller hard-disk storage requirements.

It almost always provides better performance, since the RDBMS does not have to churn through all these duplicates. Smaller size on a hard-disk also contributes to quicker access.

It always results in better data integrity, when the RDBMS can automatically manage the links between related data, and where the burden is not on the user to update the same information in a dozen (or a hundred!) different places.

These benefits explain why relational databases are becoming the predominant method for managing repetitive data in computers. They allow you to store, maintain, and access that data far more efficiently and reliably than other types of databases.

Good Database Design

If you accept the underlying premise that it is more efficient to store data in a collection of linked tables (called a database), and you further accept that a Relational Database Management System [RDBMS] provides tools and facilities to manage the links between these tables, then good database design is the process of asking and answering this question:

If you have a collection of information which must be represented and manipulated by the database software, where should each item of information be stored in order to link it correctly to other items of information?

Each atomic item of data has a logical place within the various tables making up your database. The rules of normalization help you determine that place.

In a complex application, there is rarely one absolute and correct answer for this issue. Database design is not an exact science with rules to explain every possible arrangement of tables and fields. A specific problem may have many answers that are logically sound, and which follow the guidelines you will explore in this chapter. In every case, you will need to consider the specific needs of your application in determining which of the right answers is most appropriate.

These guidelines also don’t take the physical limitations of your database into account. If a database product does not support an important principle of the relational model, then you are forced either to compromise your design to work within what is supported; or to write extensive code to simulate this support and thereby achieve the same results.

If you understand a theoretically ideal layout for your data, you can make adjustments or compromises to handle platform limitations, with the fullest understanding of the safeguards you must implement to protect the integrity of your data.

Why Keying Tables Is Necessary

This discussion of the rules of database normalization makes no sense if your tables do not have a Primary key.

Relational theory requires that any item of information in a database be uniquely identified by three pieces of information:

The table in which that item is stored

The field in that table that you are accessing

The value of the Primary key for that record

The Primary key is the combination of fields extending as many fields as is required to guarantee uniqueness. Note that there is always only one Primary key in each table, even if it consists of multiple fields. You need to key as many fields as are necessary in order to guarantee uniqueness.

So, rule zero for normalizing databases is:

Always key your tables.

There are other advantages to using a Primary key:

You will guarantee that a record can be uniquely identified. If you need to find a specific customer or employee in a table, it is much easier if you have a unique value for which to search.

Queries and searches are very fast on the Primary key, since Paradox also places an index on the fields comprising the key. This is especially true when you create multi-table queries.

Multi-table forms and reports, where Paradox establishes the links between related tables, are impossible without a Primary key.

Table Lookups, which are defined when you create or restructure the table, can only be performed if the lookup table has a single-field Primary key.

Maintained Secondary indexes, which speed up queries and searching on non-key fields, are not possible unless the table is keyed. You also cannot display a table with a different sequence of records unless you are using maintained secondary indexes. (See Chapter 15 for more information on indexes.)

The only disadvantage to using a Primary key is that there may not be a natural field on which to create the unique key. This is why normalized tables often feature an ID or code field at the beginning of the table to serve as the unique identifier.

The only time you should consider using non-keyed tables is for special status or configuration tables used by your application. These tables invariably have only one record, which you use to store what are, in effect, global variables for your application.

As you saw above, fields in a table are attributes of the key to that table. Every field in a table should describe the Primary key of that table. If the Primary key is the unique identifier, everything else in the table helps to explain the Primary key.

When fields in a table describe the Primary key of that table, we call these fields functionally dependent on the key. As you will see, the rules of normalization are designed to break information into different tables so that each field in each table is functionally dependent on the Primary key of that table.

Why Break Data into Separate Tables

Relational databases work best when your data is broken up into different tables that are linked together on common fields. This design results in narrower, longer tables, where the Primary key is used to access the data, and indexes are used to speed this process.

If you find the process of splitting your data into different tables difficult to understand, it helps to remember that each table should manage only one kind of data. For example, the MAST� database used as the sample application in this book tracks many categories of information, including

customers

customer orders

order line items

stock items

vendors

As you will see in the following sections, applying the rules of normalization to a simplified version of this database results in separate tables for each of these categories. In your own applications, when you have decided what items to track, you should group them together into different tables which perform a single purpose only.

One way to consider this is to look at which items are related in a One:One relationship. These items are usually placed in the same table, since each item in a table must describe the Primary key of that table and the Primary key must be unique. For example, if each customer in the sample application has a single address, city, state, zip code, telephone number, and FAX number, then it is appropriate to place these fields in the same table.

Problems With an Unnormalized Design

To understand the process and reasons for breaking your data into separate tables, let’s examine the problems that occur when all the data is in one table.

If MAST owned a database program with limited or no linking capabilities—also known as a flat file database manager—and wanted to track product orders on the computer, everything would have to go into one table which would have to make certain limiting assumptions.

This table assumes that no order has more than three line items, which are specifically described. Each customer must also be described in detail for every order placed by that customer. Most orders have one or two items. A few have three. So you can immediately see that a number of fields will be blank much of the time, resulting in wasted space on the hard disk and more time required for fundamental operations.

What happens if one order requires more than three line items? You would have to restructure the table and add a new group of “Stock Item..”. fields for just this order. Now the problems of wasted space are magnified further, since this fourth group of fields is blank except for one record. In addition, restructuring a critical table like this one in the middle of an application is no trivial matter. Many forms, reports, and much code will depend on this table, and these will also have to be changed.

Some users attempt to solve this problem by using an non-keyed table and placing a continuation record below the original one for the additional line items. But this solution relies on the physical order of records in the table for critical information about the relationship.

Here is a third problem: what if you want to query for all customers who have ordered a specific part? This stock item could appear in any one of three different fields (or four if you had added the new group of fields to allow for the customer above). The query would require as many rows as there are repeating fields, since each instance of a Stock Item must be separately queried. You cannot put the criteria for each of the “Stock Item..”. fields on the same row, since doing this would be asking for orders with the desired item in each and every “Stock Item..”. field (an And condition).

This is a slow query. Paradox will make three separate passes through the table, finding matching records in each case. There has to be a better way.

First Normal Form

The first rule of database design says:

Eliminate repeating groups.

For each group of related fields, make a separate table and give that table a Primary key. To bring the ORDER_F table into first normal form, you must divide it into two tables, one for orders, the other for line items.

All line items are split into the separate LINES_1 table, and linked to the ORDERS_1 table via a common field, “Order No”. Both tables are much narrower than the original ORDERS_F table and correspondingly longer. But as you saw above, this is the way it should be. Notice also how the LINES_1 table is keyed on the first two fields. This is done in order to allow more than one line item per order.

If the Primary key begins to get too wide, developers generally use a shorter ID number instead of a longer text value to establish uniqueness between records. So you might modify the LINES_1 table to add this ID, as shown in Figure 14-7.

A table is said to be in first normal form if all fields contain atomic values only. This is another way of saying that there are no repeating groups.

Problems with first normal form

But this layout also has its problems. What if you need to change the text associated with a specific Stock Item. This change has to be made for every record where that value appears.

In Paradox, this operation can be done with a ChangeTo query, but many an RDBMS doesn’t support such an operation. If you have to perform the operation manually, and you miss some entries, you end up with inconsistent information in the database, or the same Stock No referring to different descriptions. This is known as an Update anomaly.

Another problem occurs if no one orders a specific stock item for a few months, and all outstanding orders are paid and transferred to a history file. When you delete all references to this stock item, it disappears from the database completely! There is now no record that it ever existed, or that it is a valid stock item which can be ordered. This is known as a Delete anomaly.

Finally, what happens when you want to add a new stock item to inventory? There is no place in the current database for this information until someone actually orders that item. This is known as an Insert anomaly.

Second Normal Form

The second rule of database design avoids these three problems:

If a field in a table is related to only part of a multi-field key, remove it to a separate table.

In the revised LINES_1 table, the Stock Item and Stock Supplier fields depend only on the Stock No field, part of the two-field key. These fields have no relationship to the Order No field whatsoever.

In a table where the Primary key consists of more than one field, every other field in the table must be an attribute of the complete Primary key. For the LINES_1 table, it is not enough to describe just the Order No or just the Stock No; other fields in this table must describe the combination of these fields, since it is this combination which determines uniqueness.

Any fields which describe the Stock No only should therefore be removed to a separate table. The three tables now required to represent this database. (LINES_2 and STOCK_2 are new; ORDERS_2 is the same as ORDERS_1.)

A table is said to be in second normal form if it is already in first normal form and if every non-key field is functionally dependent on the complete Primary key.

In this second normal form design, you don’t waste space duplicating the stock description and supplier information for each and every line item. The STOCK_2 table is quite small and relatively static, and the LINES_2 table, which will have many more records, contains only dynamic information.

Update anomalies are easier to avoid, since the description of each stock item appears only once in the whole system. If you change a description, it does not need to be changed in multiple places. Delete anomalies are avoided completely, since changes to the line items being ordered, and to the orders themselves, are insulated from the master list of Stock items available for sale. And Insert anomalies are avoided because you now have somewhere to put new stock items before they are actually ordered.

Notice also how the tables in this database are becoming narrower, with less duplication of wide field values. Where duplication is unavoidable, you make it as small as possible by using an ID number.

Problems with second normal form

In the ORDERS_2 table, both first and second normal forms are satisfied. There are no repeating fields and all fields are dependent on the table’s primary key. There is, however, one problem with the structure of the table. Each order was placed on a specific date, each order was also placed by a specific customer, but from a relational standpoint, the telephone number of this customer has nothing to do with the order. The telephone number field is an attribute of customers and not of orders.

Furthermore, if one customer places a large number of orders, you will be duplicating information on that customer many times. This results in the same problems of wasted space and slower performance described above. You also have the same Delete, Update and Insert problems; how do you track a customer whose orders have been archived because they are paid in full.

For all these reasons it also makes sense to move customer information into a separate table.

Third Normal Form

Third normal form is similar to second normal form in that it is designed to avoid Update, Delete, and Insert anomalies. But it specifically addresses relationships in tables that have only one key field:

If fields do not contribute to a description of the table’s key, they should be removed to a separate table.

Any fields which only describe customers should therefore be removed to a separate table. There are now four tables now required to represent this database. (CUST_3 and ORDERS_3 are new; LINES_3 and STOCK_3 are the same as LINES_2 and STOCK_2, respectively.) This design introduces a Customer No field for the same reason noted earlier: when duplication is necessary, make the duplicated values as short as possible.

A table is in third normal form if each record consists of a Primary key that identifies an entity and a set of zero or more mutually independent fields that further describe that Primary key.

With third normal form, the information in each table pertains to the key of that table only. The whole system is contained in four tables with a total of 19 fields, instead of the one table with 22 fields. Most operations are performed on keys, so processing speed is much faster. You can have as many line items for each order as you need, with no wasted space for those orders with only one or two items. Customer and Stock details are maintained in their own tables, secure from Update, Delete, and Insert anomalies.

Remembering the Three Normal Forms

Here is a simple little mnemonic which developers often use to remember the three rules:

The Key, The Whole Key, and Nothing But The Key, So Help Me Codd!

The Key means that fields cannot repeat, but must independently describe the table’s key (first normal form).

The Whole Key means that in tables with a multi-field key, additional fields must describe all of the key (second normal form).

Nothing But The Key means that fields should describe the key only, not other descriptive fields (third normal form).

So Help Me Codd refers to the author of the relational model.

Understanding the Relationships

If you arrange your data according to these basic principles, you can start use many advanced data-management features. When your tables are organized according to normalization principles, a number of different kinds of relationships become evident.

One:One Relationships

A One:One relationship exists when, for each Primary key value, there are zero or one values for another field or record. Generally, when a One:One relationship exists, the fields should be in the same table. But this is not always appropriate, as you will see below.

One:Many Relationships

A One:Many relationship exists when, for each record in one table, there are zero, one, or any number of linked records in another table. When you have a One:Many relationship, first normal form dictates that the records on each side of the relationship be in different tables.

There are two fundamentally different types of One:Many relationships: One:Many Primary key relationships and One:Many Foreign key relationships.

In a One:Many Primary key relationship, you do not have zero values on the Many side; i.e., a record does not exist on the One side of the relationship unless there is at least one record on the Many side. An example of this type of One:Many exists between the ORDERS and LINEITEM tables—orders require at least one line item.

Notice that in a One:Many Primary key relationship, the fields comprising each table’s Primary key are organized hierarchically. The Primary key for the Many side begins with the Primary key for the One side and includes additional fields necessary to establish uniqueness. This type of One:Many relationship is sometimes known as a master-detail relationship.

In a One:Many Foreign key relationship, zero is allowed on the Many side; i.e., a record can exist on the One side without there also being a record on the Many side. An example of this type of One:Many relationship exists between the CUSTOMER table and the ORDERS table—each customer can have many orders, but an entry in the CUSTOMER table may also be a prospect who has not placed a single order.

Notice that in a One:Many Foreign key relationship, the Primary key for the One side is not included in the Primary key for the Many side, ensuring that zero detail records can exist. Instead, the link is established between the Primary key field in one table and a Foreign key in the other table, so that duplicates are allowed.

One of the most common mistakes made by users is to implement a One:Many Primary key relationship when the data should be organized using a One:Many Foreign key. To determine what type of relationship to set up, you should carefully examine whether a record in the master table must have linked records in the detail table in order to be valid.

Many:One Relationships

The Many:One relationship is sometimes referred to as the more general concept of a single-valued relationship, where one or many records in a table link unambiguously to a single record in another table. From a relational theory standpoint, these relationships don’t really exist. They are actually One:Many Foreign key relationships, considered from the Many side.

Many:One relationships are sometimes called Lookup relationships because they represent a lookup on the Primary key of another table.

One:Many Foreign key relationships can be reversed, considered as a Many:One relationship between the Foreign key table and the Primary key table respectively. One:Many Primary key relationships are not normally reversed.

Another way to consider a Many:One relationship is as a virtual record—also known as a virtual tuple—because the link from the Many table to the One table unambiguously highlights a specific record in the latter table. For example, each record in the LINEITEM table can be logically extended with information from the STOCK table, using the Stock No referenced in that line item to establish the link.

Many:Many Relationships

A Many:Many relationship exists when many records in one table link to many records in another table. For example, each order may consist of many stock items, and each stock item will be represented on many orders.

Relational databases cannot directly show Many:Many relationships. Instead, you need to implement a linking table in the middle. This linking table generally has a One:Many Primary key relationship with one table, and a One:Many Foreign key relationship with the other table. In the sample database, the LINEITEM table serves this role in the middle of ORDERS and STOCK.

Data Models Using These Relationships

Paradox makes it easy for you to create various data models to highlight these relationships, and then to build different types of forms and reports from these data models. The starting point in each case is the table you wish to consider as the master, or the focus of the relationships. Any of the four tables in the relationship can be considered to be the master, although some will be more commonly used than others.

To provide only one example, declare CUSTOMER as the Master table, then ORDERS is a One:Many Detail table, LINEITEM is a One:Many Detail table linked to ORDERS, and STOCK as a lookup table linked to LINEITEM.

A form built around this relationship would show, for each customer record, a TDBGrid with the orders placed by that customer. For each order, in turn, the form would have another TBDGrid linked to the lineitems in that order.

One could construct a data model using ORDERS or LINEITEM or STOCK as the Master table.

Each of the above data models can be created and used depending upon the needs of the application. In fact, a real life application might use all of these data models to display various views of the database in response to different questions.

As the above examples demonstrate, splitting your data among different tables does not in any way hinder your ability to display this data in forms. If anything, normalizing your data gives you more flexibility to showcase the fundamental relationships that exist

Fourth Normal Form

Most applications need go no further than third normal form. But there are some situations where you need to break the information up into an even finer modularity.

For example, assume that for each order you also need to track the sales calls that were necessary to secure that order. For each sales call, you will maintain the date that the call was made and the salesperson who made that call. This enhancement allows you to determine sales commissions at the end of the month.

But where should this information be placed? A quick solution might be to place it in the LINECALL table.

But, notice how the number of line items bears no relationship to the number of calls made to secure that order. For some orders, there are more line items, for other orders, more calls were made. Notice also that there is a limit to the number of calls which can be stored, since the Primary key includes the Stock ID, and only one record can have a blank Stock ID for each order. (Theoretically, no records should have a blank Primary key.)

But there is a more serious problem: this table implies a logical relationship between the line items and the call fields for each line item. It suggests, for example, that for a given order, the first product ordered was in some way related to a specific call date and a specific salesperson.

This is patently ludicrous. In fact, there is no relationship between these two fields, other than that they are both attributes of the Order No. Each order can have multiple line items and also multiple calls made.

Fourth normal form tells you to:

Isolate independent multiple relationships.

It specifies that no table should contain two or more One:Many or Many:Many relationships unless they are also directly related to each other. In this example, you need to create two tables, one for the order line items (the LINES_3 table defined above), the other to store sales calls for that order, the ORD_CALL table.

The Danger of “Overnormalizing”

Initial learning of these “rules” often leads one to make the mistake of breaking everything into narrow tables. There is a real danger in “overnormalizing” when the relationships don’t require it. In the real world, tables are rarely as narrow as the sanitized examples in a book; it is easy to find a lot of data that must be maintained and which relationally belongs in one table.

For example, in an actual customer-tracking system, you might easily need the following fields, all of which will normally belong in the same table:

�
• Customer ID

• Name

• Address

• City

• State

• Zip Code

• Company Phone No.

• FAX No.

• Contact Name

• Contact Title

• Contact Dept.

• Contact Phone No.

• SIC Code

• Business Type

• Business Description

• Date Founded

• Public Y/N

• Annual Sales

• Number of Employees

• Region

• Salesperson

• Last Order Date

• Net Sales To Date

• Net Sales YTD

• Comments

�
Without even trying, you have 25 fields and a relatively wide record. This is okay. Under some circumstances, all of these fields logically belong in the CUSTOMER table, and you should not feel it necessary to break them up simply because the table is getting wide.

But, for example, if there is the slightest possibility that you will eventually have more than one contact at a company, or you will do business with different divisions or locations of the same company, then this information will need to be split into different tables to avoid violating first normal form.

Decomposing One:One Relationships

Recall from earlier in this chapter that fields in a One:One relationship are normally stored in the same table, since each field uniquely describes the same Primary key.

One reason that you might break a very wide table into narrower tables has to do with physical limitations in the RDBMS, such as the limits on record size for versions of Paradox for Windows prior to 5.0. If you had needed to store more data than would fit, you would have needed to break your record at an arbitrary location and place the data into more than one table. Recognize if you do this, however, that your decision is not based on relational grounds, but instead because of an arbitrary limitation in the underlying software.

There are a few circumstances where you might wish to decompose a One:One relationship for relational reasons. For example, if a group of fields in a table will have a significantly high percentage of blanks, it might be best to place these fields alone in a separate table. A One:One relationship means that for each Primary key, there will be zero or one—but no more than one—value for that attribute. If the number of zero values is high, you will end up with a lot of blanks and a lot of wasted space. But if you place those fields in a different table, space is only allocated for those records with data.

For example, a human resources database maintains basic information for each employee in a company. Some employees will also subscribe to the company health plan, while others will obtain health coverage through a spouse. If health information is stored in the same table as the basic information, many employees will have blanks for these fields. But if you split the employee health information into a separate table, you have far less data that must be stored, no blanks, and no wasted space.

A couple of other reasons to decompose One:One relationships include:

If some fields in the relationship contain especially confidential data, you might choose to place this data in a separate table and make it available only to authorized users. Paradox does not require it, but this option may be better for programming reasons.

If you need some data in a One:One relationship for a very short time. For example, you should maintain employee contributions for the annual firm picnic in a separate table, so that once the event has passed, you can simply delete the table without worrying about long-term data.

The Time Value of Information

Normalization leads to fields or attributes which uniquely describe the Primary key of a table. But many users don’t consider the effect of time on this description. For an attribute to belong in a table, it must describe the Primary key of the table for all time. An example may help to explain this issue.

The sample database in third normal form includes a LINEITEM table that stores information about order lines, and a STOCK table that stores information about the items being ordered. The Stock Price field could be placed in either table, depending on how the company prices its products:

If all products are sold for a single price that will never change, then you might not need the Stock Price field in the LINEITEM table. The price becomes an attribute of the item which does not change over time.

If, however, the prices of items may go up (or down) in the future, then a separate Stock Price field is required in the LINEITEM table to represent the price at which the item was actually sold. This price might be different from the price currently in the STOCK table for that item.

You should not eliminate fields from a table if those fields are not redundant over time.

�

Codd’s Twelve Rules of Relational Integrity�

1. Information Rule

All of the information in a relational database must be represented explicitly and uniquely through table values.

2. Guaranteed Access

Every item of information stored in a relational database must be accessible by specifying ONLY table name, column name, and primary-key value.

3. Missing Information

There must be a mechanism to express missing information in the database in such a way as to be independent of data type and supported in operations at the logical (the Data Sublanguage) level.

4. System Catalog

The description of the database at the logical level should be represented dynamically at the logical level like ordinary data so that the user may use the database's Data Sublanguage to manipulate the information.

5. Data Sublanguage

No matter how many languages or interactive modes are supported, there must be a least one Relationally Complete data manipulation language.

6. View Updatability

The database must support logical views of the data, and the user should be able to update the data in the base tables via these logical views.

7. Insert/Update/Delete

The database must allow the Retrieval, Insertion, Updating, and Deletion of records at the set level.

8. Physical Data Independence

Interactive operations and applications programs should not have to be modified whenever there are changes to the structure of the underlying data files.

9. Logical Data Independence

Interactive operations and applications programs should not have to be modified whenever the base tables are restructured, so long as the restructuring involves no loss of information.

10. Integrity Independence

Interactive operations and applications programs should not have to be modified whenever there are changes to the integrity rules stored in the system catalog.

11. Distribution Independence

The underlying data should be able to be stored on multiple independent computers, and the database should be able to access the data regardless of where it is physically located within.

12. Nonsubversion

If a relational database has a procedural language (Paradox's PAL) it should not be allowed to subvert the database's integrity and security rules.

� Technically, this is true of Windows applications, which is my primary concern.

� This section is derives some of its ideas from the Prestwood Coding Conventions by Mike Prestwood, appearing in, among other venues, WHAT EVERY PARADOX 5 FOR WINDOWS PROGRAMMER SHOULD KNOW by Mike Prestwood, published by SAMS Publishing Company, 1994.

� Thanks to Cliff Schroeder [CIS ID: 76647,1014] for some of the ideas in this section.

� Thanks to Cliff Schroeder for some of the ideas in this section.

� Thanks to Cliff Schroeder for some of the ideas in this section.

� Camel Capitalization means that every individual word within a name is capitalized and that there are no separators between the words.

� Thanks to Cliff Schroeder for some of the ideas in this section.

� Some of this material is derived from articles by Riki Anne Wilchins which appeared in Databased Advisor.

� This section is adapted from:

	Paradox Queries - A Complete Reference

	by Dan Ehrmann

	Published by M&T Books

	Copyright 1995, Dan Ehrmann - ALL RIGHTS RESERVED

My thanks to Dan for his kind permission to include this material.

	Used with permission of the author.

� In the oreference from which this was adapted, you will find a number of figures which expand upon the material in the text. These figurs have NOT been included and the reader is referred to the book if he feels the figures are necessary.

� There are references throughout this Chapter to Paradox for Windows. Many of the issues that are addressed in the context of Paradox for Windows are also relevant to The Borland Database Engine which is part of Delphi.

� This is a databse used as an example in the original reference.

� This material is excerpted from a paper by:�	DALE W. Harrison, 3815 Richmond Ave. Box 111, HOUSTON, Texas 77027, PHONE: (713) 888-1479

continued on next page

Guidelines & Notes		Najic Inc

Najic Inc.		Guidelines & Notes

�PAGE �2�

Page: 		� DATE \@”MMMM DD, YYYY”�December 30, 1995�

�PAGE �i�

� DATE \@”MMMM DD, YYYY”�December 30, 1995�

�PAGE �11—2�

� DATE \@ “MMMM D, YYYY�December 30, 1995�

