reSource System Doc

reSource System Document

version 1.0

Project submitted on July 1998
About XE "About:the author" the author

The author of reSource, and its accompanying documents (system doc, user’s guide and program listing) is Victor Kasenda. He is currently studying in Hwa Chong Junior College, Singapore, Year 2.

If there are any errors in the document or any bugs in the program, or there is anything you would like to say or suggest, feel free contact the author.

Contact the author:

e-mail: gruv@bigfoot.com (Victor Kasenda / Gruv).

ICQ: 6505245.

Project Supervisor

The project supervisor is Miss Goh Keng Wah. She is a computing teacher in HCJC.

Acknowledgements XE "Acknowledgements:List"
The author would like to extend a big thank you to:

Miss Goh, the project supervisor, for her invaluable aid and advice.

Mr Chia, the head of IT in HCJC, for the loan of the laptops to allow us to more quickly complete our project.

The rest of the computing teachers in HCJC: Mdm Yeo, Mr Yu.

All the subject tutors who were all so understanding.

All who have responded to the beta testing program and submitted benchmark results, especially (in no particular order), Ho Wen Yao, Tan Siang Cheng.

The rest of the computing students who were in a mad rush with me: Chua Sei Yang, Cheng Mun Yip, Lee Kar Huat, Spencer Low, Lin Hong Tai and all those who I did not mention.

The whole of 97S66 and 98S66 for being so warm and friendly.

Congratulations to the 23rd batch Tahan Mountain Trekking Team for a successful ascent up Tahan.

The micromouse team for providing great stress relief.

My parents for their encouragement and understanding for those sleepless nights.

God, who was always there when I needed him.

Copyright Notice XE "Copyright Notice"
reSource is copyright © 1998 Victor Kasenda

No part of this document is to be changed or reproduced in any way without the prior consent of the author.

Delphi 3.0 is copyright © 1983-1997 Borland International

PKZip is copyright © 1989-1993 PKWare INC.

WinRAR is copyright © 1993-1998 Eugene Roshal

Windows 95, Windows 98, Word 97 are registered trademarks and copyrights © of Microsoft Corporation.

Winzip is copyright © 1991-1998 Nico Mak Computing, Inc

Official reSource XE "reSource:support site" support site: http://members.tripod.com/~gruv/resource
e-mail XE "e-mail:author" the author at: gruv@bigfoot.com (Victor Kasenda / Gruv)

This document was prepared in Microsoft Word 97.

Contents

 XE "Contents:Table of Contents"

 XE "Table:Of Contents" \t "See Contents:Table of Contents"
About the author
1
Project Supervisor
1
Acknowledgements
1
Copyright Notice
1
1.0 Introduction
5
1.1
Why the name reSource?
6
1.2
The reSource icon
6
1.3
Notes for reading the System Doc
6
1.4
Requirements
7
1.5
Background on Archiving and Data Compression
8
1.6
Aim and Objective
8
1.7
The Problem
8
1.8
The Solution
8
1.9
The benefits of BWT
9
1.10
Scope of reSource
10
1.11
Features of reSource
10
2.0 Design Structure
11
2.1
A simplified overview of the archiver
12
3.0 Classes
13
3.1
Modules and Classes
14
3.2
Class listing and their full names
16
3.3
How To Use the Classes
17
3.4
Class usage
18
3.5
Class Hierarchy
19
3.6
Data Flow
20
4.0 Algorithms
21
4.1
The Run Length Encoder and Decoder
22
4.2
The Burrows Wheeler Forward Transformation
23
4.3
The Burrows Wheeler Reverse Transformation
25
4.4
The Move to Front Encoder and Decoder
26
4.5
The Arithmetic Encoder and Decoder
27
5.0 Engine
31
5.1
The Archive Manager
32
5.2
The Archive File Class
34
5.3
The Bit File Class
34
5.4
The Smart Buffered File Stream Class
34
5.5
The Central Directory Class
35
5.6
The CRC 32 Class
35
5.7
Archive File Structure
36
6.0 Interface
39
6.1
Interface Design considerations
40
6.2
Dialog Positions
41
6.3
Message Box
41
6.4
Opening and Creating Archives
42
6.5
Selecting files
43
6.6
Adding files
44
6.7
Extracting files
45
6.8
Deleting files
46
6.9
Modifying file attributes
47
6.10
Sorting files
48
6.11
Configuration Dialog
49
6.12
The Compression Statistics Dialog
50
6.13
The Program Statistics Dialog
51
6.14
About Dialog
52
7.0 Strategies
53
7.1
Development Strategy
54
7.2
Testing Strategy
55
8.0 Troubleshooting
59
8.1
Opening files
60
8.2
During Operations
60
9.0 Miscellaneous
61
9.1
Additional notes
62
9.2
Installation
62
9.3
Known bugs or quirks
63
9.4
Limitations
63
9.5
Future development and possible improvements
64
10.0 Benchmarks and Evaluation
65
The Calgary Corpus
66
Table 1 – Structured vs. Unstructured model
67
Table 2 – Compression of the Calgary Corpus
69
Table 3 – Compression of individual files
71
Table 4 – Increasing the Block Size
72
Analysis of Benchmarks
73
Evaluation
73
11.0 Appendix
75
References
76
Index
78

1.0 Introduction

1.1
Why the name reSource?

reSource is to obtain a new ‘source’ for the data. The original source was the data file itself. By adding data to an archive, the new source of data is the archive file itself. Now, the user stores his data in a compact, reliable source and retrieves them from the source.

1.2
The reSource icon XE "icon"
[image: image1.png]
The reSource icon shows a tree beside a fast flowing river.

The tree is in the shape of an ‘r’, whilst the stream is in the shape of an ‘S’. Together, they symbolise ‘rS’, the extension and signature of a reSource archive.

The tree symbolises a growing archive, whilst the stream indicates a new source of data, one that is dynamic and fast during addition or deletion.

The icon was personally drawn by the author using Delphi’s image editor.

1.3
Notes XE "Notes:System Doc" for reading the System Doc

1. This document will try to present implementation details that are unique, new or the author feels there is a need to clarify things in certain areas.

2. All references to data compression will refer to lossless data compression. Lossless compression implies no data is lost during the compression/decompression process and the original data can be fully and accurately reconstructed from the compressed data.

3. Not all algorithms are described in detail, especially arithmetic coding/decoding and the BWT transformations. More commonly used techniques such as the Radix sort and Quick sort are also not described in detail. Description and in-dept discussion of these techniques have been concisely documented in books and papers. Kindly refer to the references at the end of the document for further information.

4. No attempt was made to document every single procedure. Instead, classes were documented. This is more in-line with the object oriented concept and presents a clearer view of the application. Having such detailed procedure descriptions would also introduce unnecessary information redundancy when the information could have been more clearly presented in the context of the program. To have a more in-dept understanding of the workings and actual implementation details refer to the program listing. All variables, in/out assertions, procedure algorithms, descriptions are written there.

5. It is assumed that the reader has read or at least browsed through the user’s guide. The user’s guide contains important information on using the program and has some useful extra information about reSource and archiving in general. Do have a look at it first if you have not done so.

1.4
Requirements XE "Requirements"
reSource is very resource hungry. It especially requires a lot of memory. The memory requirements vary according to the block size. A 1 megabyte block size can eat up 64 megabytes of memory easily. Therefore, the block size is kept low.

Strictly speaking, a fast or advanced processor is not required to run reSource. Anything that can run Windows 95/98 should be able to run reSource. However, for less wait time and faster completion of archiving operations, a fast CPU is recommended.

Windows 95/98 runs programs in flat 32bit mode. The Delphi compiler also allows structures up to 2 gigabytes in size. Therefore, as much virtual memory as possible is recommended, especially when running other applications concurrently.

reSource may raise an EOutOfMemory exception if there is insufficient resources. It is then recommended to restart reSource to ensure everything is clean and functional.

Development

Hardware:

A 166MHZ Pentium Class PC

32 megabytes RAM, virtually unlimited virtual memory

Software:

Operating System: Windows 95/98

Delphi 3.0

Numega Bounds Checker 5.0

Windows 95 was used initially. When windows 98 was released the software was retested on Windows 98 to ensure complete compatibility on both platforms.

Minimum requirements:

A PC capable of running Windows 95

Windows 95

8 megabytes ram and 64 megabytes virtual memory

Recommended requirements:

Pentium 166 or above

Windows 98

64 megabytes ram

1.5
Background XE "Background" on Archiving and Data Compression

Archiving is the process of keeping files in another location. This location may be another file. An archiver takes several input files, compresses or stores them, and outputs a single archive file.

Archiving is an essential part of computing because of:

1. The ever growing amounts and sizes of data. Multimedia files e.g. sound and video files and large text files like those used in encyclopaedia’s use up large amounts of disk space. They are also large in numbers and waste a lot disk space through slack. By archiving these files, we can reduce the space required to store them through compression and cut down on slack by storing them in one contiguous file.

2. The advent and rising popularity of data communications. Data communications has become mainstream and very popular for the past few years, due to intense competition by producers, advent of communication technology and the general rise in the IT awareness of the public. Part of data communications involves the transfer of files. An application may consist of several files and if one wants to send the data across to another person, he may have to tag the files or create a file list. Archiving the files then sending it has two advantages: Firstly, the time taken to transfer the data will be cut down due to compression, thus implying an increase in the data transfer rate and a decrease in the phone bill. Secondly, a file list need not be created for every set of file you want to transfer. One can just send the archive across. Although many modems apply compression while then transfer the data (v.42bis), the compression algorithm is generally inferior and differs across modem implementations (like dictionary size). Bulletin board systems (BBS) in general put up archives of applications and programs for users to download easily and quickly.

1.6
Aim XE "Aim" and Objective XE "Objective" \t "See Aim"
To create a general-purpose file archiver that:

1. Provides improved compression rates over most conventional archivers

2. Performs the compression at a reasonable speed.

3. Is able to do operations like addition, deletion and modifications to files in the archive.

4. Ensures the integrity of files extracted from the archive.

General purpose means it has to be able to perform and operate on all file types.

1.7
The Problem XE "Problem"
The main difficulty will lie in the fact that better compression means slower compression rate, and a trade off has to be made somewhere. The trade off involves choices on what algorithm, implementation and level of complexity of the compression phase. These are highlighted in The Solution.

1.8
The Solution XE "Solution"
reSource is the general purpose file archiver that is created. Basically, reSource has an archive manager that handles file addition (compression), extraction (decompression), deletion and modification. For more implementation details, look at reSource structure.

The algorithm chosen for the compression/decompression phase was the Burrows Wheeler Block Transformation (BWT) algorithm with an arithmetic compressor.

1.9
The benefits XE "benefits:of BWT" of BWT

We will now go through a step by step analysis on why the BWT algorithm with an arithmetic compressor was chosen.

Compressors have been generally divided into two classes:

1. Dictionary compressors (such as LZ-77, LZ-78/LZW and their derivatives) build explicit or implicit dictionaries of strings and replace entire strings or groups of symbols.

2. Statistical compressors develop models of the statistics of the input text and use those statistical models to control the final compression. (such as PPMC, variants of PPM such as PPM*, PPMD+)

The dictionary class has been used widely in the past few years. Many archivers have surfaced that are variants of LZ-77.

.arc, .ark: arc, pkarc for MSDOS. (LZW algorithm)

.arj: arj for MSDOS (LZ77 with hashing, plus secondary static Huffman encoding on a block basis)

.lzh: lha for MSDOS (LZ77 with a trie data structure, plus secondary static Huffman coding on a block basis)

.zip: pkzip 2.04g for MSDOS. (LZ77 with hashing, plus secondary static Huffman coding on a block basis)

There is not much room for improvement in the LZ-77 arena because much research has been done in this area and alot of big commercial companies have entered this area (PKWare, WinZip). Recently, there have been LZ-77 compressors that try to improve their performance by offering solid compression
 and increased dictionary sizes
. Solid compression hampers the ability to perform the basic archiving operations on the file (add, delete and modify) and makes these process painfully timely, because of the need to extract and recompress a whole block of data. Increased dictionary sizes would usually mean an exponentially longer search time (e.g. binary search tree or long chain hashing).

The second type, the statistical compressors, offer superior compression in almost all cases but are extensive memory hogs and need an insatiable amount of CPU processing time. Compressing a 1 megabyte file on a Pentium PC may require around half an hour and 128 megabytes of memory, depending on the configuration set. This is totally unacceptable for general purpose archiving, where the user should not be made to wait half an hour to add a file to the archive.

Recently, a report by Burrows and Wheeler describes an apparently quite different method which permutes the entire input and compresses that permutation. The authors state that their “algorithm achieves speed comparable to algorithms based on the techniques of Lempel and Ziv, but obtains compression close to the best statistical modelling techniques”. It is thus this new method that will be used in the compression phase. This method is relatively new (heard of only in 1995) and there is probably only one other archiver using this algorithm. The method and implementation will be discussed more fully in later chapters.

The basic operations for archive management, addition, deletion and subtraction, are essentially manipulating the data in the archive and have no particular design concerns (beside the interface).

1.10
Scope XE "Scope" of reSource

reSource will cover the following scope:

1. It will be able to perform compression and decompression using one algorithm – BWT + Arithmetic coding.

2. It will allow the user to perform addition, deletion and modification of data in the archive.

3. The archiver will incorporate Cyclic Redundancy Check (CRC-32) to confirm the integrity and check for any errors in the files in the archive.

1.11
Features XE "Features" of reSource

· Archive creation.

· Archive operations: Add, Extract, Delete of files.

· Modification of File Name and attributes.

· Saving and restoring of file name and attributes.

· Error Checking through CRC-32.

2.0 Design Structure

2.1
A simplified overview XE "overview:archiver" of the archiver

· This overview is verbal (plain simple English).

· The Archive Manager has 4 main procedures that will handle archive operations. Add and Extract both use another class to handle compression and decompression. Delete and Modify are implemented by the Archive Manager.

· Class Archive Manager

· procedure Add

· Class BWT Compress

· Class Run Length Encoder

· Class Fast Sorter

· Class Move to Front encoder

· Class Arithmetic Encoder

· Class Cyclic Redundancy Check

· procedure Extract

· Class BWT Expand

· Class Run Length Decoder

· Class Move to Front Decoder

· Class Arithmetic Decoder

· Class Cyclic Redundancy Check

· procedure Delete

· procedure Modify

3.0 Classes XE "Classes"
3.1
Modules XE "Modules"

 XE "Class:Modules" and Classes

· One module or Delphi unit may contain one or more classes.

· Here is a listing of the modules and the classes they contain. Those units that do not contain a class is labelled ‘N/A’.

Units XE "Units" used in the release version:

These units were used in the release version of reSource.

Module
Verbal name
Classes

AboutDlgUnit
About Dialog Unit
TAboutDlg

AddOptionsDlgUnit
Add Options Dialog Unit
TAddOptionsDlg

ArchiveFileUnit
Archive File Unit
TArchiveFile

TCentralDir

ArchiveHeadersUnit
Archive Headers Unit
TArchiveHeader

TResourceArchiveHeader

TDataBlockHeader

TCentralFileHeader

TCentralDirEndHeader

ESignatureWrong

ArchiveManagerUnit
Archive Manager Unit
TArchiveManager

EArchiveOpenError

EUserCancel

EFileNotExtracted

EFileNothingDone

bit_file_unit
Bit File Unit
TBitFile

BrowseForDirUnit
Browse For Dir Unit
TBrowseForDirForm

BWTBaseUnit
BWT Base Unit
TBWTBase

BWTCompressUnit
BWT Compressor Unit
TCompressor

BWTExpandUnit
BWT Expander Unit
TExpander

CompressionStatsDlgUnit
Compression Statistics Dialog Unit
TCompressionStatsDlg

ConfigDlgUnit
Configuration Dialog Unit
TConfigDlg

ConfigUnit
Configuration Unit
TConfigMan

CRC32Unit
CRC-32 Unit
TCRC32

DebugFormUnit
Debugging Form Unit
TDebugForm

EDosUnit
Extra Dos Unit
EDosType

ErrorUnit
Error handling unit
N/A

ExtractOptionsDlgUnit
Extract Options Dialog Unit
TExtractOptionsDlg

FClasses
Extra Classes Unit
TObjList

FileAttrDlgUnit
File Attribute Dialog Unit
TFileAttrDlg

FileStrucAriDecoderUnit
File Structured Arithmetic Decoder Unit
TFileStrucAriDecoder

FileStrucAriEncoderUnit
File Structured Arithmetic Encoder Unit
TFileStrucAriEncoder

FSortUnit
Fast Sorter Unit
TFastSorter

GroupAriModelUnit
Group Arithmetic Models Unit
TGroupAriModel

THeadAriModel

Main
Main Form Unit
TMainForm

TColDataExtr

TNameColDataExtr

TSizeColDataExtr

TPackedColDataExtr

TTimeColDataExtr

TRatioColDataExtr

TNumBlocksColDataExtr

TDataOffsetColDataExtr

MTFBaseUnit
Move To Front Base Unit
TMTFBase

MTFDecoderUnit
Move To Front Decoder Unit
TMTFDecoder

MTFEncoderUnit
Move To Front Encoder Unit
TMTFEncoder

ProgStatsDlgUnit
Program Statistics Dialog Unit
TProgStatsDlg

RLEUnit
Run Length Encoder Unit
TRunLengthEncoder

TRunLengthDecoder

smart_buf_filestream_unit
Smart Buffered File Stream Unit
TBufferedFileStream

ESeekError

StrucAriDecoderUnit
Structured Arithmetic Decoder Unit
TStrucAriDecoder

StrucAriEncoderUnit
Structured Arithmetic Encoder Unit
TSrucAriEncoder

StrucsUnit
Structures Unit
N/A

Other units and classes:

These units were created during development and now aid in debugging, testing or benchmarking.

They are not used in the final release so they were not included in the above list.

AriModelUnit
Arithmetic Model Unit
TAriModel

AriDecoderUnit
Arithmetic Decoder Unit
TAriDecoder

AriEncoderUnit
Arithmetic Encoder Unit
TAriEncoder

FileAriDecoderUnit
File Arithmetic Decoder Unit
TFileAriDecoderUnit

FileAriEncoderUnit
File Arithmetic Encoder Unit
TFileAriEncoderUnit

3.2
Class listing XE "Class:Listing" and their full names

· All class names start with a ‘T’. These ‘T’ refers to ‘Type’, so a verbal name of ‘Main Form’ will be called ‘Main Form type’.

Class
Verbal name
Comments

Visible Classes

TMainForm
Main Form
Main interface. Start up screen.

TAddOptionsDlg
Add Options Dialog
Allows user to select files to add

TExtractOptionsDlg
Extract Options Dialog
Allows user to select dest dir

TFileAttrDlg
File Attribute Dialog
Allows user to change file attributes

TConfigDlg
Configuration Dialog
Allows user to change config

TBrowseForDirForm
Browse For Directory Form
Allows user to select a directory

TCompressionStatsDlg
Compression Statistics Dialog
View/Print compression statistics.

TProgStatsDlg
Program Statistics Dialog
View program statistics, memory usage

TDebugForm
DebugForm
Debugging use. Progress indicator.

Invisible Classes / Engine Classes

TArchiveManager
Archive Manager
Main manager

TConfigMan
Configuration Manager
Stores configurations

TObjList
Object List
Customised TList to store objects. Frees the objects when destroyed.

TCentralDir
Central Directory Manager
Stores the central directory for the Archive File

Exceptions

EArchiveOpenError
Error opening archive

EFileNotExtracted
Error No File Extracted
File could not be extracted from the Archive

ENothingDone
Nothing Done
No operation was performed

EUserCancel
User Cancelled
User Cancelled the operation

ESignatureWrong
Signature Wrong
Archive file contained a wrong signature. Could be corrupted.

Headers

TArchiveHeader
Archive Header
Base Class

TResourceArchiveHeader
Resource Archive Header
Archive Signature

TCentralFileHeader
Central File Header
File attributes

TCentralDirEndHeader
Central Dir End Header
End of Central File Header Records

TDataBlockHeader
Data Block Header
Data block attributes

Main Form Column Helper

TColDataExtr
Column Data Extractor
Base Class

TNameColDataExtr
Name
File name

TSizeColDataExtr
Size
Raw size

TPackedColDataExtr
Packed
Compressed size

TTimeColDataExtr
Time
Formats the time

TRatioColDataExtr
Ratio
Compression Ratio

TNumBlocksColDataExtr
Number of Blocks
Number of blocks for the file

TDataOffsetColDataExtr
Data Offset
Offset of first data block

I/O Classes

TBufferedFileStream
Buffered File Stream
Base class. Provides file buffering.

TBitFile
Bit File
Adds Bit access to the file

TArchiveFile
Archive File
Provides bit or byte access

Move to front encoder/decoder

TMTFBase
Move To Front Base Class

TMTFEncoder
Move To Front Encoder

TMTFDecoder
Move To Front Decoder

Run Length encoder/decoder

TRunLengthEncoder
Run Length Encoder

TRunLengthDecoder
Run Length Decoder

Arithmetic encoder/decoder

TFileStrucAriEncoder
File Structured Ari Encoder
Encodes a block then writes it to file.

TFileStrucAriDecoder
File Structured Ari Decoder
Decodes a block from file.

TStrucAriEncoder
Structured Arithmetic Encoder
Encodes a byte at a time.

TStrucAriDecoder
Structured Arithmetic Decoder
Decodes a byte at a time.

THeadAriModel
Main Arithmetic Model
Manages the various groups

TGroupAriModel
Group Arithmetic Model
A group

Main BWT Engine class

TBWTBase
Burrows Wheeler Transformation Base Class

TCompressor
Compressor
Compresses a block at a time

TExpander
Expander
Expands a block at a time

3.3
How To Use XE "Classes:How To Use " the Classes

· The classes are divided into several sections: Public, Protected, Private and Published. Not all classes have all sections.

· To use a class from another unit, look for only the public section. This is the interface section of the class.

· All implementation details are stored in the private and protected section. The implementation details may change but the functions in the public section are guaranteed to produce the same result every time.

· When deriving from a class, look for virtual or dynamic methods in the public or protected section. These can be overwritten to provide new class functionality.

· For properties that may be visually edited, look at the published section.

3.4
Class XE "Class:Usage" usage

· This shows what classes each class uses. Class derivations or intermediate classes are not shown. For class derivations, see the class hierarchy.

· TMainForm

Main Form Helper Classes

· TNameColDataExtr

· TSizeColDataExtr
· TPackedColDataExtr
· TTimeColDataExtr
· TRatioColDataExtr
· TNumBlocksColDataExtr
· TDataOffsetColDataExtr
Interface or Visible Classes

· TAddOptionsDlg

· TExtractOptionsDlg

· TCompressionStatsDlg

· TProgStatsDlg

· TFileAttrDlg

· TConfigDlg

· TBrowseForDirForm

· TDebugForm

Engine or Invisible Classes

· TConfigMan

· TObjList

· TArchiveManager

· TCompressor

· TRunLengthEncoder

· TFastSorter

· TFileStrucAriEncoder

· THeadAriModel

· TGroupAriModel

· TCRC32

· TExpander

· TRunLengthDecoder

· TFileStrucAriDecoder

· THeadAriModel

· TGroupAriModel

· TCRC32

Exceptions

· EArchiveOpenError

· EFileNotExtracted

· ENothingDone

· EUserCancel

· ESignatureWrong

Archive Headers

· TResourceArchiveHeader

· TCentralFileHeader

· TCentralDirEndHeader

· TDataBlockHeader

I/O Classes

· TArchiveFile

· TCentralDir

3.5
Class XE "Class:Hierarchy" Hierarchy

· The class hierarchy does not include base classes from Delphi’s Visual Component Library (VCL) unless otherwise stated.

· They are ordered with the most primitive class at the root.

· Visible classes are shown first, then invisible classes.

Visible Classes

· TForm (VCL)

· TMainForm

· TAddOptionsDlg

· TExtractOptionsDlg

· TCompressionStatsDlg

· TProgStatsDlg

· TFileAttrDlg

· TConfigDlg

· TBrowseForDirForm

· TDebugForm

Invisible Classes

· TArchiveManager

· TConfigMan

· TObjList

· TCentralDir

· Exception (VCL)

· EArchiveOpenError

· EFileNotExtracted

· ENothingDone

· EUserCancel

· ESignatureWrong

· TArchiveHeader

· TResourceArchiveHeader

· TCentralFileHeader

· TCentralDirEndHeader

· TDataBlockHeader

Main Form Column Helper

· TColDataExtr

· TNameColDataExtr

· TSizeColDataExtr
· TPackedColDataExtr
· TTimeColDataExtr
· TRatioColDataExtr
· TNumBlocksColDataExtr
· TDataOffsetColDataExtr

I/O Classes

· TFileStream (VCL)

· TBufferedFileStream

· TBitFile

· TArchiveFile
Move to front encoder/decoder

· TMTFBase

· TMTFEncoder

· TMTFDecoder

Run Length encoder/decoder

· TRunLengthEncoder

· TRunLengthDecoder

Arithmetic encoder/decoder

· TFileStrucAriEncoder

· TStrucAriEncoder

· TFileStrucAriDecoder

· TStrucAriDecoder

· THeadAriModel

· TGroupAriModel

Main BWT Engine class

· TBWTBase

· TCompressor

· TExpander

3.6
Data Flow XE "Data Flow"
[image: image2.wmf]0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

bib

book1

book2

geo

news

obj1

obj2

paper1

paper2

paper3

paper4

paper5

paper6

pic

progc

progl

progp

trans

reSource

PKZip

ARJ

RAR

[image: image3.wmf]0

50000

100000

150000

200000

250000

300000

bib

book1

book2

geo

news

obj1

obj2

paper1

paper2

paper3

paper4

paper5

paper6

pic

progc

progl

progp

trans

Structured

Unstructured

Adding files to the archive Compression

Extracting files from the archive
Decompression

4.0 Algorithms XE "Algorithms"
4.1
The Run Length XE "Run Length:Decoder"

 XE "Run Length:Encoder" Encoder and Decoder

TRunLengthEncoder/TRunLengthDecoder

The run length encoder is a fairly standard one.

RunThreshold

RunThreshold number of bytes signifies the start of a run.

4 = 4 + 0

5 = 4 + 1

6 = 4 + 1 bytes

4 will expand to 5 bytes, 5 will retain, 6 will compress to 5 bytes

Encoding of the run count

The count is encoded in as many 6 bit codes as needed, up to a max of 30 bits.

The 7th bit is set if more codes follow.

The most significant 6 bits are transmitted first.

Encoding Algorithm:

Maintain 2 index, ix and oix into the input and output block respectively.

curr_symbol: current symbol
1) Read curr_symbol from the block

2) If curr_symbol equals the previous symbol then

a) increase run count

ELSE

a) If it is the end of a run (run count > run threshold) then

i) output the run length

ii) reset run length

3) Only output the curr_symbol if the run length is below run threshold

4) Repeat (1)

Decoding Algorithm:

Maintain 2 indexes, ix and oix into the input and output block.

1) Read in a character

2) If the character is repeated, then increase run length

3) If run length hits run threshold, (a run length follows)

a) decode the run length

b) expand the run (fill output block with run length number of the char curr_symbol)

c) reset run length to zero

4) Repeat (1)

4.2
The Burrows Wheeler Forward XE "Burrows Wheeler: Forward Transformation" Transformation

TBWTCompress

TBWTCompress is the class that brings all the engines together.

 It uses the RLEEncoder, FSortUnit, MTFEncoder, StrucAriEncoder.

 The whole compression for a block consists of:

1. Run length encoding

2. Burrows Wheeler Forward Transformation (Sort + Retrieve last column)

3. Move To Front encoding

4. Structured Arithmetic encoding

Explanation:

1. Run length encoding is for reducing run lengths to several bytes. This is done to speed up sorting dramatically. This may hurt or improve compression depending on the type of data. Some blocks are expanded in this process so the block size must contain overflow areas to accommodate for these cases.

2. This is the trick to the high performance compression

3. Move to Front coding is done to transform the block into a series of numbers. The more frequently appearing characters will thus be transformed to lower numbers, resulting a low numbers dominating the block (0 and 1s especially). This aids Arithmetic coding.

4. Arithmetic coding is performed with a structured or hierarchical model.

Usage:

· just create the object and call CompressBlockToFile
CompressBlockToFile writes out the data header and the data

4.2.1 Description of the Forward Transformation

The following description of the BWT Forward transformation extracted from Peter Fenwick’s Technical report 130.

There are two approaches to describing the forward transformation. Burrows and Wheeler describe it as the steps:

1. Write the input as the first row of a matrix, one symbol per column

2. Form all cyclic permutations of that row and write as them as the other rows of the matrix

3. Sort the matrix rows according to the lexicographical order of the elements of the rows

4. Take as output the final column of the sorted matrix, together with the number of the row which corresponds to the original input

In terms that are more familiar to workers in data compression, the transformation may be described as:

1. Sort the input symbols, using as a key for each symbol the symbols which immediately follow it, to whatever length is needed to resolve the comparison. The symbols are therefore sorted according to their following contexts, whereas conventional data compression uses the preceding contexts. (Some implementations do use preceding contexts, but the discussion is easier with following contexts.)

2. Take as output the sorted symbols, together with the position in that output of the last symbol of the input data.

In either case the effect of the sorting is to collect together similar contexts. The (assumed) Markov structure of the input implies that only a few symbols are likely to occur in association with adjacent contexts. Any region of the permuted file will probably contain only a very few symbols and this locality can be captured with a MovetoFront compressor.

For illustrations of the transformation, please refer to the report.

4.2.2 Sorting

The Sorting phase is implemented by the TFastSorter class. It is a combination of radix sort on symbol pairs then a quick sort is performed on each of the buckets.

65,536-way Radix Sort XE "Radix Sort"

 XE "Sort:Radix" \t "See Radix Sort"
The radix sort sorts the strings according to its first 2 characters. 256 * 256 creates 65,536 buckets.

Quick Sort XE "Sort:Quick" \t "See Quick Sort"

 XE "Quick Sort"
To accelerate comparisons, the input text is placed in an array of 32-bit words with 4 bytes to a word and bytes striped across successive words i.e. a byte initially appears in the left-most position of “its” word, the second position of the next word and so on for the next few words. A word comparison therefore compares 4 bytes and a stride of 4 words steps to the next 4 bytes to be compared.

4.2.3 The SwapBlocks XE "SwapBlocks" block XE "block:management system" management system

A block of data goes through many different procedures. Each procedure takes an input block and produces an output block. The aim is to make the input and output to and from blocks less confusing and more manageable.

The compression and decompression engine consists of several phases that each needs an input block and produces an output block.

The phases are:

1. Run Length Encoding/Decoding

2. Forward/Reverse Transformation

3. Move To Front Encoding/Decoding

4. Arithmetic Encoding/Decoding

Implementation:

There will be two physical pointers that do not change. block1 and block2.

They will be used for allocating and deallocating the block memory.
Swapping about these pointers then attempting to deallocate them may not be safe. Also, sometimes the memory is already allocated outside the compressor and blockx does not have to be allocated e.g. block1 in BWTCompress

The program deals with two pointers: in_block and out_block.

in_block always contains the most up to date block after every phase is called.

out_block is used in each phase to output data to.

After the phase completes it's task, it may call SwapBlocks to swap the in_block

and out_block pointers.

This makes in_block contain the most up to date data.

out_block can then be used for future output and should be considered as

undefined after every phase.

block_length always reflects the length of in_block. It will be updated

after every phase.

4.3
The Burrows Wheeler XE "Burrows Wheeler:Reverse Transformation" Reverse Transformation

TBWTExpand

4.3.1 Description of the Reverse Transformation

The following description of the BWT Reverse transformation extracted from Peter Fenwick’s Technical report 130.

Perhaps the most surprising thing about the forward transformation described above is that it is actually reversible! The reverse transformation depends on two observations:

1. The transformed input data is a permutation of the original input symbols

2. Sorting the permuted data gives the first symbol of each of the sorted contexts

But the transmitted data is ordered according to the contexts, so the nth symbol transmitted corresponds to the nth ordered context, of which we know the first symbol. So, given a symbol s in position i of the transmitted text, we find that position i within the ordered contexts contains the jth occurrence of symbol t; this is the next emitted symbol. We then go to the jth occurrence of t in the transmitted data and obtain its corresponding context symbol as the next symbol. The position of the symbol corresponding to the first context is needed to locate the last symbol of the output and from there we can traverse the entire transmitted data to recover the original text.

The algorithm used for the reverse transformation is similar to the one described by Peter Fenwick in his Technical report 130. Refer to the report for an in dept discussion of the algorithm for the reverse transformation.

4.4
The Move to Front Encoder XE "Move to Front Encoder:Encoder"

 XE "Move to Front Encoder:Decoder" and Decoder

TMTFBase/TMTFEncoder/TMTFDecoder

The move to front encoder and decoder share a common base class. The base class contains the common procedure to move a character to the front and update the corresponding structures.

We work with two arrays:

image contains an image of the MTF list, most recent in position 0

map contains the position of the chars in image.

The two structures are used so that searching for the character is faster.

Example:

To find the position of a number ‘C’, look up the value in map[2]. Note that map is zero based.

Then move it to the front by shifting all chars before it in the image one step up. Update the map accordingly.

4.5
The Arithmetic XE "Arithmetic:Encoder"

 XE "Arithmetic:Decoder"

 XE "Arithmetic:Overview" Encoder and Decoder

TFileStrucAriEncoder/TFileStrucAriDecoder/TStrucAriEncoder/TStrucAriDecoder/THeadAriModel/TGroupAriModel

4.5.1 Overview of arithmetic encoding process:

Modern compression techniques separate the model and encoder. The model ‘shapes’ the way the coder encodes the data. The model is responsible for maintaining the frequency counts and analysis of the data. A good model that adapts to or is suitable for the data will guarantee a good compression, as more frequent characters will be code using less bits. The arithmetic coder is ‘standard’, in that not much can be done in this portion to improve compression. Therefore, models can be ‘plugged in and out’ of the arithmetic encoder. For resource, two different models were developed, a structured model and an unstructured model. Both models are adaptive, meaning it will adapt to a change in data style and no frequency counts have to be saved in the archive.

The unstructured model:

[image: image4.wmf]700000

750000

800000

850000

reSource

WinRAR

WinZip

The structured model:

[image: image5.wmf]110000

120000

130000

140000

150000

reSource

WinRAR

WinZip

The head arithmetic model encodes first some group information, then uses the group models to encode the data. The idea for the structured arithmetic encoder came from Peter Fenwick in his final report. The aim is to equalise probabilities across groups of character, so that characters with higher probabilities are in groups with smaller numbers, resulting in less bits needed to code them. The model sizes are approximately in increasing powers of 2, which roughly corresponds to Zipf’s law for natural languages. Zipf’s law, in the context of BWT compression, states that the probabilities for the various ranks are rank-1.

The decoding is the opposite of encoding.

For a comparison between structured and unstructured coding, refer to the benchmark table (1) at the end of the system document.

Note that the code for the unstructured model, coder and decoder are not described at all in the system document because they are defunct and have been completely replaced by the structured model, coder and decoder. A brief description follows in case it is needed. To use them, undefine ‘USE_STUC_ARI’ in the modules BWTCompress and BWTExpand.

4.5.2 The Unstructured XE "Arithmetic:Unstructured" group of components:

Description
Class name
Module

Model
TAriModel
AriModelUnit

Encoder
TAriEncoder
AriEncoderUnit

Decoder
TAridecoder
AriDecoderUnit

Block/File Encoder
TFileAriEncoder
FileAriEncoderUnit

Block/File Decoder
TFileAriDecoder
FileAriDecoderUnit

4.5.3 TFileStrucAriEncoder

Derives from Structured arithmetic encoder to allow it to write to files.

Handles the output to the archive file by implementing OutputBit/OutputBits.

procedure EncodeBlock(block: PBlock; block_length: integer);

Encodes the block with block length block_length.

Will encode the block with an EOF symbol trailing.

To Use:

1. Create it.

2. Call EncodeBlock

3. Free.

4.5.4 TFileStrucAriDecoder

Derives from Structured arithmetic decoder to allow it to write to files.

Handles the input from the archive file by implementing InputBit/InputBits.

procedure DecodeBlock(block: PBlock; var block_length: integer);

Decode from file to block. returns the block length in block_length.

To use:

1. Create the class.

2. Call DecodeBlock.

3. Free.

Both TFileStrucAriEncoder and TFileStrucAriDecoder process a block at a time.

4.5.5 TStrucAriEncoder

Uses the group model to encode data.

EncodeSymbol

encodes the symbol 'symbol'.

Algorithm:

The encoding process is either 1 or 2 steps, depending on whether the group

has several members.

The design of the algorithm is such that the unique groups are zero and one.

The symbols correspond to the unique group values.

1) Get the group number for the symbol

2) Encode the group number (step 1)

3) If the group has residue, then

a) Get the group symbol for the corresponding symbol in its group

b) Encode the group symbol (step 2)

4.5.6 TStrucAriDecoder

Uses the group models to decode the data.

DecodeSymbol

decodes the next symbol in the stream and returns the symbol in symbol.

Algorithm:

The decoding process is either 1 or 2 steps, depending on whether the group

has one or more members.

The design of the algo is such that the unique groups are zero and one.

The symbols correspond to the unique group values.

1) Decode the group number (step 1)

2) If the group has several members, then

a) decode the residue to obtain the member symbol (step 2)

b) convert the member symbol to the corresponding symbol and return this.

ELSE

a) Otherwise, the symbol is unique in the group and the group_num is the symbol.

b) return this.

Notes:

The arithmetic decoder may read more bits than required when decoding a block. This is not a problem if the arithmetic data stream is the only stream in the file, but may pose problems for reSource because every data block represents a data stream. Any overshoot in reading the data may affect the following operation. Therefore, the TBitFile provides a SetReadByteLimit to limit the number of bytes that may be written to the file. After that, the arithmetic decoder is fed with ‘garbage’ or ‘fake’ bits which are totally harmless and do not participate in the decoding stage. These bits just act as bit ‘pushers’ to push the previously read bits to the correct position to be decoded by the decoder.

4.5.7 THeadAriModel and TGroupAriModel

The Arithmetic model for the structured arithmetic encoder and decoder.

The Head Ari Model manages 9 groups.

Each group handles a group of characters. Each group size is different.

The EOF symbol is in the last group.

Group Start
0
1
2
4
8
16
32
64
128

Group End
0
1
3
7
15
31
63
127
257

Group Limit
0
0
256
256
128
1024
2048
2048
8192

Group Start refers to the first symbol in a group.

Group End is the last symbol in a group.

A group handles Group Start to Group End symbols inclusive.

Groups 0 and 1 are unique. They handle only 1 symbol since these symbols have a high frequency.

Each group is a TGroupAriModel and handles a range of characters.

The range is between ch_lo and ch_hi inclusive, which correspond to the Group Start and Group End for the group.

Within each group the symbol may be mapped to another value. This value

is called the group symbol.

The main group handles the probability that each group would appear. It is also a TGroupAriModel class.

There are therefore 3 levels of symbols: symbol, group number, group symbol

Residue XE "Residue"
Residue refers to a second value needed to accurately describe a symbol. Every symbol has its group number encoded first. If it is not unique in the group, or the group has more than one members, a group symbol is also encoded. A group symbol is relative to the group only. It can be converted back too the symbol.

Conversely, on decoding, the group number is decoded first and if found that the group has more than one member, then the residue is also decoded.

5.0 Engine XE "Engine"
5.1
The Archive Manager XE "Archive Manager"
TArchiveManager

The archive manager is the engine to operate on the archive file.
It defines how the operations add/delete/extract/property change is to be performed and implements them.

An ArchiveManager is assigned to each archive opened. Files can be added, deleted and modified from the archive.

File properties that can be changed are the file names and attributes.

5.1.1 Opening Archives XE "Opening Archives"
Will open the archive new_archive_file_name. Displays a prompt to create a new archive if requested.

EWrongSignature will be raised if the archive to be opened is corrupted or cannot be opened.

EUserCancel will be raised if the user does not want to create a new archive.

Notes

The full path of the file should be passed to prevent any dir confusion.

Command Line XE "Command Line:Processing" processing

Files to be opened can be passed using the command line. The user passes the path of the archive in the first parameter.

Long File Names XE "Long File Names:parameter" passed as a parameter

Long file names are supported. When a long file name containing spaces in between is passed, the path must be surrounded in quotes, otherwise reSource will interpret it as two separate parameters.

5.1.2 Adding files XE "Archive Manager:Adding files"
The Add procedure chops a file into several smaller blocks and adds them to an archive. If the file to compress is smaller than a block, the file size is used instead.

Algo

Open Temp File

Do the following for all files in FileList

1) Check if it is a folder. Folders cannot be added.

2) Check if there is a file of a duplicate name. Warn the user if so.

3) Compress the block and append the block (new data).

4) Add the file info to the central directory.

Write the central directory.

Close Temp File

Notes

The files to add are in a TStrings

if full paths are transferred in FileList, then infile_dir must be null.

if FileList count is 0 it will exit.

Will check if files added is a directory.

Shared files XE "Shared files"
Adding of shared files is allowed. Files that are currently being added are also allowed to be read. The file mode is fmShareDenyWrite, where only writing is denied. An exe that is currently running can be added.

Adding the archive file itself

This is checked for and the archive will be deselected upon pressing the ok button in the add dialog.

File names

Duplicate file names can be added to the archive. The files can be differentiated by their dates and times. The user will be alerted if a file of duplicate name is added to the archive. He will be given a choice whether he wants to add it or not.

Zero length files XE "Zero length files"
It is possible to add zero length files. They are treated the same as normal files. Divide by zero exception handling must be added for certain calculations e.g. file ratios and bits per byte.

Drag and Drop XE "Drag and Drop:Adding files"
If only one file is dropped and this file is a reSource archive, then it is opened instead of being added. To add reSource archives, use Add. If multiple files are dragged and dropped including a reSource archive, it will be added.

5.1.3 Extracting files XE "Extracting files"
Extract the file referred by index in the CentralDir. The file’s attributes and name will be restored as stored in the CentralDir.

Algo

Get the CentralFileHeader for the file at index.

Create the file of filename

Repeat the following for all the data blocks:

Seek to the data pos in ArchiveFile

BWTExpand the block

5.1.4 Deleting files XE "Deleting files"
The ‘old archive’ is not touched until the new archive has been completely constructed. Then the old archive is deleted and the temp archive renamed. A file is to be deleted or marked deleted by the interface. The interface will set the deleted flag in the corresponding CentralFileHeader. The rebuilding of the new archive involves copying complete data for files, their CentralFileHeaders and updating the data offsets in the CentralFileHeaders.

Algo

Basically works with the central file directory

Delete the file headers from the central dir with the deleted flag set.

Rebuild a new archive with the new central directory, updating the central dir with the new data offsets.

Delete old archive, Rename new archive.

5.1.5 Modifiying file attributes XE "attributes:file attributes" \t "See Modifying file attributes"

 XE "Modifiying file attributes"
File attributes are modified by changing their respective CentralFileHeader entries. The central directory is then rewritten.

Algo

The interface changes the appropriate CentralFileHeader.

ArchiveManager is called to rewrite the Central directory.

5.1.6 Other considerations

Valid Archives XE "Valid Archives"
A valid archive contains at least a signature and an EndOfCentralDir header.

A 0 byte file is not a valid archive.

5.1.7 To Use:

Create the archive manager. One archive manager can operate on only one archive at a time.

5.2
The Archive File XE "Archive File" Class

TArchiveFile

Anything related to the file itself physically - Seek/Read/Write is handled by the Archive File class.

It provides ReadString, WriteStrings, ReadLongint and WriteLongint which simplifies the reading and writing of Strings and Long integers. These are used extensively throughout the program.

It also contains a Central Directory class.

The Archive File class has the following ancestors: TFileStream, TBufferedFileStream and TBitFile.

The File stream provided functionality for file access. It provides very basic read/write functions and file creation/opening functions. It is of a Delphi ‘Stream’ type.

The Buffered File Stream added the ability to buffer the reading and writing of data to files. Data being read or written byte by byte is very slow. By implementing a buffer, preferably a large one e.g. 64kbytes, the data can be read and written almost as fast as instructing a write of a 64kbytes buffer. Buffering is faster due to less seek operations required and less slowing down effects of latency (waiting for the head to align with the correct sector).

The Bit File class added Bit functionality. The arithmetic coder and decoder requires bit access to such files. It writes or reads one bit at a time. The bit file class implements another buffer layer of it’s own, one that is 8 bits wide. The buffer is called the rack and bits are accessed from the most significant bit first.

The bit file therefore reads and writes byte buffers to the buffered file stream, which writes block buffers (64 kilobytes in size) to the File stream, which writes the block raw.

The archive manager or other components may access the file in byte mode, in which the interface and implementation of this access type is provided by the TArchiveFileClass.

5.3
The Bit File XE "Bit File" Class

TBitFile

Provides bit level access to a file stream.

SetReadByteLimit

This checks that the bits read fall within the limit. It allows a maximum of NUM_FAKED_BYTES bytes more read (which the decoder uses) after which data corruption has most likely occurred.

Set to MaxLongInt if the limit is not to be used (default).

See the arithmetic decoder for an explanation on the use of this procedure.

5.4
The Smart Buffered File Stream XE "Smart Buffered File Stream" Class

TBufferedFileStream

Provides buffered access to a file stream.

Features:

· Enable/Disable buffering.

· efficient in-buffer seeks.

Notes:

· Buffering is enabled by default.

· To enable/disable buffering, call EnableBuf/DisableBuf.

Procedures allowed when buffering is on or off

Some procedures are not allowed to be used when buffering is on, and others cannot be used when buffering is off. Some can be used on both occasions. The class will try to check as much as possible the illegal use of such procedures through the use of assertions, but not every error can be checked for. Therefore, always use with caution and confidence and refer to this list if anything is unclear.

When Buffering is on:

GetNextByte

WriteByte

ReadBuf

WriteBuf

When buffering is off:

Read

Write

Seek

Buffering on/off:

SmartSeek

Warning:

Do not call seek when buffering is used. Try not to use it at all.

Call SmartSeek all the time.

Notes:

For GetNextByte, EOF is assumed when bytes_read is smaller than bufsize. Therefore to force a buffer reread set bytes_read to bufsize. (ResetBuffer)

5.5
The Central Directory XE "Central Directory" Class

TCentralDir

Encapsulates the reading and writing of the Central Directory to and from files.

Provides caching of the central directory offset in the archive file.

5.6
The CRC 32 XE "CRC 32:Class" Class

TCRC32

The CRC 32 class enables the calculation of CRC 32.

It is a fast CRC-32 implementation using a table lookup.

The table is generated by another program.

Should be compatible or similar to the PKZip version.

5.6.1 To use:

1. Create the class

2. Run through the buffer passing each byte to Update

3. Get the crc-32

5.7
Archive File XE "Archive File:Structure" Structure

revision 1.0

5.7.1 Data types and definition:

Type
Description
 Size

Byte
The basic unit.
8 bits.

Longint
Long integer type
4 bytes.

String
Consecutive characters + null termination
Variable

...
Type repeated as many times as needed

5.7.2 General Format of a reSource Archive

· The extension for a reSource archive is 'rS'. All archives have a signature to confirm that it is a reSource archive.

· An empty archive is one that has no files. It must have a valid signature and a central directory end header.

· A zero byte file is not a valid archive.

· Generally, the reSource archive will have an archive header, as many data blocks as needed, a central directory and a central directory end record.

5.7.3 Signatures XE "Signatures"
Long integers are stored in groups of 4 bytes. The byte with the lsb goes first. So the signatures values had to be reversed to allow them to be seen by a hex editor.

The signatures are stored in ArchiveHeadersUnit.

5.7.4 Headers XE "Headers:Archive"
Each header has a corresponding class.

For some headers, the actual size in bytes is required so it is stored in

a constant e.g. DATA_HEADER_SIZE is the size of a data header.

5.7.5 Overall reSource format

[archive header]

[data header + data block] . . .

[central directory] end of central directory record

A. Archive Header

 reSource Archive signature 4 bytes ('RSVK')

B. Data Header

 Data header signature 4 bytes ('DATA')

 crc 32 4 bytes

 compressed size 4 bytes

 first similarity index 4 bytes

C. Central Director Structure:

 [file header] . . . + end of central directory record

 File Header:

 Central file header signature 4 bytes ('CFHS')

 compressed size 4 bytes

 uncompressed size 4 bytes

 number of blocks 4 bytes

 offset of first local data header 4 bytes

 (attributes)

 time (dos date + time) 4 bytes

 attr 4 bytes

 file name string

 End Of Central Directory Record:

 Signature 4 bytes ('ECDR')

 Block Size 4 bytes

 offset of first Central File Header 4 bytes

6.0 Interface XE "Interface"
6.1
Interface XE "Interface:design considerations" Design considerations

· User friendly

· Functional. No redundant buttons.

· Obvious. User must be clear at first glance which buttons do what.

· Logical. The interface must perform what the user expects it to do.

To achieve this certain controls and techniques are used:

· Speed buttons

· Menu with shortcut keys

· Context sensitive menu for the file list

· Status bar that provides helpful hints and statistics like selected files, files added etc.

· Helpful error messages

[image: image6.wmf]100000

120000

140000

200

400

600

Whole file

[image: image7.png][image: image8.png][image: image9.png][image: image10.png][image: image11.png][image: image12.png][image: image13.png][image: image14.png][image: image15.png][image: image16.png]

6.2
Dialog XE "Dialog:positions" Positions

Dialog boxes and windows that appear above the main form are aligned to the vertical and horizontal centres of the main form. If it is bigger than the main form, then it will completely cover the main form. The procedure used is CentreFormToMain, which takes the form to align as the parameter. Usually, it is used by the form itself in the OnShow handler.

6.3
Message Box XE "Message Box"
The message box is the standard windows message box type. It is used to display error messages and warnings.

The message boxes may have different combinations of buttons to allow the user to decide the next course of action.

Most error messages only have an ‘ok’ button for the user to acknowledge the error.

A query message box has three buttons: ‘yes’, ‘no’ and ‘cancel’.

· Yes confirms the next course of action.

· No does not perform the next operation for the current item.

· Cancel aborts the whole operation. Nothing is done and previously confirmed items are not touched. This returns the archive to its original status.
[image: image17.png]
[image: image18.png][image: image19.png][image: image20.png]

6.4
Opening XE "Opening:archives" and Creating XE "Creating:archives" Archives XE "Archives:Opening"

 XE "Archives:Creating"
There are three ways of opening files:

· Command Line

· Drag and Drop

· Open Dialog

Files can only be created using the Open Dialog.

Command Line XE "Command Line"
Pass the full path to the archive file as a parameter when starting reSource. e.g. “resource c:\thedir\myarc.rs”. The archive file “c:\thedir\myarc.rs” will be opened on startup. Long file names are supported. If the long file name contains spaces in between, then surround the path in quotes to indicate that it is one parameter. Parameters are separated by spaces. If the file does not exists, a new one will be created.

Drag and Drop XE "Drag and Drop"
Drag the archive file from the explorer and drop it into the window of reSource. reSource will open the file if it is only one file and it has an ‘rS’ extension.

Open Dialog XE "Dialog:Open"
Just select the file and click open. If you want to create a new archive, type in a new archive name in the filename edit box and click open.

[image: image21.png]
[image: image22.png]

6.5
Selecting files XE "Selecting files"
Files are selected through the file list. Use [CTRL] to select multiple files or [SHIFT] to select a continuous list of files.

[image: image23.png][image: image24.png][image: image25.png][image: image26.png][image: image27.wmf]0

50000

100000

150000

200000

250000

300000

bib

book1

book2

geo

news

obj1

obj2

paper1

paper2

paper3

paper4

paper5

paper6

pic

progc

progl

progp

trans

Structured

Unstructured

[image: image28.wmf]700000

750000

800000

850000

reSource

WinRAR

WinZip

[image: image29.wmf]100000

120000

140000

200

400

600

Whole file

[image: image30.wmf]110000

120000

130000

140000

150000

reSource

WinRAR

WinZip

[image: image31.wmf]0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

bib

book1

book2

geo

news

obj1

obj2

paper1

paper2

paper3

paper4

paper5

paper6

pic

progc

progl

progp

trans

reSource

PKZip

ARJ

RAR

6.6
Adding files XE "Adding files"
There are two ways of adding files:

· Drag and Drop

· Add Dialog

Drag and Drop XE "Drag and Drop"
Just drag the file from explorer and drop it into the window of reSource. Although folders can be dropped, it will be checked and a message given that folders cannot be added.

Add Dialog XE "Dialog:add"
Use the menu or speed button ‘Add’ to open this. Files are selected using the file list. Folders cannot be selected.

6.7
Extracting files XE "Extracting files"
Extract Dialog XE "Dialog:extract"
Click ‘Extract’ in the menu or click the speed button. The extract dialog will open and you can select the destination directory.

The extract dialog allows the user to extract the selected files or all the files. If files are selected, ‘Selected Files’ will automatically be chosen. If no files are selected, this option is disabled and ‘All files’ is chosen instead.

6.8
Deleting files XE "Deleting files"
Just select the files to delete and press the delete key on your keyboard, button, or corresponding menu item.

The interface will first flag the files to delete. If confirm_on_delete is enabled in TConfigMan then the interface will ask the user if he really wants to delete each file before flagging that file for deletion. Therefore, a ‘Cancel’ will cancel the whole operation and no file will be deleted. ‘No’ will not flag the file and ‘Yes’ will flag the file.

6.9
Modifying XE "Modifying:file attributes" file attributes

Click the right mouse button and select properties. You can change the file name and attributes.

If multiple files are selected, only the attribute of the first file selected will change.

6.10
Sorting files XE "Sorting files"
The file list can be sorted by clicking on the column. If it is already in ascending order, then it is sorted in descending order.

6.11
Configuration XE "Configuration" Dialog XE "Dialog"
The configuration dialog allows the user to change reSource options visually.

It is the interface to Configuration Manager and exposes anything that reSource allows the user to configure.

It can be accessed from the view->Configuration menu.

6.12
The Compression Statistics XE "Compression Statistics" Dialog XE "Dialog:compression statistics"
The compression statistics dialog allows the user to view the compression statistics for the archive. A break down of information for each file is done and averages are calculated. The user can print the information to the printer or copy the information to the clipboard.

A main difficulty is in getting the columns to align. If the information in one column is too big, then it will ‘eat’ into the next column. This is because the programming portion uses tabs to separate the columns. The default column widths are approximately suitable for most files with moderate length file names. Even if the columns are misaligned, they are pretty obvious which columns go where.

The columns description are:

Column name
Description

File name
Name of the file as stored in the archive

Raw Size
Original/Uncompressed size of the file

Compressed
Packed/Compressed size of the file

Ratio
Compression ratio. Percentage shrunk.

Bits per byte
Average number of bits used to represent a byte.

6.13
The Program Statistics XE "Program Statistics" Dialog XE "Dialog:program statistics"
The Program Statistics Dialog allows the user to view the memory allocations and system resources used by reSource. This is more of a debugging aid. The user may be asked to refer to the program statistics and submit his readings when he reports an error to aid the author in debugging the program.

The program statistics dialog is divide in three subsections: Engine, Program and System.

· The Engine subsection shows the compression/decompression engine properties.

· The Program subsection shows memory allocations by the program.

· The System subsection shows information about the system memory address space.

All values shown on the right of each item is in bytes.

Name
Description

Block Size
Size of a block of compression data. If a file is greater than this size it is chopped into blocks of BlockSize.

rs Total Allocated
reSource total memory allocated from the heap manager. Amount of memory reSource has requested from its internal heap manager.

Heap Manager Overhead
Amount of space used by the heap manager used to manage memory allocations.

Win Total Address Space
The total amount of memory (physical + virtual) that windows has currently made available to itself and programs it runs. A lack of memory could be due to a relatively small number here.

Win Total Uncommitted
Total amount of memory left unallocated to programs and data.

6.14
About Dialog XE "About Dialog"

 XE "Dialog:about"
The about dialog displays copyright information and version information of reSource.

7.0 Strategies XE "Strategies"
7.1
Development Strategy XE "Strategy:development" \t "See Development strategy"

 XE "Development Strategy"
reSource was designed top-down.

1. The features the user would need or use was determined e.g. add, extract, delete and modify.

2. Classes and procedures were developed for each of these operations.

3. Sub classes were further developed to break down the problem of each operation.

4. Whenever an operation could be separated, a new class was formed.

Altogether, reSource underwent about 4 major restructuring, where classes were shifted around and hierarchies, inter-class relations changed. As the development goes on, reSource will become more modular, structured and ‘cleaner’.

The order and rough times for development are as follow. Note that development of certain portions overlapped so several things could be done in a week. The times taken include times to debug and ensure that the particular module worked.

Type
Time taken

Quick Sorter
1 week

Fast Sorter
2 weeks

Reverse Transformation
1 week

Run Length Encoder/Decoder
1 week

Move to Front Encoder/Decoder
1 week

Arithmetic Encoder/Decoder
2 weeks

Structured Arithmetic Encoder/Decoder
2 weeks

I/O classes, related classes
2 weeks

Miscellaneous
2 weeks

Interface
1 week

In all, the development of reSource spanned more than 5 months.

reSource contains various modules that can be plugged in and out:

1. The arithmetic encoder/decoder can use the structured or unstructured version easily by defining USE_STRUC_ARI in BWTCompress and BWTExpand units.

2. The sorting routine can either use the fast sorter or guaranteed reliable plain quicksort in the QSortUnit.

Some design notes:

· reSource is completely modular.

· Classes were used extensively and code reuse done whenever possible by deriving from existing classes.

· Most instructions and algorithms are included ‘inline’ with the code.

· The code was made as easily readable as possible by using meaningful and verbal variable names.

· The code and comments therefore help each other to concisely document the program.

· In certain portions, comments were not included because they are redundant, and doing so would only make the code harder or more difficult to understand. Just reading the code itself would sometimes give a clear picture of what is going on.

· All 3 types of comments are used: ‘(**)’, ‘{}’ and the new ‘//’.

7.2
Testing Strategy XE "Testing Strategy"

 XE "Strategy:testing" \t "See Testing Strategy"
reSource is a program that has to be of high integrity and reliability. Data is being ‘entrusted’ to the archive and must be perfectly recovered. The author developed certain testing strategies which are relatively unique to this sort of program development. Both alpha testing and beta testing was performed.

Testing during development: (Alpha testing)

During development, reSource was debugged and tested using the Delphi integrated debugger.
Enable: Range checks, I/O checks and Overflow checks.

Enable: Debug Information, Local symbols, Assertions.

Delphi standard debugging XE "debugging:tools" tools:

All the usual ‘standard’ debugging tools included in Delphi were made use of. This included traces, step overs, conditional and unconditional breakpoints, expression evaluations and modifications. There are quite a few mathematical and repetition points in the program so all these tools should be used extensively.

Assertions XE "Assertions" :

The development made extensive use of ‘Assertions’, a new inclusion into the Delphi debugging arsenal. These are automatically taken out during a non-debug compilation by the compiler. An assertion makes sure that certain conditions are true, for some portions have to be true for the program to be working correctly e.g. count cannot be greater than 65535.

Debugging statements:

Throughout the reSource source code, there are comments which contain the word ‘debug’. These indicate that the following code is for debug use an should be commented out during the final compilation. Also, some of these debug statements are contained in {$IFDEF DEBUG} conditions. whenever the DEBUG condition is set during compilation, the source will be compiled with debug code in.

Testing Aids XE "Testing Aids" :

Some debug statements automatically open certain directories or archive files e.g. in MainForm.Create there is a statement that opens an archive file on start-up called ‘a.rs’. This is to aid testing and debugging so a file need not be opened ‘manually’ all the time when the program starts.

Hidden Buttons XE "Hidden Buttons" :

There are 2 hidden buttons labelled ‘Compress’ and ‘Decompress’. These basically compress and decompress a specific file to or from the archive. Again, these are purely to aid debugging, especially in testing the integrity and workability of the compressor.

Debug XE "Debug:form" Form:

There is a debug form that has been removed in the release version. This basically gives a visual indication of where the compressor currently is at. During development, reSource tended to overwrite memory, overshoot counts, miss values by 1 etc. which may result in the program freezing or locking up. In serious circumstances the whole windows was jammed. Sometimes, these jams occurred with the mouse still being able to move or the user being able to switch around applications, so there was no sure way of confirming whether the program was jammed. Therefore the debug form was popped up beside the main form (and will nicely follow it where ever it went), which indicated the progress of the compression: ‘sorting’, ‘transforming’, ‘move to front’ or ‘arithmetic compression’. In the early stages when the sort algorithm was being developed, it tended to halt at the ‘sorting’ portion. That portion can then be checked. To enable the debug form, change the ‘Debug Form Enable’ variable in the Configuration Manager. The ‘Debug Show Doing *’ procedures in TCompressor are for showing the status.

Logical testing XE "testing:logical"

 XE "Logical testing" \t "See testing:logical" :

In order to verify the workability of the sorting phase, a procedure was written to confirm that the appropriate block contained characters in ascending order. This is a simple but very useful test. TCompressor.CheckSortedBlock does this. To actually see what the sort has done (or how it has muddled up the data), TCompressor.DumpSortedBlock can be used to see the outcome.

Reversibility testing XE "testing:reversability"

 XE "Reversability testing" \t "See testing:logical" :

The compression is completely reversible. Every phase of it can be reversed to return the data to the previous state e.g. run length encoding will need a run length decoder, ari encoder an ari decoder. Therefore, at certain phases, it is useful to test if that phase is working by reversing the current data and comparing it to the previous phase. TCompressor.DoBlockRecover creates a TExpander and ‘recovers’ the transformed block, and TCompressor.CheckRecoveredBlock checks that the transformation is correct by doing a byte by byte comparison of the block.

Sort testing XE "testing:sort" :

Before the Fast sorter was developed, a plain quick sort was used to sort the block. This was guaranteed to work and can be used in case the fast sorter fails. The quick sorter is located in QSortUnit.

Comparing and validating XE "validating:blocks" blocks:

Note that blocks have ghost buffers i.e. they may start from –1 and end several bytes longer than the actual BlockSize. Therefore, when checking these blocks, always start testing explicitly from index 0. On certain occasions this was not done and several frustrating days were spent trying to figure out why the blocks always failed testing on byte 0.

Multiple blocks XE "Multiple blocks" :

If files were bigger than the blocksize, they are chopped up into several blocks. Sometimes during development, reSource worked on single blocks but not on multiple blocks, mainly due to different amounts of ‘rubbish bits’ required by the arithmetic decoder. Therefore, to ensure that multiple blocks worked, the blocksize was set intentionally to a very small value (1 kilobyte) and a simulation of a large number of blocks was done.

Bounds Checker XE "Bounds Checker" :

Bounds Checker version 5 was used toward the end to run the program. Bounds checker checks for memory leaks or references to unassigned pointers etc. so that the program is relatively more robust.

Backing up XE "Backing up" :

If modification or improvements to the program need to be made, it is recommended that a backup of all essential system files be done. A program lockup in the middle of a write operation may result in lost clusters or worse, a corrupt fat. This may cause the lost of valuable data on the drive. Furthermore, working with other applications or important data should be discouraged in the case that a lockup may occur anytime. It is strongly suspected that memory could have been overwritten during the development process because access violations were detected and even the Delphi IDE reported an exception and refused to continue running.

File Types:

A wide variety of files has to be tested. This included files with various extensions like txt and exe. Binary files may compress in a different way from txt files so both types have to be extensively tested.

A very useful aid to testing the integrity of the decompressed files was the inclusion of the 32 bit crc checks where the chance of an error undetected is close to 1 in 4 million. Furthermore, ‘zip’ archives were added then decompressed from the archive. The zip archives were then internally tested after that. Zip archives contain their own 32 bit crc checks for data integrity so an ‘archive within an archive’ would 99.9% confirm the integrity of the data files.

Intensive testing XE "testing:intensive" or ‘massive’ testing XE "testing:massive" :

Hundreds of megabytes of files, (plus the whole windows directory) archives etc were added into the archive. Operations were performed at random on the archive then the data extracted. All internal archive files were tested for integrity, executable programs were tested whether they could run, and text files were tested by using a text file comparison utility like ‘Norton Compare’.

Different environments XE "testing:environments" :

reSource was mainly tested on 3 platforms.

· The main development platform, a 166Mhz Pentium with 32mb ram with Windows 98.

· A 133Mhz Pentium with 32mb ram running Windows 95.

· Pentium or Pentium Pro class PC’s in a networking environment.

Test Data

Test data for reSource concentrates mainly on 2 inputs.

· The command line processing for opening an archive file passed as a parameter to reSource.

· The data or input files being added to the archive.

For opening of archive files, the open dialog box automatically ensures that the folder that contains the archive file exists. The user can also create folders in the open dialog box. It is a standard Windows 95 interface. If a new archive is to be created, the user will be notified and confirmation seeked.

For adding data, the user selects the files visually from a list to add to the archive. No typing is necessary. The file to be added therefore most probably exists because the user is essentially selecting files existent on the system.

For extracting data, the user selects a directory already existent on the system. No typing is necessary.

Configuring for a custom directory also does not involve the user typing in the directory, but instead the user selects visually the directory from a directory list.

Command Line Parameter XE "testing:command line parameter" Test Data

Data is entered at the command line. For example, when running reSource from the command line, the user enters “resource c:\thedir\myarc.rs”.

“c:\thedir\myarc.rs” is the command line parameter and is the archive file the user wants to open on startup. Note that long file names are supported and archive and folder names can have spaces in between. However, when long file names with spaces are entered, they must be between quotes to indicate they are one parameter. The default separator for parameters is the space character.

Data input
Test for

c:\thedir\myarc.rs
Normal working conditions. The directory “c:\thedir\” must exist on the system.

“c:\no such dir\myarc.rs”
Non-existent directory. The archive file cannot be opened and an error message displayed.

“c:\no such dir\no such archive.rs”
same as above.

“c:\thedir\no such archive.rs”
The archive does not exist but the directory exists. The user wants to create a new archive. Therefore the archive of name “no such archive.rs” is created.

“c:\thedir\myarc”
the extension is not entered. reSource should append the extension and open the archive “myarc.rs”

“c:\thedir\myarc.”
the filename + dot is present but the extension absent. Should be treated the same as the previous case.

c:\thedir\my arc.rs
User forgot to add surrounding quotes to the path Parameter 1 will therefore be treated as the archive file t be opened i.e. “c:\thedir\my”.

An extension will be appended and the user queried if he wants to create the new archive “c:\thedir\my.rs”

Input file Test Data XE "Test Data:Input File"
The input files are selected to be added using the add dialog. Files of these types are created, then selected using the add dialog and added.

File type or characteristics
Test for

0 length file
Tests the reliability of operation handlers.

Ability of reSource to handle 0 length files.

Basically, 0 length files are treated as normal files with a few exceptions.

Calculations should not produce a div by zero error.

The file should be restored in the same condition, zero length and have the same attributes.

Operations performed on the file should be able to handle this type of file “transparently” and treat them as normal files.

“Normal file” with length greater than 0 bytes
Tests the sort and overall component reliability and workability.

All file attributes and file name should be restored perfectly.

Operations should not corrupt any data.

File with length smaller than RunThreshold and having similar characters throughout.
Tests the sort reliability.

This tests the ability of the sorter to handle similar characters to the end of a file and resolve the sort.

Note that any file greater than RunThreshold with similar characters will be run length encoded, thus it will no more be similar to the end.

File with length greater than RunThreshold and having similar characters throughout.
Tests the integrity of the run length encoder.

The file should be run length encoded and restored perfectly.

“Normal file” that is opened by another application.
Tests the error handling and share capabilities.

If the file is opened for input only by another application, it should also be able to be opened by reSource. reSource grants input privileges to the file it is currently adding, but not output privileges. e.g. if an executable file is running, it should be able to be added to reSource.

If the file is opened for output or reading from the file is not allowed by the other application, then an error message should occur saying that the file could not be added. The archive manager should continue adding other files.

Testing the final program: (Beta testing)

Before the release of the final program, a ‘beta’ version was released. Version 0.9beta was released and made available for public download on the world wide web at the official reSource support site (http://members.tripod.com/~gruv/resource). E-mails were sent out inviting friends and anyone else to try out the program. The general response was that the program was stable and no lockups occurred.

8.0 Troubleshooting XE "Troubleshooting"
8.1
Opening files

Error XE "Error:message" message: ‘File cannot be opened’.

Possible Cause/Solution:

1. The drive containing the file is not ready.

· Check that the disk is in the drive it is a removable media.

2. The folder that is input does not exist.
· If you typed in the path of the archive file to open from the command line, make sure that you typed in the correct folder and there are no spelling mistakes.

· You may have forgotten to surround the path in quotes. Long file names with spaces in between have to be surrounded in quotes to be treated as one parameter.

Error message: ‘Signature Wrong. Archive could be corrupted’.

Possible Cause/Solution:

1. The archive is corrupted.

· The archive file could be damaged or corrupted. Check the disk for bad sectors. The archive is not recoverable.

8.2
During Operations

Error message: ‘Out of memory’.

Possible Cause/Solution:

1. Your system is low on memory.

· Close as many running applications as possible to free up memory.
· Increase the swap file size using System properties in Control Panel.
9.0 Miscellaneous XE "Miscellaneous"
9.1
Additional notes XE "notes:additional"
Long file names XE "Long file names"
Long file names are supported throughout the application. The central file headers have variable length file name entries, allowing file names up to 2 gigabytes in size (the maximum size allowed for a string).

Ghost Buffers XE "Ghost Buffers"
block is viewed as having subscripts 0..BlockSize by most procedures.

Some procedures will take it for granted that blocksize has more characters for speed reasons. block will therefore have 0..BlockSize -1 + 5
block[block_length..block_length + 4] is block[0..4].

Sequential access storage XE "Sequential access storage"
Due to its file structure, reSource probably cannot be used on sequential access storage devices such as tape backup systems. Decompressing requires several random seeks to be done. If support was to be added, then local file headers at the start of each data block would have to be added which add to the archive size.

Command Line XE "Command Line:processing" Processing

Command line processing for opening archive files passed as the first parameter was implemented to enable ‘rs’ files to be associated with reSource in explorer. The user can associate the ‘rs’ extension with reSource archive files and have resource open the application automatically. Note that the parameter, “%1” must be surrounded in double quotes if long file names is to be totally supported.

9.2
Installation XE "Installation"
The installation program was created using Install Shield express version 2.0. It includes an uninstallation portion that allows the user to easily remove the application using the add/remove dialog in the control panel.

9.3
Known bugs XE "bugs" or quirks XE "quirks"
These bugs or quirks are not serious and mostly trivial. They do not compromise in any way the integrity of data processed by reSource.

1. After the Delete speed button is pressed, the status bar will not show the number of files deleted. It seems the OnHint is called with a null string.

2. The cursor may not show the busy or hourglass symbol sometimes. This may happen especially when the mouse is moved over the File List header. This happens because the cursor is not changed on entering the window during a lengthy process like compressing files. Only after ProcessMessages is called after every block is operated on is the cursor updated.

3. The updating of the interface may be slow. The reason is the same as (2).

4. When the user tries to change to a drive that is not ready in the add or extract dialog, an ‘IO Error’ exception message will be shown. This message is generated internally by the Delphi component. The author currently has no idea how this message can be intercepted or generate error messages that would not make the interface awkward (several solutions were tried, and some of them made the error message box appear twice because of the nature of the OnChange event.) To fix this would require tweaking with the Delphi Source code (which is not recommended), or using a new interface (still being developed).

9.4 Limitations XE "Limitations"
There are currently no known practical limitations to reSource. reSource is a 32 bit program with 32 bit limitations. The maximum length for a string in Delphi is 2 gigabytes and for a long integer the count goes all the way to 2 gigabytes. Therefore, almost everything has a two gigabyte limit or is limited by the amount of memory available. The exception to this is the maximum block size, which is affected by the amount of memory available.

An approximate calculation for the memory needed would be:

(block size * 4 * 10 + 2048) kilobytes.

Therefore, the default 400k block size would require about 18 megabytes of memory.

reSource limits:

Type
Length

Input File name
2 gig

Input File Size
2 gig

Number of blocks per file
2 gig

Number of files per archive
2 gig

Block size
Memory available

9.5
Future development XE "Future development" and possible improvements XE "improvements"
reSource is only in its first version. There are still many things that can be improved upon. Most of these ideas came from other archivers, like Winzip which is already in its 6th major revision.

1. Reduction in memory usage. Some data structures can be cut down in size. The current memory requirements for reSource are relatively high. Some data structures can be cut down in size by using different data types with a more limited range e.g. longint to byte. This would involve recoding certain portions to make them compatible with the new data type and the smaller range of values. Improvements in this area can be made in the sorting and modelling portions of the code.

2. Better compression using a better model. The current model is tuned for best performance on text files, or files that generally follow zipf’s law. On binary files, the compression may be affected. A possible solution is the use of multiple frequency tables for the model. A different frequency table may be used for different files, or different blocks of data.

3. Adding of folders and entire directory structures. Currently, reSource does not allow the addition of folders. This feature is useful as basically it can be used to archive a whole drive, no matter how deep the directories are.

4. Disk spanning facility to allow adding large files and spanning it across diskettes. This is useful in backing up an entire hard disk on removable storage, especially when the removable storage is much smaller than the hard disk e.g. 1.44 megabyte disk drives.

5. Drag and drop from the Archive into file manager to extract files. Currently, reSource only allows drag and drop to the archive to add files. Allowing drag and drop extraction would make the program more user friendly and in-line with how windows explorer operates.

6. Error recovery by adding error recovery records in the data. Error recovery information can be added every block interval e.g. 512 bytes. The motive is to allow the reconstruction of corrupted data when there is a disk error. A disk error causes a read from a disk, especially floppy disks, to contain errors or incomplete information. Up to several bits can be recovered. This is especially important to reSource because the nature of the algorithm is such that a wrong bit may corrupt the whole block of data.

7. Configuration saving, possibly to the Windows registry. Currently, the configuration is not saved and the user must set the configuration manually every time the program is run. This may be quite an inconvenience. The ‘new’ way of saving configuration, as opposed to the ‘old’ way of using ini files, is to store them in the registry. This method is supposedly faster and ‘cleaner’ on the hard drive, as the drive will not be cluttered by tons of ini files.

8. More colourful interface that is fun to use. Use of graphics and sound may be interesting. Adding meaningful icons or graphics to the ‘open’, ‘add’ and other buttons may make the program more easy to use. After all, reSource operates in a ‘Graphical User Interface’, where the use of graphics is strongly recommended.
9. Better interface for adding and extracting files with better error capturing. The current adding and extraction dialogs are rather basic. More features can be added to it like in the extract dialog, to allow the creation of folders before extraction. We can also allow selection of files from multiple directories in the add dialog. Also, support for the use of wild cards to specify file names would be greatly welcomed by ‘DOS’ fans. All this will speed up and simplify the archiving operations of the user.
10. Automatic conversion from other archive formats. If the user decides that reSource is the archiver he would like to use, then he can easily use the ‘automatic conversion’ feature. This feature would scan the drive for any recognised formats like ‘zip’ or ‘arj’ and ‘convert’ them to the reSource format.

10.0 Benchmarks XE "Benchmarks" and Evaluation

The Calgary Corpus XE "Calgary Corpus"
The Calgary corpus is an internationally recognised set of files to test compressors.

It can be obtained at: ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/

The following is an extract from the readme file of the corpus that describes the corpus.:

Welcome to the Calgary/Canterbury text compression corpus. This corpus is used in the book

Bell, T.C., Cleary, J.G. and Witten, I.H. Text compression.

Prentice Hall, Englewood Cliffs, NJ, 1990

and in the survey paper

Bell, T.C., Witten, I.H. and Cleary, J.G. "Modeling for text

compression," Computing Surveys 21(4): 557-591; December 1989,

to evaluate the practical performance of various text compression schemes. Several other researchers are now using the corpus to evaluate text compression schemes.

Nine different types of text are represented, and to confirm that the performance of schemes is consistent for any given type, many of the types have more than one representative. Normal English, both fiction and non-fiction, is represented by two books and papers (labelled book1, book2, paper1, paper2, paper3, paper4, paper5, paper6). More unusual styles of English writing are found in a bibliography (bib) and a batch of unedited news articles (news). Three computer programs represent artificial languages (progc, progl, progp). A transcript of a terminal session (trans) is included to indicate the increase in speed that could be achieved by applying compression to a slow line to a terminal. All of the files mentioned so far use ASCII encoding. Some non-ASCII files are also included: two files of executable code (obj1, obj2), some geophysical data (geo), and a bit-map black and white picture (pic). The file geo is particularly difficult to compress because it contains a wide range of data values, while the file pic is highly compressible because of large amounts of white space in the picture, represented by long runs of zeros.

Table 1 XE "Tables:Table 1" – Structured vs. Unstructured model

For this test, reSource was compiled two times, using two different models. The results were then captured using the Compression Stats dialog.

The structured model achieves an average of 2.542bpb as compared to 2.722bpb for the unstructured model. Therefore, the structured model is superior to the unstructured model in every way.

Structured model XE "Structured model"
File name
Raw size
Compressed
Ratio
Bits per byte

bib
111261
28450
75%
2.046

book1
768771
247546
68%
2.576

book2
610856
169633
73%
2.222

geo
102400
58078
44%
4.537

news
377109
122011
68%
2.588

obj1
21504
10802
50%
4.019

obj2
246814
79397
68%
2.574

paper1
53161
16833
69%
2.533

paper2
82199
25630
69%
2.494

paper3
46526
16121
66%
2.772

paper4
13286
5172
62%
3.114

paper5
11954
4779
61%
3.198

paper6
38105
12433
68%
2.610

pic
513216
51044
91%
0.796

progc
39611
12795
68%
2.584

progl
71646
15974
78%
1.784

progp
49379
10886
78%
1.764

trans
93695
18077
81%
1.543

Average
3251493
905661
68%
2.542

Unstructured model XE "Unstructured model"
File name
Raw size
Compressed
Ratio
Bits per byte

bib
111261
31915
72%
2.295

book1
768771
265289
66%
2.761

book2
610856
183093
71%
2.398

geo
102400
64316
38%
5.025

news
377109
129641
66%
2.750

obj1
21504
11158
49%
4.151

obj2
246814
83949
66%
2.721

paper1
53161
17905
67%
2.694

paper2
82199
27543
67%
2.681

paper3
46526
17127
64%
2.945

paper4
13286
5506
59%
3.315

paper5
11954
5067
58%
3.391

paper6
38105
13144
66%
2.760

pic
513216
54288
90%
0.846

progc
39611
13646
66%
2.756

progl
71646
17341
76%
1.936

progp
49379
11760
77%
1.905

trans
93695
19572
80%
1.671

Average
3251493
972260
66%
2.722

Table 2 XE "Tables:Table 2" – Compression of the Calgary Corpus

reSource was compared against 3 other popular archivers for this test.

All the archivers perform compression on individual files or a maximum block size. The input data does not span files. The archivers are listed in no particular order.

Parameters:

reSource 1.0
400k block size

PKZip 2.04g
-ex (maximum compression)

ARJ 2.60
-jm (maximum compression)

WinRAR
Best, no-solid, multimedia compression

The results:

· The file names for the corpus are listed on the left.

· The ‘Raw’ column lists the size of the file uncompressed.

· The compression times are estimated and rounded to the nearest second. They should not be taken into serious consideration because they are only a rough estimate.

· The total size column totals the compressed sizes for all the files. To be fair, they only total the size of the compressed data. They are not the size of the final archive, which would include file records and headers.

· The chart is displayed on the next page.

reSource
PKZip
ARJ
RAR
Raw

bib
28,450
35,126
36,020
33,242
111,261

book1
247,546
312,490
318,835
279,028
768,771

book2
169,633
206,513
210,260
183,381
610,856

geo
58,078
68,706
68,916
61,451
102,400

news
122,011
144,545
146,845
127,402
377,109

obj1
10,802
10,306
10,315
9,931
21,504

obj2
79,397
81,132
81,789
75,299
246,814

paper1
16,833
18,531
18,646
18,328
53,161

paper2
25,630
29,568
29,910
28,896
82,199

paper3
16,121
18,027
18,116
17,960
46,526

paper4
5,172
5,504
5,525
5,557
13,286

paper5
4,779
4,962
4,987
5,006
11,954

paper6
12,433
13,305
13,355
13,243
38,105

pic
51,044
52,409
53,342
52,489
513,216

progc
12,795
13,341
13,408
13,273
39,611

progl
15,974
16,122
16,389
16,065
71,646

progp
10,886
11,200
11,270
10,934
49,379

trans
18,077
19,462
20,055
18,254
93,695

TOTAL
905,661
1,061,249
1,077,983
969,739
3,251,493

Time (sec)
46
12
16
88

Table 3 XE "Tables:Table 3" – Compression of individual files

· reSource is compared against several archivers in these single file tests.

· The times given are approximate.

· All archivers used are configured for maximum compression.

· Raw refers to the uncompressed size.

· It can be seen that reSource works exceptionally well on text files, especially large ones and performs generally well on binary files.

The archivers compared are:

Name
Description
Parameters

reSource
reSource version 1.0
Block size: 400k

WinRar
RAR for windows 2.04
Best, multimedia compression, 1024k block

WinZip
Winzip version 7.0 beta
Maximum compression

File 1

Name:
Delphi32.exe

Desc:
Delphi 3.0 main executable file.

Type:
Binary executable file.
Archiver
Size
Time (s)

Raw
2027464

reSource
821614
30

WinRAR
768392
70

WinZip
837918
11

File 2

Name:
Win32API.txt

Desc:
Win 32 declarations for Visual Basic.

Text:
Text file.

Archiver
Size
Time (s)

Raw
703271

reSource
124188
11

WinRAR
130433
18

WinZip
140915
3

Table 4 XE "Tables:Table 4" – Increasing the Block Size XE "Block Size"
The current algorithm for reSource can be configured to give better performance by using a larger block size. This is done by changing the “BlockSize” constant in StructsUnit.

reSource was then used to compress the file Win32API.txt, which is the visual basic declarations for win32. The results show that compression improves with a bigger block size, but the law of diminishing returns sets in, causing the bytes saved to be smaller and smaller. The time taken to compress also increases, and memory requirements also increase by a multiple. The limit of the block size is the file size itself.

Block size (kbytes)
Packed size (bytes)
Decrease in size (bytes)

200
129331

400
124188
5143

600
123120
68

Whole file
119422
3968

Block size versus Packed size

Analysis XE "Analysis:Benchmarks" of Benchmarks

The benchmarks done lead to several conclusions:

1. The structured model is superior to a non-structured model. (Table 1)

2. reSource generally outperforms popular archivers. (Table 2)

3. reSource performs better on certain files, especially text files. Also, larger files compress better. (Table 3). Files that do not follow zipf’s law as closely, like binary files, may only yield average performance.

4. Compression benefits from larger block sizes. (Table 4)

Additionally, benchmarks done by Peter Fenwick indicate that the BWT compression algorithm approaches that of PPM (prediction by partial matching), the current state of the art compressor, while being much faster than other compressors of comparable performance.

Evaluation XE "Evaluation"
reSource can be described as an engineering exercise based on existing research work. It benefitted a lot from the abundance of papers, materials and information available on the internet. Algorithms were compiled from various sources, and implemented. Some algorithms were converted from their ‘C’ equivalent, while others were completely coded from the ground up for complete Delphi or Pascal compatibility. Other algorithms like the sorting algorithm was coded by referring to pseudocodes and descriptions in papers (The fast sorter). Some algorithms like the group encoding model was coded originally with ideas from Peter Fenwick’s papers. Many times these algorithms were implemented wrongly or had logical errors during the first coding. Many algorithms had to be revised several times and restructured, and each time the implementation turned more structured, optimised and clear. At the end, a much better understanding of the algorithms used was gained.

reSource is not perfect. The code can still be improved, and will continue to be improved as the author discovers new ideas.

reSource has successfully met it’s aim and scope:

To program an archiver with addition, extraction, deletion and modification abilities. Error checking was also implemented with CRC-32.

reSource is only in its first revision, therefore it’s features and functions are limited. Other archivers like Winzip and WinRAR provide a wider array of features and are much more configurable. That is what reSource aims to become. That is what the next version will be.

 XE "recursive" \t "See recursive"
11.0 Appendix XE "Appendix"
References XE "References"
Most information was found on the internet. Others were from books that may be available at libraries.

Block Sorting XE "Block Sorting"
Michael Burrows and D. J. Wheeler:

"A block-sorting lossless data compression algorithm"

10th May 1994.

Digital SRC Research Report 124.

ftp://ftp.digital.com/pub/DEC/SRC/research-reports/SRC-124.ps.gz

Mark Nelson

“Data Compression with the Burrows-Wheeler Transform”

Dr. Dobb's Journal , September, 1996

Peter Fenwick:

“Block Sorting Text Compression”

Proceedings of the 19th Australasian Computer Science Conference, Melbourne, Australia. Jan 31 - Feb 2, 1996.

ftp://ftp.cs.auckland.ac.nz/pub/peter-f/ACSC96paper.ps

“Block Sorting Text Compression – Final Report”

Technical Report 130, ISSN 1173-3500, 23 April 1996

ftp://ftp.cs.auckland.ac.nz/pub/peter-f/TechRep130.ps

Arithmetic XE "Arithmetic" Modelling and Coding

Witten, I.H., Neal, R., and Cleary, J.G

"Arithmetic coding for data compression," Communications of the Association for Computing Machinery,30 (6) 520-540, June. (1987b)

Mark Nelson and Jean-Loup Gailly

The Data Compression Book, second edition
M&T Books, New York. (1995)

Index

A
About

the author · 1

About Dialog · 52

Acknowledgements

List · 1

Adding files · 44

Aim · 8

Algorithms · 21

Analysis

Benchmarks · 73

Appendix · 75

Archive File · 35

Structure · 37

Archive Manager · 32

Adding files · 32

Archives

Creating · 42

Opening · 42

Arithmetic · 76

Decoder · 27

Encoder · 27

Overview · 27

Unstructured · 27

Assertions · 55

attributes

file attributes · See Modifying file attributes

B
Background · 8

Backing up · 56

Benchmarks · 65

benefits

of BWT · 9

Bit File · 35

block

management system · 24

Block Size · 72

Block Sorting · 76

Bounds Checker · 56

bugs · 63

Burrows Wheeler

Forward Transformation · 23

Reverse Transformation · 25

C
Calgary Corpus · 66

Central Directory · 36

Class

Hierarchy · 19

Listing · 16

Modules · 14

Usage · 18

Classes · 13

How To Use · 17

Command Line · 42

processing · 62

Processing · 32

Compression Statistics · 50

Configuration · 49

Contents

Table of Contents · 2

Copyright Notice · 1

CRC 32

Class · 36

Creating

archives · 42

D
Data Flow · 20

Debug

form · 55

debugging

tools · 55

Deleting files · 33, 46

Development Strategy · 54

Dialog · 49

about · 52

add · 44

compression statistics · 50

extract · 45

Open · 42

positions · 41

program statistics · 51

Drag and Drop · 42, 44

Adding files · 33

E
e-mail

author · 1

Engine · 31

Error

message · 60

Evaluation · 73

Extracting files · 33, 45

F
Features · 10

Future development · 64

G
Ghost Buffers · 62

H
Headers

Archive · 37

Hidden Buttons · 55

I
icon · 6

improvements · 64

Installation · 62

Interface · 39

design considerations · 40

L
Limitations · 63

Logical testing · See testing:logical

Long file names · 62

Long File Names

parameter · 32

M
Message Box · 41

Miscellaneous · 61

Modifiying file attributes · 33

Modifying

file attributes · 47

Modules · 14

Move to Front Encoder

Decoder · 26

Encoder · 26

Multiple blocks · 56

N
notes

additional · 62

Notes

System Doc · 6

O
Objective · See Aim

Opening

archives · 42

Opening Archives · 32

overview

archiver · 12

P
Problem · 8

Program Statistics · 51

Q
Quick Sort · 24

quirks · 63

R
Radix Sort · 24

recursive · See recursive

References · 76

Requirements · 7

Residue · 29

reSource

support site · 1, 80

Reversability testing · See testing:logical

Run Length

Decoder · 22

Encoder · 22

S
Scope · 10

Selecting files · 43

Sequential access storage · 62

Shared files · 32

Signatures · 37

Smart Buffered File Stream · 35

Solution · 8

Sort

Quick · See Quick Sort

Radix · See Radix Sort

Sorting files · 48

Strategies · 53

Strategy

development · See Development strategy

testing · See Testing Strategy

Structured model · 67

SwapBlocks · 24

T
Table

Of Contents · See Contents:Table of Contents

Tables

Table 1 · 67

Table 2 · 69

Table 3 · 71

Table 4 · 72

Test Data

Input File · 58

testing

command line parameter · 57

environments · 57

intensive · 56

logical · 55

massive · 56

reversability · 56

sort · 56

Testing Aids · 55

Testing Strategy · 55

Troubleshooting · 59

U
Units · 14

Unstructured model · 67

V
Valid Archives · 33

validating

blocks · 56

Z
Zero length files · 33

Official reSource XE "reSource:support site" support site: http://members.tripod.com/~gruv/resource
Contact the author

e-mail: gruv@bigfoot.com (Victor Kasenda / Gruv)

ICQ: 6505245

end of system doc

Arithmetic Decoding

Run Length Decoding

Archive File

Move to Front Decoding

Reverse Transforma-tion

Run Length Encoding

Forward Transforma-tion

Arithmetic

Coding

Move to Front Coding

Archive File

Calculate CRC 32 for data block

Input File

Output File

Check CRC32

Data

Model

Arithmetic Coder

Data

Head Model

Group Model #1

Group Model #2

Group Model #9

Structured arithmetic encoder

An error message

Speed buttons

Application Title

File List�displays files in the archive. Drag and drop files here.

Hint/Status bar

Archive Name

Type the name of an existing archive or a new archive here.

Show only files of reSource type.

Click to open the archive!

If you entered a new archive name, you will see this. Just click yes to confirm.

Hold Shift and click both ends to select a list of files.

Hold CTRL and click to add individual files.

The status bar displays information about selected files.

Alternatively, use the menu to select or deselect all files.

Shortcut keys can be used to quickly access menu items. For example, press Ctrl+O to open a new archive.

The hint bar will display hints about the menu item below the cursor.

Select files to add here. Multiple files can be selected with the Shift or Ctrl keys.

Change directory.

Change drive

Confirm your selections!

If a file with a name similar to another file in the archive is added, this dialog will be shown. Click yes to add the file.

Choose the extract folder and drive.

Extract the selected files or all the files. Will default to selected files if files are selected.

Extract files!

Select the files to delete.

Then press Delete

Click the right mouse button to bring out the file context menu.

Type in the new file name here.

These attributes cannot be changed but are displayed.

Click to add or remove an attribute.

Click a column to sort according to that column

The status bar will display the sort method.

This list is sorted according to ascending order of size.

Click to close

reSource version information

Copyright information

The directory options page allows the user to select the default temporary directory. reSource will initially use the default windows temp dir, which is extracted using the Windows API. If the user presses ‘Browse’ and selects a new temp dir, then the ‘Use Custom’ radio button will automatically be selected.

The General options page allows the user to select and change general options.

Tick to confirm every file deletion operation.

Click to switch pages

Archive name and path.

Information about the files in columns.

Number of files in the archive

If confirm on delete is enabled in the configuration, then the user will see this message for every file.

This allows the user to verify every file that is going to be deleted.

Delete the file

Do not delete this file

Cancel the delete operation. No files are deleted.

Press ‘OK’ to acknowledge the error.

This is a query dialog that allows the user to decide the next course of action.

In this case, the user has a choice of deleting the current file, not deleting it and deleting nothing at all.

Yes flags the file for deletion.

No does not flag the current file.

Cancel aborts the whole operation. Nothing is deleted.

Chart 2: Compression with the Calgary corpus. Shorter bars indicate better performance.

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

Chart 1: Structured versus Unstructured Modeling.

Shorter bars indicate better performance.

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

Yes will delete this file.

No does not delete this file but deletes other files.

� Solid compression is the process of first combining many small files into one big file or block and compressing the whole block. This provides more data for the compressor to work with, or in this case, more matches for the compressor to compare.

� Dictionary sizes typically come in 32k, 64k, 128k, 512k, 1024k etc. blocks.

PAGE
4

_961673589.xls
Chart3

		bib		bib		bib		bib

		book1		book1		book1		book1

		book2		book2		book2		book2

		geo		geo		geo		geo

		news		news		news		news

		obj1		obj1		obj1		obj1

		obj2		obj2		obj2		obj2

		paper1		paper1		paper1		paper1

		paper2		paper2		paper2		paper2

		paper3		paper3		paper3		paper3

		paper4		paper4		paper4		paper4

		paper5		paper5		paper5		paper5

		paper6		paper6		paper6		paper6

		pic		pic		pic		pic

		progc		progc		progc		progc

		progl		progl		progl		progl

		progp		progp		progp		progp

		trans		trans		trans		trans

reSource

PKZip

ARJ

RAR

28450

35126

36020

33242

247546

312490

318835

279028

169633

206513

210260

183381

58078

68706

68916

61451

122011

144545

146845

127402

10802

10306

10315

9931

79397

81132

81789

75299

16833

18531

18646

18328

25630

29568

29910

28896

16121

18027

18116

17960

5172

5504

5525

5557

4779

4962

4987

5006

12433

13305

13355

13243

51044

52409

53342

52489

12795

13341

13408

13273

15974

16122

16389

16065

10886

11200

11270

10934

18077

19462

20055

18254

Sheet1

				reSource		PKZip		ARJ		RAR		Raw

		bib		28,450		35,126		36,020		33,242		111,261

		book1		247,546		312,490		318,835		279,028		768,771

		book2		169,633		206,513		210,260		183,381		610,856

		geo		58,078		68,706		68,916		61,451		102,400

		news		122,011		144,545		146,845		127,402		377,109

		obj1		10,802		10,306		10,315		9,931		21,504

		obj2		79,397		81,132		81,789		75,299		246,814

		paper1		16,833		18,531		18,646		18,328		53,161

		paper2		25,630		29,568		29,910		28,896		82,199

		paper3		16,121		18,027		18,116		17,960		46,526

		paper4		5,172		5,504		5,525		5,557		13,286

		paper5		4,779		4,962		4,987		5,006		11,954

		paper6		12,433		13,305		13,355		13,243		38,105

		pic		51,044		52,409		53,342		52,489		513,216

		progc		12,795		13,341		13,408		13,273		39,611

		progl		15,974		16,122		16,389		16,065		71,646

		progp		10,886		11,200		11,270		10,934		49,379

		trans		18,077		19,462		20,055		18,254		93,695

		TOTAL		905,661		1,061,249		1,077,983		969,739		3,251,493

		Time (sec)		46		12		16		88

Chart4

		bib		bib

		book1		book1

		book2		book2

		geo		geo

		news		news

		obj1		obj1

		obj2		obj2

		paper1		paper1

		paper2		paper2

		paper3		paper3

		paper4		paper4

		paper5		paper5

		paper6		paper6

		pic		pic

		progc		progc

		progl		progl

		progp		progp

		trans		trans

Structured

Unstructured

28450

31915

247546

265289

169633

183093

58078

64316

122011

129641

10802

11158

79397

83949

16833

17905

25630

27543

16121

17127

5172

5506

4779

5067

12433

13144

51044

54288

12795

13646

15974

17341

10886

11760

18077

19572

Sheet2

		Structured versus Unstructured

				Structured		Unstructured

		bib		28450		31915

		book1		247546		265289

		book2		169633		183093

		geo		58078		64316

		news		122011		129641

		obj1		10802		11158

		obj2		79397		83949

		paper1		16833		17905

		paper2		25630		27543

		paper3		16121		17127

		paper4		5172		5506

		paper5		4779		5067

		paper6		12433		13144

		pic		51044		54288

		progc		12795		13646

		progl		15974		17341

		progp		10886		11760

		trans		18077		19572

Sheet3

		

_961677493.xls
Chart8

		reSource

		WinRAR

		WinZip

124188

130433

140915

Chart3

		bib		bib		bib		bib

		book1		book1		book1		book1

		book2		book2		book2		book2

		geo		geo		geo		geo

		news		news		news		news

		obj1		obj1		obj1		obj1

		obj2		obj2		obj2		obj2

		paper1		paper1		paper1		paper1

		paper2		paper2		paper2		paper2

		paper3		paper3		paper3		paper3

		paper4		paper4		paper4		paper4

		paper5		paper5		paper5		paper5

		paper6		paper6		paper6		paper6

		pic		pic		pic		pic

		progc		progc		progc		progc

		progl		progl		progl		progl

		progp		progp		progp		progp

		trans		trans		trans		trans

reSource

PKZip

ARJ

RAR

28450

35126

36020

33242

247546

312490

318835

279028

169633

206513

210260

183381

58078

68706

68916

61451

122011

144545

146845

127402

10802

10306

10315

9931

79397

81132

81789

75299

16833

18531

18646

18328

25630

29568

29910

28896

16121

18027

18116

17960

5172

5504

5525

5557

4779

4962

4987

5006

12433

13305

13355

13243

51044

52409

53342

52489

12795

13341

13408

13273

15974

16122

16389

16065

10886

11200

11270

10934

18077

19462

20055

18254

Sheet1

				reSource		PKZip		ARJ		RAR		Raw

		bib		28,450		35,126		36,020		33,242		111,261

		book1		247,546		312,490		318,835		279,028		768,771

		book2		169,633		206,513		210,260		183,381		610,856

		geo		58,078		68,706		68,916		61,451		102,400

		news		122,011		144,545		146,845		127,402		377,109

		obj1		10,802		10,306		10,315		9,931		21,504

		obj2		79,397		81,132		81,789		75,299		246,814

		paper1		16,833		18,531		18,646		18,328		53,161

		paper2		25,630		29,568		29,910		28,896		82,199

		paper3		16,121		18,027		18,116		17,960		46,526

		paper4		5,172		5,504		5,525		5,557		13,286

		paper5		4,779		4,962		4,987		5,006		11,954

		paper6		12,433		13,305		13,355		13,243		38,105

		pic		51,044		52,409		53,342		52,489		513,216

		progc		12,795		13,341		13,408		13,273		39,611

		progl		15,974		16,122		16,389		16,065		71,646

		progp		10,886		11,200		11,270		10,934		49,379

		trans		18,077		19,462		20,055		18,254		93,695

		TOTAL		905,661		1,061,249		1,077,983		969,739		3,251,493

		Time (sec)		46		12		16		88

Chart4

		bib		bib

		book1		book1

		book2		book2

		geo		geo

		news		news

		obj1		obj1

		obj2		obj2

		paper1		paper1

		paper2		paper2

		paper3		paper3

		paper4		paper4

		paper5		paper5

		paper6		paper6

		pic		pic

		progc		progc

		progl		progl

		progp		progp

		trans		trans

Structured

Unstructured

28450

31915

247546

265289

169633

183093

58078

64316

122011

129641

10802

11158

79397

83949

16833

17905

25630

27543

16121

17127

5172

5506

4779

5067

12433

13144

51044

54288

12795

13646

15974

17341

10886

11760

18077

19572

Sheet2

		Structured versus Unstructured

				Structured		Unstructured

		bib		28450		31915

		book1		247546		265289

		book2		169633		183093

		geo		58078		64316

		news		122011		129641

		obj1		10802		11158

		obj2		79397		83949

		paper1		16833		17905

		paper2		25630		27543

		paper3		16121		17127

		paper4		5172		5506

		paper5		4779		5067

		paper6		12433		13144

		pic		51044		54288

		progc		12795		13646

		progl		15974		17341

		progp		10886		11760

		trans		18077		19572

Sheet3

		Inidivual file tests

		Archiver		Description		Parameters

		Raw		Raw is not an archiver. It is the actual size of the file.

		reSource		reSource version 1.0		Block size: 400k

		WinRar		RAR for windows 2.04		Best, multimedia compression, 1024k block

		WinZip		Winzip version 7.0 beta		Maximum compression

		Only the compressed size is taken into account. This is smaller than the final archive size.

		All archivers are configured for maximum compression.

		Delphi32.exe		Delphi 3.0 main executable file		Time (s)

		Raw		2027464

		reSource		821614		30

		WinRAR		768392		70

		WinZip		837918		11

		Win32API.txt		Win32 declarations for visual basic		Time (s)

		Raw		703271

		reSource		124188		11

		WinRAR		130433		18

		WinZip		140915		3

Sheet3

		

		

_961756521.xls
Chart2

		200

		400

		600

		Whole file

129331

124188

123120

119422

Chart3

		bib		bib		bib		bib

		book1		book1		book1		book1

		book2		book2		book2		book2

		geo		geo		geo		geo

		news		news		news		news

		obj1		obj1		obj1		obj1

		obj2		obj2		obj2		obj2

		paper1		paper1		paper1		paper1

		paper2		paper2		paper2		paper2

		paper3		paper3		paper3		paper3

		paper4		paper4		paper4		paper4

		paper5		paper5		paper5		paper5

		paper6		paper6		paper6		paper6

		pic		pic		pic		pic

		progc		progc		progc		progc

		progl		progl		progl		progl

		progp		progp		progp		progp

		trans		trans		trans		trans

reSource

PKZip

ARJ

RAR

28450

35126

36020

33242

247546

312490

318835

279028

169633

206513

210260

183381

58078

68706

68916

61451

122011

144545

146845

127402

10802

10306

10315

9931

79397

81132

81789

75299

16833

18531

18646

18328

25630

29568

29910

28896

16121

18027

18116

17960

5172

5504

5525

5557

4779

4962

4987

5006

12433

13305

13355

13243

51044

52409

53342

52489

12795

13341

13408

13273

15974

16122

16389

16065

10886

11200

11270

10934

18077

19462

20055

18254

Sheet1

				reSource		PKZip		ARJ		RAR		Raw

		bib		28,450		35,126		36,020		33,242		111,261

		book1		247,546		312,490		318,835		279,028		768,771

		book2		169,633		206,513		210,260		183,381		610,856

		geo		58,078		68,706		68,916		61,451		102,400

		news		122,011		144,545		146,845		127,402		377,109

		obj1		10,802		10,306		10,315		9,931		21,504

		obj2		79,397		81,132		81,789		75,299		246,814

		paper1		16,833		18,531		18,646		18,328		53,161

		paper2		25,630		29,568		29,910		28,896		82,199

		paper3		16,121		18,027		18,116		17,960		46,526

		paper4		5,172		5,504		5,525		5,557		13,286

		paper5		4,779		4,962		4,987		5,006		11,954

		paper6		12,433		13,305		13,355		13,243		38,105

		pic		51,044		52,409		53,342		52,489		513,216

		progc		12,795		13,341		13,408		13,273		39,611

		progl		15,974		16,122		16,389		16,065		71,646

		progp		10,886		11,200		11,270		10,934		49,379

		trans		18,077		19,462		20,055		18,254		93,695

		TOTAL		905,661		1,061,249		1,077,983		969,739		3,251,493

		Time (sec)		46		12		16		88

Chart4

		bib		bib

		book1		book1

		book2		book2

		geo		geo

		news		news

		obj1		obj1

		obj2		obj2

		paper1		paper1

		paper2		paper2

		paper3		paper3

		paper4		paper4

		paper5		paper5

		paper6		paper6

		pic		pic

		progc		progc

		progl		progl

		progp		progp

		trans		trans

Structured

Unstructured

28450

31915

247546

265289

169633

183093

58078

64316

122011

129641

10802

11158

79397

83949

16833

17905

25630

27543

16121

17127

5172

5506

4779

5067

12433

13144

51044

54288

12795

13646

15974

17341

10886

11760

18077

19572

Sheet2

		Structured versus Unstructured

				Structured		Unstructured

		bib		28450		31915

		book1		247546		265289

		book2		169633		183093

		geo		58078		64316

		news		122011		129641

		obj1		10802		11158

		obj2		79397		83949

		paper1		16833		17905

		paper2		25630		27543

		paper3		16121		17127

		paper4		5172		5506

		paper5		4779		5067

		paper6		12433		13144

		pic		51044		54288

		progc		12795		13646

		progl		15974		17341

		progp		10886		11760

		trans		18077		19572

Sheet3

		Inidivual file tests

		Archiver		Description		Parameters

		Raw		Raw is not an archiver. It is the actual size of the file.

		reSource		reSource version 1.0		Block size: 400k

		WinRar		RAR for windows 2.04		Best, multimedia compression, 1024k block

		WinZip		Winzip version 7.0 beta		Maximum compression

		Only the compressed size is taken into account. This is smaller than the final archive size.

		All archivers are configured for maximum compression.

		Delphi32.exe		Delphi 3.0 main executable file		Time (s)

		Raw		2027464

		reSource		821614		30

		WinRAR		768392		70

		WinZip		837918		11

		Win32API.txt		Win32 declarations for visual basic		Time (s)

		Raw		703271

		reSource		124188		11

		WinRAR		130433		18

		WinZip		140915		3

Sheet3

		0

		0

		0

Sheet4

		0

		0

		0

		Different block size comparisn

		Block size (kbytes)		Packed size (bytes)		Decrease in size (bytes)

		200		129331

		400		124188		5143

		600		123120		68

		Whole file		119422		3968

		

_961676908.xls
Chart5

		reSource

		WinRAR

		WinZip

821614

768392

837918

Chart3

		bib		bib		bib		bib

		book1		book1		book1		book1

		book2		book2		book2		book2

		geo		geo		geo		geo

		news		news		news		news

		obj1		obj1		obj1		obj1

		obj2		obj2		obj2		obj2

		paper1		paper1		paper1		paper1

		paper2		paper2		paper2		paper2

		paper3		paper3		paper3		paper3

		paper4		paper4		paper4		paper4

		paper5		paper5		paper5		paper5

		paper6		paper6		paper6		paper6

		pic		pic		pic		pic

		progc		progc		progc		progc

		progl		progl		progl		progl

		progp		progp		progp		progp

		trans		trans		trans		trans

reSource

PKZip

ARJ

RAR

28450

35126

36020

33242

247546

312490

318835

279028

169633

206513

210260

183381

58078

68706

68916

61451

122011

144545

146845

127402

10802

10306

10315

9931

79397

81132

81789

75299

16833

18531

18646

18328

25630

29568

29910

28896

16121

18027

18116

17960

5172

5504

5525

5557

4779

4962

4987

5006

12433

13305

13355

13243

51044

52409

53342

52489

12795

13341

13408

13273

15974

16122

16389

16065

10886

11200

11270

10934

18077

19462

20055

18254

Sheet1

				reSource		PKZip		ARJ		RAR		Raw

		bib		28,450		35,126		36,020		33,242		111,261

		book1		247,546		312,490		318,835		279,028		768,771

		book2		169,633		206,513		210,260		183,381		610,856

		geo		58,078		68,706		68,916		61,451		102,400

		news		122,011		144,545		146,845		127,402		377,109

		obj1		10,802		10,306		10,315		9,931		21,504

		obj2		79,397		81,132		81,789		75,299		246,814

		paper1		16,833		18,531		18,646		18,328		53,161

		paper2		25,630		29,568		29,910		28,896		82,199

		paper3		16,121		18,027		18,116		17,960		46,526

		paper4		5,172		5,504		5,525		5,557		13,286

		paper5		4,779		4,962		4,987		5,006		11,954

		paper6		12,433		13,305		13,355		13,243		38,105

		pic		51,044		52,409		53,342		52,489		513,216

		progc		12,795		13,341		13,408		13,273		39,611

		progl		15,974		16,122		16,389		16,065		71,646

		progp		10,886		11,200		11,270		10,934		49,379

		trans		18,077		19,462		20,055		18,254		93,695

		TOTAL		905,661		1,061,249		1,077,983		969,739		3,251,493

		Time (sec)		46		12		16		88

Chart4

		bib		bib

		book1		book1

		book2		book2

		geo		geo

		news		news

		obj1		obj1

		obj2		obj2

		paper1		paper1

		paper2		paper2

		paper3		paper3

		paper4		paper4

		paper5		paper5

		paper6		paper6

		pic		pic

		progc		progc

		progl		progl

		progp		progp

		trans		trans

Structured

Unstructured

28450

31915

247546

265289

169633

183093

58078

64316

122011

129641

10802

11158

79397

83949

16833

17905

25630

27543

16121

17127

5172

5506

4779

5067

12433

13144

51044

54288

12795

13646

15974

17341

10886

11760

18077

19572

Sheet2

		Structured versus Unstructured

				Structured		Unstructured

		bib		28450		31915

		book1		247546		265289

		book2		169633		183093

		geo		58078		64316

		news		122011		129641

		obj1		10802		11158

		obj2		79397		83949

		paper1		16833		17905

		paper2		25630		27543

		paper3		16121		17127

		paper4		5172		5506

		paper5		4779		5067

		paper6		12433		13144

		pic		51044		54288

		progc		12795		13646

		progl		15974		17341

		progp		10886		11760

		trans		18077		19572

Sheet3

		Inidivual file tests

		Archiver		Description		Parameters

		Raw		Raw is not an archiver. It is the actual size of the file.

		reSource		reSource version 1.0		Block size: 400k

		WinRar		RAR for windows 2.04		Best, multimedia compression, 1024k block

		WinZip		Winzip version 7.0 beta		Maximum compression

		Only the compressed size is taken into account. This is smaller than the final archive size.

		All archivers are configured for maximum compression.

		Delphi32.exe		Delphi 3.0 main executable file		Time (s)

		Raw		2027464

		reSource		821614		30

		WinRAR		768392		70

		WinZip		837918		11

		Win32API.txt		Win32 declarations for visual basic		Time (s)

		Raw		703271

		reSource		124188		11

		WinRAR		130433		18

		WinZip		140915		3

Sheet3

		

		

_961671580.xls
Chart3

		bib		bib		bib		bib

		book1		book1		book1		book1

		book2		book2		book2		book2

		geo		geo		geo		geo

		news		news		news		news

		obj1		obj1		obj1		obj1

		obj2		obj2		obj2		obj2

		paper1		paper1		paper1		paper1

		paper2		paper2		paper2		paper2

		paper3		paper3		paper3		paper3

		paper4		paper4		paper4		paper4

		paper5		paper5		paper5		paper5

		paper6		paper6		paper6		paper6

		pic		pic		pic		pic

		progc		progc		progc		progc

		progl		progl		progl		progl

		progp		progp		progp		progp

		trans		trans		trans		trans

reSource

PKZip

ARJ

RAR

28450

35126

36020

33242

247546

312490

318835

279028

169633

206513

210260

183381

58078

68706

68916

61451

122011

144545

146845

127402

10802

10306

10315

9931

79397

81132

81789

75299

16833

18531

18646

18328

25630

29568

29910

28896

16121

18027

18116

17960

5172

5504

5525

5557

4779

4962

4987

5006

12433

13305

13355

13243

51044

52409

53342

52489

12795

13341

13408

13273

15974

16122

16389

16065

10886

11200

11270

10934

18077

19462

20055

18254

Sheet1

				reSource		PKZip		ARJ		RAR		Raw

		bib		28,450		35,126		36,020		33,242		111,261

		book1		247,546		312,490		318,835		279,028		768,771

		book2		169,633		206,513		210,260		183,381		610,856

		geo		58,078		68,706		68,916		61,451		102,400

		news		122,011		144,545		146,845		127,402		377,109

		obj1		10,802		10,306		10,315		9,931		21,504

		obj2		79,397		81,132		81,789		75,299		246,814

		paper1		16,833		18,531		18,646		18,328		53,161

		paper2		25,630		29,568		29,910		28,896		82,199

		paper3		16,121		18,027		18,116		17,960		46,526

		paper4		5,172		5,504		5,525		5,557		13,286

		paper5		4,779		4,962		4,987		5,006		11,954

		paper6		12,433		13,305		13,355		13,243		38,105

		pic		51,044		52,409		53,342		52,489		513,216

		progc		12,795		13,341		13,408		13,273		39,611

		progl		15,974		16,122		16,389		16,065		71,646

		progp		10,886		11,200		11,270		10,934		49,379

		trans		18,077		19,462		20,055		18,254		93,695

		TOTAL		905,661		1,061,249		1,077,983		969,739		3,251,493

		Time (sec)		46		12		16		88

Sheet2

		

Sheet3

		

