TExcelReport

Component for making reports in Excel from a Delphi application. Uses Excel as the Report Designer, allowing you to use all of it’s power, from conditional formatting to pivot tables, including graphs, formulas, multiple sheets, multiple master-detail relationships and whatever you can do from Excel.

Introduction

This component allows you to generate reports in Excel with data read from memory or from a database. It’s been designed to give you all the power of a Excel spreadsheet, so some speed concessions have been made. If you want the fastest transfer possible there are better components around, but if you (or your users…) don’t mind waiting some seconds for a full and nice spreadsheet, this might be the component for you. Anyway, this doesn’t mean that I haven’t tried to make it as efficient as I could, but that everywhere I had to decide between loosing a little power or loosing a little speed, I’ve chosen the second option.

At the moment I wrote the first version (quite a long ago…), I could find no other component that made the same, even when now I think you can find some alternatives. I didn’t want to use QuickReports, because people normally didn’t want just to print the reports, but to modify them, and mail them to their bosses. So I needed an Excel sheet, and the report builders were never good at exporting their data.

The mechanics are simple. You create a ‘Template’ in Excel where you define the layout, and put special codes where the cell should be filled with data. Then you create a Datamodule in Delphi and put the datasets that are going to access the database, along with a TExcelReport component. Then you configure it, and from somewhere in your app call it’s “run” method. And that’s it. If you later want to change the template, you can do it without recompiling the app.

I’ve included a little Demo app, with templates and the final result, that should help you understand the way it works.

It is written in Delphi 5, but I think should not be difficult to migrate to D6. If you feel like doing this, please mail me. (A note: I use Excel97 unit, so it is compatible for Excel 97 and up, but you can change this for Excel2000 if you won’t be using 97)

A last thing. I did want to keep the program as simple as possible, so I tried not to duplicate anything that Delphi can make easily. For example, I give no ways to sort the report, because sorting it is as easy as sorting the dataset. (And if you use SQL like me, you have infinite ways to combine, ascending, descending, etc). Another thing you can’t do is mix 2 fields on the template, but you can define a new field in the dataset that mixes them.

How to use

1- Creating the Excel Template

To generate reports, the first thing you need is a template. Create a document like this:

[image: image1.png]
(you can see it complete in the demo file Invoices.xls)

Here you put:

1) All the titles, images and formatting of the report. You can include graphs, filters, conditional format, images or anything you can think of. You can also fill as many sheets as you want, all of them will be filled with the data you request.

2) The fields to be filled from the database. Here you have to put a text on the form ##<dataset>##<field>
For example if you are going to create a dataset called “Cust” with a field “Country” you will write ##Cust##Country in the cell where you want the value

3) You can define some extra variables in the datamodule that are not tied to the database, by writing
 #.<Variable>
. For example, if you had defined a published variant property called “Current_Date” you could include its value by writing #.Current_Date in a cell

4) You can also include variant arrays here, just write
#.<Variable>#.<index1>#.<index2>#. …… #.<indexN>
For example, to write the value of the published variant property Price[1,3] into a cell, you could write something like “#.Price#.1#.3

Note that you can use the replaced field values inside a formula. For example, if you have in the cells:

 A1: ##Client##FirstName

 A2: ##Client##LastName

 A3: (formula) =A1 &” “ & A2

 (value) ##Client##FirstName ##Client##LastName

After the report is run, you will get:

 A1: John

 A2: Smith

 A3: (formula) =A1 &” “ & A2

 (Value) John Smith

But you can’t replace more than one value in the same cell. For example, if you have in A1: ##Client##FirstName ##Client##LastName, this will not be replaced correctly. To solve this case, you need to create a new calculated field in the dataset that contains the 2 others concatenated, and use this field in the template.

Another thing to take in count, date and time fields. They will be passed as a number to Excel (there is no variant to represent a date/time). So you must format the cell including the date (for example ##Client##SaleDate) with a date format. Note that when programming the component I’ve tried to pass Field.value to this cells (it passes a string), and it works without needing to format, but has problems with international representations.

Now, It’s time to add the ranges

You have to define one named range for each dataset you want to use, with the name __<DataSet>__ For example, if you want to populate the dataset “Items” in the range B19:E19 you should:

 Go to Excel and select Insert->Name->Define from the menu.

 Create a “__Items__” range for B19:E19

Now you can select it from the combo box.

[image: image2.png]
This range will be copied once for each entry of the Dataset, with the values replaced. It is possible to create as many ranges as you want inside others, to reflect master-detail relationships. (For example, you may have the __Cust__ range covering all used range of the sheet, and then a __Orders__ range inside and a __Items__ inside the __Orders__

When the report is run, the __Cust__ range will be copied as many times as records are in the Cust Dataset, and for each copy, the range __Orders__ will be copied as many times as records are in the Order dataset, for the corresponding value of the __Cust__ Dataset. Same way, the __Items__ range will be copied in each __Orders__ copy, as many time as entries are in the Items dataset, for the corresponding Orders and Cust entry.

Range notes

Note 1: Don’t intersect ranges, or you are going to get strange results. Each range should be either completely inside or completely outside the others.

Note 2: The ranges affect the entire row, that will be copied. Never put one range to the right or left of the other.

Note 3: It is possible to define some __XX__ ranges that don’t correspond to any dataset. This ranges are not going to be copied, but values will be substituted

Note 4: Always define some Range that includes all the others, so the component knows where to make the replacements. TExcelReport always will look for the biggest range to begin replacing values. I usually call this range __MAIN__

Blank Rows

A problem that happens with Excel and that I have not been able to completely solve is related with the way you insert the cells.

Imagine you define the following Template:

[image: image3.png]
And let be the __Items__ range = A2:B2

When the report is run it will insert n-1 cells between rows 2 and 3, where n is the number of records in the Items dataset. But the formula in B3 (“=Sum(B2:B2)”) will not change to reflect the inserted rows. You will get something like this:

[image: image4.png]
As a rule of thumb, to solve this problem you should always leave a blank line below the ranges to let the formulas adapt. You should define a template like:

[image: image5.png]
With the __Items__ range defined as A2:B2. Now, when the rows are inserted between rows 2 and 3, the formula now in B4 will be updated right.

You can leave the template this way (by making the row 3 very small), or if you want to get rid of the blank line, you could use the “...delete row...”, as in the image.

[image: image6.png]
All the rows that have in the “A” column the text “…delete row…” (without any spaces an all in lowercase) will be deleted after the report is run. An use of this is if you want to create a Pivot Table or a Graph , and you can see it in the PivotDemo.xls template.

2- Installing the Component

This should be very straightforward, but just in case…

In Delphi, go to File->Open, select “Packages” in the filetype, and select ExcelRptPkgD5. Then click on Install.

Of course, if you want just add the ExcelReport.pas to an existing package.

3- Creating the Delphi Datamodule

Now let’s go with the other part, creating the app that will generate the reports. First, you define a Datamodule (not necessary, it could be a Form, as in the demo) where all the data to the reports will be. In my experience, it’s better to have all the queries for the reports different from the ones for the rest of the app.

Then you have to add the datasets, one for each in the template, and with the same names. Case is not important. After that, define all the calculated fields.

Then, it’s time to define the properties (for the cells including “#.<Variable>”) They should be published and return a variant. Of course that variant may be a multidimensional array of variant. (for the cells including “#Variable#.index#.index …. #.index)

If you want to create a multisheet report, you can assign one dataset to the PagesDataSet property, and the active page will be copied (and filled) for each record of the dataset. Warning: Don’t use a large dataset to populate the sheets, or it will take forever to fill (and it will be very difficult for the user to navigate between all the sheets!) I would advice that the dataset should have no much more than 10 records.

The transactions should be Snapshot or equivalent if possible, because this will allow the data to remain the same during all the process.

Now drop a TExcelReport in the module. Fill in the properties, and that’s all. Whenever you want to generate the report, call the “run” method of the component.

Properties

property Template: TFileName

This is the excel file that’s going to be used as the template to generate the report.

property DataModule: TComponent

This is the datamodule where all the datasets for the report are located, and the published properties defined. Normally it will be the same datamodule that has the TExcelReport component, so it’s assigned automatically and you don’t have to care for it.

Really, the datamodule doesn’t need to be a TDatamodule descendant, but any TComponent, as long as it holds the necessary DataSets, as you can see in the demo. But for any medium-complex proyect, it will probably be one TDatamodule dedicated exclusive to the reports.

property BlockSize: integer default 100

By default, this component sends the data to the Excel Worksheet by 100 rows at a time, using a variant array. If you want to fine-tune it, you can play around with different values for the BlockSize property. A bigger BlockSize will mean less transactions with Excel, but with more data each.

Personally, I never change the default.

property FileName: TFileName

FileName is the name of the file to save when the AutoClose property is true. When AutoClose is false it has no meaning.

property AutoClose: Boolean

When true, the Report is saved with the name specified by the Filename Property, and is never shown. This is useful for creating automatic non interactive reports for mailing, etc.

When false, the report stays open for the user to view.

Property DisplayAlerts: boolean default true;

This sets the property DisplayAlerts on the Excel application. You can find more info in the Excel help pages.

In general, you put DisplayAlerts to false when creating a non interactive report (Autoclose true), or leave it true other way. Don’t leave it true if there is no an interactive user seeing the report, because Excel could show a dialog box and nobody would be able to close it.

property CalcRecordCount: TCalcRecordCount default cr_Count;

If you have spend some time with different databases, you probably know about recordcount and all the problems it brings. Some databases give the right number of records, others will give the unfiltered count (be careful with these, they may work right until someone filters the dataset), others will give always –1, and so on.

The conclusion to it would be “don’t use recordcount at all”. But I really needed to. Passing data to Excel is by far the most time consuming task, much more than counting the records. So the code

(a) db.First; Rc:=0;

while not db.eof do inc (Rc);

 ExcelApp.Insert(Rc) ;

is much faster than

 (b) db.First;

 while not db.eof do ExcelApp.Insert

Then, depending of the database and the dataset you use, there are 4 ways to count the records: The first is using the OnRecordCount event (see below), and the others are setting CalcRecordCount to:

cr_None: Use it if you are sure the recordcount is always right, with the dataset filtered or not. This is the case if you are using a TClientDataSet

cr_Count: The default. It will make a db.Last before using RecordCount, to make sure all records have been fetched. This works with some BDE datasets, or InterbaseExpress.

cr_SlowCount: This will assume RecordCount is always wrong and count the records one by one using a procedure like the one in (a). Whenever you are not sure, or you are getting strange results use this.

property PagesDataSet: TDataSet

If you assign this property, the active page on the template will be duplicated once for each entry of the DataSet, and filled with the data corresponding to this entry. The name of the page will be given by the PagesDataSetField property.

Property PagesDataField: string;

This is the name of the field that will be used to name the pages created. Use this together with PagesDataSet to create a report that spawns multiple sheets.

Events

property OnRecordCount: TRecordCountEvent

Use this event to calc the number of records and tell the TExcelReport component by assigning the RecordCount variable, if you can’t/don’t want to use the CalcRecordCount property. The body for the event may be something like this:

procedure TFTestReport.ExcelReport1RecordCount(Sender: TObject;

 const DataSet: TDataSet; var RecordCount: Integer);

begin

 QCount.Open;

 try

 RecordCount:=QCountTotal.Value;

 finally

 QCount.Close;

 end; //finally

end;

and the SQL property of QCount may be something like this:

 Select count(*) as Total from table

Be sure that QCount and Dataset use the same readonly, snapshot transaction, or someone might delete a record from table after calling QCount, but before the data is passed to Excel.

Note: Assigning this event leaves the value of CalcRecordCount without meaning.

Methods

procedure Run

This is the only procedure you have to care about. Call it when you need to generate the report, after having set all of the properties.

Tips and Troubleshooting

Here are some tips taken from the mistakes I make more often. Feel free to add your own!!

· Properties referenced in the template must be of variant type and published.

· Do not create data ranges that intersect, like __d1__=a1:a5 and __d2__=a3:a7. You will be asking for trouble. See Range notes
· Be careful when creating formula that refers to inserted rows, always leave a blank row so the formula is updated. See Blank rows.

· If you see ‘garbage’ data at the end of the report, or if not all the data is present, it may be a problem of the recordcount property. See CalcRecordCount
· Beware with the dates! They will be passed as a number to Excel, so the cells in the template must be formatted with a date/time format.

· For reports in general, be sure to use a ‘snapshot’ or similar transaction mode, or the data may be changed between the first record that goes to Excel and the last.

· When running the demo, you might end up with some files *.mb. These are temporary files from the BDE, not from the component!!! (The component doesn’t create any temporary file)

License

I just don’t care too much what you use this code for, but just in case I decided to use the Mozilla License because I think this people has studied the legal matter much more than me. The only thing I CARE about is to let you know that I give you no WARRANTY, and you should use this at your own risk.
The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
ANY KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

Contact

For any comments, suggestions, etc, please write to agallero@netscape .net , I’ll be glad to hear from you.

