

Web Application Builder for Delphi

The Fastest & Easiest Tool to Build Interactive Web Applications

Version 1.24	September 20, 1997

��
Table of Contents

� TOC \o "1-3" �1	Features	� PAGEREF _Toc396741436 \h ��3�

2	Hardware / Software Requirements	� PAGEREF _Toc396741437 \h ��3�

3	Introduction	� PAGEREF _Toc396741438 \h ��3�

4	Installation	� PAGEREF _Toc396741439 \h ��4�

4.1	Delphi 3.0 Component Installation	� PAGEREF _Toc396741440 \h ��4�

4.2	Delphi 2.0 and C++ Builder Component Installation	� PAGEREF _Toc396741441 \h ��4�

4.3	Web Server related Installation	� PAGEREF _Toc396741442 \h ��4�

5	Running the Demos	� PAGEREF _Toc396741443 \h ��4�

6	Using the Local Browser	� PAGEREF _Toc396741444 \h ��4�

7	Using WABD's Visual Designers	� PAGEREF _Toc396741445 \h ��5�

7.1	WABD Form Editor	� PAGEREF _Toc396741446 \h ��5�

7.2	WABD Form Section Editor	� PAGEREF _Toc396741447 \h ��6�

7.3	WABD Hot Spot Editor	� PAGEREF _Toc396741448 \h ��7�

8	How to Build a Web Application in Under Five Minutes	� PAGEREF _Toc396741449 \h ��8�

9	Deployment on the Web Server	� PAGEREF _Toc396741450 \h ��9�

10	WWW Server - WABD's very own Web Server!	� PAGEREF _Toc396741451 \h ��9�

11	Running the PoolDemo	� PAGEREF _Toc396741452 \h ��9�

12	Purchasing Information	� PAGEREF _Toc396741453 \h ��10�

13	Additional Information	� PAGEREF _Toc396741454 \h ��10�

14	Acknowledgements	� PAGEREF _Toc396741455 \h ��10�

15	WABD Objects	� PAGEREF _Toc396741456 \h ��10�

15.1	TWABD_SessionMgr	� PAGEREF _Toc396741457 \h ��10�

15.2	TWABD_Session	� PAGEREF _Toc396741458 \h ��11�

15.3	TWABD_Object	� PAGEREF _Toc396741459 \h ��11�

15.4	TWABD_Parent	� PAGEREF _Toc396741460 \h ��12�

15.5	TWABD_Form	� PAGEREF _Toc396741461 \h ��12�

15.6	TWABD_FormSection	� PAGEREF _Toc396741462 \h ��13�

15.7	TWABD_FormSection_Base	� PAGEREF _Toc396741463 \h ��13�

15.8	TWABD_Header	� PAGEREF _Toc396741464 \h ��13�

15.9	TWABD_Raw	� PAGEREF _Toc396741465 \h ��13�

15.10	TWABD_Table	� PAGEREF _Toc396741466 \h ��13�

15.11	TWABD_DataTable	� PAGEREF _Toc396741467 \h ��14�

15.12	TWABD_Hidden	� PAGEREF _Toc396741468 \h ��15�

15.13	TWABD_BlankLines	� PAGEREF _Toc396741469 \h ��15�

15.14	TWABD_SectionObject	� PAGEREF _Toc396741470 \h ��15�

15.15	TWABD_Anchor	� PAGEREF _Toc396741471 \h ��15�

15.16	TWABD_Image	� PAGEREF _Toc396741472 \h ��16�

15.17	TWABD_LiveImage	� PAGEREF _Toc396741473 \h ��17�

15.18	TWABD_HotSpot	� PAGEREF _Toc396741474 \h ��17�

15.19	TWABD_Label	� PAGEREF _Toc396741475 \h ��17�

15.20	TWABD_Memo	� PAGEREF _Toc396741476 \h ��17�

15.21	TWABD_Button	� PAGEREF _Toc396741477 \h ��17�

15.22	TWABD_Edit	� PAGEREF _Toc396741478 \h ��18�

15.23	TWABD_ComboBox	� PAGEREF _Toc396741479 \h ��18�

15.24	TWABD_RadioButton	� PAGEREF _Toc396741480 \h ��18�

15.25	TWABD_ListBox	� PAGEREF _Toc396741481 \h ��18�

15.26	TWABD_CheckBox	� PAGEREF _Toc396741482 \h ��19�

16	About the Trace Unit	� PAGEREF _Toc396741483 \h ��19�

17	General Notes	� PAGEREF _Toc396741484 \h ��19�

18	Multi-threading Notes	� PAGEREF _Toc396741485 \h ��19�

19	Version History	� PAGEREF _Toc396741486 \h ��20�

�

1	�
Features

NEW: WABD now includes a Web Server (with full source code)!

NEW: Delphi 3.0 Support

NEW: A DataTable component to easily edit TTable's and TQuery's

NEW: A LiveImage component - create graphics on-the-fly for your users!

NEW: HTML component's - create your own components and install them in WABD!

NEW: Improved thread safety - all WABD objects are placed on TDataModules and not TForms.

Easily create interactive web sites

Leverage Delphi’s ease-of-use

Use WABD’s Form Editor to create your user interface

Create standard Delphi code snippets (e.g., events such as OnCreate, OnShow, OnClick, etc.)

Leverage Delphi’s power

Full access to Delphi’s database engine (BDE) for client/server based web sites

Using “Local Mode” you can create and easily test your application in the Delphi IDE – no server is necessary

Automatically converts your Delphi Forms to HTML, and parses the user’s response back into the appropriate Delphi component properties, and executes the appropriate handlers

Full access to the standard user interface components – use Labels, Edit Boxes, Buttons, ListBoxes, Memos, ComboBoxes, CheckBoxes

New HTML components such as HTML Anchor, Header, Image, LiveImage, Hotspots, Table, DataTable, HiddenText, etc.

HTML Image component provides easy hotspot creation and handling

ISAPI interface is more efficient than CGI – no need to reload an .exe or reconnect to a database

Persistence is handled automatically by WABD – keep track of user preferences and session variables

Broken or incomplete sessions are handled by automatic garbage collection or an OnTimeout event

Supports multiple simultaneous users

Server performs all processing, clients are lightweight - no need for ActiveX, VBScript, or Java on the client.

Supports creation of dynamic controls to change your user interface on-the-fly

Fully functional – not crippled in any way

The unregistered version prepends “Unregistered” messages to all HTML output and does not include the source code for WABD_Objects.pas

2	Hardware / Software Requirements

Delphi 3.0, Delphi 2.0, or C++ Builder

Windows 95, or Windows NT 4.0

ISAPI compatible Web Server (e.g., MS Personal Web Server or Internet Information Server)

TCP/IP Network setup (e.g., Internet Connection, Dial-up PPP, etc) – Note that “local” mode does not require any network connection

Client’s browser requires forms and tables capability (e.g., Internet Explorer or Netscape Navigator)

3	Introduction

The Web Application Builder for Delphi (WABD) is the fastest, easiest tool to develop interactive web sites on the Internet or on a company intranet. A programmer familiar with Delphi can produce a simple interactive web application in under five minutes using the tools and components provided by WABD.

This tool leverages the full power and ease of use of Delphi. Forms and code “snippets” are created using the Delphi Form Designer and Editor. The programmer is allowed full access to the Borland Database Engine (BDE) to create powerful client/server web applications.

4	Installation

The install program copied all of the source files into a location that you chose during setup. Go to that directory when prompted to install components in the instructions below. If you are using Delphi 3.0, you must follow the instructions in sections 4.1 and 4.3. If you are using Delphi 2.0 or C++ Builder, you must follow the instructions in sections 4.2 and 4.3.

4.1	Delphi 3.0 Component Installation

In Delphi, select Component, Install Packages, and select the User components and hit "Edit". Next add the following files: WABD_Objects.PAS, WABD_PropertyEditors.PAS, and WABD_EditTable.PAS. Then hit "Compile". You will now have a WABD page on your component palette.

4.2	Delphi 2.0 and C++ Builder Component Installation

Select Component, Install, and then add the following files: WABD_Objects.PAS, WABD_PropertyEditors.PAS, and WABD_EditTable.PAS. Hit "OK" and the component library will be rebuilt. You will now have a WABD page on your component palette.

Note that Delphi 2.0 and C++ Builder users should delete any .DOF or .DSK files that get installed by WABD. These files only work with Delphi 3.0.

4.3	Web Server related Installation

Depending on the Web Server you are using, you need to copy the graphic files to your Local root path. With Personal Webserver, I copy them to C:\WebShare\WWWroot. Copy all of the images (*.jpg and *.bmp) to your Local root path for your web server.

Copy the file WABDSafeBitmap.DLL file to your Windows\System directory if it is not already there.

Now you can open and run the demos.

5	Running the Demos

Open the project WABD_Demo.dpr in the WABD directory. Run the program to test out the capabilities.

You can then open the WABD_Demo_DLL.dpr project. Compile the project, and then copy the .DLL file to your Web Server's "scripts" directory. Using Personal Web Server the directory is C:\WWWroot\scripts. If you are on a local area network connected to the Internet, you can just open up your browser, and connect to your DLL. On my machine I would use the following path:

http://www.ziegler.com/scripts/WABD_DEMO_DLL.DLL

If you are testing your application on a dial-up machine (like a home computer), first connect to your Internet Service Provider, determine what your current IP address is (from the Start/Run menu type WINIPCFG and hit enter). Use that address like in the example below (note the IP address will be different):

http://295.132.19.102/scripts/WABD_DEMO_DLL.DLL

6	Using the Local Browser

The Local Browser acts just like a Web browser, click on buttons and links as you normally would. There are a few menu options you can use.

File, Open – You can use this to open an HTML file. This will terminate your current logon session.

File, Preview - Load the current page into your default browser.

File, Refresh – This will begin a new logon session. It is exactly what would happen if a user pressed “Refresh” from a Web browser.

View, View HTML Source – This will display the HTML text for the current page.

Options, Run Multithreaded – This is checked by default. This is the best way to test your application, under the same multithreaded conditions as under a web server. If you find it difficult to debug your application in this manner, you may turn it off.

7	Using WABD's Visual Designers

For the most part, you can use Delphi's Object Inspector to manipulate all of the WABD objects. However, WABD provides some visual tools in addition to the Object Inspector to more easily create web applications. This section explains how to use WABD's custom visual tools.

7.1	WABD Form Editor

To use the WABD Form Section Editor, simply drop a TWABDForm on a TDataModule and double-click on the component. You may also right-click the component, and then select the "Design WABD Form…" menu. This will bring up the WABD Form Section Editor as pictured below.

�

Figure � SEQ Figure * ARABIC �1� - WABD Form Editor - Left Panel

The left-most buttons on the toolbar allow you to add top-level objects to the WABD Form. The top level objects on the toolbar are: Form Section, HTML Header, HTML Table, HTML Data Table, and HTML Hidden Text. You may also add top-level objects by selecting them in the combo box (with the TWABD_FormSection selected in the picture above), and then pressing "Add". The combo box contains a few controls not found on the toolbar: Raw Text, Blank Lines, and any user-defined HTML components (e.g., TWABD_EditTable).

You may delete top-level objects with the "Delete" button, and move them using the arrow buttons. The order is the same order as the objects will appear in the HTML Form (from top to bottom).

You may press the "Preview Browser" button to view the current form in your default browser.

If you select a WABD_FormSection object in the list of Top Level Objects, the panel on the right becomes visible as shown in the following figure.

�

Figure � SEQ Figure * ARABIC �2� - WABD Form Editor - Right Panel

The right panel displays all of the HTML controls in the selected FormSection. You may now use the toolbar on the right to add HTML controls to the form section. When you select a control in the Form Section Children list, it is automatically selected in Delphi's Object Inspector. The easiest way to edit HTML forms is to edit them visually, so press the "Edit Form Section" button and refer to the figure in the following section.

7.2	WABD Form Section Editor

The Form Section Editor is activated from the WABD Form Editor (by pressing the "Edit Form Section" button). When the button is pressed, the following editor is displayed:

�

Figure � SEQ Figure * ARABIC �3� - WABD Form Section Editor

The Form Section Editor allows you to visually design an HTML form, just like using Delphi's Form Editor. Simply select a control on the toolbar, and drop it on the form. You may then change the controls properties in the Object Inspector. If the object has an event associated with it (like a Button's OnClick event, or an Image's OnMouseDown event), double click on the object to create an event handler.

You may toggle the grid on and off using the grid button. You may also preview this form section in your browser by pressing the "Preview HTML" button.

7.3	WABD Hot Spot Editor

WABD also provides a Hot Spot Editor for WABDImages. Select a WABDImage in the Form Section Editor, and double click the "Hot Spots" property in the Object Inspector. The Hot Spot Editor below is displayed:

�

Figure � SEQ Figure * ARABIC �4� - WABD Hot Spot Editor

You may add and delete hot spots using the "Add" and "Delete" buttons. You may click and drag the hot spots visually over the image, and also resize them. You can also place the hot spots precisely using the Object Inspector and specifying the X,Y coordinates for the hot spot.

8	How to Build a Web Application in Under Five Minutes

This tutorial will teach you how to build a fully functional, interactive Web Application in under five minutes! This tutorial assumes you have already installed the WABD components. To build your application, perform the following Steps:

In Delphi, select the menu File, New Application.

Select the menu View, Project Manager.

Click on Unit1/Form1, and then press the Remove Button. Answer "No" to the Save Changes box.

Select the menu File, Save. Save your project in your WABD directory (C:\WABD) as "Hello.dpr".

Select the menu File, New Data Module (it will be named DataModule1).

Drop a WABD_SessionMgr component onto DataModule1 (it will be in the WABD component palette).

Select the menu File, New Data Module (it will be named DataModule2).

Drop a WABD_Session component onto DataModule2. Then drop a WABD_Form component onto DataModule2.

Set WABD_Session1's MainForm property to WABD_Form1.

Double click on the WABD_Form1 component. The WABD Form Designer should appear.

Click the "Add" button. This will add a WABD_FormSection.

Click the "Edit Form Section" button in the right panel. The WABD Form Section Editor should appear.

Click on the "Letter A" button, then click on the form. This should place a WABD_Label on the form.

Click on the "OK Button" button, then click on the form. This should place a WABD_Button on the form. Move it to where you want it by dragging it on the form.

Double click the button (WABD_Button1). This should open up its OnClick event handler.

Enter the following code for its event handler: WABD_Label1.Caption := 'Hello World!';

Select the menu File, Save All. Save the units with their default names (Unit2.pas and Unit1.pas).

Click on DataModule1. Then select the menu File, Use Unit. Double click on "Unit2".

Double click on WABD_SessionMgr1. This should bring up its OnCreateSession event handler.

Enter the following Code for its event handler: with TDataModule2.Create(nil) do NewSession := WABD_Session1;

For its OnDestroySession handler, enter: Session.Owner.Free; (destroying its DataModule will automatically destroy the session).

Add the following lines to the bottom of Unit1.pas:

		initialization

		 DataModule1 := TDataModule1.Create(nil);

		end.

Select the menu File, View Project Manager. Press the "Add" button. Select "LocalBrowser.Pas".

Select the menu Run, Run. Congratulations, you have completed your interactive Web Application (in local Mode). Press the button to confirm it works, and then close the LocalBrowser. Then select the menu File, Close All.

	We will now build a real ISAPI DLL.

Select the menu File, New. Then select "DLL". A file with "library Project1" should appear.

Add the following units to the "Uses" clause: WABD_ISAPI, Unit1.

Save the file in your WABD directory as "Project1.pas".

Select the menu Project, Compile. Congratulations, you have just built an ISAPI DLL! You can view your ISAPI DLL with your favorite browser. Copy the DLL to your Web Server's scripts directory, and then point to it with your browser (e.g., http://www.myserver.com/scripts/project1.dll). You could also use "WWW Server" which now comes with WABD. Refer to the next two sections in the documentation for viewing your ISAPI DLL.

That's it! You have created an interactive Web Application in under five minutes!

9	Deployment on the Web Server

You just learned from the tutorial above how to deploy a simple web application on your web server. For more complicated projects there are a few more details to remember.

You must remember to copy over all necessary graphic files and to place them in the correct directory. Remember that the graphic files should not go in the script directory (at least not using Personal Web Server), but rather somewhere beneath C:\WebShare\WWWroot. Also make sure that your project was compiled to correctly reference the graphic files.

If you are testing your project and recompiling the DLL, make sure to shut down the Web server before copying over the new DLL. You may then restart the Web Server and it will use the new DLL. Also remember to restart the HTTP service if you stopped and restarted your Web server.

10	WWW Server - WABD's very own Web Server!

WABD now comes with its own Web Server! This basic web server can serve up HTML pages, graphics (JPEG, GIF, BMP), and ISAPI DLL's, which makes it perfect for hosting WABD applications (which are ISAPI DLL's).

Before openning the WWWServer.dpr project file, be sure to install the TrayIcon.pas component in its directory. Then all you have to do is open the project and compile it. It will create an executable called "WWWServer.exe". Running the program will turn your computer into a web server! Note that the current version can only serve up pages, graphics, and DLL's that are located in the same directory as the .EXE. Copy any .HTM files, .JPG files, .DLL files (ISAPI DLL's only) into the same directory to view those with the Web Server.

When first run, the web server appears as an icon in your icon tray. Right click on the WWW icon, and select WWW Server to view its form.

This .EXE can be used to debug your ISAPI DLL's. Inside your DLL project, select Run, Parameters, and select WWWServer.exe as the host application. You can then easily debug your DLL's.

Note that if you use Dial-Up networking to connect to the Internet, you must connect first before running WWWServer.exe. After connecting and running the Web Server, it will display its IP address (in #.#.#.# format) if you open up its form. You can use that address to connect to your Web Server with your browser.

Note that this browser has only been tested under Delphi 3.0 as of WABD version 1.21.

11	Running the PoolDemo

WABD comes with a demo program that can be used to run your office football pool over the Internet. To use the demo, you must first compile and run the PoolAdmin project, and create your database files. It will ask you for a directory to create the files, I usually place them in a directory called "Data" below the PoolDemo directory. You may then run the WABD_PoolDemo and WABD_PoolDemo_DLL demos (local and ISAPI modes).

Note that the administrator user name and passwords are "Admin" and "Admin". Log in as Admin to view and edit all of the tables (even remotely over the internet). Note that you can also use the PoolAdmin project to view and edit the tables using standard Delphi controls. Then log in as a new user to test out the pool demo.

Note in WABD v1.21 currently only the "Make Your Picks" button functions from the main user screen.

This pool demo program will be updated, and should be complete around Week 1 of the NFL Football season.

12	Purchasing Information

This software may be purchased from ZAC Catalogs. You may contact them by phone at 1-800-GO-DELPHI, or at the web page below:

http://www.zaccatalog.com

13	Additional Information

For the latest information on the Web Application Builder for Delphi (WABD) visit the WABD web site at http://www.radix.net/~bziegler/wabd/wabd.htm. Send your questions, comments, and suggestions to Ben Ziegler at bziegler@radix.net. To make sure I don’t miss your email, please put “WABD:” in all caps in your subject line.

14	Acknowledgements

Thanks to Charlie Calvert who’s primer on ISAPI programming got me started on this project.

[Your name goes here for bug reports and fixes! (]

This concludes the general information. The following sections contain all of the technical details.

15	WABD Objects

This section lists all of the public properties and methods of the main WABD objects. Refer to the source code for the protected and private members.

15.1	TWABD_SessionMgr

The WABD_SessionMgr is the topmost object in the WABD object hierarchy. It manages all requests from the Web Server, and dispatches them to the appropriate WABD Sessions. You are required to create event handlers for the OnCreateSession and OnDestroySession events or WABD will report an error message when users log on.

property CheckTimeoutInterval: integer;

This is the interval (in seconds) that WABD should perform the check for Garbage collection and for Sessions that timed-out. The default is 60 seconds.

property GarbageCollection: boolean;

If TRUE, WABD will perform automatic garbage collection, and will automatically remove any WABD Sessions that have past their time-out interval.

property OnCreateSession: TWABD_OnCreateSession; (REQUIRED)

TWABD_OnCreateSession = procedure(var NewSession: TWABD_Session) of object;

You are required to create an event handler for this event. Your event handler should simply create a WABD Session and return it in the event. Refer to the source code for an example of how to do this.

property OnDestroySession: TWABD_OnDestroySession; (REQUIRED)

TWABD_OnDestroySession = procedure(Session: TWABD_Session) of object;

This event is required. It should simply destroy and clean up any memory and resources used by the WABD Session.

property About: TWABDAbout;

All WABD objects have an "About" property, by double-clicking the property in the Object Inspector, the WABD "About" box is displayed.

15.2	TWABD_Session

A TWABD_Session handles all of the state information for a user's connection to your Web application. A new session is created for each new user, and it is kept in memory until the user logs off or the Session times out (if garbage collection is enabled).

property SessionID: integer; (read-only)

Each WABD Session is assigned a unique ID that is used to identify the session as users reconnect to the Web Server. This property is mainly used internally by WABD.

property MainForm: TWABD_Form; (REQUIRED)

This property is similar to the MainForm in Delphi. This is the first form that is shown to the user when they log on. This property is required, WABD will report an error if no MainForm is defined.

property TimeOutLength: integer;

This is the time out interval (in seconds). If garbage collection is enabled, the session will be automatically destroyed if there is no activity for the time out interval. The default is 600 seconds (10 minutes).

property OnFirstLogon: TNotifyEvent;

This event is fired whenever the user first logs on.

property OnLogOff: TNotifyEvent;

This event is only fired if the user logs off properly (i.e., not by time out). You could use this property to maintain a log file if needed.

property OnTimeOut: TNotifyEvent;

This property is only fired if the session times out.

property OnException: TWABD_OnException;

TWABD_OnException = procedure(E: Exception; var Handled: boolean) of object;

This event is fired whenever an unhandled exception is thrown within your code. This is necessary because exceptions are not allowed to go unhandled in an ISAPI DLL. You may perform any special exception processing in this event.

procedure LogOff;

Call this function within your code to log the user off properly. For example, if you had a "Log Off" button, the event handler might look like this:

procedure TTestForms.WABD_LogOff_Button_Click(Sender: TObject);

begin

 UserSession.Logoff;

 LastForm.Show; // The last form should have NO controls on it

end;

15.3	TWABD_Object

All top-level and form-level objects that are placed on HTML forms are derived from TWABD_Object.

property Parent: TWABD_Parent;

All WABD Objecs have a Parent property unless they are Top Level objects. You should only use this property if you create HTML controls on-the-fly. If you create an HTML control, you must assign it a parent property for it to be displayed.

property Order: integer;

All top-levels have an Order which is the order in which they appear on the form (from top to bottom). Use the Form Editor to manipulate this property.

property Visible: boolean;

You may set this property to FALSE to hide an object, or TRUE to show the object.

function Object_To_HTML: string;

This function converts the object to raw HTML text. This could be useful if using WABD in the Delphi 3.0 Client Server version to generate HTML automatically.

15.4	TWABD_Parent

A TWABD_Parent object may have child objects. An example is the TWABD_FormSection which contains child controls. Complex HTML controls (such as the TWABD_DataTable) are also derived from TWABD_Parent.

property ChildCount: integer;

This property returns the number of child objects.

property Children[i: integer] : TWABD_Object;

You can access each child object by index (up to ChildCount-1) with this property.

function ChildByName(ChildName: string): TWABD_Object;

This will find a child object by Name. If the Child is not found, it returns nil. The function recursively searches any child objects that contain other child objects.

15.5	TWABD_Form

The TWABD_Form is similar to Delphi's TForm. All HTML controls are placed on the TWABD_Form. A TWABD_Form can only contain top-level HTML objects (Form Sections, Tables, Headers, etc). The Form Sections hold the low-level controls (such as labels, buttons, edit boxes, etc).

property TextColor: Tcolor;

property LinkColor: Tcolor;

property VLinkColor: Tcolor;

These properties set the HTML form's custom colors. Set the property to clNone to leave the default color.

property BgrdImage: TWABD_Image;

Set this property to a TWABD_Image to use as a tiled background image. The best way to use it is to place a TWABD_Image on your form, set its Visible property to False, then use it as the BgrdImage.

property FormTitle: string;

Sets the Form's title.

property Session: TWABD_Session; (read-only)

This simply points back to the Session for this form. You can use the Session to call the LogOff procedure, etc.

property OnShow: TNotifyEvent;

This event is fired whenever the form is shown.

property OnCreate: TNotifyEvent;

This event is fired once when the form is created.

procedure Show;

Call this procedure to Show the form to the user. It really sets the Session CurrentForm variable to point to the form. Only the last form that is "shown" in an event handler is actually returned to the user as HTML. This procedure is mainly called from within a button's OnClick event to show a new form to the user.

15.6	TWABD_FormSection

The TWABD_FormSection is used to place the low-level HTML controls (such as labels, buttons, edit boxes, etc). It is merely a top-level container for the low-level controls it owns.

property GridX: integer;

property GridY: integer;

This sets the granularity of the grid used to place the HTML controls. A smaller grid size has more accuracy, but makes the HTML forms take longer to load (lots of extra overhead). A larger grid size makes faster forms, but you can't place the controls as accurately.

property CellBorder: integer;

By default, the FormSection's grid is invisible (CellBorder = 0). You can turn it on by setting a non-zero CellBorder.

15.7	TWABD_FormSection_Base

Derive your own custom HTML components from this object. Refer to the WABD_EditTable.PAS file for an example of creating and registering your own HTML component. Note that the component, once registered, is usable from the WABD Form editor (there will be no icon, but it will exist in the drop-down combobox). Simply select the item in the combobox and press the "Add" button.

15.8	TWABD_Header

This top-level HTML object is used to display HTML headers.

property HeaderNum: integer;

This can be a number from 1-6. One is the largest, six is the smallest.

property Caption: string;

This is the text for the header.

15.9	TWABD_Raw

This top-level HTML object may be used to inject "raw" HTML into your form. This can be useful to embed the latest advances in HTML, to customize your form for a particular browser, to add ActiveForms, etc.

property Lines: TStrings;

This is the raw HTML to place into the form.

15.10	TWABD_Table

This control displays standard HTML tables. You can alter the size of the Table (number of Columns and Rows), and select the number of Fixed Columns and Rows (i.e., number of header rows). WABD Table's can also be made "clickable". A "clickable" table has a button placed in the first column. This is useful for the user to pick a row in table form.

property FixedCols: integer;

property FixedRows: integer;

This is the number of Fixed rows (header rows) and columns. Fixed cells appear in bold in the HTML table.

property Cells: TWABD_Table_Strings;

The Cells property is used to access each individual cell. Use the Cells[x,y] syntax to get and set each cell string.

property CellBorder: integer;

Sets the table's CellBorder. A CellBorder of zero is no border. Higher numbers create a thicker border.

property CellSpacing: integer;

Sets the table's CellSpacing. CellSpacing is the amount of space between the table lines and the text in the cell.

property CanClick: boolean;

Set this property to TRUE to make the table "clickable". If the table is "clickable", there is a button in the first column of each row. The user can click on the button to select that row. Setting this property to TRUE enables the OnClick event.

property ClickText: string;

This is the text that goes in the button. For example, if the ClickText = "Go", the buttons would read "Go 1", "Go 2", "Go 3", etc. This property is useful to allow easy Internationalization of your product.

property OnClick: TWABDTableClick;

TWABDTableClick = procedure(Sender: TObject; RowIndex: integer) of object;

This event is fired when the user presses one of the table buttons (only if the CanClick property is set to TRUE). The row the user clicked is passed in the RowIndex.

procedure SetSize(x,y: integer);

Call this function to set the size of the table.

15.11	TWABD_DataTable

The TWABD_DataTable is perhaps the most powerful component in the WABD arsenal. By simply dropping a TWABD_DataTable on your HTML form, you instantly create a multi-user, client server database accessible from anywhere on the Internet!

property DataSource: TDataSource;

This is similar to a TTable's DataSource property. It links to the dataset you wish to view and/or edit.

property ShowEditForm: boolean;

Toggles whether the user sees the edit-boxes for each field.

property ShowTable: boolean;

Toggles whether the user sees the HTML portion of the dataset. If on, the user sees up to MaxRows rows of the dataset at a time.

property ShowNavButs: boolean;

Toggles whether the user sees the Next, Prev, Last, First, Add, Edit, and Delete buttons.

property MaxRows: integer;

The maximum number of rows to display in the table at a time. Default is 10.

property FormColWidth: integer;

The width in pixels for the form section columns (the section with the edit-boxes).

property NumCols: integer;

Number of columns used to display the edit-boxes.

15.12	TWABD_Hidden

Hidden text can be used to save state information that is passed to the client's machine. Since WABD handles persistence automatically, this is not needed very often. It can be used to "sneak in" a copyright notice into your HTML text, etc.

property Value: string;

The string value for the hidden text.

15.13	TWABD_BlankLines

This top-level component is used to separate other top-level components by a given number of blank lines.

property NumLines: integer;

Number of blank lines to add.

15.14	TWABD_SectionObject

All of the low-level HTML components (labels, buttons, edit boxes, etc) are derived from TWABD_SectionObject. All of these components need to have position and size properties. Note that the size properties are read-only. This is because the HTML controls do not let you explicitly set the width and height for their controls (this is a limitation of HTML forms, not of WABD).

property LeftPos: integer;

property TopPos: integer;

The position of the control in the Form Section.

property Width: integer; (read-only)

property Height: integer; (read-only)

The width and height of the control. These values are approximated by WABD, and the "real" values will differ for each browser implementation. For example, Netscape's Navigator may decide to make it's buttons larger than Microsoft's Internet Explorer. Unfortunately, the HTML form specification does not allow for precise setting of these parameters.

property ColSpan: integer; default -1;

property RowSpan: integer; default -1;

These properties specify the number of Columns/Rows the control will span in its parent FormSection. This allows greater control over placing controls, since the Width/Height properties above can only guess what the browser will assign the control. If the value is -1 (which is the default), the number of Cols/Rows spanned is computed from the Width/Height above.

15.15	TWABD_Anchor

An anchor is a hyper-link to another HTML page. These should only be placed on the last form, displayed after the user logs off to jump to new locations. Once the user selects an anchor, they can no longer return to your web application with the same Session information (i.e., they must log on again).

property Caption: string;

The caption for the anchor. For example, "Web Application Builder for Delphi Home Page".

property Destination: string;

The actual link destination. For example, http://www.radix.net/~bziegler/wabd/wabd.htm.

property Bold: boolean;

property Italic: boolean;

property Underline: boolean;

These set the style properties of the link. Anchor's should be underlined by convention.

15.16	TWABD_Image

You can place a TWABD_Image on a TWABD_FormSection.

property AltText:string;

This is the “Alternate text” that a browser can display instead of the image. This is nice to give users some context even if they can’t support graphics.

property OnMouseDown:THTMLMouseDownEvent(Sender: TObject; X, Y: integer);

This event is called if the user clicks on the image (and the click did not occur on any “hot spots”).

property ImagePath: string;

The filename of the image to use, e.g., “/wabd/wabd.gif”. It is the path where a remote browser would “see” it. This field is required.

property LocalPath: string;

The root path to prepend to the ImagePath in local mode (or design time). You can set this to the root directory of your Delphi project. It is actually best to set it to the root directory for your Web Server, so that you only need 1 copy of your image files. Personal Web Server uses “C:\WebShare\WWWroot”. The physical location of the image file should be LocalPath+ImagePath.

Image Path & Local Path Notes

The image to display is determined by the ImagePath property (and in local mode, also by the LocalPath property). If you set the ImagePath to “\dinosaur.gif”, then that .gif must exist in your sites root directory. You could also set it to “\wabd\wabd.gif” to have it access the wabd directory for the image. When running WABD in local mode, it is important to properly set the LocalPath property also, or the HTMLImage will probably look in the wrong place. The LocalPath property is simply the directory that is used “as root” for the Web Server. For example, Personal Web Server sets the directory “\WebShare\WWWroot” to root.

For example, if I had a web site called www.ziegler.com, then I could create a directory C:\WebShare\WWWroot\WABD, and when users wanted to access it via the web server, they would simply access www.ziegler.com/WABD. (Thoroughly confused yet?). Basically, in local mode the HTMLImage looks for LocalPath+ImagePath, and during HTML operation it just uses “ImagePath” (because the server is automatically adding in the LocalPath).

Hot Spots

WABD provides easy support for “hot spots”. Hot spots are useful for images that represent menu choices, etc. For example, an image may have several objects in it, and if the user clicks on that object he is taken to a different form. To use hot spots, simply select a TWABD_Image, and double click its "Hot Spots" property. Size the hot spots over the appropriate image region, and create an OnClick handler for the hot spot. If the user doesn’t click inside a hot spot, then the HTMLImage’s OnMouseDown event is called (with the X,Y location of the mouse click).

Viewing .GIF & .JPG Images at Design Time

In order to view images during design time, you must create a companion image in .BMP format for each .GIF or .JPG file, otherwise Delphi will not be able to display the image. Simply put the companion image in the same directory as the compressed image. If the HTMLImage component can not find a companion .BMP file, it will display a white box.

Note that Delphi 3.0 has support for .JPG files IF you include the JPEG unit. If you include this unit, you do not need to create companion .BMP files for .JPG images.

15.17	TWABD_LiveImage

The LiveImage acts like a TWABD_Image, except that it does not have an ImagePath property. It is not meant for showing existing graphic files, but for creating them on the fly. It has a TCanvas property that you can use to draw on the image. The LiveImage will be internally marked as "dirty" and will automatically save a new graphic file (bitmap format) and reference the new image in the HTML. When a new image is created, or the object is deleted, the file is automatically deleted. The temporary files use the format "TMPxxxxx.BMP".

15.18	TWABD_HotSpot

Select a TWABD_Image or TWABD_LiveImage in the object inspector, and double click on the "HotSpots" property to create custom hotspots for your image. Each HotSpot component has its own OnClick handler.

15.19	TWABD_Label

The label is the simplest way to display text information on an HTML form.

property Caption: string;

This is the text to display.

property Bold: boolean;

property Italic: boolean;

property Underline: boolean;

These are the text's format properties.

property CanClick: boolean;

property OnClick: TNotifyEvent;

Labels can now be clicked. Be careful when using them - unlike Buttons and Images, labels do not cause the HTML form to be submitted back to WABD, so any controls (edit boxes, memo boxes, radio buttons, etc) will not be sent to your program. They can be used for navigating, but not for submitting data.

15.20	TWABD_Memo

The Memo can be used to enter and/or display multiple lines of text.

property Cols: integer;

property Rows: integer;

The number of columns and rows for the memo box.

property Lines: Tstrings;

Use this property to get and set the lines of text for the Memo.

15.21	TWABD_Button

The button is the basic HTML component to select an action of some kind.

property Caption: string;

This is the text displayed on the button.

property OnClick: TNotifyEvent;

This event is fired when the user presses the button. Inside this event handler you can modify data, show other HTML forms, etc.

property Default: boolean;

If the user presses the "Enter" button without pressing a button, WABD searches for a button with Default set to True and calls its OnClick event. There should be only one button per form with Default set to True.

15.22	TWABD_Edit

The edit box is the basic HTML component to get a small amount of text.

property Text: string;

This is the text the user entered. You can set the Text property to display a default value for the user.

property IsPassword: boolean

Set IsPassword to TRUE to show password-style edit-boxes (all of the characters are displayed as asterix's).

property Size: integer

The size (in characters) of the edit box.

property MaxLength: integer;

The maximum length of the string entered into the textbox. Enter zero if there is no limit.

15.23	TWABD_ComboBox

The combo box can be used to display a drop-down list of options to the user.

property SelIndex : Integer;

The zero-based index of the currently selected item.

property Lines: Tstrings;

The items in the combo box.

15.24	TWABD_RadioButton

A radio button is grouped with other radio buttons, and only one radio button at a time can be checked.

property Caption: string;

The text to display for the radio button.

property Checked: boolean;

TRUE if the radio button is checked.

15.25	TWABD_ListBox

The list box is used to display a list of items to the user.

property SelIndex : Integer;

The zero-based index of the currently selected item.

property Lines: Tstrings;

The items in the list box.

property Size: integer;

The size of the list box (number of rows).

15.26	TWABD_CheckBox

A checkbox can be used to get a TRUE/FALSE value from the user.

property Caption: string;

The text to display for the checkbox.

property Checked: boolean;

TRUE if the checkbox is checked.

16	About the Trace Unit

The TraceUnit unit creates a file called TraceFile.txt in the current working directory of the process. It sends “TRACE” statements to this file. This is useful for debugging purposes.

The professional version of WABD comes with a Trace Server. If TraceUnit can find the Trace Server, it executes it (in a different process), and sends the Trace statements to the Trace Server. This allows you to view the Trace statements in real-time. Having the Trace Server in a different process is useful if your application terminates, you can still browse the Trace messages.

17	General Notes

Forms are placed in tables – if the user tries to select text on the form, it will look funny because non-breaking spaces are required to fill in blank table cells, and they will be selected.

A possible source of trouble that you should watch for: the user might hit the back button, change values, and then press a form button. This could cause errors in your program logic. If this could cause serious problems, keep track of a Transaction number in your global variables (and in a TWABD_Hidden component), and make sure that your global variables and the user’s form are in synch.

If you register the professional version of WABD, enter this as the first line in your implementation section:

{$DEFINE WABD_REGISTERED}

for WABD_Objects.pas and WABD_About.pas to remove the “Unregistered” notices.

18	Multi-threading Notes

Since your application will be running underneath a web server, it will have to be able to operate in a multi-threaded environment.

When using the Borland Database Engine, be sure to create a TSession object in your TDataModule. Assign it a unique name in your Global’s constructor (in Delphi 3.0 you can set its AutoSessionName to TRUE), and make sure that all TTable’s reference that TSession. You may now edit tables and perform queries safely in your thread.

The Visual Component Library (VCL) is not thread safe. The only thread safe objects are in the Classes unit (TList, TStringList, etc), and the non-visual database components (TDataModule, TSession, TTable, TQuery).

Garbage collection is performed automatically on your TWABD_Session variables. A background thread is created to check each Session object for the time spent since its last access. If this time is greater than 10 minutes (the value specified by the TimeOutLength property), the Session object is automatically destroyed (your destructor will be called, as well as an OnTimeOut event if you declared one). If the user begins a session, and then waits 15 minutes to make his/her next selection, they will receive an error. You may change the value of the timeout to any value. Garbage collection is performed to avoid perpetual resource leaks as users log-off incorrectly.

19	Version History

Version 1.24	Septemeber 20, 1997

Added "CanClick" and "OnClick" properties to TWABD_Label.

Added "Default" property to TWABD_Button. If the user presses the "Enter" key without clicking on a button, WABD now searches for a button with Default set to True and calls its OnClick event. There should be only one button per form with Default set to True.

Enhanced exception handling. WABD is now better at handling invalid properties being sent from the client. This usually happens when the user hits the "Back" button on the browser. The user now receives a meaningful error message, and the session is not aborted.

The pool demo is now 95% complete, you can definitely use it to run your office pool now!

Version 1.21	August 20, 1997

Added "How to Create a Web Application in Under 5 Minutes" tutorial to documentation.

Added a mini web server project (WWW Server). This simple web server can run ISAPI DLL's, so WABD is no a complete web solution.

Added ColSpan & RowSpan properties to TWABD_SectionObject.

Enhanced the Pool Demo project. It is now 50% complete for being a full-blown pool program. Hopefully I can complete it before the '97 football season starts! Fixed a D2/BCB compatability problem by removing a reference to AutoSessionName in the Pool Demo.

Fixed a bug in WABD_Objects.pas button handling - when the user presses "Enter" in Internet Explorer, it is as if nothing happenned (before WABD crashed).

Updated the WABD web page for the new version.

Emailed the WABD 1.21 update to all registered users.

Version 1.2	July 21, 1997

Added support for C++ Builder.

Updated the documentation. Added all of the main WABD objects. Included screen shots of the WABD Form Designer, Form Section Designer, and Hot Spot editor. Added mention of ZAC catalogs as a WABD reseller.

Fixed a multithreading problem with WABDSession creation and destruction. Those routines are now locked by a critical section.

Created an installation program using InstallShield.

Installation includes a compiled WABDSafeBitmap.DLL. This DLL is compiled with a fixed version of Graphics.PAS (Borland's VCL source code). Graphics.PAS was fixed so that it released the graphic critical sections. This fixed a multithreading problem with WABDSafeBitmap's.

Version 1.1	June 8, 1997

Complete rewrite of WABD (over 80%). WABD no longer uses TForm's as the base class for HTML forms (they were not thread safe, and did not work in Delphi 3.0). All WABD components now must be placed in TDataModules.

Added support for Delphi 3.

Added the TWABD_LiveImage object

Added the TWABD_DataTable object

Added support for user-created HTML components

Version 1.01	March 2, 1997

Changed TraceUnit.pas to not look for the TraceServer without a $DEFINE

Updated install notes (to look for *.DCU instead of *.PAS)

Added direct wire transfer to payment options in documentation

Version 1.00	February 27, 1997

No bugs (yet!)

Web Application Builder for Delphi		Page � PAGE �20�		

