Toolbar97

Version 1.36

By Jordan Russell

email:	jordanr7@aol.com

www:	http://members.aol.com/jordanr7

Toolbar97 is a free dockable toolbar component for Delphi 2.0, 3.0, and C++Builder that features the new Office 97 look and behavior. Some of its features include:

Ability to drag and dock toolbars to any side of a form, or leave them floating. Multiple toolbars can lined up side-by-side or in rows.

Full source code for customization if necessary.

Includes a TToolbarButton97 control that looks and works just like the buttons in Office 97.

Includes a TEdit97 control for creating Office 97-style edit controls on toolbars.

Ability to save and load its position from the registry (see LoadPosition/SavePosition methods).

Doesn't require the new COMCTL32.DLL to run, as Delphi 3's TToolBar (sometimes) and TCoolBar components do.

Works great on Windows 95, NT 4.0, and 3.51.

This version does not include all of the functionality and behavior of the Office 97 toolbars yet. I am planning on adding these features soon:

Office 97-style menus!

An Office 97-style toolbar combo box

Support for buttons with a dropdown menu.

A run-time toolbar editor (some day)

Arrows on toolbars that go off the screen.

Smooth window dragging support, like in Office 97 with Windows NT or the Plus! pack installed.

How to Use

IMPORTANT: You must unzip the Toolbar97 package with the -d parameter of PKZIP. Or if you're using WinZip, you must check Use Folder Names.

First you need to install the component in Delphi or C++Builder. Click Component | Install, then the Add button, and locate the TB97.PAS file.

The Toolbar97 package includes five components: TDock97, TToolbar97, TToolbarButton97, TToolbarSep97, and TEdit97. Please read the following sections for important details on each.

TDock97 Reference

Description:

Create TDock97 controls at locations you want a TToolbar97 to be able to dock at. These automatically resize as toolbars are docked onto them. Be sure to set the Position property to designate which side of the form the dock is to be located.

Key Properties:

property BoundLines: TDockBoundLines;

TDockBoundLines = set of (blTop, blBottom, blLeft, blRight);

Use this to add extra lines to the sides of the dock.

property Position: TDockPosition;

TDockPosition = (dpTop, dpBottom, dpLeft, dpRight);

Determines where the dock is located on the form.

Events:

property OnInsertRemoveBar: TInsertRemoveEvent;

TInsertRemoveEvent = procedure (Sender: TObject; Inserting: Boolean;

 Bar: TToolbar97) of object;

Occurs after a toolbar is docked (Inserting = True) or undocked (Inserting = False).

TToolbar97 Reference

Description:

This is the toolbar control itself. You can insert TToolbarButton97 controls or any other controls on this, which it automatically lines up. To create separators, use the TToolbarSep97 component.

Remarks:

When the CloseButton property is True (the default), the toolbar can hide itself if the user clicks the close box on a floating toolbar. Because of this, you should always include an item on a menu that toggles the Visible property so the user can get it back. See the demo application source code for an example of this.

Toolbars have to recreate themselves whenever they changed from a docked to a floating state and vice versa. Because of this you may notice some types of controls losing their values when the toolbar is moved. If you notice this happening, you need to respond to the OnRecreating and OnRecreated events. Put code in the OnRecreating event that saves the state of the controls in the toolbar, and put code in the OnRecreated event that restores the state. For example, if you had a TComboBox dropdown list, you could make it save its ItemIndex value into a temporary variable in OnRecreating. OnRecreated could then restore the ItemIndex value from the temporary variable.

Key Properties:

property CanDockLeftRight: Boolean default True;

When True, the toolbar can be docked to a TDock97 with a Position of dpLeft or dpRight.

property Caption;

What appears in the title bar of a floating toolbar.

property CloseButton: Boolean default True;

When True, a close button appears in the title bar when the toolbar is floating.

property DefaultDock: TDock97;

The default dock location. This is used when the user double-clicks a floating toolbar. If this is not set, nothing will happen.

property DockedTo: TDock97;

The TDock97 control that the toolbar is currently docked to. You can assign to this value any TDock97 control that belongs to the same form as the toolbar. To undock a toolbar at design time, delete the value from this property. To undock a toolbar at run time, assign nil to this property.

property DockPos: Integer;

This is only valid if the toolbar is currently docked (DockedTo <> nil). This is the horizontal position, in pixels, the toolbar is currently docked at.

property DockRow: Integer;

This is only valid if the toolbar is currently docked (DockedTo <> nil). This is the row the toolbar is currently docked at.

Events:

property OnDockChanging: TNotifyEvent;

Occurs immediately before the toolbar changes between docks, or from a docked to floating state or vice versa.

property OnDockChanged: TNotifyEvent;

Occurs after the toolbar has changed between docks, or from a docked to floating state or vice versa.

property OnRecreating: TNotifyEvent;

Occurs immediately before the toolbar recreates itself. This usually happens when it changes between a docked and non-docked state. See the Remarks above for more information.

property OnRecreated: TNotifyEvent;

Occurs immediately after the toolbar recreates itself. This usually happens when it changes between a docked and non-docked state. See the Remarks above for more information.

Key Methods:

procedure LoadPosition (const BaseRegistryKey: String);

Loads the toolbar's position as it was previously saved in the registry. If it was not saved in the registry, LoadPosition has no effect. This should be called when your application starts (usually in the OnCreate handler of your main form) for each toolbar in your application. BaseRegistryKey is the name of the key it loads the data from. LoadPosition will append the Name of the toolbar onto this. For example, if BaseRegistryKey is SOFTWARE\My Company\My Program\Toolbars and the Name of the toolbar is MyToolbar, it loads the data from the SOFTWARE\My Company\My Program\Toolbars\MyToolbar key.

procedure SavePosition (const BaseRegistryKey: String);

Saves the toolbar's position to the registry. This should be called when your application exits (usually in the OnDestroy handler of your main form) for each toolbar in your application. BaseRegistryKey is the name of the key it saves the data to. SavePosition will append the Name of the toolbar onto this. For example, if BaseRegistryKey is SOFTWARE\My Company\My Program\Toolbars and the Name of the toolbar is MyToolbar, it saves the data to the SOFTWARE\My Company\My Program\Toolbars\MyToolbar key.

procedure SetSlaveControl (const ATopBottom, ALeftRight: TControl);

Call this when the form is created to designate a top/bottom docked and left/right docked version of a control on the toolbar. At design time, create both versions side-by-side (with no separator in between). See the demo application source code for an example of how to use this.

TToolbarButton97 Reference

Description:

The TToolbarButton97 component is just like Delphi 3's TSpeedButton component, but it works a little more like Office 97 and adds some new features. You aren't required to use this for the buttons on toolbar, but it's recommended that you do since I'm planning on adding more features to it that TSpeedButton doesn't have.

If you want your application to look just like Office 97, you should leave the width of buttons at 23 pixels and the height at 22 pixels. Glyphs should be 16x16 pixels, or 17x17 for some disabled glyphs.

See the help for the TSpeedButton control for help on the properties, methods, and events not listed here.

Key Properties:

property Opaque: Boolean default True;

When True, the button is not transparent, which prevents the "blinking" effect that you see when you move the mouse over it or click it (as seen in Delphi 3's TSpeedButton). You should only need to set this to False if you have a bitmap underneath the buttons, like in Internet Explorer.

TToolbarSep97 Reference

Description:

The TToolbarSep97 component is used to create separators between toolbar buttons. It automatically adjusts its size, orientation, and visibility at design and run time.

TEdit97 Reference

Description:

The TEdit97 component is just like Delphi's TEdit component, except it has the Office 97 appearance, and is missing a few properties that are not applicable.

Revision History

1.36

Fixed a couple of very minor and insignificant cosmetic problems. See the source code for details.

1.35

Fixes all known problems, including the rather serious problem in TToolbarButton97 of it sometimes displaying the wrong glyphs in Delphi 2.

Several more problems fixed. See the source code for details.

1.33

Added a TEdit97 component.

Fixed a lot of minor but noteworthy problems. See the source code for details.

1.32

Fixed another minor problem in TToolbar97 that caused it to sometimes incorrectly reorder the controls.

1.31

Fixed problems with loading the demo application.

Fixed a very minor problem in TToolbarButton97.

1.3

Floating toolbars are now resizable. Like Office 97, they also now hide themselves when the application is deactivated.

Separators are no longer automatically created. You now create them using the TToolbarSep97 component.

Added a CanDockLeftRight property to TToolbar97.

Added an Opaque property to TToolbarButton97. Also made the buttons now stay down until it returns from the OnClick handler, like Office 97.

A lot of small fixes on all of the controls (too many to mention) to make them work more like Office 97.

C++Builder now supported.

1.2

Left and right side docking now supported. A SetSlaveControl method added to TToolbar97 for designating top/bottom docked and left/right docked versions of controls on the toolbar.

A lot of little problems fixed.

1.11

Added a CloseButton property to TToolbar97.

More bug fixes.

1.1

Delphi 3 now supported!

TToolbarButton97 component completely redesigned. Now it works exactly like a TSpeedButton. I also borrowed some of the glyph caching techniques used in Delphi 3 to make it much faster.

Added a Color property to the TDock97 and TToolbar97 controls so it now looks right in MDI forms.

TToolbar97's BarHeight property is no longer global to the whole application, as this sometimes caused problems. Now each toolbar has an individual BarHeight setting, which allows for greater flexibility.

Many design mode problems fixed. (And you can now move docked toolbars!)

1.0

First release.

