TLayoutBox component (version 2.0) : 16-bit

FREEWARE / SHAREWARE

The TLayoutBox component exists in 16-bit and 32-bit versions. It will function in any project (and executable) which name begins with the 7 characters “PROJECT” (case not important).

If you want to use the component in a commercial product with another name, please contact the author.

author 	: 	Bert De Coutere

e-mail 	: 	bert.decoutere@student.kuleuven.ac.be

web	:	http://www.student.kuleuven.ac.be/~m9209412

1) Files :

'layout16.dcu'

or ‘layout32.dcu’: you should include this file in your Delphi library. It will put the TLayoutbox component on

 		your 'samples' picklist. Remove any older version of TLayoutBox first.

'project1.exe' 	: example program; source code is also included

2) Abilities :

The TLayoutBox component places formatted and clickable text, lines, boxes, pictures, sound-buttons, hidden text, entrypoints and tables in a scrollable area, out of a source text.

The run-time property 'contents' consists of text (it is a TStringlist, to be more exact). This text contains the format commands and other commands. The text in contents must be filled at runtime (textlines within the program, or input from a file, a database or a memo). The LayoutBox will only display the text when the procedure 'DisplayContents' is called.

Within this text, commands can be used as described below. Please refer to the example program for experimenting purposes.

3) History :

For a large multimedia language-teaching program I had to make 2 components for displaying formatted text with some extra’s (like entry-points in the text; clickable words, word groups and word parts; hidden text capability; button for sound;...).

The LayoutBox component is born out of these components. I cannot give away the source code, so the *.dcu file will have to do. I do not have the time to explain what and how in full detail, but I trust this text and some experimenting will do. You can freely use the component in any project that begins with the 7 characters ‘project’. If you want to use the component in another project with a name of your own choice, please get in contact with the author in order to set a price (depending on the kind of the application : freeware, own use, small or larger commercial product), and you will get a *.dcu file that will work on your project (and executable) name.

Compared to version 1.0 the component has automatic wordwrap facilities and works now with a SHOWTEMP.INI file. Some bugs were fixed.

In July, I will be working for this multimedia project again, and will adjust and debug further. Comments, suggestions,... are most welcome !

4) Markup language :

Input text for the 'contents' property consists out of lines. There is now automatic word wrapping to the next line. If the text doesn't fit the box, a vertical scrollbar will appear. Separate words are by default clickable. Wordgroups that have to be clickable, should be written as 'this_is_a_word_group'. The underscore sign doesn't

display on screen, but the whole wordgroup will highlight when clicked on. Wordparts that have to be clickable, are divided by the '|' sign. Thus, 'Del|phi' will display as a single word, but both syllables are separately clickable.

Commands are always written between '{' and '}' signs. The most of them, but not all commands can be written anywhere in a line. Some commands must be written on a single line. A command argument 'normal' refers to the situation when the 'DisplayContents' method is called. Commands are not case sensitive.

--> NEW in VERSION 2.0 : the SHOWTEMP.INI file

New in this version of the component is that the initial font type, color,... and lineheight are not embedded in the compiled program code any longer, but retrieved from a file 'SHOWTEMP.INI' that is supposed to be in the same directory as the executable program is located. This file is also used for the command 'template'. So, you will have to distribute this file together with your application.

1. 	CHANGE FONTCOLOR

 	syntax 	: 	{fontcolor=XXX}

 	with 	: 	XXX as 'black','maroon','green','olive','navy','purple'

'teal','gray','silver','red','lime','yellow','blue','fuchsia','aqua','white'

 		or 'normal' (don't put the quote sign)

	

2. 	CHANGE FONTSIZE

 	syntax 	: 	{fontsize=XXX}

 	with 	: 	XXX any positive integer number or 'normal'

3. 	CHANGE FONT STYLE

 	syntax 	: 	{fontstyle=XXX}

 	with 	: 	XXX equal to 'normal' (don't put quotes) or any combination of the characters

		 	I (italic), U (underline), S (strikeout) and B (bold)

 	example : 	{fontstyle=bi} = bold + italic

 	remark 	: 	not all font types support all 4 styles

4. 	CHANGE FONT TYPE

 	syntax 	:	{fontname=XXX}

 	with 	: 	XXX the name of a font (like ARIAL), or 'normal'

5. 	CHANGE LINE HEIGHT (only has effect on the next line)

 	syntax 	: 	{lineheight=XXX}

 	with 	: 	XXX a positive integer number

	remark	:	so the lineheight is NOT automatically determined by the font size !

6. 	ALIGN

 	syntax 	: 	{tab}

7. 	DON'T TAKE A NEW LINE

	This command is handy to include a line with only commands in it. Start

	such a line with {nonewline}

 	syntax 	: 	{nonewline}

8. 	PLACE AN ENTRY-POINT : you can jump to this place in the text

 	syntax 	: 	{entrypoint}

	remark	:	entry-points are numbered automatically beginning with 1

9. 	DRAW A HORIZONTAL LINE WITH THE SAME WIDTH AS THE LAYOUTBOX

 	syntax 	: 	{drawline}

10. 	DRAW A BOX

 	syntax 	: 	{startbox}

			...

 			{stopbox}

 	remark : 	-all TEXTlines between startbox and stopbox appear in a box.

	 		-These 2 commands should be placed on a single, separate line.

11. 	INCLUDE LINK

 	not supported

12. 	INCLUDE SOUND

 	syntax 	: 	{sound=XXX}

 	with 	: 	XXX the name of the sound file (without path or extention)

 	remark	:	The screen displays a clickable button to play the sound. The picture of

 			this button is called 'sound.bmp'. The full path name is retrieved via the

			OnFullBMPPathPromt event.

	 		The component generates the OnIconClick event when the sound button is

 			pressed. Your application should handle the playing.

13. 	INCLUDE HIDDEN TEXT

 	syntax 	: 	{hidden=XXX}

 	with 	: 	XXX the text. The text appears and disappears again by clicking on the button.

 			Picture for the button is 'hidden.bmp'.

14. 	INSERT PICTURE

 	syntax 	: 	{picture=XXX}

 	with 	: 	XXX the name of the .bmp file (without path or extention)

 	remark	:	The picture -if found in the directory specified by you in the

	 		FullBMPPahtPrompt event - is automatically resized to fit the box when too large.

			If not found, the message ‘(picture(’ appears.

15. 	INSERT TABLE

 	syntax 	: 	{starttable=X|YYY} 			(to start table)

			...

 			{stoptable} 				(to stop table)

 	with 	: 	X : number of columns

 			YYY : kind of tabel : 'fixedrow', 'fixedcolumn','nofixed' or something else.

 			Something else means fixed row and fixed column

 	remark 	: 	all lines between starttable and stoptable contain the cells. A line is

	 		a row, and different columns within a row are divided by the '|' sign. The

	 		commands 'starttable' and 'stoptable' should be placed as the first word on

	 		a separate line. You might need to increase the stack size of your program

	 		when using tables in the LayoutBox 16 bit version.

 	example :

			{starttable=3|nofixed}

 			word1 | word2 | word3

 			mslfjkmei | lkjfmlie eqlf | ded

 			...

			{stoptable}

16. 	INSERT TEMPLATE

 	syntax 	: 	{template=X}

 	with 	: 	X : name of the template; the same name is in the file SHOWTEMP.INI

 				[X]

 				markup=commands

17. 	CHANGING LEFT MARGIN

 	syntax 	:	{leftmargin=X}

 	with 	: 	X : number (in pixels) or 'normal'

5) Properties and events

With the event 'OnWordClick', you can specify what to do when a word is clicked on.

 procedure (Sender : TObject; Button : TMouseButton; Shift : TShiftState; X,Y : integer; TheWord : String);

With the event 'OnFullBMPPahtPrompt', you can expand the 8-character filename in the

source text with a pathname and an extention (must be .bmp);

 procedure (Sender : TObject; var FileName : string);

With the IconClickEvent you can play a soundfile (expand the 8-character filename in

and play it yourself)

 procedure (Sender : TObject; Kind : TSIIconType; FileName : string);

Use the method 'DisplayContents' to display the text in the contents-property.

 procedure DisplayContents;

Use the method 'ClearContents' to clear the display.

 procedure ClearContents;

Use the method GetSelWords to get a list of all selected (highlighted) words.

 procedure GetSelWords(var AList : TStrings);

Use the method UnSelectAll to unselect all words.

	procedure UnSelectAll;

Use the method SelectWord to select the first or all copies of a word.

 procedure SelectWord(AWord : string; SelectAll : Boolean);

Use the method MoveToEntrypoint to move to a certain entry point in the text. ANumber = 0 means the top of the text.

 procedure MoveToEntryPoint(ANumber : integer);

The properties LeftMargin, TopMargin, LineHeight, should be clear enough.

The property SelColor defines the background color of a selected word.

The property NonSelColor defines the background color of a non-selected word.

The property SelectEnable determines wether words will highlight when clicked upon.

The property ClickEnable determines wether the 'click' event is invoked when a

word is clicked on.

6) RESPONSABILITY

As always : I assume no responsability whatsoever.

Comm
