

THE DBLOOKUPCOMBOPLUS COMPONENT 
Ver 4.1

The new DBLookUpComboPlus gives you all the lookup power of Delphi's original DBLookUp-Combo plus much, much more;

Major Enhancements
* The ability to sort the drop down list.
* The ability to search through the dropdown list via an incremental keyboard search. (Quicken Style).
* Autofill - The text is automatically filled in as the user types characters. (Quicken Style).
* Support for the Master/Detail relationship in the lookup table. (except for DBase tables)
* The ability to enter new records into the lookup table on the fly. (OnNewLookUpRec)
* The control can stay in a Read/Write style even when the Data source and Lookup Source are different. (this goes with the previous point)
* A new event to support the filling the lookup list with the results from a TQuery. (onPrepareList).
* Ad new event that allows the lookup to return multiple data elements instead of just the one specified by the LookupField property. (OnGridSelect)
* The drop down list can be either left or right justified.
* The drop down list can be changed to a rise up list.
* The BoarderStyle property is available.
* The ability to hide or show the drop down speed button.
* New event to simplify the populating of multiple main table fields from the lookup table.
* Support for incremental search of numeric fields.
* Seperate properties for font and color in the drop down list.
*  Seperate properties for the cursor over the edit, list and speedbutton portion of the control.

Other minor enhancements over the original control include;
- Corrects the two memory leaks found in TDBLookUpCombo.	
- Automatic placement of dropdown list to fit the screen has been enhanced.
- If the old TDBLookUpCombo was placed on a form with fsStayOnTop set then the list  would drop down behind the form and could not be seen. This problem has been  corrected in TDBLookupComboPlus.
- The minimum height of the edit box  portion of  the control has been corrected to be more inline with the behavior of TEdit, TDBEdit, TCombo, etc.
- <New> In the old TDBLookUpCombo multiple rows were highlighted if there were duplicates. This has been fixed so only the first row is highlighted.

Like with the original DBLookupCombo, the user can still display text but store a different  ID number behind the scenes.  Now all the other behaviors your users have come to expect from a truely intellegent combo box are here too. Since DBLookupCombo uses a table and not a query, the creation of the dropdown list is fast and the number of Items in the list is unlimited.

New in version 4.0 - See the history.wri file for a detailed list of what's changed. Here's a brief overview;

·	This release contains both the 16 and 32 bit versions of the control. 
·	Various enhancements to the user interface to better support the look and feel of Windows 95. Including variable width vertical scroll bars and speedbutton. These changes do not effect Windows 3.x applications. 
·	Replaced the onGridSelect event with the more flexible onLookupRecChanged event.
·	The source is now Delphi 2.0 ready. It compiles for either the 16 or 32 bit versions of the controls. 
·	Modified the onSearchKeyPress event to pass the FFoundValue parameter.
·	Killed a number of pesky little bugs.

This document has four section. Additional information is available in the components on-line help file.

I. Installation
II. Component Description
III. Demo Programs Walk Through.
IV. Descussion of Index Usage
V. Ordering information
VI. Legal Stuff
�INSTALLATION

NOTE : If you are installing the demo version please refer to the DEMO.WRI file found in the DBLUP2.ZIP archive.

Complete installation of this component requires that you
1. Copy the distributed to your disk drive.
2. Install the component into the Delphi Component Pallet.
3. Merge the components help into the Delphi help system.
4. Set up the demo.

1. Copy the distributed to your disk drive.

The archive you received or downloaded contains a number of files including both the 16 and 32 bit versions of the component, the component's installable help and documentation files and the component's sample demos. 

IMPORTANT - Inside the zip file you received you will find two other zip files. KIT16.ZIP contains the 16 bit version of the component for Delphi 1.0 and KIT32.ZIP contains the 32 bit version of the component for Delphi 2.0. Thiese zip files need to be copied to seperate directories and unzipped there.

Unzip the archive to your hard drive.
	- Copy the extracted component archive (KIT16.ZIP or KIT32.ZIP) seperate directories
	- Copy the CBPLUS.HLP file to the \Delphi\Bin directory.
	- Copy the CBPLUS.KWF file to \Delphi\Help.

You may keep the other files together in one directory. Keep the files listed as component files together and the files listed as demo files together. 

(Component Files)
KIT16.ZIP - contains the 16 bit component for Delphi 1.0 its contents include These need to go into a directory seperate from the files in KIT32.ZIP
DBLUP2   DCU		The TDBLookUpComboPlus Component (16 bit compile)
DBLUPLUS PAS	This is the one you need to do the Delphi 1.0 component install
DBLUPLUS.DCR	Resource file containing Pallet bitmap Delphi 1.0.

KIT32.ZIP - contains the 32 bit component for Delphi 2.0 its contents include These need to go into a directory seperate from the files in KIT16.ZIP
DBLUP2   DCU		The TDBLookUpComboPlus Component (32 bit compile)
DBLUPL32 PAS	This is the one you need to do the Delphi 2.0 component install
DBLUPL32.DCR	Resource file containing Pallet bitmap Delphi 2.0.

PLUS     WRI        	This file. The documentation
HISTORY. WRI		Recent history of this component.
(Help related files}
CBPLUS.HLP	Help file must be copied to \delphi\bin
CBPLUS.KWF	Help key word file. Must be copied to \delphi\help
(Show off Demo Files)
PLUSDEMO.DPR   	Demo project file
MAINFORM.PAS	Demo main form
MAINFORM.DFM	Demo main form
(Tutorial Demo #2 Files)
DEMOPROJ DPR  	Demo project file
DEMOMAIN PAS  	Demo main form 
DEMOMAIN DFM  		"
SUBCAT   PAS     	New restaurant type entry dialog
SUBCAT   DFM     		"	"
SUBCAT   DB       	Demo Data file
SUBCAT   PX        		"
SUBCAT   XG0     		" 
SUBCAT   YG0     		"
LOCATION DB      		"
LOCATION PX       		"
REST     DB         		"
REST     PX			"
(Tutorial Demo #3 Files)
QRYPROJ DPR  	Demo project file
QRYMAIN PAS  	Demo main form 
QRYMAIN DFM  		"
(Tutorial Demo # Files)
M_DPROJ DPR  	Demo project file
M_DMAIN PAS  	Demo main form 
M_DMAIN DFM  		"
(Source files sold seperately)
DBLUP2.PAS		Component Source (for both 16 and 32 bit versions)
�
2. Install the component into the Delphi Component Pallet.

For Delphi 1.0
- Start Delphi, choose Options|Install Components and then 
- Click the Browse button and locate DBLUPLUS.PAS in your 16 bit component directory. 
- Select it.
- Press OK in the Install Components dialog and wait for the Library to rebuild. 

For Delphi 2.0
- Start Delphi, choose Component|Install Components and then 
- Click the Browse button and locate DBLUPL32.PAS in your 32 bit component directory. 
- Select it.
- Press OK in the Install Components dialog and wait for the Library to rebuild. 

3. Merge the components help into the Delphi help system.
    OK this is the toughest part install so pay close attention.
    Install the Keyword File
a. Exit Delphi if it is running
b. Make a backup of \delphi\bin\delphi.hdx
c. Run the HelpInst application from \delphi\help (should be in you Delphi Group)
d. Open \delphi\bin\delphi.hdx
e. If the existing KWF files report "not found" then add \delphi\help to the search path by selecting Options|Search Path.
f. Select the Keywords|Add File menu choice and select CBPLUS.KWF from \delphi\help directory where you copied it in step 1 above.
g. Select File|Save
h. Exit HelpInst
     The new components help has now been merged into Delphi's help system.

     Special Note for installing in Delphi 2.0 - Page 80-81 of the Delphi 2.0 Component Writers Guide document documents the process of merging the supplied help file with Delphi 2.0 help. It does not say where to find the HELPINST.EXE file which is not automatically installed in a group like it was in Delphi 1.0. If you selected the default directory structure for Delphi 2.0 then you can find HELPINST in C:\Program Files\Borland\Delphi 2.0\Help\Tools
 
4. Set up the demo.
	- The demo program expects an alias called 'beta' 
	- Go to Tools|BDE Config  and define an alias named 'beta' 
	- Set its directory path to the directory where you but the demo files in step 1.
	- Finally, Set the Active properties to true for each table component.

  The demo should now function properly..

�
COMPONENT DESCRIPTION

The original DBLookUpCombo had two styles, csDropDown and csDropDownList. The new functionality is added through two new styles, csIncSearch and csIncSrchEdit. The relationship between the old and new styles is clearer if you think about them supporting an edit box that is either editable or non-editable. The old/new, editable/non-editable relationship looks like this.

				Editable Style		Non-Editable Style
Original Styles			csDropDown		csDropDownList
New Styles			csIncSrchEdit		csIncSearch

DBLookUpCombo adds three properties,  one event and two styles to Delphi's original DBLookUpCombo. The two new styles were discussed above. Here's a brief description of the new property and new event.

Property AutoDropDown - Set this property to TRUE if you want the list to automatically drop down when the user starts to type in the field. This applies only to the two new field styles csIncSrchEdit and csIncSearch. Set to FALSE and the list does not drop down but the auto fill-in and incremental search still function.

Property BoarderStyle - This property was published and the two choices bsSingle (default) and bsNone are now available.  To support the bsNone choice the control was also modified to support greater flexibility in its height. The original TDBLookupCombo was severly limited as to its minimum height. The only minimum height now is the height of the tallest letter with no margin above or below. It's up to the designer to select a height which looks right.

Property ButtonCursor - This property controls what mouse cursor appears over the speedbutton protion of the control. This property along with Cursor and ListCursor properties give you complete control of the cursor in the different parts of this control.

Property DropDownAlign - Choose "Right" to right align the drop down list and "left" to .... etc.
This property only applies when the DropDownWidth property has been assigned a value.

Property DropDownTop - Choose the "Above" option to force the list to rise up above the edit component of the control. The Below option is the default with the list dropping down. Note that choosing "Above" or 'Below" is really only a request to the component. If there is not enough room for the list to display as requested it will display in the way that fits. If the list can not completely display in either direction it will drop down and fall off the end of the screen.

Property Height - While this property was in the original TDBLookupCombo it has been modified here to support more flexibility in the minimum height. The designers of Delphi limited the minimum height because of a bug in a Windows Paint routine. This bug seems to effect different fonts differently and the minimum height requirement is too conservative for many fonts. There is still a minimum height but it is now exactly the height of the font. BEWARE - It is now sometimes possible, due to this paint bug, to define a height which is too small. In this case, no text will display in the edit portion of the control. If this happens just increase the height a little.

Property ListColor - Use ListColor to adjust the color of the dropdown list.

Property ListCursor - This property controls what mouse cursor appears over the dropdown list protion of the control. This property along with Cursor and ButtonCursor properties give you complete control of the cursor in the different parts of this control.

Property ListFont - This allows you to assign a different font to the dropdown list portion of the control.

Property LookUpIndex - Use this index to specify the sort order of the drop down list. This is also the index used for the incremental searches. If this property is left blank then the display order of the drop down list will be the same as the index set in the lookup table component which is the index required to do the lookup. You need to be really clear on this - there are two indexes at play here one to do the lookup and another to sort the list for display and search purposes.

Property ShowSpeedButton - Hide the drop down speed button by setting this property to False.

Property ListVisible - This public property (not published) is read only. Its value is true when the list is dropped down and false otherwise.
�
Event OnNewLookUpRec - Use this event if you want to add a new record to the lookup list. This event will only be called if the style is csIncSearchEdit or csDropDown which are the two editable styles. The event is not used by csDropDownList or csIncSearch. You can either just create a new record and post it or you can bring up a dialog box where the user would enter the new record and save it. The event is defined as

	procedure OnNewLookupRec(Sender: TObject;  var Cancelled: Boolean);

If you decide to use this event handler you must follow these rules or it will fail and your application will GPF. Here are the rules:

1.   You must set the cancelled return var. The component defaults the value of cancelled to TRUE and cancels the edit. This is safe but annoying. You need to set this value to FALSE for the edits to hold.
2.   Insert a new record into the lookup table.
3.   Update the new record with the new lookup value and any other column data.
4.   Post the record.
5.   Set the DBLookUpComboPlus.Value property equal to the value of the field in the new record that corresponds to the datafield. Note that this step comes after post.

The above steps must happen in stated order. Here are two code templates for OnNewLookUpRec. The first for when the code just creates the record and the second when a dialog box allows the user to create the record.
�
This code template is probably most useful in the case where the lookup value and display value are the same and the lookup table is a simple single field that contains the lookup/display string.

procedure DBLookupComboPlus1NewLookupRec(Sender: TObject;  var Cancelled: Boolean);
begin
   TableLookup.Insert; 
      {set the tables field values as appropriate}
   TableLookup.Post;    
   DBLookupComboPlus1.Value := (value used to fill the lookup table's record);
   Cancelled := False;
end;

The next code template is for when you want a dialog box displayed for the entry of the new lookup record. This is almost required for the situation when the lookup and display values are different.

procedure DBLookupComboPlus2NewLookupRec(Sender: TObject;  var Cancelled: Boolean);
begin
   LookUpEntryDlg.TableLookUp.Insert;
   LookUpEntryDlg.TableLookupDisplayField.Value :=     
        DBLookupComboPlus1.DisplayValue;
        {above presets sets a field in the dialog box prior to showing it}
   LookUpEntryDlg.ShowModal;          		{ display the dialog box }
   if LookUpEntryDlg.ModalResult=mrOK then  	{ if OK then save the new vendor}
   begin
      LookUpEntryDlg.TableLookUp.Post;    	{ if user said ok then post}
      {*** VERY IMPORTANT*** Now Update the Combo's value property.}
      { The Combo component doesn't know anything about the table that  }
      { the LookUpDlg box uses so you must tell the combo what the        }
      { lookup value is. This will need to be done in any case where the     }
      { lookup field is different than the display field.                                 }
      DBLookupComboPlus1.Value := LookUpDlg.TableLookUpValueField.asString;
   end
   else
   begin
      LookUpEntryDlg.TableLookup.Cancel;
      Cancelled := True;
   end;
end;

Event OnLookupRecChanged - Replaces the old onGridSelect event. This event is defined as

   TLookupRecChangedEvent = procedure(Sender: TObject; byIncSearch: Boolean) of object;

The byIncSearch parameter is true if the event was fired by a keystroke causing an incremental search. If  byIncSearch is false it means the event was fired by the user navigating through the drop down list with either a mouse click or the arrow keys. The primary use of this event is to update other fields with information from the just selected lookup record. Use this event when you want information on multiple fields in the lookup record.

Event OnPrepareList - Use this event when you want to do something special to the lookup table. Specifically this event is useful for preparing a temporary lookup table by filling it with the results from a query. This event is executed just before the sort order specified in the LookupIndex property is applied to the lookup table. The Demo #3, later in this document shows one way to use a TQuery and OnPrepareList to fill the lookup combo's list.

Event OnBeforeSearch - This event is fired just before the incremental search actually occures. Use this event to modify SearchValue temporarily . It SearchValue must then be set back to it’s original value by the OnAfterSearch. Always use these two events as a pair.

The primary reason for makeing these two events available is to give a way to do incremental searches on numeric values. 

The following snipit shows how you would install an incremental search for a TDBLookupCombo where the display value and lookup list is of numeric values.

The problem with numeric values used in a list goes like this. Lets say you have a customer number that is always 4 digits long but it is stored as an integer. The standard behavior for this component would go like this if the user were trying to find the customer number 1234.
User types 1, the search tries to find the value of 1 not 1000 which we want.
User types 2, the search tries to find the value of 12 not 1200 which we want.
User types 3 the search tries to find the value of 123 not 1230 which we want.
Finally the user types 4 and the correct value is selected. This is not a very useful incremental search.

In order to make this work as expected we need to convince the lookupcombo that it is actually searching for 1000 when 1 is pressed and 1200 when the 2 is pressed ... etc. The way to do this is to catch the value being pass to the search just prior to the search and right padding it with zeros. Here’s the code to do this for the example described above.

procedure TForm1.DBLookupComboPlus1BeforeSearch(Sender: TObject);
var
  tmp : String;
begin
  { Store the real search value }
  OriginalSearchValue := DBLookupComboPlus1.SearchValue;
  { Create a modified search value }
  tmp := DBLookupComboPlus1.SearchValue;
  { special case where there is no search value }
  if Tmp = '' then
    Tmp := '0'
  else
  {right pad with 0's}
    While Length(Tmp) < 4 do
      tmp := Tmp + '0';
  DBLookupComboPlus1.SearchValue := Tmp;
end;

The OriginalSearchValue is a private field you declare in the form that contains the lookupcombo of type string. 
VERY IMPORTANT - You must set the SearchValue property back to it’s original value in onAfterSearch

Event OnAfterSearch -  This event is fired just after the incremental search occures. Use this event to set the SearchValue property back to it’s original value. OnBerforeSearch and  OnAfterSearch must always be used as a pair.

procedure TForm1.DBLookupComboPlus1AfterSearch(Sender: TObject);
begin
  DBLookupComboPlus1.SearchValue := OriginalSearchValue;
end;


WARNING : The next four events (OnSortList, OnUnSortList, OnTranslate, and onKeyPress) normally get used together and they are black diamonds. This means that if you use one you use them all and you use them at your own risk. These are very advanced events and would normally not be used. They are only here for very special cases and to keep some of our more crazy customer happy. They give you to have more complete control over what happens when the drop down list opens, closes and when the user types a key. Use at your own risk. Technical support for these events is very limited.

Event OnSortList  (Advanced) - This gets fired when the lookup list drops. Using this event you can adjust the sort order to something other than the order defined by the LookupIndex property. What ever order is defined here is the order used to do the incremental search. This does not do the search it only does the sort for display purposes. The actual incremental search is done in the user defined onSearchKeyPress event below. 

Prior to this event firing the table is set to the index specified in the lookup table's TTable index name property. Besides setting the order of the table you can also set a range on the table here to filter the records.

Make sure to create a variable to save the original index so you can set it back in the OnUnSortList event.

Event OnUnSortList (Advanced)- If you defined an event for OnSortList above then you must but it back to its original state using this event. This event is fired when the list closes up. It returns the Lookup Table back to the same index, range and Master/Detail relationship it was in prior to when OnSortList was called.

Event OnTranslate (Advanced) - This event short circutes the normal lookup mechanism of the control and allows you to preform the lookup yourself. The lookup here refers to the controls ability to display one thing (Customer name) but store something else (Customer Number).

The goal here is to move to the record in the lookup table that has the value of DataSource.DataField and to do this without using an index on that field. This event "Translates" the value coming form the DataSource.DataField to the value displayed in the edit box part of the control. Eg. DataField is some partno but what needs to display is the part description. This event lets you do that translation your self. Make sure that the events RecFound parameter is set to true if the correct record is found.

Event OnSearchKeyPress (Advanced) - This event does the incremental search. It finds the closest match in the dropped list to the value in the SearchValue property. So your job is to write code to do the search down the list. SearchValue is a public property. When the style property is set to csIncSrchEdit you must also insure that the RecFound var is properly set in the code that you write for this event. If a record is not found that includes all of SearchValue then RecFound needs to be set to FALSE (causing the onNewLookupRecord event to fire) otherwise set RecFound to TRUE.

�THE DEMO PROGRAMS

There are four demo programs. One that shows off some of the slick UI features of the control and attempts to prove that it is very much a "Quicken Style" control (Demo #1). The "Show off" demo project is called PLUSDEMO.DPR. It uses the customer.db file that came with Delphi.

The second demo (Demo #2) is less visually appealing but is more useful for the purposes of learning how to use TDBLookupComboPlus. The project file for the second demo is DEMPROJ.DPR. It is highly recommended that you study this demo.

The third project/demo (Demo #3) shows how to use a TQuery instead of a TTable to populate the dropdown list of the LookupCombo. This project is QRYPROJ.DPR.

The forth project/demo (Demo #4) shows how to limit the records in a lookup table by defining a Master/Detail relationship in the lookup table. This is project M_DPROJ.DPR.

The rest of this section describes the second and third demo projects  Make sure you followed the installation instructions above to insure that the Alias is set correctly for these demos.

DEMO #2 - The Major new Features of TDBLOOKUPCOMBOPLUS

This text and the accompanying demo project/form (DEMOPROJ DPR) document the new TDBLookUpComboPlus control. The material is presented in an order that progresses from the simplest use of the component to the most complicated. In the process TDBLookUpComboPlus is compared with the original TDBLookUpCombo that came with Delphi. Much of the behavior and most of the properties in the new control are exactly the same as the old control so you can refer to Borland's documentation. In fact you should become familiar with the DBLookUpCombo since this documentation only talks about what is different between the two.

Tab Page One - csDropDownList

The csDropDownList is most limiting style in either DBLookupCombo or the new DBLookupComboPlus since it is read only. That is, when this style is set the user is limited to only the choices available in the list. This is ideal for situations where data consistency is required. Examples would be any situation where the field's value is being used to join files, or situations where limited, predefined, categorizations are required. 

The New DBLookupComboPlus's version of csDropDownList adds some functionality to Borland's DBLookupCombo csDropDownList style. Specifically you can specify an index name in the LookUpIndex property and you drop down list will be sorted. I also enabled the home and end keys for when the list is dropped down. <Home> jumps to the beginning of the list and <End> jumps to, well..., the end.

Select the csDropDownList tab page in the demo and have a look around. The field labeled Cuisine gets an integer value (SubCat) from the underling main table then uses this value to lookup the text equivalent in the lookup table (SubCat) and then display the text on the screen. You will notice that when you drop down the attached list it is not sorted. Go to the new LookUpIndex property and set its value to bySubCatName. Now when the list drops it will be in alpha order.

The other lookup field on this tab page is labeled location and displays a string that comes directly from the main table. The lookup table contains the list of valid strings. This is the case where the lookup field and display field is the same. The list in this case is always in alpha order.

The main limitation of this style is lack of any kind of search capability in the drop down list. The new csIncSearch style addresses this later.

Tab Page Two - csDropDown

The csDropDown style is the default. It along with csDropDownList were the original DBLookUpCombo's only two styles. This is the editable style.

Even though csDropDown is the editable one of the two choices it is still severely limited since as soon as you turn on a lookup where the data field and the display field are different it becomes readonly anyway. There's a very good reason for this, and that is, that since what's being stored in the main table is the data field value but the user enters in a brand new display value  the application can't possibly know what to store into the table. This behavior is demonstrated in the field labeled Cuisine on the second tab page. The new csIncSrchEdit addresses this limitation. Later.

If the display field and lookup field are the same (like with the field labeled location) then you can use the new OnNewLookUpRec event to add records to the lookup table. Refer to the description of the event above.  Try attaching the following code to the OnNewLookUpRec event handler for the ComboPlusLocation2 component on the second tab page next to the Location label. Make sure you attach this to the component on the second tab page the one titled csDropDown!

procedure TForm1.ComboPlusLocation2NewLookupRec(Sender: TObject;
  var Cancelled: Boolean);
begin
  TableLocation.Insert;
  TableLocationLocation.Value := ComboPlusLocation2.DisplayValue;
  TableLocation.Post;
  ComboPlusLocation2.Value := TableLocationLocation.Value;
  Cancelled := False;
end;

Now when ever you enter a value into the location field that doesn't previously exist in the drop down list, it is added to the drop down list.

Tab Page Three - csIncSearch
Incremental searches! Hummm..... There's not really much to say here. Take a look around and make sure you understand how they work and are set up. The important thing in the set up is that you must assign a lookup index if the display and data fields are not the same like with the field labeled Cuisine.

Remember that csIncSearch is like csDropDownList in that the attached edit box is not editable.

Drop down the list and press the home or end keys. Notice how it jumps to the beginning or end of the list. The original DBLookUpCombo did not do this.

Tab Page Four - csIncSrchEdit

That brings us to the last style type and the grand finale. Not only does this style sort the list, do incremental searches, allow for a read/write edit box but it also lets you add new lookup records to the lookup table even in situations where the display field and data field are different. 

Give it a try. Go to the control next to the Cuisine label on the csIncSrchEdit tab page and type in some cuisine that's not in the list. Tex-Mex for example. Use the drop down list to find a Cuisine ID# that hasn't been used yet. Note that this dialog box uses a lookup table on it self as an aid in assigning a unique ID number. After typing in the new string press tab and a dialog box appears for entering the new lookup record. Review the code for the OnNewLookUpRec event attached to the component to see how it's done.
�DEMO #3 -  Using a TQuery instead of a TTable with TDBLookupComboPlus 

The third demo project is called QRYPROJ.DPR and shows how to use a TQuery to populate the lookup list. The new event, OnPrepareList, is used to fill a temporary table with the results of a query on the VENDOR.DB table that shipped with Delphi. The query used here is very simple but complexity is not an issue. Any query may be used. 

Load QRYPROJ.DPR and run it. Chick on the <All> radio button and the dropdown list will contain all the vendors in the file. Click on <Preferred> and only the best vendors are listed. That's it! You should study the source code and see how this works. The following are some things to consider as you read the source.

By way of overview, here's what going on. First the form was designed with two working controls, a TRadioGroup which is used to determine the query, and a TDBLookupComboPlus. There is also a TQuery, a TTable and a TBatchMove object on the form. When the program runs a temporary table is created,  the default Query is executed and the result is batch-moved to the newly created table. When ever the list is dropped the LookupCombo looks at the status of the TRadioGroup and, if necessary, executes a new query to refill the temporary lookup table. When the form closes down the temporary table is deleted.

The style of the combo box in this demo has been set as csIncSearch.  If you want to allow the user to enter new records into the lookup table using the NewLookupRec you may. Remember, though,  that the new record should go into the original table that was queried, not the temporary table. Records inserted into the temporary table are just that, temporary.

In this demo an empty temporary lookup table is created when the form is created (in the source see the main forms onCreate event) and then destroyed when the form is destroyed. This is only one possible strategy. As the application developer you need to consider how you deal with temporary tables that hold query results. You should consider, where to put the temporary table, and what happens if the user runs multiple instances of the application.

If you look at the main forms onCreate method you will notice that the temporary tables DatabaseName is set to Session.PrivateDir. In most cases this is sufficient to insure that the temporary table will be created on the local work station. 

The second issue of running multiple instances of the application is trickier. The problem is that one instance of the program may fill the table with one set of query results while another instance will fill the table with a completely different set of records. Some possible strategies for resolving this include
	- Re-filling the temporary table from the query each time it drops.
	- Creating a different temporary table for each instance of the program.
	- Not allowing multiple instances of the program.
The third option was chosen for this demo. See the code in QryProg.DPR.

In setting up your own query you will also want to ensure that the query and batch-move only happen when they need to. Notice how LastRadioItemIndex property ensures that the query is only rerun if the criteria has changed.

This implementation of the TQuery > BatchMove > TTable strategy is only one of many possible. The above text will hopefully get you focused on the issues. Use this demonstration only as a starting point and be flexible.

�DEMO #4 -  Using a tables Master/Detail relationship for the Lookup Table

The forth demonstration project (M_DPROJ.DPR) show how to limit the records in the drop down list to a subset of the complete table by defining a Master/Detail relationship between the lookup table and another Master Table.

IMPORTANT - This demo uses the VENDORS.DB and PARTS.DB tables in the DBDEMOS alias directory. These tables do not have all the indexes needed to support the demo the way they originally come. In order for the demo to work correctly you must press the Make Index button to create the additional indexes. Once the new indexes are created you can play with the demo. To restore the VENDORS and PARTS tables back to there original form you should press the Delete Index button to remove the new indexes.

Note also that due to the way dBase indexes work, this Master/Detail support for the lookup table does not work in dBase tables.

Visually, there is not much to this demo. In the first lookup combo you select a vendor. The vendor you select then determines which parts are listed in the second lookup combo. Note that not all vendors have parts assigned to them so don't be suprised if the parts list is sometimes empty.

Also note that this demo does not assign a DataSource or DataField to either one of the combo boxes. This in NOT a requirement it is just the way the demo was written. 

For more information on defining Master/Detail relationships between tables refer to the Delphi documentation and online help. For a complete discussion on the implementation requirements of Master/Detail relationships in TDBLookupComboPlus refer to section V DISCUSSION OF INDEX USAGE of this document.

�DISCUSSION OF INDEX USAGE 
This section has been added to clarify the way the TDBLookupComboPlus component uses indexes. 

This component makes extensive use of indexes to implement its various features. Features like the incremental search and the master/detail support are very powerful and result in an uncommonly friendly user interface. The price for this functionality is a rather complex set of requirements for supporting indexes. The implementation issues regarding indexes has caused a number of questions from the existing customer base. So... this section attempts to clarify the required indexes and why they are necessary.

Depending on how you want to use the TDBLookupComboPlus the index requirements change from simple to  complex. These different levels of index usage are described below in order of implementation complexity.

Before continuing it should be noted that the Index on the DataSource table has no effect on the operation of this control. So that is at least one index you do not have to worry about.

Case One (Simple) - Where the LookupField and the LookupDisplay refer to the same field. In this case there is no lookup mechanism needed so no special index is needed on the table rreferred to in the LookupSource property. The lookup mechanism refers to the controls ability to display one value (e.g. Customer Name) but store a different value (e.g. Customer Number) in the file referenced in the DataSource property.

Case Two - Where the LookupField and the LookupDIsplay are still the same but you want the incremental search to work. In this case you would set the Style property to either csIncSearch or csIncSrchEdit and also set the LookupIndex to an index which starts with the same field as referenced in the DisplayField property.  This can be a compound index as long as the first segment is the same field as the DisplayField. Note that the lookup mechanism is still not activated in this case.

Case Three - Where you want the value stored in the DataSource to be different from the value displayed in the editbox portion of the control. This is where the lookup mechanism gets turned on. For example you want the view the Customer Name but store the customer number. In this case the LookupField would be the Customer Number and the LookupDisplay would be the  Customer Name. The field referred to in the DataField property would represent the customer number field in the DataSource Table.

In order for the lookup mechanism to work properly the index specified in the IndexName property of the TTable connected to the LookupSource property must specify an index where the first segment is the same as the field referenced in the LookupField. Note that in many cases this is the Lookup Tables primary (or natural) index so the TTable.IndexName property can be left blank.

Case Three with Incremental Search  - This is the same situation as Case Three with the addition that you also want the Incremental search to function as in Case Two. In this case there are two indexes at work in the component; (1) the index specified in the TTable to support the Lookup mechanism and (2) the index specified in the LookupIndex to support the incremental search and sorted drop down list. The component automatically switches back and forth between these two indexes as needed. Specifically, the lookup TTable is kept in the order specified in either the IndexName or IndexFieldNames property until the list is dropped or the user starts typing in the component (assuming style is csIncSearch or csIncSrchEdit). As soon as the list closes or the component looses focus the index reverts back to the index specified in IndexName or IndexFieldNames.

Case Four (most complex) - Where you want to support the Master/Detail functionality defined in a pair of TTables. This case is the most complicated and requires strict attention to the way indexes are defined and implemented. See the Master/Detail demo (#4).

In the demo you have two lookup combos, one that lists vendors by name and a second that lists just the parts supplied by the vendor selected in the first. 

To make this relationship work the vendor table is set up as normal insuring that the index specified in the TTable.IndexName is on VendorNumber. Note that this is the natural (primary) index and does not need to be explicitly specified. The demo goes on to define a new index on the Vendors.DB on VendorName. This index is necessary to support the incremental search of vendor names. This new byVendorName index is assigned to the LookupIndex property in the vendor LookupCombo control. So far this is nothing new. It's just case three above.

Now the support for the master/detail relationship needs to be set up for the second lookupCombo which lists parts. First look at the way the Parts.DB TTable is set up. Notice that the IndexFieldNames property is assigned 'VendorNo;PartNo' and not just VendorNo. If you double clicked on the MasterFields property to bring up the Data Link Designer dialog and set up the normal Master/Detail relationship with the Vendor.DB table the value automatically assigned to the IndexFieldNames property would be VendorNo. The problem is, that an index on VendorNo alone will not let the lookup mechanism in the lookup control uniquely translate the displayed value to the value actually stored which is PartNo. For the lookup mechanism to work a composite key must be defined where the first segment is VendorNo and the second segment is PartNo. This composite key then fills the requirement for both the Master/Detail relationship and the LookupCombo's lookup mechanism. Note the demo creates this index for you.

So far so good. Now the lookup mechanism works, but what about the incremental search. Basically, the same problem comes into play here. In this case the drop down list of parts for the specific vendor needs to be sorted in alpha order by the Description field. This requires another composite index with two segments. The first segment needs to be VendorNo to support the Master/Detail relationship, and the second segment needs to be Description to support the sorted list and incremental search. So, yet another index is defined called byVendorDescription which is a composite of VendorNo and Description and is assigned to the detail lookupcombo's LookupIndex property. Again the demo creates this index for you.

To summarize the index requirement for lookupcombos using master/detail relationships you need to always define the detail table's IndexFieldName property as a composite key where the first segment(s) are the fields used to join the detail with the master table plus another segment which is lookup component's LookupField. So the IndexFieldName index is defined as;

Detail Table  IndexFieldName Index = Master/Detail Join Field + Lookup Component LookupFiled

Similarly, the detail must also have a composite index for the LookupIndex defined as;

LookupIndex = Master/Detail Join Field + Lookup Component DisplayField.

If you follow these index rules then automatic support for a table's master/detail relationship should work in a TDBLookupCombo plus component.
�

Disclaimer & Legal Stuff

Out & About Productions is NOT responsible for any damage to your data as a result of using this component.

You may distribute any application that includes this component and supporting components with no additional royalties beyond your initial license registration fee. 

If you use this component to develop an application where you also deliver the application's source then this is considered an additional license and the receiving party must license a copy of the component from Out & About Productions.

You have the right to use this technical information subject to the terms of Borland’s  no-nonsense License Statement that you received with Delphi. Out & About products are licensed with exactly the same rules as documented in Borland's no-nonsense License Statement.
 
Ordering Information 

The shareware version of this components is fully functional inside the Delphi environment. Attempts to run this component will fail in a stand-a-lone executable. If you find this control useful and would like to use it in your applications you must register and order the regular version.

For $20 U.S. (Calf. residents + 7% SST),  you will receive the full version plus any updates for the next year. MasterCard and Visa are accepted. The component will be sent to you by CompuServe e-mail. The source code is available for an additional $10 (such a deal).

Or you can go SWREG and put it on your CompuServe bill for a (10%) handling charge.
	SWREG # 6499 - Component without source	$22.00
	SWREG # 6500 - Component with source	$33.00

You can also purchase the DBLooupComboPlus along with the DBComboBoxPlus and ComboBoxPlus components as a set in the "Binford 2000 Combobox Combo" at a discount over purchasing the components separately. This super combobox combo is only $40 without the source (a $10 savings) or $60 with the source (a $15 savings). This special combo deal is also available through the SWREG program, just search for "Binford" or CompuServe ID number 75664,1224. See below for more information on the DBComboBoxPlus and ComboBoxPlus components.

To order via e-mail please include your credit card number, expiration date, and name as it appears on the card. We would also like your mailing address and voice phone number but it's not completely necessary (you become a pin on a map of the world). If you are uncomfortable with the e-mail idea you can fax the info to me a (619) 566-0210, or, worse yet, write me at the address below.

Please e-mail your orders to 75664.1224@compuserve.com. Any technical questions regarding this component should forwarded to 70664.1453@compuserve.com.

The above prices include all updates and upgrades to the component for a year and technical support via CompuServe.

Other Out & About Products

TTUtility - Repair Paradox Tables from your Delphi App. This latest version of our  popular Paradox table repair component set makes implementing Paradox table repair even  easier than before with a new TUtility Dialog component. Single or batch table  verify & repair, latest BDE support, lots of demo projects, complete online  help, index check and regen, and much more. See why thousands of Paradox\Delphi  developers have chosen this simple but powerful solution. If you are interested in the TTUtility component search for and download TU.ZIP from the Delphi Lib on CompuServe or from our web site on the Internet: http://www.o2a.com


TDBComboBoxPlus - All the Quicken styles features of TDBLookupComboPlus but this one replaces the original Delphi TDBComboBox component. This is a completely new control and unlike TDBCombo it is not based on the standard Win Control. By starting from scratch we were able to implement lots of super new features including the Quicken style features mentioned above, plus data alaising, multiple columns, titles and much, much more.  TComboBoxPlus - Same features as TDBComboBoxPlus but not data aware. Designed as an enhanced replacement for Delphi’s TComboBox. 

These two components are sold as a pair. For a demo search for CBPLUS.ZIP in the Delphi forum on CompuServe or from our web site at http://www.o2a.com. 

How to contact us.

Orders:
CompuServe ID 75664,1224
Internet : 75664.1224@compuserve.com

Technical Support:
CompuServe ID 70664,1453
Internet : 70664.1453@compuserve.com

Web Site:
http://www.o2a.com

Snail Mail:
Out & About Productions
1038 Noe Street
San Francisco, CA 94114

TTUtility, 
T
DBComboBoxPlus, 
 
T
ComboBoxPlus, and DBLookupComboPlus,  their help files,  and documentation are copyright 1995, 1996, 1997,  by Out & About Productions and are protected by international law. All Rights Reserved.


�




