USING THE

FILMGR95.DLL

(File Manager DLL)

Yoram Halberstam

100773,1675@Compuserve.com

KOBAIA_MAN@msn.com

�
Summary

Introduction	Page 3

I-_Files95 (unit)	Page 4

	Constantes	Page 4

	Types	Page 4..5

II-Get the DLL version	Page 5

III-Check if a file exists	Page 5..6

IV-Find a free temporary file	Page 6

V-Separate a file name	Page 6..7

VI-Get File Information	Page 7..8

VII-Set File Information	Page 8..9

VIII-Copy a file	Page 9..10

IX-Rename a file	Page 10..11

X-Compare a file	Page 11..13

	Open a compare file result	Page 11

	Check if attribut result was the same	Page 12

	Get the number of error(s) in the compare	Page 12

	Get the position and the difference in char after compare	Page 12

	Close a compare file result	Page 12

�
INTRODUCTION

This is a FREEWARE DLL. You might modify it as you wish, but I'll be happy to hear about any major changes or added procedures, by E-Mail. I created this DLL to help other users, and to leave a trace of myself in the Delphi-Pascal Forum, you never know who's gonna give you some job to do (hahaha). As we're all here to help each other, I'll be pleased if anyone can give me some suggestions or report any bugs to me, at one of my E-Mail above.

I tried to make this Pascal DLL as clear as possible. If you do not agree, sorry I'm only human.

THERE IS NO WARRANTIES THAT THIS DLL WORKS AND NO WARRANTIES ABOUT THE SAFETY OF YOUR SYSTEM, USING IT. I DON'T THINK IT IS POSSIBLE FOR IT TO DO ANY DAMMAGE BUT YOU NEVER KNOW (EVERYONE WRITES THAT). THIS IS FREE TO USE, EVEN IN A COMMERCIAL WAY, BUT I'LL ACCEPT SOME CASH IF YOU THINK I'M WOTH IT. ENJOY THIS DLL!

Yoram Halberstam

�
Chapter I

_Files95.pas unit

The _Files95 unit has got all the function available in the FilMsg95.dll. You have to use it in order together with the DLL in your futur programs.

Inside this unit you have got, as well, the types and constants the DLL contains:

Constantes

Type�
Constant name�
Constant type�
Result�
�
General file Errors�
File_Not_Found�
Byte�
2�
�
�
Path_Not_Found�
Byte�
3�
�
�
Too_Many_File_Open�
Byte�
4�
�
�
File_Access_Denied�
Byte�
5�
�
�
Invalid_Drive�
Byte�
15�
�
�
Cant_Remove_Dir�
Byte�
16�
�
�
Disk_Read_Error�
Byte�
100�
�
�
Disk_Write_Error�
Byte�
101�
�
General file copy errors�
Cant_copy_File_On_Itself�
Byte�
1�
�
�
Error_While_Copying�
Byte�
6�
�
General file compare errors�
Cant_Compare_Same_File�
Byte�
7�
�
�
Wrong_Compare_Header�
Byte�
8�
�
Compare File Items�
Same�
Char�
#0�
�
�
Diff�
Char�
#1�
�
�
Compare_File_Header�
Array of char�
Compfilev1.0�
�
General Compare Status�
Same_Size�
Word�
$0001�
�
�
Same_Attr�
Word�
$0002�
�
�
Same_DT�
Word�
$0004�
�

Types

Type�
Variable�
Type of the variable�
Definition�
�
TFileInfo�
F�
File�
File pointer�
�
�
Drv�
Char�
Drive letter of the file�
�
�
Path�
String�
Path of the file�
�
�
FName�
String�
The file name, no extension�
�
�
Ext�
String�
Extension of the file�
�
�
Attr�
Word�
Attributs of the file

Read Only

System

Archive

Hidden�
�
�
Size�
Longint�
Size of the file in byte�
�
�
DT�
Longint�
Date and time (Pack)�
�
�
Types

Type�
Variable�
Type of the variable�
Definition�
�
TCompRec�
Pos�
Longint�
Position where differences appear in files�
�
�
CharSource�
Char�
Letter in the source file�
�
�
Char Dest�
Char�
Letter in the dest file�
�

Chapter II

Get the DLL version

Function FilMgr95Ver : LongInt

The DLL version has got 2 parts		:	the HI part (the version number)

							the LO part (sub-version number).

����eg: Version	1	.	0

����

So if longint := FilMgr95Ver then HI part := HiWord(Longint) and LO part := LoWord(Longint).

eg:	Program GetDLLVersion;

		Uses _File95, WinCrt;

		Var LI : Longint;

		 H, L : String;

		Begin

		 LI := FilMgr95Ver

		 Str(HiWord(LI), H); Str(LoWord(LI), L);

		 Writeln(H + ‘.’ + L);

		End.

Chapter III

Check if a file exists

Function FileExist(FName : String) : Byte

Check if file exists. It result of a byte number. This number is the potential error that would have occur if you openned the file. Put in consideration that no error is 0 and File_Access_Denied error doesn’t mean it doesn’t exist, but that your file has got the Read Only attrinut. All the errors you can have should be in the table of constant (General file errors) in chapter I. The only parameter to give is the FILE NAME.

�
eg:	Program CheckIfFileExist;

		Uses _File95, WinCrt;

		Var F_Name : String;

		 B : Byte;

		Begin

		 F_Name := ‘c:\yoyo.dat’;

		 B := FileExist(F_Name);

		 If B = 0 then Writeln(‘No Errors’)

		 Else Writeln(‘Error N°’, B);

		End.

Chapter IV

Find a free temporary file

Function GetFreeFile : String

The GetFreeFile function returns a string containing a file name with no extension at the end. This file is a the name of a NON EXISTING FILE. I created this function in order to find a new temporary file. Why? Because sometimes you need to create a file and not delete an existing file.

eg:	Program GetTempFile;

		Uses _File95, WinCrt;

		Var F_Name : String;

		Begin

		 F_Name := GetFreeFile;

		 Writeln(F_Name)

		End.

Chapter V

Separate a file name

Procedure SeparateFileName(S : String; Var Drive : Char; Var Path, FName, Ext : String)

The problem with filenames is that as long as you don’t give a full path of it can be lost.

�
For exemple, you have got the filename in a string variable. This filename fo not specify the drive and/or the full pathname. As long as you do not change drive or directory that is fine, you can open it as much as you want. The problem is it is gonna be a pain to find the drive, the path where you are, then add it to your file.

In alternative to that I give a procedure which gonna do all of it for you. You just have to put the file name in the variable (S), and give as parameter the variables name of the the Drive, Path, Filname, Extention. If you don’t specify the drive and/or path it is gonna take the current ones.

eg:	Program GetTempFile;

		Uses _File95, WinCrt;

		Var F_Name : String;

		 Drv : Char;

		 Path, Name, Ext : String;

		Begin

		 F_Name := ‘c:toto.dat’;

		 SeparateFileName(F_Name, Drv, Path, Name, Ext);

		 Writeln(‘Origal File name :’ + F_Name);

		 Writeln(‘New filename :’ + Drv + ‘:’ + Path + Name + ‘.’ + Ext);

		 F_Name := ‘toto.dat’;

		 SeparateFileName(F_Name, Drv, Path, Name, Ext);

		 Writeln(‘Origal File name :’ + F_Name);

		 Writeln(‘New filename :’ + Drv + ‘:’ + Path + Name + ‘.’ + Ext);

		End.

Chapter VI

Get File Information

Function GetFileInfo(Var FInfo : TFileInfo) : Byte;

This function allows you to get information about a filename. It is gonna be stored in the variable you are going to specify as a parameter. The only data needed in this variable is TFileInfo.FName (the file name). In return it is gonna give you 0 if succesful or another value (see General File Error constant Chapter 1) if not successful.

�
eg:	Program GetFileInformation;

		Uses _File95, WinCrt;

		Var FileInfo : TFileInfo;

		 B : Byte;

		Begin

		 FileInfo.FName := ‘c:\toto.dat’;

		 B := GetFileInfo(FileInfo);

		 If B = 0 then

		 Begin

		 Writeln(‘File Name : ’ + FileInfo.FName);

		 Writeln(‘Size : ‘ + FileInfo.Size);

		 Writeln(‘Created: ’ + DatetoStr(FileInfo.DT) + ‘ at ‘ TimetoStr(DT);

		 If FileInfo.Attr and faArchive <> 0 then Writeln(‘Archive’);

		 If FileInfo.Attr and faReadOnly <> 0 then Writeln(‘ReadOnly’);

		 If FileInfo.Attr and faSystem <> 0 then Writeln(‘System’);

		 If FileInfo.Attr and faHidden <> 0 then Writeln(‘Hidden’);

		 End

		 Else Writeln(‘Error N°’, B);

		End.

Chapter VII

Set File Information

Function SetFileInfo(FInfo : TFileInfo) : Byte;

This function set the file information (Attributs, Date and Time). It return 0 if succesful. The only parameter required is a TFileInfo variable with the following specification:

TFileInfo.FName

TFileInfo.Attr*

TFileInfo.DT

* The 4 attributs you can set are faArchive, faSystem, faReadOnly, and faHidden. The way you can mix them is by using the logical operator or. eg Attibut := faArchive or faHidden.

�
eg:	Program SetFileInformation;

		Uses _File95, WinCrt;

		Var FileInfo : TFileInfo;

		 B : Byte;

		 DateTime : TDateTime;

		Begin

		 FileInfo.FName := ‘c:\toto.dat’;

		{Set the variable DateTime to a date and time (24h)

		 DateTime := StrToDateTime(‘20/12/93 15:00:23’);

		 PackTime(DateTime, FileInfo.DT);

		{Set to attributs to archive only}

		 FileInfo.Attr := faArchive;

		{or I can set it to Archive and ReadOnly attributs}

		FileInfo.Attr := faArchive or faReadOnly;

		 B := SetFileInfo(FileInfo);

		 If B = 0 then Writeln(‘Succeded’)

		 Else Writeln(‘Error N°’, B);

		End.

Chapter VIII

Copy a file

Function CopyFile(Source, Dest : String) : Byte

With this function you can copy a file. This function just need two variables of type String : the source file and the destination file. It return 0 if successful or a General File Error (Chapter 1). It make no explicit verification that the destination file exist. This mean if the destination file exist it will erase even if this file is Read Only protect.

�
eg:	Program CopyAfile;

		Uses _File95, WinCrt;

		Var Source, Dest : String;

		 B : Byte;

		Begin

		 Source := ‘c:\Autoexec.bat’;

		 Dest := ‘c:\Autoexec.bak’;

		 B := CopyFile(Source, Dest);

		 If B = 0 then Writeln(‘No Error’)

		 Else Writeln(‘Error N°’, B);

		End.

Chapter IX

Rename a file

Function RenameFile(Source, Dest : String) : Byte

This function rename a file. What it does really is a copy of the source file in the destination file, and then delete the original file. All you need is the name of a source file and the name of a destination file. It return 0 if successful or a General File Errors (Chapter I). You’ll have to check that the destination file exist, because if will erase it if it’s there.

�
eg:	Program RenameAFile

		Uses _File95, WinCrt;

		Var Source, Dest : String;

		 B : Byte;

		Begin

		 Source := ‘c:\uAutoexec.bat’;

		 Dest := ‘c:\Autoexec.bak’;

		 B := RenameFile(Source, Dest);

		 If B = 0 then Writeln(‘No Error’)

		 Else Writeln(‘Error N°’, B);

		End.

Chapter X

Compare a file

Function CompareFile(Source, Dest : String; Var ErrFile : String) : Byte

This function compare 2 files. You need as a variable, the 2 file names, and the variable, ErrFile, which is the name of a temporary file containing the potentials errors. It return 0 if successful.

Let’s come back to this error file, It at least contain the file header, if the size was the same, if the attribut was the same and if the date and time was the same. It also contain the number of difference in the 2 file. In the case the file are not the same size, it will take the calculation on the smaller file. If the number of difference is more than 0 then the file will contain as much TCompRec (Type, Chapter 1) record as difference in the file.

Open a compare file result

Function OpenCompareFile(Var FileInfo : TFileInfo) : Byte

This function MUST only be used after after a comparaison, it has got as a parameter a TFileInfo (Types, Chapter I) record. The only data needed is the TFileInfo.FName, Which is the Error file name of a compare. If the Compare File Header is found in the file then it return 0. Otherwise it return the Wrong_Compare_Header error (Constantes, Chapter I). Once you finish with the Error file, you should close it with the procedure CloseCompareFile (I’ll explain later).

�
Check if attribut result was the same

Function CheckCompareAttr(FileInfo : TFileInfo; Var Check : Word) : Boolean

To use this function you must have open the compare file with the function OpenCompareFile. The 2 parameters are first, the TFileInfo structure given when you open the file, and a variable Check which is gonna contain on 3 byte if the size, attribut, date and time are the same.

To check one of this you have to compare Check and Same_Size/Same_Attribut/Same_DT. if the result is equal to the item you compare it to then it is the same, else it is not.

Get the number of error(s) in the compare

Function GetCompareErrNum(FileInfo : TFileInfo) : Longint

To use this function you’ll have to open a compare result file with the OpenCompareFile. The only parameter is the TFileInfo record which you give when you open the compare file. It give you the number of differences that would have occur in the compare. It result of this number.

Get the postion and the difference in char after compare

Function GetCompareErrRec(FInfo : TFileInfo; Pos : LongInt; Var CompRec : TCompRec) : Byte

To use this function you would have first use the OpenCompareFile function. This function need the TFileInfo record that you gave in the opening of the file, the position of the difference record IN THE COMPARE FILE NAME, and a variable of type TCompRec. this last variable will report the position in both file, the char in the first file, and the one in the second file.

Close a compare file result

Procedure CloseCompareFile(FileInfo : TFileInfo)

This function Close a compare result file. It must have been open with OpenCompareFile. The variable required is the same you gave when you openned the file.

�
eg:	Program CompareAFile

		Uses _File95, WinCrt;

		Var Source, Dest : String;

		 B : Byte;

		 Check : Word;

		 LI : LongInt;

		 CompRec : TCompRec;

		 Finfo : TFileInfo;

		Begin

		 Source := ‘c:\uAutoexec.bat’;

		 Dest := ‘c:\Autoexec.bak’;

		 B := CompareFile(Source, Dest, FInfo.ErrFile);

		 If B = 0 then

		 Begin

		 Writeln(‘No Error’)

		 OpenCompareFile(FInfo);

		 CheckCompareAttribut(FInfo, Check);

		 If Check and Same_S
