
Manual for pasdoc 0.6.20

Marco Schmidt

April 20, 2000

Contents

1 Introduction 3

2 Directives 3

3 Adding descriptions 4

4 Formatting your comments 5
4.1 abstract . 6
4.2 author . 6
4.3 created . 6
4.4 exclude . 6
4.5 lastmod . 6
4.6 link . 6

5 Switches 7
5.1 Documentation file format . 7

5.1.1 HTML . 7
5.1.2 LATEX . 7

5.2 Format-specific switches . 7
5.2.1 No headers and footers in LATEX . 7
5.2.2 No homepage link . 8

5.3 Output language switches . 8
5.3.1 Brasilian Portuguese . 8
5.3.2 Catalan . 8
5.3.3 Dutch . 8
5.3.4 English . 9
5.3.5 French . 9
5.3.6 German . 9
5.3.7 Spanish . 9

5.4 Other switches . 9
5.4.1 Include private fields, methods and properties 9
5.4.2 Output directory . 9
5.4.3 Read file names from file . 10
5.4.4 Change verbosity level . 10
5.4.5 Show help . 10

1

5.4.6 Show version . 10
5.4.7 Specify a directive . 10
5.4.8 Specify an include file path . 10
5.4.9 Specify directive file . 11

6 Known problems and planned features 11
6.1 Documentation of program files . 11
6.2 Records . 11
6.3 Enumeration types . 12
6.4 Non-unique identifiers . 12

7 Adding support for another output format 12

8 Adding support for another language 12

9 Credits 12

2

1 Introduction

Disclaimer: This manual is still under development, so it will contain unfinished sections and
sentences that won’t make sense. I’ll try to work on it more intensively later - promised!

Pasdoc creates documentation for Pascal unit files. Descriptions for variables, constants,
types (called ’items’ from now on) are taken from comments stored in the interface sections
of unit source code files, each comment must be placed directly before the item’s declaration.
This way, you as a programmer can easily generate reference manuals of your libraries without
having to deal with the details of document formats like HTML or LATEX. Moreover, you can
edit the source code and its descriptions in one place, no need to add or modify explanations
in other files. The rest is done automatically, you should write a script / batch file that does
the actual call to pasdoc... Download the latest version from

http://pasdoc.sourceforge.net.

For an example of source code that can be used with pasdoc, try the pasdoc sources themselves
- type pasdoc[.exe] -h *.pas to generate HTML documentation. This way, you can get
an impression of the looks of HTML or Tex documents and find out whether it matches your
taste.

You can compile pasdoc with Turbo Pascal, Borland Pascal or Free Pascal (FPC). Delphi
5 support will be added soon – the current version crashes for some reason. Free Pascal is a
GPL’d Pascal compiler, it is mostly compatible with Turbo Pascal and Delphi, available for
Linux x86, Win32, Dos and OS/2.

2 Directives

As you may know, Pascal allows for directives in the source code. These are comments that
contain commands for the compiler introduced by the dollar sign.

To distinguish different compilers, libraries or development stages, conditional directives
make it possible to make the compiler ignore part of the file. An example:

unit SampleUnit;

{$ifdef WIN32}
uses Windows, WinProcs;
procedure WindowMove(H: TWindowHandle; DX, DY: Integer);
procedure WindowPrintText(H: TWindowHandle; X, Y: Integer; S: String);
{$else}
procedure ClearConsole;
procedure PrintText(S: String);
{$endif}

{$define DEBUG}
{$undef OPTIMIZE}

The ifdef part checks if a conditional directive called WIN32 is currently defined (that
would be the case for Delphi or FPC/Win32). If this is true, all code until else or endif
are compiled, everything between else and endif is ignored. The contrary would apply if

3

the directive is not defined, e.g. under FPC/DOS or Borland Pascal. These statements can
also be nested. Using define and undef, a programmer can add and delete directives, in the
above example DEBUG and OPTIMIZE.

As pasdoc loads Pascal files in a similar way a compiler does, it must be able to regard
conditional directives. All define and undef parts are evaluated by pasdoc, modifying an
internal list of directives as source code is parsed.

Different from a real compiler, pasdoc starts with an empty list of conditional directives.
To get back to the above example, if you want to write documentation for the WIN32 code
part, you must explicitly tell pasdoc that you want this directive defined. You can do so using
the Specify directive or Add directives from file switch (see sections 5.4.7 and 5.4.9).

Next to those directives already presented, pasdoc only supports include files:

type TInteger = Integer;

{$I numbers.inc}

const MAX_FILES = 12;

In the above code, pasdoc would parse TInteger, get the include directive and start pars-
ing the include file numbers.inc. This file could contain other directives, types or whatever.
It is treated as it would be treated by any Pascal compiler.

Pascal compilers also know switch directives. These are boolean options, either on or off.
They can be checked similar to conditional directives with the $ifopt directive. Pasdoc does
not yet fully support these, but at least does not give up when it encounters one.

3 Adding descriptions

You can provide documentation for

• types,

• variables,

• constants,

• objects, classes, interfaces and

• units.

For each class, interface or object you can describe its fields, methods and properties.
Write a comment describing the item (from now on I’ll call this a description) before the
name of the item itself is declared. The only exception are units - write the comment before
the declaration of the unit keyword. Example:

type
{ This record type stores all information on a customer, including

name, age and gender. }
TCustomer = record

Name: String;

4

Age: Byte;
Gender: Boolean;

end;

{ Initializes a TCustomer record with the given parameters. }
procedure InitCustomer(Name: String; Age: Byte;
Gender: Boolean; var Customer: TCustomer);

An interesting feature of pasdoc is its ability to link items from within comments. If you
are currently writing about an array of integers TIntArray you’ve declared as a type, you
might mention that the number of values it can store is specified in the constant MAX INTS.
You’ve probably already documented this constant when you declared it earlier in the same or
another unit. Now, if you write @link(MAX INTS) instead of simply MAX INTS, pasdoc knows
that you are referring to another item it has found or will find in the list of units you gave
to it. After all input files have been parsed, pasdoc will start substituting all occurrences
of @link(something) with ”real” links. Depending on the type of output, these links could
be hyperlinks (in HTML) or page references (in LATEX). If the current output format is
HTML, the description of TIntArray would contain a link to MAX INTS. Viewing TIntArray’s
description in your favourite web browser you’d now be able to click on MAX INTS and the
browser would jump to the definition of MAX INTS, where you’d find more information on it.

If pasdoc cannot resolve a link (for whatever reasons), it will issue a warning to standard
output and will write the content of @link() to the documentation file, not as a link, but in
bold font.

4 Formatting your comments

In the description part for units, classes, interfaces and objects, you can include additional
information on the author, date created, date last modified and an abstract. These informa-
tion tags consist of the at character @, followed by an identifier like abstract and then text
included in parentheses. As an example, lets take the well-known DOS unit. Its top part could
look like this:

{
@abstract(provides access to file and directory operations)
@author(John Doe <doe@john-doe.com>)
@created(July 12, 1997)
@lastmod(June 20, 1999)
The DOS unit provides functionality to get information on files and
directories and to modify some of this information.
This includes disk space (e.g. @link(DiskFree)), access rights, file
and directory lists, changing the current directory, deleting files
and directories and creating directories.
Some of the functions are not available on all operating systems.
}
unit DOS;

Pasdoc would read this comment and store it with the unit information. After all Pascal
source code files you gave to pasdoc have been read, pasdoc will try to process all tags, i.e., all

5

words introduced by a @ character. If you want to use the character @ itself, you must write
it twice so that pasdoc knows you don’t want to specify a tag. Note in the example above
that the character does not need this special treatment within the parentheses, as shown in
the author tag at the example of the email address. Following a list of all tags that you may
use in pasdoc. A tag like @link must always be followed by an opening and then a closing
parenthesis, even if you add nothing between them.

4.1 abstract

For some item types like classes or units you may write very large descriptions to give an
adequate introduction. However, these large texts are not appropriate in an overview list.
Use the abstract tag to give a short explanation of what an item is about. One row of text
is a good rule of thumb. Of course, there should only be one abstract tag per description.
Abstract tags in every item but classes, interfaces, objects or units will be ignored.

4.2 author

For each author who participated in writing an item, one author tag should be added. How-
ever, author tags will only result in documentation output for classes, interfaces, objects and
units.

4.3 created

This tag should contain the date the item was created. At most one created tag should be in
a description. Created tags will only result in documentation output for classes, interfaces,
objects and units. There is no special format that must be followed.

4.4 exclude

If an exclude tag is found in a description, the item will not appear in the documentation.
As a logical consequence, no information except the exclude tag itself should be written
to the description. Whenever high-level items like units or classes are excluded from the
documentation process, all items contained in them will not appear as well, e.g. constants or
functions in an excluded unit or methods and fields in an excluded class.

4.5 lastmod

This tag should contain the date the item was last modified. At most one created tag should be
in a description. Lastmod tags will only result in documentation output for classes, interfaces,
objects and units. There is no special format that must be followed.

4.6 link

Use this tag to make your documentation more convenient to the reader. Whenever you
mention another item in the description of an item, enclose the name of the mentioned item
in a link tag, e.g.
@link(GetName).
This will result in a hyperlink in HTML and a page reference in LATEX.

6

5 Switches

This is a list of all switches (program parameters) supported by pasdoc. Enter pasdoc
--help at the command line to get this list. Make sure you keep the exact spelling of the
switches, pasdoc is case-sensitive. Most switches exist in two variations, a short one with a
single dash and a longer one with two dashes. You can use either switch to get the same
effect.

5.1 Documentation file format

After loading all Pascal source code files, pasdoc will write one or more output files, depending
on the output file format. Choose the output format according to your needs – you might
want to create several versions for

5.1.1 HTML

-h
--html

This switch makes pasdoc write HTML (Hypertext Markup Language) output. HTML
files are usually displayed in a web browser, available on all modern computer systems. It is
the default output file format. Several files will be created for this output type, one for each
unit, class, interface and object, additionally some overview files with lists of all constants,
types etc.

5.1.2 LATEX

-l
--latex

This switch makes pasdoc write output that can be interpreted using TEX(or its derivate
LATEX). A single output file docs.tex will be created. With latex docs.tex you will
create a file called docs.dvi which can then be converted to PostScript: dvips docs.dvi.
If you prefer Adobes PDF file format, you might create it from the PostScript output using
ps2pdf docs.ps or by using pdflatex docs.tex (the latter gives a nicer result). Instead of
hyperlinks like in HTML, links in the comments will result in numbers that refer to the page
where the linked item is explained.

5.2 Format-specific switches

The following switches can only be used with one output file format and are useless for the
others.

5.2.1 No headers and footers in LATEX

-j
--notexheaders

7

This switch will keep pasdoc from writing out standard declarations like begin{document}
when writing output for LATEX. This way, you will be able to include pasdoc’s output by
simply stating

\include(docs.tex)

in your LATEXdocument.

5.2.2 No homepage link

-n
--nohomepage

By default, pasdoc includes some information on itself and the document creation time
at the bottom of each generated HTML file. This switch keeps pasdoc from adding that
information.

5.3 Output language switches

You can specify the language that will be used for words in the output like Methods or Classes,
interfaces and objects. Your choice will not influence the status messages printed by pasdoc
to standard output – they will always be in English. Note that you can choose at most one
language switch – if you specify none, the default language English will be used.

5.3.1 Brasilian Portuguese

-b
--brasilian

Brasilian Portuguese will be used as language for headings and other text in the generated
documentation.

5.3.2 Catalan

-a
--catalan

Catalan will be used as language for headings and other text in the generated documen-
tation.

5.3.3 Dutch

-m
--dutch

Dutch will be used as language for headings and other text in the generated documenta-
tion.

8

5.3.4 English

-e
--english

English will be used as language for headings and other text in the generated documen-
tation. This is the default output language.

5.3.5 French

-r
--french

French will be used as language for headings and other text in the generated documenta-
tion.

5.3.6 German

-g
--german

German will be used as language for headings and other text in the generated documen-
tation.

5.3.7 Spanish

-i
--spanish

Spanish will be used as language for headings and other text in the generated documen-
tation.

5.4 Other switches

5.4.1 Include private fields, methods and properties

-p
--includeprivate

By default, private fields, methods and properties are not included in the documentation.
However, with this switch you can force pasdoc to include these items.

5.4.2 Output directory

-o DIRECTORY
--outputdirectory DIRECTORY

By default, pasdoc writes the output file(s) to the current directory. This switch defines
a new output directory – this makes sense especially when you have many units and classes,
they should get a subdirectory of their own, e.g. htmloutput.

9

5.4.3 Read file names from file

-s FILE
--sourcefilenames FILE

If you want pasdoc to write documentation for a large project involving many unit source
code files, you can use this switch to load the file names from a text file. Pasdoc expects this
file to have one file name in each row, no additional cleaning is done, so be careful not to
include spaces or other whitespace like tabs.

5.4.4 Change verbosity level

-v LEVEL
--verbosity LEVEL

Using this switch in combination with an integer number ≥ 0 lets you define the amount of
information pasdoc writes to standard output. The default level is 2, this switch is optional.
A level of 0 will result in no output at all.

5.4.5 Show help

-H
--help

This switch makes pasdoc print usage hints and supported switches to standard output
(usually the console) and terminates.

5.4.6 Show version

-V
--version

A typical GNU switch, this makes pasdoc print program name and version in one row
(e.g. pasdoc 0.6.2) to standard output. The program then terminates.

5.4.7 Specify a directive

-d DIRECTIVE
--directive DIRECTIVE

Adds DIRECTIVE to the list of conditional directives that are present whenever parsing a
unit is started. The list of directives will be adjusted whenever a directive like WIN32 or FPC
is defined or undefined in the source code.

5.4.8 Specify an include file path

-u DIR
--includefilepath DIR

10

Adds DIR to the list of directories where pasdoc will search for an include file. Whenever
an include file directive is encountered in the source code, pasdoc first tries to open that
include file by the name found in that directive. This will work in all cases where the current
directory contains that include file or when the file name contains a valid absolute or relative
path.

For some projects, include files are kept in a special directory which is given to the
compiler. To tell pasdoc where that directory is, use this switch.

5.4.9 Specify directive file

-f FILE
--directivefile FILE

Adds all directives that can be found in text file FILE. Pasdoc expects one directive per
text line. Same as adding each directive in that file using the -d switch.

6 Known problems and planned features

6.1 Documentation of program files

As was said before, only units are regarded by pasdoc. In an OOP environment for which
pasdoc was written, an application is usually a class overriding an abstract application class,
so all code that is ever needed in the program file looks like this:

program main;

uses myapp;

var App: TMyApplication;

begin
App := TMyApplication.Create;
App.Run;
App.Destroy;

end.

So there isn’t much to do for documentation. If you’re not using OOP, you could at least
try to move as much code as possible out of the main program to make things work with
pasdoc.

6.2 Records

Pasdoc cannot create separate documentation for members of a record. In object-oriented
programs, records will not appear most of the time because all encapsulated data will be part
of a class or object. However, you can give a single explanation on a record type which could
contain a description of all members.

11

6.3 Enumeration types

It is a good idea to list up all values an enumeration type can have in its description. Auto-
matic listing of all values may become an option of pasdoc in the future.

6.4 Non-unique identifiers

In some larger projects, identifiers may be used in different contexts, e.g. as the name for a
parameter and as a function name. Pasdoc will not be able to tell these contexts apart and
as a result, will create in the above-mentioned example links (at least in HTML) from the
argument name of a function to the type of the same name.

7 Adding support for another output format

If you want to write a different type of document than those supported, you can create another
unit with a new object type that overrides TDocGenerator from unit gendoc. You’ll have
to override several of its methods to implement a new output format. As examples, you
can always look at how the HTML and LATEXgenerators work. First of all, you must decide
whether your new output format will store the documentation in one (like LATEX) or multiple
files (like HTML).

8 Adding support for another language

Right now, seven languages are supported (Brasilian Portuguese, Catalan, Dutch, English,
French, German and Spanish). If you want to add support for another language, all you have
to do is

• get the latest version of pasdoc as source code,

• create a copy of the method TDocGenerator.GetEnglishString in the unit gendoc
and rename it to fit your language,

• translate each English string to the corresponding string in your language and

• send it to me!

That’s it... Some minor modifications will have to be added to main.pas and chars.pas, but
all you have to do is translate roughly 45 strings.

9 Credits

Thanks to Michael van Canneyt, Marco van de Voort, Dan Damian, Philippe Jean Dit
Bailleul, Jeff Wormsley, Johann Glaser, Gudrun Plato, Erwin Scheuch-Hellig, Iván Montes Ve-
lencoso, Mike Ravkin, Jean-Pierre Vial, Jon Korty, Martin Krumpolec, André Jager, Samuel
Liddicott, Michael Hess, Ivan Tarapcik, Marc Weustink, Pascal Berger, Rolf Offermanns and
Rodrigo Urubatan Ferreira Jardim for contributing ideas, bug reports and fixes, help and
code!

12

