[image: image1.png]TeeTree 1.01

The "TreeView" 100% native VCL replacement ... and more !

http://www.teemach.com

1) Introduction
2) Tee Tree features
3) Several Uses of Tee Tree
4) Properties, Methods and Events
5) Sample code
6) New features pending and known bugs.
7) Example pictures
8) Appendix: Class Hierarchy
Copyright (1998 by David Berneda. All Rights Reserved.

1) Introduction

Using the TeeChart object classes, a new specialized panel component (TTree)

allows drawing information in hierarchical format and offers advanced features

like designer editors, printing and print preview, exporting to several formats and more.

A TTree object consists of shapes and connections in a tree-oriented style.

That is, every shape can have zero or more Parents, and every shape can also

have zero or more Childs.

TeeTree is "super-small" !

The TeeTree component does not use any Windows "Common controls" DLL or ActiveX files.

In fact, it only weights around 100KB, with no additional DLL files or anything else !

You can compile this code right into your executable or as VCL packages.

Memory consumption is also extremely low.

TeeTree is a pure 100% native VCL library of classes.

Everything is a component, following Delphi and C++ Builder conventions.

TeeTree picture:

[image: image2.png]
2) TeeTree features

The TeeTree components can be used for many different kinds of applications,

like Organizational Charts, Flow-Charts, TreeView replacement, Diagramming,
Shape drawing editors, Network Charts, etc, for every need of a tree-enabled

multi-root drawing tool.

Main Features:

· It's a Tree-View "clone" 100% VCL.

Written in Borland Object Pascal (Delphi language), TeeTree can

implement many different kinds of "trees". One of this possible ways is

to emulate a classic TreeView, with most of the features a TreeView provides

and many more exclusive to TeeTree components.

· 100% Source code available.

That's it. Full sources. You can compile using source code to avoid

installation problems with packages and to debug up to the very exact

point inside the TeeTree code.

· Supports Delphi and C++ Builder.

TeeTree supports Delphi 4, 3 and C++ Builder 3.0

· Database DBTree component. Data-Aware.

The DBTree component automatically connects to standard DataSets

 (a Table, Query, etc), and offers 4 ways to load records and fill Tree nodes.

Supports parent-child fields in the datasets, as well as master-detail relationships.

· Integrated design-time Editor dialogs under IDE.

During Form design, all Tree and DBTree components can be edited by

double-clicking them. The Tree editor is a complete designer, allowing you

to add , modify, move, resize shapes, add connections, etc.

The editor-designer and all the associated dialogs can be used at run-time too.

· Printing methods and features

Several properties and methods help to obtain the desired printed output.

Printing margins, orientation, print preview dialog, print resolution,

partial printing and printing more than one Tree on the same page.

By default, printing is "wysiwyg" with automatic proportions adjustments.

· Print Preview Dialog for design-time and run-time.

This dialog can be used in your applications. It allows visual configuration

of paper margins and much more. It's the same dialog that comes with

TeeChart Pro 4.0

· Export to clipboard / file (BMP, Metafile EMF, JPEG)

The Tree can be exported to clipboard or saved into a file supporting

different graphic formats:

 BMP (classing Windows bitmap)

 WMF/EMF (standard / extended Windows metafile formats)

 JPEG (Internet standard jpeg)

· Save / Load to native binary file (*.TEE)

When saving or exporting to an static image is not enough, you

can do advanced things by saving your Trees to native files.

These files have by default the "*.TEE" extension, and are exactly

the same as classic DFM files produced by Delphi or C++ Builder.

These files can be used inside Web server machines by creating small

CGI or ISAPI programs to load a TEE file and save a JPEG image of it.

With the next coming TeeTree ActiveX version, saved trees will be

fully modifiable and live inside client HTML pages.

· 5% to 1000% Zoom and Scroll.

The Tree "Canvas" can be zoomed and scrolled.

 You can visualize enormous trees with small zooms, and get closer

 to any shape as big as the screen permits.

 At run-time, by default you can scroll a Tree by dragging the mouse

 with the right button pressed.

 Zoom can be animated in several steps.

· Gradient and Image background.

The Tree has properties to paint the background using a gradient filling between

two colors in multiple directions, or using a background image picture in tiled or

stretched modes.

Gradients and back images can also be printed.

· Multiple roots per Tree.

Wow !

More than one Tree can be inside the same Tree panel !

Every "root" can be moved and formatted independently.

Through simple array properties, roots and childs can be

manipulated by code.

· Multiple parents per node (network charts).

Every node can have zero or more parents.

This allows multiple connections between Tree nodes,

producing "network" charts.

· Multi-selection and Expansion / Collapsion

At run-time, node shapes can be selected and expanded / collapsed

by mouse or by code.

Selection can be "single" (only one node at a time) or multiple (more

than one node selected at the same time).

Multi-selection works across multiple roots too.

· Easy scrollbar integration

Two properties "HorizScrollBar" and "VertScrollBar" are provided

to display and configure scroll bars at bottom and right sides of the Tree.

· Drag and drop of Tree nodes.

Nodes can be dragged and optionally moved from one parent node

to another.

All drag-drop behaviour is under total control of the developer, using

standard "DragObjects". Drag and Drop examples show this in detail.

· In-place Editing for "TreeView like" mode.

The TreeView example shows how to add "in-place editing" to any Tree.

At a single-click, an Edit box is displayed allowing the end-user to modify

the node text.

· Checkboxes for each Node !

Using special pictures, each node can be configured to display a "checkbox"

nearby.

Every node's checkbox is independent and can be "checked" or "unchecked"

by code.

· Every node shape is an object at Delphi or C++ Builder Object Inspector, fully customizable.

Node Shapes have many properties to configure and events to use.

Shapes are not "visible" components, but they are accessible using Delphi or

C++ Builder Object Inspector window, by clicking on the top combobox.

· Custom positioning and sizing of node shapes.

Every node can be moved anywhere on the Tree and its size can be specified

independently. Every node has Auto-Position and Auto-Size properties that

automatically place and determine the shape size.

· Nodes allow Multi-line text.

Every node has a Text property of type "TStrings" which can be used to display

more than one line of text per node.

· Every node shape is fully customizable in format:

Many formatting properties:

Font, Font Shadow, Font inter-char spacing,

Color, Border, Pattern, Gradient, Shadow,

Cursor,

Shape Style (rectangle, ellipse, etc),
Text Alignment (vertical and horizontal), AutoSize and AutoPosition.
Image alignment (Automatic, Top, Left-Top, Right...)

Custom Image dimensions

· "Connections" between nodes are powerful.

Every node can be "connected" to any other by using "Connection" shapes.

Connections have formatting properties and can optionally display "arrows" at the

start and end points of the connection.

 Also customizable (Style, Pen, ArrowFrom, ArrowTo...).
 Connections are Auto-positioned, depending on the "From" and "To" shape's positions.

· "Cross-Box" to indicate a node has childs.

The Tree can draw a "cross-box" (a rectangle with a + / - sign inside)

near to each node to indicate if a node is a parent of other nodes, and also to

allow at run-time clicking it to Expand or Collapse a node.

 The "cross-box" shape is also customizable (Border, SignPen, Color)

· Selection formatting properties (Color, TextColor, Border)

At run-time, clicking shapes will by default select nodes.

The "Selected" property includes formatting attributes to customize how selected

shapes are painted.

· Animations

Nodes can be moved, resized, and changed formatting in real-time.
No flicker using a double-buffered internal bitmap screen.

· Many Events

Shapes: On selected, un-selected, clicked, double-clicked, expanded, collapsed...
 Trees: OnZoom, On Scroll, OnDraw, OnDragDrop, OnNewShape, OnNewConnection, OnMouse...
 Connections: On Click / Double-click of node connections and background...

· Allows copy / paste inside Delphi and C++ Builder IDE's.

As all nodes and connections are simply components, this allows copying and pasting

Trees inside Delphi or C++ Builder IDEs.

· Custom Drawing

The Tree "Canvas" property is fully 3D API that, when used inside the Tree AfterDraw

event, allows drawing 2D and 3D primitives over the current Tree contents.

Printing, print preview, rotation , zoom and scroll are also supported with custom drawings.

· Allows Form inheritance.

Thanks to the previous feature, Form inheritance is supported.

· Deployment.

 No DLL's required. All code directly into your executables if desired.
 Package compilation is also available. (two packages: Tee43 and TeeTree3).

How to create a Tree with code ?

Adding the above picture nodes is done with this code:

 With Tree1.AddRoot('Continents') do

 begin

 Brush.Color := clAqua;

 With AddChild('Africa') do
 begin

 AddChild('Nigeria');

 AddChild('Morocco');

 end;

 AddChild('America');

 With AddChild('Asia') do
 begin

 Font.Size := 12;

 Font.Style := [fsItalic, fsBold];

 end;

 AddChild('Australia');

 With AddChild('Europe') do
 begin

 Brush.Color := clLime;

 Border.Color := clBlue;

 AddChild('France');

 AddChild('Norway');

 With AddChild('Spain') do
 begin

 AddChild('Catalonia');

 end;

 end;

 end;

One Tree component can hold more than one "root" at the same time:

[image: image3.png]
More than one Tree can share the same space.

This is done by code simply adding new "roots":

With Tree1.AddRoot('Products') do

begin

 AddChild('Chairs');

 ...

end;

All shapes can be customized in background color, gradient, background image, text, multi-line text, font color, style and size, shape style, image, and connection lines style.

The Tee Tree component has an special "design-mode":

Tree1.Designing:=True ;

In this design-mode, the Tree allows mouse selection, moving and resizing of shapes:

[image: image4.png]
More than one shape (multi-selection) can be selected at the same time pressing the Ctrl and Shift keys when clicking them.

Shapes can also be moved or resized:

[image: image5.png]
In addition, shapes support individual formatting properties, like font style, colors and so on.

Every node shape can have zero parents, one parent or more than one parent:

[image: image6.png]
The Tee Tree component supports scroll-bars, Zoom and Scroll :

[image: image7.png]
And the same Print - Preview dialog that TeeChart uses:

[image: image8.png]
Tee Tree components can be saved and loaded to native *.Tee files , and they can also be exported to Bitmap, Metafile (WMF), Enhanced Metafile (EMF) and JPEG image formats.

Expanding and collapsing Tree nodes can be done by code or by mouse, double-clicking the Node shape or the small "+" signs.

By default, connecting nodes is done by drawing a dotted line.

Every "connection" line has properties to format color, style and it can draw small "arrows".

[image: image9.png]
The Tee Tree component can be edited at design-time and run-time using two editor dialogs:

A) The Tree editor dialog

[image: image10.png]
This editor can be displayed at run-time with this code:

Uses TreeEd;

EditTree(Self, Tree1);

B) The Node Editor dialog

Every node shape can be edited with this dialog:

Node Format:

[image: image11.png]
Node Text:

[image: image12.png]
Node Image:

[image: image13.png]
Node Gradient:

[image: image14.png]
Node Shadow:

[image: image15.png]
Node Position and Size:

[image: image16.png]
The Node shape Editor can be displayed at run-time with this code:

Uses TreeShEd;

EditTreeShape(Self,TreeShape1);

Speed:

The TeeTree component is optimized to draw the less number of things as possible.

Better video cards and CPU can improve scrolling and zoom speed.

The Tree size in pixels (Width x Height) and number of nodes affects performance proportionally.

(A half size Tree is twice fast, half number of nodes means double speed).

The Tree BufferedDisplay property can be set to False to (although introducing flicker),

speed up drawings when using a big Tree size.

Assignment:

Every Node Shape and Tree can be assigned to another Node Shape or Tree.

This allows copying / pasting using Delphi and C++Builder IDE, and Form Inheritance.

TreeShape23.Assign(TreeShape12);

3) Several uses of Tee Tree component

For any hierarquical organization of data, like files on a Windows system, datasets on a DataModule, pages in a web server, products in a product database table, network machines, etc.

The examples include show different configurations of TeeTree components, and show all features like in-place editing, drag and drop, TreeView emulation, selection, moving and resizing shapes, etc.

4) Properties, Methods and Events:

Both the Tree and all Node Shapes have many properties to customize, useful methods and events to notify shape clicks, selection, expansion / collapsion, etc.

There are 3 key component classes:

1. Tree

2. Shapes

3. Connections

Each class corresponds to this VCL class name:

Object
VCL Class Name
Ancestors

Tree
TTree and TDBTree
TCustomTree and TCustomDBTree

Shapes
TTreeNodeShape
TCustomTreeShape

Connections
TTreeConnection
TCustomTreeElement

Internally, there is an hierarchy of classes with abstract ancestors.

Let's start with the Tree components, looking into their properties, methods and events.

TTree and TDBTree, properties methods and events.

We can divide everything in several groups:

Panel

These are intended to customize the Tree background:

Property Name
Type
Explanation

BackImage
TPicture
The Tree background can be filled using a picture (bitmap, metafile, jpeg, etc).

BackImageMode default pbmStretch
TTeeBackImageMode
When chosing a picture to fill the Tree background, it can be displayed "tiled" , "centered" or "stretched".

GridColor

(default clNone)
TColor
The Color used to paint small dots over the background to simulate a "grid". The Tree designer automatically shows grid points. Setting color to "clNone" disables grid.

GridStep

(default 10)
Integer
The number of pixels between grid points.

Gradient
TShapeGradient
Instead of a picture, the Tree background can be filled using a Gradient between two colors.

Printing

Used to prepare and send a Tree or DBTree component to the printer.

Property name
Type
Explanation

PrintProportional

(default True)
Boolean
The same proportions between Tree width and height are used when printing.

So, paper margins are automatically calculated so the final paper output looks as much as possible as the screen Tree.

PrintResolution

(default TeeNormalPrintDetail)
Integer
When set to a negative number (for example -100), the resulting printed Tree will use 100%

thinner printer pixels for font sizes and line widths. It's like printing a 100% bigger Tree.

Printing
Boolean
Returns if the Tree is now being printed.

It's false when drawing to screen or clipboard.

PrintMargins
TRect
Left,Top,Right and Bottom percents of paper margins, against paper width and height.

Printing methods:

Method name
Explanation

Print
Sends a Tree to the printer, using current printing properties like orientation, margins, etc.

PrintRect (R : TRect)

Can be used to print a Tree at the specified rectangle coordinates, in printer pixels units.

PrintLandscape

Sends a Tree to the printer setting the paper orientation to "landscape". (horizontal)

PrintPortrait

Sends a Tree to the printer setting the paper orientation to "portrait" (vertical)

PrintOrientation
Changes the paper orientation, prints the Tree and then restores the previous orientation.

PrintPartial

Allows you to print more than one tree on the same page, or any text or drawings in the same page. The printer job (BeginDoc, EndDoc) should be started and finished by the programmer.

Print Previewer:

The code below shows the print preview dialog.

The last "True" parameter specifies if the Tree background (panel color, gradient, etc) will

be also printed or not.

Uses TreeEd ;

TreePreview(Self, Tree1, True);

Printing Global variables:

Use of this variables applies to all Trees and DBTrees, because they are global.

Variable
Type
Explanation

PrintTeePanel

(default False)
Boolean
When True, the background color and bevels will also be printed.

TeeClipWhenPrinting

(default True)
Boolean
When False, no clipping will be done when printing. Some printer drivers can not support clipping.

TeeClipWhenMetafiling (default True)
Boolean
When False, no clipping will be done when creating metafiles or copying to clipboard.

Nodes

Public arrays and lists returning the nodes, shapes and connections of a Tree or DBTree.

Using this list, you can traverse a node or query it's childs, parents and properties.

Property Name
Type
Explanation

Designing
Boolean
When Designing is True, the Tree allows selecting shapes, moving shapes and resizing shapes.

When it's False, shapes can be double-clicked to expand / collapse all child nodes.

Shapes
TNodeShapeList
This standard VCL TList object contains all Node Shapes.

Every Node Shape is fully customizable.

Connections
TConnectionList
This standard VCL TList object contains all "line shapes" that connect nodes.

Every "connection" is a fully customizable shape.

Roots
TNodeShapeList
This property stores the list of "roots". A node shape is considered to be a "root" if it has no parents.

CrossBox
TTreeCrossBox
This object has format properties that control how to draw a small "checkbox" near to shapes to indicate they have childs and to allow expanding

or collapsing child nodes.

Selected
TSelectedShapeList
This standard VCL TList object contains all "selected shapes".

Selecting shapes can be done using the mouse and clicking shapes.

Multi-selection of nodes is done by using the Ctrl and Shift keys when clicking shapes.

Nodes can also be selected by code setting the shape Selected property to True.

These methods work together with the above properties:

Method Name
Explanation

Procedure Clear

Calling Clear removes all node shapes from the Tree, including roots.

Function AddRoot(Const RootText:String):TTreeNodeShape

This function creates and returns a new "root" shape. "Roots" are nodes without any

parent.

Function AddRootObject(Const RootText:String; Data:Pointer):TTreeNodeShape

This function creates and returns a new "root" shape. "Roots" are nodes without any

parent. The Data parameter is assigned to the Tag property.

Function AddShape(X,Y:Integer; Const AText:String; AParentShape:TTreeNodeShape) : TTreeNodeShape

This function creates and returns a new node shape. The AParentShape parameter points to this new node Parent,

if any.

Function AddShapeClass(X,Y:Integer; Const AText:String; AParentShape : TTreeNodeShape;

 AClass:TTreeNodeShapeClass):TTreeNodeShape
This function is similar to AddShape. It allows specify the node object "Class" to create and add to the Tree.

See also the TTreeNodeShape component properties, methods and events.

Shapes can also create new nodes (childs and brothers).

Other Tree properties:

These properties are inherited from a base class TCustomTeePanel.

They are shared by the TeeChart 4.0 components.

Property Name
Type
Explanation

HorzScrollBar
TTeeScrollBar
The optional bottom side scroll-bar

VertScrollBar
TTeeScrollBar
The optional right side scroll-bar

BufferedDisplay
Boolean
When True, no flicker occurs. An internal bitmap is used as a buffer. When false, flicker occurs but speed might be faster than using a buffer bitmap.

SingleSelection
Boolean
When false, allows multiple selection of nodes using the mouse or by code (shape Selected = True)

Canvas
TCanvas3D
The 3D Canvas class containing all 2D and 3D drawing methods.

DelphiCanvas
TCanvas
The original panel Canvas (standard VCL TCanvas) object. Can be used as a "back door" for things that the normal Canvas property does not support.

OriginalCursor
TCursor
Set OriginalCursor to the Cursor you want to show when moving the mouse over a Tree component.

View3DOptions
TView3DOptions

(Zoom, Scroll, Rotation, etc)
These properties control Zoom and Scroll of the Tree shapes.

AllowZoom (default True)
Boolean
Allows dragging a rectangle to zoom it.

AllowPanning (default True)
Boolean
Allows dragging a Tree with the right mouse button to scroll its shapes.

AnimatedZoom (default False)
Boolean
When True, zoom is performed in several middle steps to simulate animation.

AnimatedZoomSteps (default 3)
Integer
The number of middle steps to use when AnimatedZoom is True.

Tree Events:

Event name
Explanation

OnAfterDraw
Occurs each time after the Tree is displayed.

OnClick
Occurs when a Tree is clicked.

OnClickBackground
Occurs when a Tree is clicked but not at any shape.

OnClickConnection
Occurs when a connection line is clicked

OnClickShape
Occurs when a node shape is clicked.

OnDblClick
Occurs when a Tree is double-clicked

OnExpandedCollapsed
Occurs after a node has been expanded or collapsed.

OnExpandingCollapsing
Occurs before a node is expanded or collapsed.

OnNewConnection
Occurs when a new connection line is added to the Tree.

OnNewShape
Occurs when a new shape is added to the Tree.

OnSelectShape
Occurs when a shape is "selected".

OnScroll
Occurs when a Tree is scrolled.

OnUnSelectShape
Occurs when a shape is "unselected".

OnUndoZoom
Occurs when zoom is undone.

OnZoom
Occurs when a Tree is zoomed.

TTree and TDBTree components also publish inherited properties from

standard VCL TPanel component. Please see Delphi or C++ Builder help files

for details:

Align BevelInner BevelOuter BevelWidth
BorderWidth BorderStyle Color DragCursor
DragMode Enabled ParentColor ParentShowHint
PopupMenu ShowHint TabOrder TabStop

Visible

and the default VCL TPanel events, like

OnDragDrop
OnEnter
OnExit
OnMouseDown

OnMouseMove
OnMouseUp
OnResize

Node Shape properties:

Position and Size properties

Property
Type
Description

AdjustedRectangle
TRect
Space occupied by the shape and the shape image.

AutoSize
Boolean
When True, the X1 and Y1 coordinates are calculated based on the text font size and the text lines.

AutoPosition.Left AutoPosition.Top
Boolean

Boolean
When True, the X0 and /or Y0 coordinates are calculated based on the shape's Parent position.

X0
Integer
The pixel coordinate of the left shape side.

X1
Integer
The pixel coordinate of the right shape side.

XCenter
Integer
The pixel coordinate of the shape horiz. center.

Y0
Integer
The pixel coordinate of the top shape side.

Y1
Integer
The pixel coordinate of the bottom shape side.

YCenter
Integer
The pixel coordinate of the shape vertical center.

Formatting properties:

Property
Type
Description

Border
TChartPen
The pen used to draw the shape perimeter.

Brush
TBrush
The brush used to fill the shape interior.

Cursor
TCursor
The cursor used when mouse is over a shape.

Font
TFont
The font used to draw the shape text

Gradient
TShapeGradient
The shape background filling effect.

GradientClip
Boolean
When False, gradient fills always a rectangle.

HorizTextAlign
THorizTextAlign
The horizontal position adjustment for each line of the shape text.

Image
TPicture
The shape picture

ImageAlignment
TTreeImageAlignment
The position for the shape picture

ImageHeight
Integer
Custom height for shape picture.

ImageWidth
Integer
Custom width for shape picture.

ImageIndex
TTreeNodeImageIndex
The internal index for a "standard" shape image.

Selected
Boolean
When True, draws the shape with special format.

Shadow
TTeeShadow
Contains properties to define a shape shadowing.

Style
TTreeShapeStyle
The kind of drawing shape to draw.

Transparent
Boolean
When True, gradient and brush are not used.

Text
TStrings
Zero or Several lines of text to display.

VertTextAlign
TVertTextAlign
The vertical position of the shape text.

Visible
Boolean
Is True when the shape Parent is Expanded and Visible.

Relation-ship properties:

Property
Type
Description

BrotherIndex
Longint
The shape index number in the Parent Childs list.

Childs
TNodeShapeList
The list of shapes that are child nodes.

Connections
TConnectionList
The list of connection lines between this shape and others.

Expanded
Boolean
When True, the shape Childs are displayed.

Parent
TTreeNodeShape
The shape owning this shape. (In the Childs property)

Parents
TNodeShapeList
The list of other shape with connection lines to this shape.

PreviousBrother
TTreeNodeShape
The shape with the previous BrotherIndex

Tree
TCustomTree
The Tree containing this shape.

Node Shape methods:

Function AddBrother(Const AText:String):TTreeNodeShape;

Creates a new node shape, sets the Text parameter, and adds the shape as a brother of the

current shape. Returns the newly created shape object.

Function AddChild(Const AText:String):TTreeNodeShape;

Creates a new node shape, sets the Text parameter, and adds the shape as a child of the

current shape. Returns the newly created shape object.

Function AddChildObject(Const AText:String; Data:Pointer):TTreeNodeShape;

Creates a new node shape, sets the Text parameter, and adds the shape as a child of the

current shape. Allows specifying a "pointer" variable as a "tag" object for this shape.

 Returns the newly created shape object.

Function AddConnection(AToShape:TTreeNodeShape):TTreeConnection;

Creates a new connection object, sets the "From" property to the current shape and the

"To" shape to the AToShape parameter. Connects this shape and the "AToShape" parameter.

Procedure Assign(Source:TPersistent); override;

Copies all properties (but not childs or parents) from another shape to this shape.

Procedure BringToFront;

Moves the shape to the top of all other shapes.

Procedure CalcXYCross(AParent:TCustomTreeShape; Var P:TPoint);

Returns the point where a shape "cross-box" should be displayed.

Function CrossBoxClicked(x,y:Integer):Boolean;

Returns True when the XY coordinates are inside this shape "cross-box".

Procedure DoDraw;

Draws the shape, all its connections and all its childs, recursively.

Function GetPicture:TPicture; override;

Returns the picture object containing the shape "Image" or "ImageIndex" properties.

Can return nil if the shape has no image.

Function MaxHeightExpandedChilds:Integer;

Returns the position in screen pixels of the shape in all child shapes with a higher

vertical (Y) position. Adds the shape height to the position too.

This method is used to move shapes vertically down when expanding nodes on a

classic TreeView configuration.

Procedure MoveRelative(OfsX,OfsY:Integer; MoveChilds:Boolean);

Increments the shape coordinates by OfsX and OfsY parameters, so the shape is moved to

another Tree location. When MoveChilds is True, all child shapes are also moved recursively.

Procedure ReCalcPositions;

Forces the shape and all of its child shapes to recalculate the X0 and Y0 position properties.

When the shape AutoPosition is False, this methods does nothing. When True, the X0 and Y0

properties are calculated based on the shapes's Parent position and size.

Procedure Resize(ACorner:TTreeShapeHandle; DeltaX,DeltaY:Integer);

Changes the shape horizontal and vertical size. Increments or decrements the X1 and Y1 properties

by the "DeltaX" and "DeltaY" parameters. The AutoSize property is set to False in case it was True.

Childs are not resized, but childs with AutoPosition True can be moved as a result of resizing

the parent shape.

Procedure SelectChilds;

For all shape Childs (recursively), sets the Selected property to True. This happens for example

when selecting a shape at the Tree editor and pressing the Ctrl key and clicking the shape.

Procedure SendToBack;

Moves the shape to the bottom of all other shapes (sends it to the back).

Procedure SortChildsText(AscendingOrder,IgnoreCase:Boolean);

This method will order the shape Childs based on their Text.

It can be in Ascending or Descending order and text case (upper, lower) can be ignored

or not during text comparison. This method is not recursive.

Function Clicked(x,y:Integer):Boolean; virtual;

Returns True when the XY coordinates are inside the shape bounds.

Procedure Draw; virtual;

Displays the shape, shape Text, shape gradient, shadow, image, and crossbox.

This method does not draw child shapes, nor connections. See also DoDraw method.

Procedure DrawHandle(X,Y:Integer);

Displays a small square (a "handle") at the specified XY position.

Procedure DrawHandles; virtual;

Displays the corresponding small squares ("handles") around the shape.

This "handles" can be used to click and drag to move or resize a shape when the Tree

Designing property is True.

Function GetResizingHandle(x,y:Integer):TTreeShapeHandle;

Returns a "handle" position if the XY coordinates are inside a "handle" small square.

Procedure GetConnectionPos(AShape:TCustomTreeShape; Var AX,AY:Longint);

Returns the most adequate "AX" and "AY" pixel coordinates when connecting a line to the "AShape"

parameter. The coordinates can be the shape corners or middle sides.

Procedure ForceRecalcSize;

If the shape has the AutoSize property to True, this method will recalculate the shape X1 and Y1

properties based on the shape's Parent position and size.

Function ImageRect(AImage:TPicture):TRect;

Returns the bounding rectangle in pixel coordinates for the shape AImage parameter.

Procedure RecalcSize;

Recalculates the shape size when the AutoSize property is True *and* when it's necessary.

Procedure Repaint; virtual;

Forces the Tree to redraw again. If called several times, only the last time really executes

a Tree redisplay, while the previous ones are executed inmediately.
Node shape Events:

OnClick: TClickShapeEvent
Occurs when a shape is clicked.

OnDblClick: TClickShapeEvent
Occurs when a shape is double-clicked.

5) Sample code and FAQ

Q: How can I add nodes to a Tree component ?

A: You need first to add at least a "root" node.

A "root" node is the first one in the Tree. The one that has no parent.

Var tmp:TTreeNodeShape ;

tmp := Tree1.AddRoot('Root');

Then you can add "child" nodes to it:

tmp.AddChild('Child1');

tmp.AddChild('Child2');

tmp.AddChild('Child3');

tmp.AddChild('Child4');

Adding nodes might be easier using the "with" keyword:

With Tree1.AddRoot('Root') do

begin

 AddChild('Child1');

 AddChild('Child2');

 AddChild('Child3');

 ...

end;

Q: How can I clear and remove all nodes ?

A: Tree1.Clear ;
Q: How can I remove a node ?

A: You can simply destroy it:

Tree1.Shapes[0]. Free ;
Q: How can I obtain a list of a node Childs ?

Every node has a "Childs" TList property you can traverse:

Var ANode : TTreeNodeShape ;

 t : Integer;

ANode := Tree1[0];

for t:= 0 to ANode.Childs.Count -1 do

 ANode.Childs[t].Brush.Color:=clRed;

Q: How can I traverse a root of nodes recursively ?

A: This code fills a Memo1 with all nodes from a given node (root) :

procedure TForm1.Button2Click(Sender: TObject);

 Procedure AddTreeMemo(Const Separator:String; Node : TTreeNodeShape);

 var t : Integer;

 begin

 Memo1.Lines.Add(Separator + Node.Text[0]);

 for t:=0 to Node.Childs.Count-1 do
 AddTreeMemo(Separator+' ', Node.Childs[t]);

 end;

begin

 Memo1.Clear;

 AddTreeMemo('', Tree1.Roots[0]);

end;

Q: How many nodes has a Tree ? How can I access them ?

A: Use the Tree "Shapes" property:

for t:=0 to Tree1.Shapes.Count-1 do

 Tree1[t].Gradient.Visible := True;

Q: Can I show the Tree editor at run-time ?

A: Yes. Use this code:

Uses TreeEd;

EditTree(Self, Tree1);

Q: Can I show the Tree Print Preview at run-time ?

A: Yes. Use this code:

Uses TreeEd;

TreePreview(Self, Tree1);

Q: Can I show the editor dialog for any node at run-time ?

A: Yes. Use this code:

Uses TreeShEd;

EditTreeShape(Self, Tree1.Shapes[5]);

or...

Uses TreeShEd;

EditTreeShape(Self, TreeShapes3);

Q: How can I expand a node ?

A: Every node shape has a "Expanded" boolean property:

TreeShape22.Expanded:=True;

Q: How can I select a node ?

A: Every node shape has a "Selected" boolean property:

TreeShape33.Selected:=True;

Q: How can I un-select all selected nodes ?

A: Use the Tree Selected object:

Tree1.Selected.Clear;

Q: Can I change the font color of the selected nodes ?

A: Yes. The Tree Selected object has properties for this:

Tree1.Selected.TextColor := clLime;

Q: Can I store "tag" or "objects" with each shape ?

A: Yes. Every node shape has a "Tag" integer property.

Using the AddChildObject method, the "object" is stored

at "Tag" property automatically.

6) New features pending:

See also the "Future.txt" file included with TeeTree.

TeeTree:

· Add Import / Export of nodes text to ASCII text files

· Add "Curved" and "3 lines" connections style

· More Examples to explain more features.

Designer dialog:

· Improve Alignment and Resizing palette

· Snap to grid.

· Improve copy / pasting.

· Add in-place editing.

· Add toolbar(s) palette(s).

Know bugs:

· Zooming by mouse is not working fine.

· Arrows in connections do not rotate with straight lines.

· Copying / pasting sub-nodes in the editor is not working fine.

7) Example pictures

Some pictures of several different Tree components. This pictures

can be found at the TeeTree1.dpr example project.

Free-hand Tree:

[image: image17.png]
A Windows folders Tree:

[image: image18.png]
Database Tree:

[image: image19.png]
Two trees (two roots):

[image: image20.png]
Organizational Tree:

[image: image21.png]
Tree with CheckBoxes:

[image: image22.png]
Flow-Chart Tree:

[image: image23.png]
8) Apendix A:

TeeTree 1.01 Class Structure

==============================

 |-- ChartException

 |-- TBrushDialog

 |-- TChartFontObject

 |-- TChartPen

 | |-- TChartArrowPen

 | |-- TChartAxisPen

 | |-- TChartHiddenPen

 | |-- TDarkGrayPen

 | |-- TDottedGrayPen

 | |-- TTreePen

 | | |-- TTreeConnectionPen

 |-- TChartPreview

 |-- TConnectionArrow

 | |-- TConnectionArrowFrom

 | |-- TConnectionArrowTo

 |-- TConnectionArrowBrush

 |-- TConnectionEditor

 |-- TCustomTeeGradient

 | |-- TChartGradient

 | |-- TShapeGradient

 |-- TCustomTeePanel

 | |-- TCustomTeePanelExtended

 | | |-- TCustomTreePanel

 | | | |-- TCustomTree

 | | | | |-- TTree

 | | |-- TDraw3D

 |-- TCustomTreeElement

 | |-- TCustomTreeShape

 | | |-- TTreeNodeShape

 | |-- TTreeConnection

 |-- TForm1

 |-- TNodeShapeList

 | |-- TSelectedShapeList

 |-- TNodeTreeEditor

 |-- TPenDialog

 |-- TTeeAboutForm

 |-- TTeeCanvas

 | |-- TCanvas3D

 | | |-- TTeeCanvas3D

 |-- TTeeExportForm

 |-- TTeeFont

 |-- TTeePreviewPage

 |-- TTeeScrollBar

 |-- TTeeWinControl

 |-- TTreeClipboard

 |-- TTreeCompEditor

 |-- TTreeConnectionList

 |-- TTreeEditor

 |-- TTreeNodeCrossBox

 |-- TTreeShapeDrag

 |-- TView3DOptions

 |-- TZoomPanningRecord

