
JBoss Cache Tree Cache 1.4.1

A Structured, Replicated,
Transactional Cache

4.3
Ben Wang, Bela Ban, Manik Surtani, Brian Stansberry, Daniel

Huang
ISBN: N/A

Publication date:

This book is about the JBoss Cache Tree Cache.

JBoss Cache Tree Cache 1.4.1

JBoss Cache Tree Cache 1.4.1: A Structured, Replicated,
Transactional Cache
Author Ben Wang, Bela Ban, Manik

Surtani, Brian Stansberry,
Daniel Huang

Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

JBoss Cache Tree Cache 1.4.1

Preface .. vii
1. Introduction ... 1

1. What is a TreeCache? .. 1
2. TreeCache Basics .. 1

2. Architecture ... 3
3. Basic API .. 5
4. Clustered Caches .. 9

1. Local Cache .. 9
2. Clustered Cache - Using Replication ... 9

2.1. Replicated Caches and Transactions .. 9
2.2. Buddy Replication ..10

3. Clustered Cache - Using Invalidation ..14
5. Transactions and Concurrency ..15

1. Concurrent Access ..15
1.1. Locks ..15
1.2. Pessimistic locking ...15
1.3. Optimistic locking ...17

2. Transactional Support ...18
2.1. Example ..19

6. Eviction Policies ..21
1. Eviction Policy Plugin ..21
2. TreeCache Eviction Policy Configuration ..36
3. TreeCache LRU eviction policy implementation ...39
4. TreeCache FIFO eviction policy implementation ..39
5. TreeCache MRU eviction policy implementation ..40
6. TreeCache LFU eviction policy implementation ...40

7. Cache Loaders ...43
1. The CacheLoader Interface ...48
2. Configuration via XML ...49
3. Cache passivation ...52
4. CacheLoader use cases ..53

4.1. Local cache with store ..53
4.2. Replicated caches with all nodes sharing the same store53
4.3. Replicated caches with only one node having a store54
4.4. Replicated caches with each node having its own store54
4.5. Hierarchical caches ..55
4.6. TcpDelegatingCacheLoader ..56
4.7. RmiDelegatingCacheLoader ...58

5. JDBC-based CacheLoader ..59
5.1. JDBCCacheLoader configuration ..60

8. TreeCacheMarshaller ..63
1. Basic Usage ...63
2. Region Activation/Inactivation ..64

2.1. Example usage of Region Activation/Inactivation67
3. Region Activation/Inactivation with a CacheLoader ..69
4. Performance over Java serialization ...70

v

5. Backward compatibility ..70
9. State Transfer ...71

1. Types of State Transfer ...71
2. When State Transfer Occurs ..72

10. Version Compatibility and Interoperability ...75
11. Configuration ..77

1. Sample XML-Based Configuration ...77
2. Definition of XML attributes ..81
3. Overriding options ...85

12. Management Information ...87
1. JBoss Cache MBeans ...87
2. JBoss Cache Statistics ..87
3. Receiving Cache Notifications ..89
4. Accessing Cache MBeans in a Standalone Environment91

13. Running JBoss Cache within JBoss Application Server ..93
1. Running as an MBean ...93

Index ...95

JBoss Cache Tree Cache 1.4.1

vi

1 http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
2 http://labs.jboss.com/jbosscache
3 http://jira.jboss.com
4 http://lists.jboss.org
5 http://www.jboss.com
6 http://www.jboss.com/products/index

Preface

This and its accompanying documents describe JBoss Cache's TreeCache, a tree-structured
replicated, transactional cache. JBoss Cache's PojoCache, an "object-oriented" cache that is
the AOP-enabled subclass of TreeCache, allowing for Plain Old Java Objects (POJOs) to be
inserted and replicated transactionally in a cluster, is described separately in a similar user
guide.

The TreeCache is fully configurable. Aspects of the system such as replication mechanisms,
transaction isolation levels, eviction policies, and transaction managers are all configurable. The
TreeCache can be used in a standalone fashion - independent of JBoss Application Server or
any other application server. PojoCache on the other hand requires both TreeCache and the
JBossAOP standalone subsystem. PojoCache, documented separately, is the first in the market
to provide a POJO cache functionality.

This document is meant to be a user guide to explain the architecture, api, configuration, and
examples for JBoss Cache's TreeCache. Good knowledge of the Java programming language
along with a string appreciation and understanding of transactions and concurrent threads is
presumed. No prior knowledge of JBoss Application Server is expected or required.

If you have questions, use the user forum 1 linked on the JBoss Cache website2 . We also
provide a mechanism for tracking bug reports and feature requests on the JBoss JIRA issue
tracker 3 . If you are interested in the development of JBoss Cache or in translating this
documentation into other languages, we'd love to hear from you. Please post a message on the
user forum or contact us on the developer mailing list 4 .

JBoss Cache is an open-source product based on LGPL. Commercial development support,
production support and training for JBoss Cache is available through JBoss Inc.5 JBoss Cache
is a product in JBoss Professional Open Source JEMS6 (JBoss Enterprise Middleware Suite).

vii

http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://labs.jboss.com/jbosscache
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://labs.jboss.com/jbosscache
http://jira.jboss.com
http://jira.jboss.com
http://jira.jboss.com
http://lists.jboss.org
http://lists.jboss.org
http://www.jboss.com
http://www.jboss.com
http://www.jboss.com/products/index
http://www.jboss.com/products/index

viii

Introduction

1. What is a TreeCache?

A TreeCache is a tree-structured, replicated, transactional cache from JBoss Cache. TreeCache
is the backbone for many fundamental JBoss Application Server clustering services, including -
in certain versions - clustering JNDI, HTTP and EJB sessions, and clustering JMS.

In addition to this, TreeCache can be used as a standalone transactional and replicated cache
or even an object oriented data store, may be embedded in other J2EE compliant application
servers such as BEA WebLogic or IBM WebSphere, servlet containers such as Tomcat, or even
in Java applications that do not run from within an application server.

2. TreeCache Basics

The structure of a TreeCache is a tree with nodes. Each node has a name and zero or more
children. A node can only have 1 parent; there is currently no support for graphs. A node can be
reached by navigating from the root recursively through children, until the requested node is
found. It can also be accessed by giving a fully qualified name (FQN), which consists of the
concatenation of all node names from the root to the node in question.

A TreeCache can have multiple roots, allowing for a number of different trees to be present in a
single cache instance. Note that a one level tree is essentially a HashMap. Each node in the tree
has a map of keys and values. For a replicated cache, all keys and values have to be
Serializable. Serializability is not a requirement for PojoCache, where reflection and
aspect-oriented programming is used to replicate any type.

A TreeCache can be either local or replicated. Local trees exist only inside the Java VM in which
they are created, whereas replicated trees propagate any changes to all other replicated trees
in the same cluster. A cluster may span different hosts on a network or just different JVMs on a
single host.

The first version of TreeCache was essentially a single HashMap that replicated. However, the
decision was taken to go with a tree structured cache because (a) it is more flexible and efficient
and (b) a tree can always be reduced to a map, thereby offering both possibilities. The
efficiency argument was driven by concerns over replication overhead, and was that a value
itself can be a rather sophisticated object, with aggregation pointing to other objects, or an
object containing many fields. A small change in the object would therefore trigger the entire
object (possibly the transitive closure over the object graph) to be serialized and propagated to
the other nodes in the cluster. With a tree, only the modified nodes in the tree need to be
serialized and propagated. This is not necessarily a concern for TreeCache, but is a vital
requirement for PojoCache (as we will see in the separate PojoCache documentation).

When a change is made to the TreeCache, and that change is done in the context of a
transaction, then we defer the replication of changes until the transaction commits successfully.
All modifications are kept in a list associated with the transaction for the caller. When the
transaction commits, we replicate the changes. Otherwise, (on a rollback) we simply undo the

Chapter 1.

1

changes locally and release any locks, resulting in zero replication traffic and overhead. For
example, if a caller makes 100 modifications and then rolls back the transaction, we will not
replicate anything, resulting in no network traffic.

If a caller has no transaction associated with it (and isolation level is not NONE - more about
this later), we will replicate right after each modification, e.g. in the above case we would send
100 messages, plus an additional message for the rollback. In this sense, running without a
transaction can be thought of as analogous as running with auto-commit switched on in JDBC
terminology, where each operation is committed automatically.

There is an API for plugging in different transaction managers: all it requires is to get the
transaction associated with the caller's thread. Several TransactionManagerLookup
implementations are provided for popular transaction managers, including a
DummyTransactionManager for testing.

Finally, we use pessimistic locking of the cache by default, with optimistic locking as a
configurable option. With pessimistic locking, we can configure the local locking policy
corresponding to database-style transaction isolation levels, i.e., SERIALIZABLE,
REPEATABLE, READ_COMMITTED, READ_UNCOMMITTED and NONE. More on transaction
isolation levels will be discussed later. Note that the cluster-wide isolation level is
READ-UNCOMMITTED by default as we don’t acquire a cluster-wide lock on touching an object
for which we don’t yet have a lock (this would result in too high an overhead for messaging).

With optimistic locking, isolation levels are ignored as each transaction effectively maintains a
copy of the data with which it works on and then attempts to merge back into the tree structure
upon transaction completion. This results in a near-serializable degree of data integrity, applied
cluster-wide, for the minor performance penalty incurred when validating workspace data at
commit time, and the occasional transaction commit failure due to validation failures at commit
time.

Chapter 1. Introduction

2

1 http://www.jgroups.org
2 Note that you can have more than 2 caches in a cluster.

Architecture

Figure 2.1. Schematic TreeCache architecture

The architecture is shown above. The example shows 2 Java VMs, each has created an
instance of TreeCache. These VMs can be located on the same machine, or on 2 different
machines. The setup of the underlying group communication subsystem is done using
JGroups1.

Any modification (see API below) in one cache will be replicated to the other cache2 and vice
versa. Depending on the transactional settings, this replication will occur either after each
modification or at the end of a transaction (at commit time). When a new cache is created, it can
optionally acquire the contents from one of the existing caches on startup.

Chapter 2.

3

http://www.jgroups.org
http://www.jgroups.org

4

Basic API
Here's some sample code before we dive into the API itself:

TreeCache tree = new TreeCache();
tree.setClusterName("demo-cluster");
tree.setClusterProperties("default.xml"); // uses defaults if not provided
tree.setCacheMode(TreeCache.REPL_SYNC);
tree.createService(); // not necessary, but is same as MBean lifecycle
tree.startService(); // kick start tree cache
tree.put("/a/b/c", "name", "Ben");
tree.put("/a/b/c/d", "uid", new Integer(322649));
Integer tmp = (Integer) tree.get("/a/b/c/d", "uid");
tree.remove("/a/b");
tree.stopService();
tree.destroyService(); // not necessary, but is same as MBean lifecycle

The sample code first creates a TreeCache instance and then configures it. There is another
constructor which accepts a number of configuration options. However, the TreeCache can be
configured entirely from an XML file (shown later) and we don't recommend manual
configuration as shown in the sample.

The cluster name, properties of the underlying JGroups stack, and cache mode (synchronous
replication) are configured first (a list of configuration options is shown later). Then we start the
TreeCache. If replication is enabled, this will make the TreeCache join the cluster, and acquire
initial state from an existing node.

Then we add 2 items into the cache: the first element creates a node "a" with a child node "b"
that has a child node "c". (TreeCache by default creates intermediary nodes that don't exist).
The key "name" is then inserted into the "/a/b/c" node, with a value of "Ben".

The other element will create just the subnode "d" of "c" because "/a/b/c" already exists. It binds
the integer 322649 under key "uid".

The resulting tree looks like this:

Figure 3.1. Sample Tree Nodes

The TreeCache has 4 nodes "a", "b", "c" and "d". Nodes "/a/b/c" has values "name" associated
with "Ben" in its map, and node "/a/b/c/d" has values "uid" and 322649.

Each node can be retrieved by its absolute name (e.g. "/a/b/c") or by navigating from parent to
children (e.g. navigate from "a" to "b", then from "b" to "c").

The next method in the example gets the value associated with key="uid" in node "/a/b/c/d",
which is the integer 322649.

The remove() method then removes node "/a/b" and all subnodes recursively from the cache. In

Chapter 3.

5

1 Plus their equivalent helper methods taking a String as node name.
2 This is mainly used internally, and we may decide to remove public access to the Node in a future release.

this case, nodes "/a/b/c/d", "/a/b/c" and "/a/b" will be removed, leaving only "/a".

Finally, the TreeCache is stopped. This will cause it to leave the cluster, and every node in the
cluster will be notified. Note that TreeCache can be stopped and started again. When it is
stopped, all contents will be deleted. And when it is restarted, if it joins a cache group, the state
will be replicated initially. So potentially you can recreate the contents.

In the sample, replication was enabled, which caused the 2 put() and the 1 remove() methods to
replicated their changes to all nodes in the cluster. The get() method was executed on the local
cache only.

Keys into the cache can be either strings separated by slashes ('/'), e.g. "/a/b/c", or they can be
fully qualified names Fqns . An Fqn is essentially a list of Objects that need to implement
hashCode() and equals(). All strings are actually transformed into Fqns internally. Fqns are
more efficient than strings, for example:

String n1 = "/300/322649";
Fqn n2 = new Fqn(new Object{new Integer(300), new Integer(322649)});

In this example, we want to access a node that has information for employee with id=322649 in
department with id=300. The string version needs two map lookups on Strings, whereas the Fqn
version needs two map lookups on Integers. In a large hashtable, the hashCode() method for
String may have collisions, leading to actual string comparisons. Also, clients of the cache may
already have identifiers for their objects in Object form, and don't want to transform between
Object and Strings, preventing unnecessary copying.

Note that the modification methods are put() and remove(). The only get method is get().

There are 2 put() methods1 : put(Fqn node, Object key, Object key) and put(Fqn node,

Map values). The former takes the node name, creates it if it doesn't yet exist, and put the key
and value into the node's map, returning the previous value. The latter takes a map of keys and
values and adds them to the node's map, overwriting existing keys and values. Content that is
not in the new map remains in the node's map.

There are 3 remove() methods: remove(Fqn node, Object key), remove(Fqn node) and
removeData(Fqn node). The first removes the given key from the node. The second removes
the entire node and all subnodes, and the third removes all elements from the given node's
map.

The get methods are: get(Fqn node) and get(Fqn node, Object key). The former returns a
Node2 object, allowing for direct navigation, the latter returns the value for the given key for a
node.

Chapter 3. Basic API

6

Also, the TreeCache has a number of getters and setters. Since the API may change at any
time, we recommend the Javadoc for up-to-date information.

7

8

1 http://en.wikipedia.org/wiki/Two-phase_commit_protocol

Clustered Caches
The TreeCache can be configured to be either local (standalone) or clustered. If in a cluster, the
cache can be configured to replicate changes, or to invalidate changes. A detailed discussion
on this follows.

1. Local Cache

Local caches don't join a cluster and don't communicate with other nodes in a cluster. Therefore
their elements don't need to be serializable - however, we recommend making them
serializable, enabling a user to change the cache mode at any time.

2. Clustered Cache - Using Replication

Replicated caches replicate all changes to the other TreeCache instances in the cluster.
Replication can either happen after each modification (no transactions), or at the end of a
transaction (commit time).

Replication can be synchronous or asynchronous . Use of either one of the options is
application dependent. Synchronous replication blocks the caller (e.g. on a put()) until the
modifications have been replicated successfully to all nodes in a cluster. Asynchronous
replication performs replication in the background (the put() returns immediately). TreeCache
also offers a replication queue, where modifications are replicated periodically (i.e.
interval-based), or when the queue size exceeds a number of elements, or a combination
thereof.

Asynchronous replication is faster (no caller blocking), because synchronous replication
requires acknowledgments from all nodes in a cluster that they received and applied the
modification successfully (round-trip time). However, when a synchronous replication returns
successfully, the caller knows for sure that all modifications have been applied at all nodes,
whereas this may or may not be the case with asynchronous replication. With asynchronous
replication, errors are simply written to a log. Even when using transactions, a transaction may
succeed but replication may not succeed on all TreeCache instances.

2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e., when a
transaction commits. This results in minimising replication traffic since a single modification os
broadcast rather than a series of individual modifications, and can be a lot more efficient than
not using transactions. Another effect of this is that if a transaction were to roll back, nothing is
broadcast across a cluster.

Depending on whether you are running your cluster in asynchronous or synchronous mode,
JBoss Cache will use either a single phase or two phase commit1 protocol, respectively.

Chapter 4.

9

http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol

2 http://java.sun.com/products/jta/

2.1.1. One Phase Commits

Used when your cache mode is REPL_ASYNC. All modifications are replicated in a single call,
which instructs remote caches to apply the changes to their local in-memory state and commit
locally. Remote errors/rollbacks are never fed back to the originator of the transaction since the
communication is asynchronous.

2.1.2. Two Phase Commits

Used when your cache mode is REPL_SYNC. Upon committing your transaction, JBoss Cache
broadcasts a prepare call, which carries all modifications relevant to the transaction. Remote
caches then acquire local locks on their im-memory state and apply the modifications. Once all
remote caches respond to the prepare call, the originator of the transaction broadcasts a
commit. This instructs all remote caches to commit their data. If any of the caches fail to
respond to the prepare phase, the originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and rollback phases are
asynchronous. This is because Sun's JTA specification2 does not specify how transactional
resources should deal with failures at this stage of a transaction; and other resources
participating in the transaction may have indeterminate state anyway. As such, we do away with
the overhead of synchronous communication for this phase of the transaction. That said, they
can be forced to be synchronous using the SyncCommitPhase and SyncRollbackPhase

configuration options.

2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to all instances in a cluster.
Instead, each instance picks one or more 'buddies' in the cluster, and only replicates to these
specific buddies. This greatly helps scalability as there is no longer a memory and network
traffic impact every time another instance is added to a cluster.

One of the most common use cases of Buddy Replication is when a replicated cache is used by
a servlet container to store HTTP session data. One of the pre-requisites to buddy replication
working well and being a real benefit is the use of session affinity, also known as sticky sessions
in HTTP session replication speak. What this means is that if certain data is frequently
accessed, it is desirable that this is always accessed on one instance rather than in a
round-robin fashion as this helps the cache cluster optimise how it chooses buddies, where it
stores data, and minimises replication traffic.

If this is not possible, Buddy Replication may prove to be more of an overhead than a benefit.

2.2.1. Selecting Buddies

Buddy Replication uses an instance of a org.jboss.cache.buddyreplication.BuddyLocator

which contains the logic used to select buddies in a network. JBoss Cache currently ships with a
single implementation, org.jboss.cache.buddyreplication.NextMemberBuddyLocator,

Chapter 4. Clustered Caches

10

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

which is used as a default if no implementation is provided. The NextMemberBuddyLocator

selects the next member in the cluster, as the name suggests, and guarantees an even spread
of buddies for each instance.

The NextMemberBuddyLocator takes in 2 parameters, both optional.

• numBuddies - specifies how many buddies each instance should pick to back its data onto.
This defaults to 1.

• ignoreColocatedBuddies - means that each instance will try to select a buddy on a different
physical host. If not able to do so though, it will fall back to colocated instances. This defaults
to true.

2.2.2. BuddyPools

Also known as replication groups, a buddy pool is an optional construct where each instance in
a cluster may be configured with a buddy pool name. Think of this as an 'exclusive club
membership' where when selecting buddies, BuddyLocators would try and select buddies
sharing the same buddy pool name. This allows system administrators a degree of flexibility and
control over how buddies are selected. For example, a sysadmin may put two instances on two
separate physical servers that may be on two separate physical racks in the same buddy pool.
So rather than picking an instance on a different host on the same rack, BuddyLocators would
rather pick the instance in the same buddy pool, on a separate rack which may add a degree of
redundancy.

2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client connecting to the
cache (directly or indirectly, via some other service such as HTTP session replication) is able to
redirect the request to any other random cache instance in the cluster. This is where a concept
of Data Gravitation comes in.

Data Gravitation is a concept where if a request is made on a cache in the cluster and the
cache does not contain this information, it then asks other instances in the cluster for the data. If
even this fails, it would (optionally) ask other instances to check in the backup data they store
for other caches. This means that even if a cache containing your session dies, other instances
will still be able to access this data by asking the cluster to search through their backups for this
data.

Once located, this data is then transferred to the instance which requested it and is added to
this instance's data tree. It is then (optionally) removed from all other instances (and backups)
so that if session affinity is used, the affinity should now be to this new cache instance which
has just taken ownership of this data.

Data Gravitation is implemented as an interceptor. The following (all optional) configuration
properties pertain to data gravitation.

Buddy Replication

11

• dataGravitationRemoveOnFind - forces all remote caches that own the data or hold
backups for the data to remove that data, thereby making the requesting cache the new data
owner. If set to false an evict is broadcast instead of a remove, so any state persisted in
cache loaders will remain. This is useful if you have a shared cache loader configured.
Defaults to true.

• dataGravitationSearchBackupTrees - Asks remote instances to search through their
backups as well as main data trees. Defaults to true. The resulting effect is that if this is true

then backup nodes can respond to data gravitation requests in addition to data owners.

• autoDataGravitation - Whether data gravitation occurs for every cache miss. My default
this is set to false to prevent unnecessary network calls. Most use cases will know when it
may need to gravitate data and will pass in an Option to enable data gravitation on a
per-invocation basis. If autoDataGravitation is true this Option is unnecessary.

2.2.4. Implementation

Figure 4.1. Class diagram of the classes involved in buddy replication and
how they are related to each other

Chapter 4. Clustered Caches

12

2.2.5. Configuration

<!-- Buddy Replication config -->
<attribute name="BuddyReplicationConfig">
<config>

<!-- Enables buddy replication. This is the ONLY mandatory configuration
element here. -->
<buddyReplicationEnabled>true</buddyReplicationEnabled>

<!-- These are the default values anyway -->
<buddyLocatorClass>

org.jboss.cache.buddyreplication.NextMemberBuddyLocator
</buddyLocatorClass>

<!-- numBuddies is the number of backup nodes each node maintains.
ignoreColocatedBuddies means that each node will *try* to select a buddy on
a different
physical host. If not able to do so though, it will fall back to colocated
nodes. -->
<buddyLocatorProperties>

numBuddies = 1
ignoreColocatedBuddies = true

</buddyLocatorProperties>

<!-- A way to specify a preferred replication group. If specified, we try
to pick a
buddy who shares the same pool name (falling back to other buddies if not
available).
This allows the sysdmin to hint at backup buddies are picked, so for
example, nodes may be
hinted to pick buddies on a different physical rack or power supply for
added fault tolerance.
-->
<buddyPoolName>myBuddyPoolReplicationGroup</buddyPoolName>

<!-- Communication timeout for inter-buddy group organisation messages (such
as assigning
to and removing from groups, defaults to 1000. -->
<buddyCommunicationTimeout>2000</buddyCommunicationTimeout>

<!-- Whether data is removed from old owners when gravitated to a new owner.
Defaults to true. -->
<dataGravitationRemoveOnFind>true</dataGravitationRemoveOnFind>

<!-- Whether backup nodes can respond to data gravitation requests, or only
the data owner
is supposed to respond. Defaults to true. -->
<dataGravitationSearchBackupTrees>true</dataGravitationSearchBackupTrees>

<!-- Whether all cache misses result in a data gravitation request.
Defaults to false,
requiring callers to enable data gravitation on a per-invocation basis using
the Options API.

Buddy Replication

13

-->
<autoDataGravitation>false</autoDataGravitation>

</config>
</attribute>

3. Clustered Cache - Using Invalidation

If a cache is configured for invalidation rather than replication, every time data is changed in a
cache other caches in the cluster receive a message informing them that their data is now stale
and should be evicted from memory. Invalidation, when used with a shared cache loader (see
chapter on Cache Loaders) would cause remote caches to refer to the shared cache loader to
retrieve modified data. The benefit of this is twofold: network traffic is minimised as invalidation
messages are very small compared to replicating updated data, and also that other caches in
the cluster look up modified data in a lazy manner, only when needed.

Invalidation messages are sent after each modification (no transactions), or at the end of a
transaction, upon successful commit. This is usually more efficient as invalidation messages
can be optimised for the transaction as a whole rather than on a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of replication,
synchronous invalidation blocks until all caches in the cluster receive invalidation messages and
have evicted stale data while asynchronous invalidation works in a 'fire-and-forget' mode, where
invalidation messages are broadcast but doesn't block and wait for responses.

Chapter 4. Clustered Caches

14

Transactions and Concurrency

1. Concurrent Access

JBoss Cache uses a pessimistic locking scheme by default to prevent concurrent access to the
same data. Optimistic locking may alternatively be used, and is discussed later.

1.1. Locks

Locking is done internally, on a node-level. For example when we want to access "/a/b/c", a lock
will be acquired for nodes "a", "b" and "c". When the same transaction wants to access
"/a/b/c/d", since we already hold locks for "a", "b" and "c", we only need to acquire a lock for "d".

Lock owners are either transactions (call is made within the scope of an existing transaction) or
threads (no transaction associated with the call). Regardless, a transaction or a thread is
internally transformed into an instance of GlobalTransaction, which is used as a globally
unique ID for modifications across a cluster. E.g. when we run a two-phase commit protocol
(see below) across the cluster, the GlobalTransaction uniquely identifies the unit of work
across a cluster.

Locks can be read or write locks. Write locks serialize read and write access, whereas read-only
locks only serialize read access. When a write lock is held, no other write or read locks can be
acquired. When a read lock is held, others can acquire read locks. However, to acquire write
locks, one has to wait until all read locks have been released. When scheduled concurrently,
write locks always have precedence over read locks. Note that (if enabled) read locks can be
upgraded to write locks.

Using read-write locks helps in the following scenario: consider a tree with entries "/a/b/n1" and
"/a/b/n2". With write-locks, when Tx1 accesses "/a/b/n1", Tx2 cannot access "/a/b/n2" until Tx1
has completed and released its locks. However, with read-write locks this is possible, because
Tx1 acquires read-locks for "/a/b" and a read-write lock for "/a/b/n1". Tx2 is then able to acquire
read-locks for "/a/b" as well, plus a read-write lock for "/a/b/n2". This allows for more
concurrency in accessing the cache.

1.2. Pessimistic locking

By default, JBoss Cache uses pessimistic locking. Locking is not exposed directly to user.
Instead, a transaction isolation level which provides different locking behaviour is configurable.

1.2.1. Isolation levels

JBoss Cache supports the following transaction isolation levels, analogous to database ACID
isolation levels. A user can configure an instance-wide isolation level of NONE,
READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, or SERIALIZABLE.
REPEATABLE_READ is the default isolation level used.

Chapter 5.

15

1. NONE. No transaction support is needed. There is no locking at this level, e.g., users will
have to manage the data integrity. Implementations use no locks.

2. READ_UNCOMMITTED. Data can be read anytime while write operations are exclusive.
Note that this level doesn't prevent the so-called "dirty read" where data modified in Tx1 can
be read in Tx2 before Tx1 commits. In other words, if you have the following sequence,

Tx1 Tx2
W

R

using this isolation level will not Tx2 read operation. Implementations typically use an
exclusive lock for writes while reads don't need to acquire a lock.

3. READ_COMMITTED. Data can be read any time as long as there is no write. This level
prevents the dirty read. But it doesn’t prevent the so-called ‘non-repeatable read’ where one
thread reads the data twice can produce different results. For example, if you have the
following sequence,

Tx1 Tx2
R

W
R

where the second read in Tx1 thread will produce different result.

Implementations usually use a read-write lock; reads succeed acquiring the lock when there
are only reads, writes have to wait until there are no more readers holding the lock, and
readers are blocked acquiring the lock until there are no more writers holding the lock. Reads
typically release the read-lock when done, so that a subsequent read to the same data has to
re-acquire a read-lock; this leads to nonrepeatable reads, where 2 reads of the same data
might return different values. Note that, the write only applies regardless of transaction state
(whether it has been committed or not).

4. REPEATABLE_READ. Data can be read while there is no write and vice versa. This level
prevents "non-repeatable read" but it does not prevent the so-called "phantom read" where
new data can be inserted into the tree from the other transaction. Implementations typically
use a read-write lock. This is the default isolation level used.

5. SERIALIZABLE. Data access is synchronized with exclusive locks. Only 1 writer or reader
can have the lock at any given time. Locks are released at the end of the transaction.
Regarded as very poor for performance and thread/transaction concurrency.

1.2.2. Insertion and Removal of Nodes

By default, before inserting a new node into the tree or removing an existing node from the tree,

Chapter 5. Transactions and Concurrency

16

1 Because of this requirement, you must always have a transaction manager configured when using optimistic locking.

JBoss Cache will attempt to acquire a write lock on the new node's parent node. This approach
treats child nodes as an integral part of a parent node's state. This approach provide greater
correctness, but at a cost of lesser concurrency if nodes are frequently added or removed. For
use cases where this greater correctness is not meaningful, JBoss Cache provides a
configuration option LockParentForChildInsertRemove. If this is set to false, insertions and
removals of child nodes only require the acquisition of a read lock on the parent node.

1.3. Optimistic locking

The motivation for optimistic locking is to improve concurrency. When a lot of threads have a lot
of contention for access to the data tree, it can be inefficient to lock portions of the tree - for
reading or writing - for the entire duration of a transaction as we do in pessimistic locking.
Optimistic locking allows for greater concurrency of threads and transactions by using a
technique called data versioning, explained here. Note that isolation levels (if configured) are
ignored if optimistic locking is enabled.

1.3.1. Architecture

Optimistic locking treats all method calls as transactional1. Even if you do not invoke a call
within the scope of an ongoing transaction, JBoss Cache creates an implicit transaction and
commits this transaction when the invocation completes. Each transaction maintains a
transaction workspace, which contains a copy of the data used within the transaction.

For example, if a transaction calls get("/a/b/c"), nodes a, b and c are copied from the main data
tree and into the workspace. The data is versioned and all calls in the transaction work on the
copy of the data rather than the actual data. When the transaction commits, it's workspace is
merged back into the underlying tree by matching versions. If there is a version mismatch - such
as when the actual data tree has a higher version than the workspace, perhaps if another
transaction were to access the same data, change it and commit before the first transaction can
finish - the transaction throws a RollbackException when committing and the commit fails.

Optimistic locking uses the same locks we speak of above, but the locks are only held for a very
short duration - at the start of a transaction to build a workspace, and when the transaction
commits and has to merge data back into the tree.

So while optimistic locking may occasionally fail if version validations fail or may run slightly
slower than pessimistic locking due to the inevitable overhead and extra processing of
maintaining workspaces, versioned data and validating on commit, it does buy you a
near-SERIALIZABLE degree of data integrity while maintaining a very high level of concurrency.

1.3.2. Configuration

Optimistic locking is enabled by using the NodeLockingScheme XML attribute, and setting it to
"OPTIMISTIC":

Optimistic locking

17

2 Depending on whether interval-based asynchronous replication is used

...
<!--
Node locking scheme:

OPTIMISTIC
PESSIMISTIC (default)

-->
<attribute name="NodeLockingScheme">OPTIMISTIC</attribute>
...

2. Transactional Support

JBoss Cache can be configured to use transactions to bundle units of work, which can then be
replicated as one unit. Alternatively, if transaction support is disabled, it is equivalent to setting
AutoCommit to on where modifications are potentially2 replicated after every change (if
replication is enabled).

What JBoss Cache does on every incoming call (e.g. put()) is:

1. get the transaction associated with the thread

2. register (if not already done) with the transaction manager to be notified when a transaction
commits or is rolled back.

In order to do this, the cache has to be configured with an instance of a
TransactionManagerLookup which returns a javax.transaction.TransactionManager.

JBoss Cache ships with JBossTransactionManagerLookup and
GenericTransactionManagerLookup. The JBossTransactionManagerLookup is able to bind to
a running JBoss Application Server and retrieve a TransactionManager while the
GenericTransactionManagerLookup is able to bind to most popular Java EE application
servers and provide the same functionality. A dummy implementation -
DummyTransactionManagerLookup - is also provided, which may be used for standalone JBoss
Cache applications and unit tests running outside a Java EE Application Server. Being a
dummy, however, this is just for demo and testing purposes and is not recommended for
production use.

The implementation of the JBossTransactionManagerLookup is as follows:

public class JBossTransactionManagerLookup implements
TransactionManagerLookup {

public JBossTransactionManagerLookup() {}

public TransactionManager getTransactionManager() throws Exception {
Object tmp=new InitialContext().lookup("java:/TransactionManager");
return (TransactionManager)tmp;

}

Chapter 5. Transactions and Concurrency

18

3 Only with synchronous replication or invalidation.

}

The implementation looks up the JBoss Transaction Manager from JNDI and returns it.

When a call comes in, the TreeCache gets the current transaction and records the modification
under the transaction as key. (If there is no transaction, the modification is applied immediately
and possibly replicated). So over the lifetime of the transaction all modifications will be recorded
and associated with the transaction. Also, the TreeCache registers with the transaction to be
notified of transaction committed or aborted when it first encounters the transaction.

When a transaction rolls back, we undo the changes in the cache and release all locks.

When the transaction commits, we initiate a two-phase commit protocol3 : in the first phase, a
PREPARE containing all modifications for the current transaction is sent to all nodes in the
cluster. Each node acquires all necessary locks and applies the changes, and then sends back
a success message. If a node in a cluster cannot acquire all locks, or fails otherwise, it sends
back a failure message.

The coordinator of the two-phase commit protocol waits for all responses (or a timeout,
whichever occurs first). If one of the nodes in the cluster responds with FAIL (or we hit the
timeout), then a rollback phase is initiated: a ROLLBACK message is sent to all nodes in the
cluster. On reception of the ROLLBACK message, every node undoes the changes for the
given transaction, and releases all locks held for the transaction.

If all responses are OK, a COMMIT message is sent to all nodes in the cluster. On reception of
a COMMIT message, each node applies the changes for the given transaction and releases all
locks associated with the transaction.

When we referred to 'transaction', we actually mean a global representation of a local
transaction, which uniquely identifies a transaction across a cluster.

2.1. Example

Let's look at an example of how to use JBoss Cache in a standalone (i.e. outside an application
server) fashion with dummy transactions:

Properties prop = new Properties();
prop.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jboss.cache.transaction.DummyContextFactory");
User Transaction tx=(UserTransaction)new
InitialContext(prop).lookup("UserTransaction");
TreeCache tree = new TreeCache();
PropertyConfigurator config = new PropertyConfigurator();
config.configure(tree, "META-INF/replSync-service.xml");
tree.createService(); // not necessary
tree.startService(); // kick start tree cache

try {

Example

19

tx.begin();
tree.put("/classes/cs-101", "description", "the basics");
tree.put("/classes/cs-101", "teacher", "Ben");
tx.commit();

}
catch(Throwable ex) {

try { tx.rollback(); } catch(Throwable t) {}
}

The first lines obtain a user transaction using the 'JEE way' via JNDI. Note that we could also
say

UserTransaction tx = new
DummyUserTransaction(DummyTransactionManager.getInstance());

Then we create a new TreeCache and configure it using a PropertyConfigurator class and a
configuration XML file (see below for a list of all configuration options).

Next we start the cache. Then, we start a transaction (and associate it with the current thread
internally). Any methods invoked on the cache will now be collected and only applied when the
transaction is committed. In the above case, we create a node "/classes/cs-101" and add 2
elements to its map. Assuming that the cache is configured to use synchronous replication, on
transaction commit the modifications are replicated. If there is an exception in the methods (e.g.
lock acquisition failed), or in the two-phase commit protocol applying the modifications to all
nodes in the cluster, the transaction is rolled back.

Chapter 5. Transactions and Concurrency

20

Eviction Policies
Eviction policies specify the behavior of a node residing inside the cache, e.g., life time and
maximum numbers allowed. Memory constraints on servers mean caches cannot grow
indefinitely, so policies need to be in place to restrict the size of the cache in memory.

1. Eviction Policy Plugin

The design of the JBoss Cache eviction policy framework is based on the loosely coupled
observable pattern (albeit still synchronous) where the eviction region manager will register a
TreeCacheListener to handle cache events and relay them back to the eviction policies.
Whenever a cached node is added, removed, evicted, or visited, the eviction registered
TreeCacheListener will maintain state statistics and information will be relayed to each
individual Eviction Region. Each Region can define a different EvictionPolicy implementation
that will know how to correlate cache add, remove, and visit events back to a defined eviction
behavior. It's the policy provider's responsibility to decide when to call back the cache "evict"
operation.

There is a single eviction thread (timer) that will run at a configured interval. This thread will
make calls into each of the policy providers and inform it of any TreeCacheListener

aggregated adds, removes and visits (gets) to the cache during the configured interval. The
eviction thread is responsible for kicking off the eviction policy processing (a single pass) for
each configured eviction cache region.

In order to implement an eviction policy, the following interfaces must be implemented:
org.jboss.cache.eviction.EvictionPolicy, org.jboss.cache.eviction.EvictionAlgorithm,
org.jboss.cache.eviction.EvictionQueue and org.jboss.cache.eviction.EvictionConfiguration.
When compounded together, each of these interface implementations define all the underlying
mechanics necessary for a complete eviction policy implementation.

Chapter 6.

21

Figure 6.1. TreeCache eviction UML Diagram

public interface EvictionPolicy
{

/**
* Evict a node form the underlying cache.
*
* @param fqn DataNode corresponds to this fqn.
* @throws Exception
*/

void evict(Fqn fqn) throws Exception;

/**
* Return children names as Objects
*
* @param fqn
* @return Child names under given fqn

Chapter 6. Eviction Policies

22

*/
Set getChildrenNames(Fqn fqn);

/**
* Is this a leaf node?
*
* @param fqn
* @return true/false if leaf node.
*/

boolean hasChild(Fqn fqn);

Object getCacheData(Fqn fqn, Object key);

/**
* Method called to configure this implementation.
*/

void configure(TreeCache cache);

/**
* Get the associated EvictionAlgorithm used by the EvictionPolicy.
* <p/>
* This relationship should be 1-1.
*
* @return An EvictionAlgorithm implementation.
*/

EvictionAlgorithm getEvictionAlgorithm();

/**
* The EvictionConfiguration implementation class used by this

EvictionPolicy.
*
* @return EvictionConfiguration implementation class.
*/

Class getEvictionConfigurationClass();

}

public interface EvictionAlgorithm
{

/**
* Entry point for evictin algorithm. This is an api called by the

EvictionTimerTask
* to process the node events in waiting and actual pruning, if

necessary.
*
* @param region Region that this algorithm will operate on.
*/

void process(Region region) throws EvictionException;

/**
* Reset the whole eviction queue. Queue may needs to be reset due to

corrupted state,
* for example.
*
* @param region Region that this algorithm will operate on.

Eviction Policy Plugin

23

*/
void resetEvictionQueue(Region region);

/**
* Get the EvictionQueue implementation used by this algorithm.
*
* @return the EvictionQueue implementation.
*/

EvictionQueue getEvictionQueue();

}

public interface EvictionQueue
{

/**
* Get the first entry in the queue.
* <p/>
* If there are no entries in queue, this method will return null.
* <p/>
* The first node returned is expected to be the first node to evict.
*
* @return first NodeEntry in queue.
*/

public NodeEntry getFirstNodeEntry();

/**
* Retrieve a node entry by Fqn.
* <p/>
* This will return null if the entry is not found.
*
* @param fqn Fqn of the node entry to retrieve.
* @return Node Entry object associated with given Fqn param.
*/

public NodeEntry getNodeEntry(Fqn fqn);

public NodeEntry getNodeEntry(String fqn);

/**
* Check if queue contains the given NodeEntry.
*
* @param entry NodeEntry to check for existence in queue.
* @return true/false if NodeEntry exists in queue.
*/

public boolean containsNodeEntry(NodeEntry entry);

/**
* Remove a NodeEntry from queue.
* <p/>
* If the NodeEntry does not exist in the queue, this method will return

normally.
*
* @param entry The NodeEntry to remove from queue.
*/

public void removeNodeEntry(NodeEntry entry);

Chapter 6. Eviction Policies

24

/**
* Add a NodeEntry to the queue.
*
* @param entry The NodeEntry to add to queue.
*/

public void addNodeEntry(NodeEntry entry);

/**
* Get the size of the queue.
*
* @return The number of items in the queue.
*/

public int size();

/**
* Clear the queue.
*/

public void clear();

}

public interface EvictionConfiguration
{

public static final int WAKEUP_DEFAULT = 5;

public static final String ATTR = "attribute";
public static final String NAME = "name";

public static final String REGION = "region";
public static final String WAKEUP_INTERVAL_SECONDS =

"wakeUpIntervalSeconds";
public static final String MAX_NODES = "maxNodes";
public static final String TIME_TO_IDLE_SECONDS = "timeToIdleSeconds";
public static final String TIME_TO_LIVE_SECONDS = "timeToLiveSeconds";
public static final String MAX_AGE_SECONDS = "maxAgeSeconds";
public static final String MIN_NODES = "minNodes";
public static final String REGION_POLICY_CLASS = "policyClass";

/**
* Parse the XML configuration for the given specific eviction region.
* <p/>
* The element parameter should contain the entire region block. An

example
* of an entire Element of the region would be:
* <p/>
* <region name="abc">
* <attribute name="maxNodes">10</attribute>
* </region>
*
* @param element DOM element for the region. <region

name="abc"></region>
* @throws ConfigureException
*/

Eviction Policy Plugin

25

public void parseXMLConfig(Element element) throws ConfigureException;
}

Note that:

• The EvictionConfiguration class 'parseXMLConfig(Element)' method expects only the DOM
element pertaining to the region the policy is being configured for.

• The EvictionConfiguration implementation should maintain getter and setter methods for
configured properties pertaining to the policy used on a given cache region. (e.g. for
LRUConfiguration there is a int getMaxNodes() and a setMaxNodes(int))

Alternatively, the implementation of a new eviction policy provider can be further simplified by
extending BaseEvictionPolicy and BaseEvictionAlgorithm. Or for properly sorted
EvictionAlgorithms (sorted in eviction order - see LFUAlgorithm) extending
BaseSortedEvictionAlgorithm and implementing SortedEvictionQueue takes care of most of the
common functionality available in a set of eviction policy provider classes

public abstract class BaseEvictionPolicy implements EvictionPolicy
{

protected static final Fqn ROOT = new Fqn("/");

protected TreeCache cache_;

public BaseEvictionPolicy()
{
}

/** EvictionPolicy interface implementation */

/**
* Evict the node under given Fqn from cache.
*
* @param fqn The fqn of a node in cache.
* @throws Exception
*/

public void evict(Fqn fqn) throws Exception
{

cache_.evict(fqn);
}

/**
* Return a set of child names under a given Fqn.
*
* @param fqn Get child names for given Fqn in cache.
* @return Set of children name as Objects
*/

public Set getChildrenNames(Fqn fqn)
{

try

Chapter 6. Eviction Policies

26

{
return cache_.getChildrenNames(fqn);

}
catch (CacheException e)
{

e.printStackTrace();
}
return null;

}

public boolean hasChild(Fqn fqn)
{

return cache_.hasChild(fqn);
}

public Object getCacheData(Fqn fqn, Object key)
{

try
{

return cache_.get(fqn, key);
}
catch (CacheException e)
{

e.printStackTrace();
}
return null;

}

public void configure(TreeCache cache)
{

this.cache_ = cache;
}

}

public abstract class BaseEvictionAlgorithm implements EvictionAlgorithm
{

private static final Log log =
LogFactory.getLog(BaseEvictionAlgorithm.class);

protected Region region;
protected BoundedBuffer recycleQueue;
protected EvictionQueue evictionQueue;

/**
* This method will create an EvictionQueue implementation and prepare it

for use.
*
* @param region Region to setup an eviction queue for.
* @return The created EvictionQueue to be used as the eviction queue for

this algorithm.
* @throws EvictionException
* @see EvictionQueue
*/

protected abstract EvictionQueue setupEvictionQueue(Region region) throws

Eviction Policy Plugin

27

EvictionException;

/**
* This method will check whether the given node should be evicted or

not.
*
* @param ne NodeEntry to test eviction for.
* @return True if the given node should be evicted. False if the given

node should not
* be evicted.
*/

protected abstract boolean shouldEvictNode(NodeEntry ne);

protected BaseEvictionAlgorithm()
{

recycleQueue = new BoundedBuffer();
}

protected void initialize(Region region) throws EvictionException
{

this.region = region;
evictionQueue = setupEvictionQueue(region);

}

/**
* Process the given region.
* <p/>
* Eviction Processing encompasses the following:
* <p/>
* - Add/Remove/Visit Nodes
* - Prune according to Eviction Algorithm
* - Empty/Retry the recycle queue of previously evicted but locked

(during actual
* cache eviction)
*nodes.
*
* @param region Cache region to process for eviction.
* @throws EvictionException
*/

public void process(Region region) throws EvictionException
{

if (this.region == null)
{

this.initialize(region);
}

this.processQueues(region);
this.emptyRecycleQueue();
this.prune();

}

public void resetEvictionQueue(Region region)
{
}

/**
* Get the underlying EvictionQueue implementation.

Chapter 6. Eviction Policies

28

*
* @return the EvictionQueue used by this algorithm
* @see EvictionQueue
*/

public EvictionQueue getEvictionQueue()
{

return this.evictionQueue;
}

/**
* Event processing for Evict/Add/Visiting of nodes.
* <p/>
* - On AddEvents a new element is added into the eviction queue
* - On RemoveEvents, the removed element is removed from the eviction

queue.
* - On VisitEvents, the visited node has its eviction statistics updated

(idleTime,
* numberOfNodeVisists, etc..)
*
* @param region Cache region to process for eviction.
* @throws EvictionException
*/

protected void processQueues(Region region) throws EvictionException
{

EvictedEventNode node;
int count = 0;
while ((node = region.takeLastEventNode()) != null)
{

int eventType = node.getEvent();
Fqn fqn = node.getFqn();

count++;
switch (eventType)
{

case EvictedEventNode.ADD_EVENT:
this.processAddedNodes(fqn);
break;

case EvictedEventNode.REMOVE_EVENT:
this.processRemovedNodes(fqn);
break;

case EvictedEventNode.VISIT_EVENT:
this.processVisitedNodes(fqn);
break;

default:
throw new RuntimeException("Illegal Eviction Event type " +

eventType);
}

}

if (log.isTraceEnabled())
{

log.trace("processed " + count + " node events");
}

}

protected void evict(NodeEntry ne)

Eviction Policy Plugin

29

{
// NodeEntry ne = evictionQueue.getNodeEntry(fqn);

if (ne != null)
{

evictionQueue.removeNodeEntry(ne);
if (!this.evictCacheNode(ne.getFqn()))
{

try
{

recycleQueue.put(ne);
}
catch (InterruptedException e)
{

e.printStackTrace();
}

}
}

}

/**
* Evict a node from cache.
*
* @param fqn node corresponds to this fqn
* @return True if successful
*/

protected boolean evictCacheNode(Fqn fqn)
{

if (log.isTraceEnabled())
{

log.trace("Attempting to evict cache node with fqn of " + fqn);
}
EvictionPolicy policy = region.getEvictionPolicy();
// Do an eviction of this node

try
{

policy.evict(fqn);
}
catch (Exception e)
{

if (e instanceof TimeoutException)
{

log.warn("eviction of " + fqn + " timed out. Will retry
later.");

return false;
}
e.printStackTrace();
return false;

}

if (log.isTraceEnabled())
{

log.trace("Eviction of cache node with fqn of " + fqn + "
successful");

}

return true;

Chapter 6. Eviction Policies

30

}

/**
* Process an Added cache node.
*
* @param fqn FQN of the added node.
* @throws EvictionException
*/

protected void processAddedNodes(Fqn fqn) throws EvictionException
{

if (log.isTraceEnabled())
{

log.trace("Adding node " + fqn + " to eviction queue");
}

long stamp = System.currentTimeMillis();
NodeEntry ne = new NodeEntry(fqn);
ne.setModifiedTimeStamp(stamp);
ne.setNumberOfNodeVisits(1);
// add it to the node map and eviction queue
if (evictionQueue.containsNodeEntry(ne))
{

if (log.isTraceEnabled())
{

log.trace("Queue already contains " + ne.getFqn() + " processing
it as visited");

}
this.processVisitedNodes(ne.getFqn());
return;

}

evictionQueue.addNodeEntry(ne);

if (log.isTraceEnabled())
{

log.trace(ne.getFqn() + " added successfully to eviction queue");
}

}

/**
* Remove a node from cache.
*
* This method will remove the node from the eviction queue as well as
* evict the node from cache.
*
* If a node cannot be removed from cache, this method will remove it

from the
* eviction queue and place the element into the recycleQueue. Each node

in the recycle
* queue will get retried until proper cache eviction has taken place.
*
* Because EvictionQueues are collections, when iterating them from an

iterator, use
* iterator.remove() to avoid ConcurrentModificationExceptions. Use the

boolean
* parameter to indicate the calling context.
*

Eviction Policy Plugin

31

* @param fqn FQN of the removed node
* @throws EvictionException
*/

protected void processRemovedNodes(Fqn fqn) throws EvictionException
{

if (log.isTraceEnabled())
{

log.trace("Removing node " + fqn + " from eviction queue and
attempting eviction");

}

NodeEntry ne = evictionQueue.getNodeEntry(fqn);
if (ne != null)
{

evictionQueue.removeNodeEntry(ne);
}

if (log.isTraceEnabled())
{

log.trace(fqn + " removed from eviction queue");
}

}

/**
* Visit a node in cache.
* <p/>
* This method will update the numVisits and modifiedTimestamp properties

of the Node.
* These properties are used as statistics to determine eviction (LRU,

LFU, MRU, etc..)
* <p/>
* *Note* that this method updates Node Entries by reference and does not

put them back
* into the queue. For some sorted collections, a remove, and a re-add is

required to
* maintain the sorted order of the elements.
*
* @param fqn FQN of the visited node.
* @throws EvictionException
*/

protected void processVisitedNodes(Fqn fqn) throws EvictionException
{

NodeEntry ne = evictionQueue.getNodeEntry(fqn);
if (ne == null)
{

this.processAddedNodes(fqn);
return;

}
// note this method will visit and modify the node statistics by

reference!
// if a collection is only guaranteed sort order by adding to the

collection,
// this implementation will not guarantee sort order.
ne.setNumberOfNodeVisits(ne.getNumberOfNodeVisits() + 1);
ne.setModifiedTimeStamp(System.currentTimeMillis());

}

Chapter 6. Eviction Policies

32

/**
* Empty the Recycle Queue.
* <p/>
* This method will go through the recycle queue and retry to evict the

nodes from cache.
*
* @throws EvictionException
*/

protected void emptyRecycleQueue() throws EvictionException
{

while (true)
{

Fqn fqn;

try
{

fqn = (Fqn) recycleQueue.poll(0);
}
catch (InterruptedException e)
{

e.printStackTrace();
break;

}

if (fqn == null)
{

if (log.isTraceEnabled())
{

log.trace("Recycle queue is empty");
}
break;

}

if (log.isTraceEnabled())
{

log.trace("emptying recycle bin. Evict node " + fqn);
}

// Still doesn't work
if (!evictCacheNode(fqn))
{

try
{

recycleQueue.put(fqn);
}
catch (InterruptedException e)
{

e.printStackTrace();
}
break;

}
}

}

protected void prune() throws EvictionException
{

NodeEntry entry;

Eviction Policy Plugin

33

while ((entry = evictionQueue.getFirstNodeEntry()) != null)
{

if (this.shouldEvictNode(entry))
{

this.evict(entry);
}
else
{

break;
}

}
}

}

Note that:

• The BaseEvictionAlgorithm class maintains a processing structure. It will process the ADD,
REMOVE, and VISIT events queued by the Region (events are originated from the
EvictionTreeCacheListener) first. It also maintains an collection of items that were not
properly evicted during the last go around because of held locks. That list is pruned. Finally,
the EvictionQueue itself is pruned for entries that should be evicted based upon the
configured eviction rules for the region.

public abstract class BaseSortedEvictionAlgorithm extends
BaseEvictionAlgorithm

implements EvictionAlgorithm
{

private static final Log log =
LogFactory.getLog(BaseSortedEvictionAlgorithm.class);

public void process(Region region) throws EvictionException
{

super.process(region);
}

protected void processQueues(Region region) throws EvictionException
{

boolean evictionNodesModified = false;

EvictedEventNode node;
int count = 0;
while ((node = region.takeLastEventNode()) != null)
{

int eventType = node.getEvent();
Fqn fqn = node.getFqn();

count++;
switch (eventType)
{

case EvictedEventNode.ADD_EVENT:

Chapter 6. Eviction Policies

34

this.processAddedNodes(fqn);
evictionNodesModified = true;
break;

case EvictedEventNode.REMOVE_EVENT:
this.processRemovedNodes(fqn);
break;

case EvictedEventNode.VISIT_EVENT:
this.processVisitedNodes(fqn);
evictionNodesModified = true;
break;

default:
throw new RuntimeException("Illegal Eviction Event type "

+ eventType);
}

}

if (log.isTraceEnabled())
{

log.trace("Eviction nodes visited or added requires resort of
queue " +

evictionNodesModified);
}

this.resortEvictionQueue(evictionNodesModified);

if (log.isTraceEnabled())
{

log.trace("processed " + count + " node events");
}

}

/**
* This method is called to resort the queue after add or visit events

have occurred.
*
* If the parameter is true, the queue needs to be resorted. If it is

false, the queue
* does not need resorting.
*
* @param evictionQueueModified True if the queue was added to or

visisted during event
* processing.
*/

protected void resortEvictionQueue(boolean evictionQueueModified)
{

long begin = System.currentTimeMillis();
((SortedEvictionQueue) evictionQueue).resortEvictionQueue();
long end = System.currentTimeMillis();

if (log.isTraceEnabled())
{

long diff = end - begin;
log.trace("Took " + diff + "ms to sort queue with " +

getEvictionQueue().size()
+ " elements");

Eviction Policy Plugin

35

}
}

}

Note that:

• The BaseSortedEvictionAlgorithm class will maintain a boolean through the algorithm
processing that will determine if any new nodes were added or visited. This allows the
Algorithm to determine whether to resort the eviction queue items (in first to evict order) or to
skip the potentially expensive sorting if there have been no changes to the cache in this
region.

public interface SortedEvictionQueue extends EvictionQueue
{

/**
* Provide contract to resort a sorted queue.
*/

public void resortEvictionQueue();
}

Note that:

• The SortedEvictionQueue interface defines the contract used by the
BaseSortedEvictionAlgorithm abstract class that is used to resort the underlying queue.
Again, the queue sorting should be sorted in first to evict order. The first entry in the list
should evict before the last entry in the queue. The last entry in the queue should be the last
entry that will require eviction.

2. TreeCache Eviction Policy Configuration

TreeCache 1.2.X allows a single eviction policy provider class to be configured for use by all
regions. As of TreeCache 1.3.x each cache region can define its own eviction policy provider or
it can use the eviction policy provider class defined at the cache level (1.2.x backwards
compatibility)

Here is an example of a legacy 1.2.x EvictionPolicyConfig element to configure TreeCache for
use with a single eviction policy provider

<attribute
name="EvictionPolicyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

<!-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">

<config>
<attribute name="wakeUpIntervalSeconds">5</attribute>

Chapter 6. Eviction Policies

36

<!-- Cache wide default -->
<region name="/_default_">

<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>
<region name="/org/jboss/data">

<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>
<region name="/org/jboss/test/data">

<attribute name="maxNodes">5</attribute>
<attribute name="timeToLiveSeconds">4</attribute>

</region>
<region name="/test/">

<attribute name="maxNodes">10000</attribute>
<attribute name="timeToLiveSeconds">5</attribute>

</region>
<region name="/maxAgeTest/">

<attribute name="maxNodes">10000</attribute>
<attribute name="timeToLiveSeconds">8</attribute>
<attribute name="maxAgeSeconds">10</attribute>

</region>
</config>

</attribute>

Here is an example of configuring a different eviction provider per region

<attribute name="EvictionPolicyConfig">
<config>

<attribute name="wakeUpIntervalSeconds">5</attribute>
<!-- Cache wide default -->
<region name="/_default_"

policyClass="org.jboss.cache.eviction.LRUPolicy">
<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>
<region name="/org/jboss/data"

policyClass="org.jboss.cache.eviction.LFUPolicy">
<attribute name="maxNodes">5000</attribute>
<attribute name="minNodes">1000</attribute>

</region>
<region name="/org/jboss/test/data"

policyClass="org.jboss.cache.eviction.FIFOPolicy">
<attribute name="maxNodes">5</attribute>

</region>
<region name="/test/"

policyClass="org.jboss.cache.eviction.MRUPolicy">
<attribute name="maxNodes">10000</attribute>

</region>
<region name="/maxAgeTest/"

policyClass="org.jboss.cache.eviction.LRUPolicy">
<attribute name="maxNodes">10000</attribute>
<attribute name="timeToLiveSeconds">8</attribute>

TreeCache Eviction Policy Configuration

37

<attribute name="maxAgeSeconds">10</attribute>
</region>

</config>
</attribute>

Lastly, an example of mixed mode. In this scenario the regions that have a specific policy
defined will use that policy. Those that do not will default to the policy defined on the entire
cache instance.

<attribute
name="EvictionPolicyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

<!-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">

<config>
<attribute name="wakeUpIntervalSeconds">5</attribute>
<!-- Cache wide default -->
<region name="/_default_">

<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>
<region name="/org/jboss/data"

policyClass="org.jboss.cache.eviction.FIFOPolicy">
<attribute name="maxNodes">5000</attribute>

</region>
<region name="/test/"

policyClass="org.jboss.cache.eviction.MRUPolicy">
<attribute name="maxNodes">10000</attribute>

</region>
<region name="/maxAgeTest/">

<attribute name="maxNodes">10000</attribute>
<attribute name="timeToLiveSeconds">8</attribute>
<attribute name="maxAgeSeconds">10</attribute>

</region>
</config>

</attribute>

TreeCache now allows reconfiguration of eviction policy providers programatically at runtime.
An example of how to reconfigure at runtime and how to set an LRU region to have maxNodes
to 12345 timeToLiveSeconds to 500 and maxAgeSeconds to 1000 programatically.

// note this is just to show that a running TreeCache instance must
be

// retrieved somehow. How it is implemented is up to the
implementor.

TreeCache cache = getRunningTreeCacheInstance();

org.jboss.cache.eviction.RegionManager regionManager =
cache.getEvictionRegionManager();

Chapter 6. Eviction Policies

38

org.jboss.cache.eviction.Region region =
regionManager.getRegion("/myRegionName");

EvictionConfiguation config = region.getEvictionConfiguration();
((LRUConfiguration)config).setMaxNodes(12345);
((LRUConfiguration)config).setTimeToLiveSeconds(500);
((LRUConfiguration)config).setMaxAgeSeconds(1000);

3. TreeCache LRU eviction policy implementation

TreeCache has implemented a LRU eviction policy, org.jboss.cache.eviction.LRUPolicy,
that controls both the node lifetime and age. This policy guarantees O(n) = 1 for adds, removals
and lookups (visits). It has the following configuration parameters:

• wakeUpIntervalSeconds. This is the interval (in seconds) to process the node events and
also to perform sweeping for the size limit and age-out nodes.

• Region. Region is a group of nodes that possess the same eviction policy, e.g., same expired
time. In TreeCache, region is denoted by a fqn, e.g., /company/personnel, and it is
recursive. In specifying the region, the order is important. For example, if /org/jboss/test is
specified before /org/jboss/test/data, then any node under /org/jboss/test/data
belongs to the first region rather than the second. Note also that whenever eviction policy is
activated, there should always be a /_default_ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmable, i.e., all
the policies have to be specified via XML configuration.

• maxNodes. This is the maximum number of nodes allowed in this region. 0 denotes no limit.

• timeToLiveSeconds. Time to idle (in seconds) before the node is swept away. 0 denotes
no limit.

• maxAgeSeconds. Time an object should exist in TreeCache (in seconds) regardless of idle
time before the node is swept away. 0 denotes no limit.

Please see the above section for an example.

4. TreeCache FIFO eviction policy implementation

TreeCache has implemented a FIFO eviction policy, org.jboss.cache.eviction.FIFOPolicy,
that will control the eviction in a proper first in first out order. This policy guarantees O(n) = 1 for
adds, removals and lookups (visits). It has the following configuration parameters:

• wakeUpIntervalSeconds. This is the interval (in seconds) to process the node events and
also to perform sweeping for the size limit and age-out nodes.

• Region. Region is a group of nodes that possess the same eviction policy, e.g., same expired

TreeCache LRU eviction policy

39

time. In TreeCache, region is denoted by a fqn, e.g., /company/personnel, and it is
recursive. In specifying the region, the order is important. For example, if /org/jboss/test is
specified before /org/jboss/test/data, then any node under /org/jboss/test/data
belongs to the first region rather than the second. Note also that whenever eviction policy is
activated, there should always be a /_default_ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmable, i.e., all
the policies have to be specified via XML configuration.

• maxNodes. This is the maximum number of nodes allowed in this region. Any integer less
than or equal to 0 will throw an exception when the policy provider is being configured for
use.

Please read the above section for an example.

5. TreeCache MRU eviction policy implementation

TreeCache has implemented a MRU eviction policy, org.jboss.cache.eviction.MRUPolicy,
that will control the eviction in based on most recently used algorithm. The most recently used
nodes will be the first to evict with this policy. This policy guarantees O(n) = 1 for adds,
removals and lookups (visits). It has the following configuration parameters:

• wakeUpIntervalSeconds. This is the interval (in seconds) to process the node events and
also to perform sweeping for the size limit and age-out nodes.

• Region. Region is a group of nodes that possess the same eviction policy, e.g., same expired
time. In TreeCache, region is denoted by a fqn, e.g., /company/personnel, and it is
recursive. In specifying the region, the order is important. For example, if /org/jboss/test is
specified before /org/jboss/test/data, then any node under /org/jboss/test/data
belongs to the first region rather than the second. Note also that whenever eviction policy is
activated, there should always be a /_default_ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmable, i.e., all
the policies have to be specified via XML configuration.

• maxNodes. This is the maximum number of nodes allowed in this region. Any integer less
than or equal to 0 will throw an exception when the policy provider is being configured for
use.

Please read the above section for an example.

6. TreeCache LFU eviction policy implementation

TreeCache has implemented a LFU eviction policy, org.jboss.cache.eviction.LFUPolicy,
that will control the eviction in based on least frequently used algorithm. The least frequently
used nodes will be the first to evict with this policy. Node usage starts at 1 when a node is first
added. Each time it is visted, the node usage counter increments by 1. This number is used to
determine which nodes are least frequently used. LFU is also a sorted eviction algorithm. The

Chapter 6. Eviction Policies

40

underlying EvictionQueue implementation and algorithm is sorted in ascending order of the
node visits counter. This class guarantees O(n) = 1 for adds, removal and searches. However,
when any number of nodes are added/visited to the queue for a given processing pass, a single
O(n) = n*log(n) operation is used to resort the queue in proper LFU order. Similarly if any nodes
are removed or evicted, a single O(n) = n pruning operation is necessary to clean up the
EvictionQueue. LFU has the following configuration parameters:

• wakeUpIntervalSeconds. This is the interval (in seconds) to process the node events and
also to perform sweeping for the size limit and age-out nodes.

• Region. Region is a group of nodes that possess the same eviction policy, e.g., same expired
time. In TreeCache, region is denoted by a fqn, e.g., /company/personnel, and it is
recursive. In specifying the region, the order is important. For example, if /org/jboss/test is
specified before /org/jboss/test/data, then any node under /org/jboss/test/data
belongs to the first region rather than the second. Note also that whenever eviction policy is
activated, there should always be a /_default_ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmable, i.e., all
the policies have to be specified via XML configuration.

• maxNodes. This is the maximum number of nodes allowed in this region. A value of 0 for
maxNodes means that there is no upper bound for the configured cache region.

• minNodes. This is the minimum number of nodes allowed in this region. This value
determines what the eviction queue should prune down to per pass. e.g. If minNodes is 10
and the cache grows to 100 nodes, the cache is pruned down to the 10 most frequently
used nodes when the eviction timer makes a pass through the eviction algorithm.

Please read the above section for an example.

implementation

41

42

Cache Loaders
JBoss Cache can use a cache loader to back up the in-memory cache to a backend datastore.
If JBoss Cache is configured with a cache loader, then the following features are provided:

• Whenever a cache element is accessed, and that element is not in the cache (e.g. due to
eviction or due to server restart), then the cache loader transparently loads the element into
the cache if found in the backend store.

• Whenever an element is modified, added or removed, then that modification is persisted in
the backend store via the cache loader. If transactions are used, all modifications created
within a transaction are persisted. To this end, the cache loader takes part in the two phase
commit protocol run by the transaction manager.

Currently, the cache loader API looks similar to the TreeCache API. In the future, they will both
implement the same interface. The goal is to be able to form hierarchical cache topologies,
where one cache can delegate to another, which in turn may delegate to yet another cache.

As of JBossCache 1.3.0, you can now define several cache loaders, in a chain. The impact is
that the cache will look at all of the cache loaders in the order they've been configured, until it
finds a valid, non-null element of data. When performing writes, all cache loaders are written to
(except if the ignoreModifications element has been set to true for a specific cache loader. See
the configuration section below for details.

The cache loader interface is defined in org.jboss.cache.loader.CacheLoader as follows (edited
for brevity):

public interface CacheLoader extends Service {

/**
* Sets the configuration. Will be called before {@link #create()} and

{@link #start()}
* @param props A set of properties specific to a given CacheLoader
*/

void setConfig(Properties props);

void setCache(TreeCache c);

/**
* Returns a list of children names, all names are relative.

Returns null if
* the parent node is not found.
* The returned set must not be modified, e.g. use

Collections.unmodifiableSet(s) to
* return the result
* @param fqn The FQN of the parent
* @return Set<String>. A list of children. Returns null if no children

nodes are present,
* or the parent is not present

Chapter 7.

43

*/
Set getChildrenNames(Fqn fqn) throws Exception;

/**
* Returns the value for a given key. Returns null if the node doesn't

exist, or the value
* is not bound
*/

Object get(Fqn name, Object key) throws Exception;

/**
* Returns all keys and values from the persistent store, given a fully

qualified name.
*
* NOTE that the expected return value of this method has changed from

JBossCache 1.2.x
* and before! This will affect cache loaders written prior to

JBossCache 1.3.0 and such
* implementations should be checked for compliance with the behaviour

expected.
*
* @param name
* @return Map<Object,Object> of keys and values for the given node.

Returns null if the
* node is not found. If the node is found but has no attributes, this

method returns
* an empty Map.
* @throws Exception
*/

Map get(Fqn name) throws Exception;

/**
* Checks whether the CacheLoader has a node with Fqn
* @return True if node exists, false otherwise
*/

boolean exists(Fqn name) throws Exception;

/**
* Inserts key and value into the attributes hashmap of the given node.

If the node does
* not exist, all parent nodes from the root down are created

automatically
*/

void put(Fqn name, Object key, Object value) throws Exception;

/**
* Inserts all elements of attributes into the attributes hashmap of the

given node,
* overwriting existing attributes, but not clearing the existing hashmap

before
* insertion (making it a union of existing and new attributes)
* If the node does not exist, all parent nodes from the root down are

Chapter 7. Cache Loaders

44

created
* automatically
* @param name The fully qualified name of the node
* @param attributes A Map of attributes. Can be null
*/

void put(Fqn name, Map attributes) throws Exception;

/**
* Inserts all modifications to the backend store. Overwrite whatever is

already in
* the datastore.
* @param modifications A List<Modification> of modifications
* @throws Exception
*/

void put(List modifications) throws Exception;

/** Removes the given key and value from the attributes of the given
node.

* No-op if node doesn't exist */
void remove(Fqn name, Object key) throws Exception;

/**
* Removes the given node. If the node is the root of a subtree, this

will recursively
* remove all subnodes, depth-first
*/

void remove(Fqn name) throws Exception;

/** Removes all attributes from a given node, but doesn't delete the node
itself */

void removeData(Fqn name) throws Exception;

/**
* Prepare the modifications. For example, for a DB-based CacheLoader:
*
* Create a local (JDBC) transaction
* Associate the local transaction with tx (tx is the key)
* Execute the coresponding SQL statements against the DB (statements

derived from
*modifications)
*
* For non-transactional CacheLoader (e.g. file-based), this could be a

null operation
* @param tx The transaction, just used as a hashmap key
* @param modifications List<Modification>, a list of all modifications

within the given
* transaction
* @param one_phase Persist immediately and (for example) commit the

local JDBC
* transaction as well. When true, we won't get a {@link #commit(Object)}

or
* {@link #rollback(Object)} method call later
*/

void prepare(Object tx, List modifications, boolean one_phase) throws
Exception;

45

1 http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheCacheLoaders

/**
* Commit the transaction. A DB-based CacheLoader would look up the local

JDBC transaction
* associated with tx and commit that transaction
* Non-transactional CacheLoaders could simply write the data that was

previously saved
* transiently under the given tx key, to (for example) a file system

(note this only holds if
* the previous prepare() did not define one_phase=true
*/

void commit(Object tx) throws Exception;

/**
* Roll the transaction back. A DB-based CacheLoader would look up the

local JDBC
* transaction associated with tx and roll back that transaction
*/

void rollback(Object tx);

/**
* Fetch the entire state for this cache from secondary storage (disk,

DB) and return
* it as a byte buffer. This is for initialization of a new cache from a

remote cache.
* The new cache would then call storeEntireState()
* todo: define binary format for exchanging state
*/

byte[] loadEntireState() throws Exception;

/** Store the given state in secondary storage. Overwrite whatever is
currently in storage */

void storeEntireState(byte[] state) throws Exception;
}

NOTE: the contract defined by the CacheLoader interface has changed from JBoss Cache
1.3.0 onwards, specifically with the get(Fqn fqn) method. Special care must be taken with
custom CacheLoader implementations to ensure this new contract is still adhered to. See the
javadoc above on this method for details, or visit this wiki page1 for more discussion on this.

CacheLoader implementations that need to support partial state transfer should also implement
the subinterface org.jboss.cache.loader.ExtendedCacheLoader:

public interface ExtendedCacheLoader extends CacheLoader
{

/**
* Fetch a portion of the state for this cache from secondary storage
* (disk, DB) and return it as a byte buffer.
* This is for activation of a portion of new cache from a remote cache.
* The new cache would then call {@link #storeState(byte[], Fqn)}.

Chapter 7. Cache Loaders

46

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheCacheLoaders
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheCacheLoaders

*
* @param subtree Fqn naming the root (i.e. highest level parent) node of
* the subtree for which state is requested.
*
* @see org.jboss.cache.TreeCache#activateRegion(String)
*/

byte[] loadState(Fqn subtree) throws Exception;

/**
* Store the given portion of the cache tree's state in secondary

storage.
* Overwrite whatever is currently in secondary storage. If the

transferred
* state has Fqns equal to or children of parameter subtree,
* then no special behavior is required. Otherwise, ensure that
* the state is integrated under the given 'subtree'. Typically
* in the latter case 'subtree' would be the Fqn of the buddy
* backup region for a buddy group; e.g.
*
* If the the transferred state had Fqns starting with "/a" and
* 'subtree' was "/_BUDDY_BACKUP_/192.168.1.2:5555" then the
* state should be stored in the local persistent store under
* "/_BUDDY_BACKUP_/192.168.1.2:5555/a"
*
* @param state the state to store
* @param subtree Fqn naming the root (i.e. highest level parent) node of
* the subtree included in 'state'. If the Fqns
* of the data included in 'state' are not
* already children of 'subtree', then their
* Fqns should be altered to make them children of
* 'subtree' before they are persisted.
*/

void storeState(byte[] state, Fqn subtree) throws Exception;

/**
* Sets the {@link RegionManager} this object should use to manage
* marshalling/unmarshalling of different regions using different
* classloaders.
*
* NOTE: This method is only intended to be used by the TreeCache

instance
* this cache loader is associated with.
*
* @param manager the region manager to use, or null.
*/

void setRegionManager(RegionManager manager);

}

NOTE: If a cache loader is used along with buddy replication, the cache loader must implement
ExtendedCacheLoader unless its FetchPersistentState property is set to false.

NOTE: the contract defined by the ExtendedCacheLoader interface has changed from JBoss

47

Cache 1.4.0 onwards, specifically with the requirement that data passed to storeState method
be integrated under the given subtree, even if that data didn't originate in that subtree. This
behavior is necessary to properly support buddy replication. Special care must be taken with
custom ExtendedCacheLoader implementations to ensure this new contract is still adhered to.

1. The CacheLoader Interface

The interaction between JBoss Cache and a CacheLoader implementation is as follows. When
CacheLoaderConfiguration (see below) is non-null, an instance of each configured
cacheloader is created when the cache is created. Since CacheLoader extends Service,

public interface Service {
void create() throws Exception;

void start() throws Exception;

void stop();

void destroy();
}

CacheLoader.create() and CacheLoader.start() are called when the cache is started.
Correspondingly, stop() and destroy() are called when the cache is stopped.

Next, setConfig() and setCache() are called. The latter can be used to store a reference to
the cache, the former is used to configure this instance of the CacheLoader. For example, here
a database CacheLoader could establish a connection to the database.

The CacheLoader interface has a set of methods that are called when no transactions are used:
get(), put(), remove() and removeData(): they get/set/remove the value immediately. These
methods are described as javadoc comments in the above interface.

Then there are three methods that are used with transactions: prepare(), commit() and
rollback(). The prepare() method is called when a transaction is to be committed. It has a
transaction object and a list of modfications as argument. The transaction object can be used as
a key into a hashmap of transactions, where the values are the lists of modifications. Each
modification list has a number of Modification elements, which represent the changes made
to a cache for a given transaction. When prepare() returns successfully, then the
CacheLoader must be able to commit (or rollback) the transaction successfully.

Currently, the TreeCache takes care of calling prepare(), commit() and rollback() on the
CacheLoaders at the right time. We intend to make both the TreeCache and the CacheLoaders
XA resources, so that instead of calling those methods on a loader, the cache will only enlist the
loader with the TransactionManager on the same transaction.

The commit() method tells the CacheLoader to commit the transaction, and the rollback()

method tells the CacheLoader to discard the changes associated with that transaction.

The last two methods are loadEntireState() and storeEntireState(). The first method

Chapter 7. Cache Loaders

48

asks the CacheLoader to get the entire state the backend store manages and return it as a byte
buffer, and the second tells a CacheLoader to replace its entire state with the byte buffer
argument. These methods are used for scenarios where each JBossCache node in a cluster
has its own local data store, e.g. a local DB, and - when a new node starts - we have to initialize
its backend store with the contents of the backend store of an existing member. See below for
deails.

The ExtendedCacheLoader methods are also related to state transfer. The loadState(Fqn)

method is called when the cache is preparing a partial state transfer -- that is, the transfer of just
the portion of the cache loader's state that is rooted in the given Fqn. The storeState(byte[],

Fqn) method is then invoked on the cache loader of the node that is receiving the state transfer.
Partial state transfers occur when the cache's activateRegion() API is used and during the
formation of buddy groups if buddy replication is used.

2. Configuration via XML

The CacheLoader is configured as follows in the JBossCache XML file:

<!--
== -->

<!-- Defines TreeCache configuration
-->

<!--
== -->

<mbean code="org.jboss.cache.TreeCache"
name="jboss.cache:service=TreeCache">

<!-- New 1.3.x cache loader config block -->
<attribute name="CacheLoaderConfiguration">

<config>
<!-- if passivation is true, only the first cache loader is

used;
the rest are ignored -->
<passivation>false</passivation>
<!-- comma delimited FQNs to preload -->
<preload>/</preload>
<!-- are the cache loaders shared in a cluster? -->
<shared>false</shared>

<!-- we can now have multiple cache loaders, which get
chained -->

<!-- the 'cacheloader' element may be repeated -->
<cacheloader>

<class>org.jboss.cache.loader.JDBCCacheLoader</class>
<!-- same as the old CacheLoaderConfig attribute -->
<properties>

cache.jdbc.driver=com.mysql.jdbc.Driver
cache.jdbc.url=jdbc:mysql://localhost:3306/jbossdb
cache.jdbc.user=root
cache.jdbc.password=

</properties>
<!-- whether the cache loader writes are asynchronous

-->

Configuration via XML

49

<async>false</async>
<!-- only one cache loader in the chain may set

fetchPersistentState
to true.

An exception is thrown if more than one cache loader
sets this

to true. -->
<fetchPersistentState>true</fetchPersistentState>
<!-- determines whether this cache loader ignores writes

- defaults
to false. -->
<ignoreModifications>false</ignoreModifications>
<!-- if set to true, purges the contents of this cache

loader when
the cache starts up.
Defaults to false. -->
<purgeOnStartup>false</purgeOnStartup>

</cacheloader>

</config>
</attribute>

</mbean>

Note: In JBossCache releases prior to 1.3.0, the cache loader configuration block used to look
like this. Note that this form is DEPRECATED and you will have to replace your cache loader
configuration with a block similar to the one above.

<!--
== -->

<!-- Defines TreeCache configuration
-->

<!--
== -->

<mbean code="org.jboss.cache.TreeCache"
name="jboss.cache:service=TreeCache">

<attribute
name="CacheLoaderClass">org.jboss.cache.loader.bdbje.BdbjeCacheLoader

</attribute>
<!-- attribute

name="CacheLoaderClass">org.jboss.cache.loader.FileCacheLoader
</attribute -->
<attribute name="CacheLoaderConfig" replace="false">

location=c:\\tmp\\bdbje
</attribute>
<attribute name="CacheLoaderShared">true</attribute>
<attribute name="CacheLoaderPreload">/</attribute>
<attribute name="CacheLoaderFetchTransientState">false</attribute>
<attribute name="CacheLoaderFetchPersistentState">true</attribute>
<attribute name="CacheLoaderAsynchronous">true</attribute>

</mbean>

Chapter 7. Cache Loaders

50

The CacheLoaderClass attribute defines the class of the CacheLoader implementation. (Note
that, because of a bug in the properties editor in JBoss, backslashes in variables for Windows
filenames might not get expanded correctly, so replace="false" may be necessary).

The currently available implementations shipped with JBossCache are:

• FileCacheLoader, which is a simple filesystem-based implementation. The
<cacheloader><properties> element needs to contain a "location" property, which maps to
a directory where the file is located (e.g., "location=c:\\tmp").

• BdbjeCacheLoader, which is a CacheLoader implementation based on the Sleepycat DB
Java Edition. The <cacheloader><properties> element needs to contain a "location"
property, which maps to a directory,where the database file for Sleepycat resides (e.g.,
"location=c:\\tmp").

• JDBCCacheLoader, which is a CacheLoader implementation using JDBC to access any
relational database. The <cacheloader><properties> element contains a number of
properties needed to connect to the database such as username, password, and connection
URL. See the section on JDBCCacheLoader for more details.

• LocalDelegatingCacheLoader, which enables loading from and storing to another local
(same VM) TreeCache.

• TcpDelegatingCacheLoader, which enables loading from and storing to a remote (different
VM) TreeCache using TCP as the transport mechanism. This CacheLoader is available in
JBossCache version 1.3.0 and above.

• ClusteredCacheLoader, which allows querying of other caches in the same cluster for
in-memory data via the same clustering protocols used to replicate data. Writes are not
'stored' though, as replication would take care of any updates needed. You need to specify a
property called "timeout", a long value telling the cache loader how many milliseconds to
wait for responses from the cluster before assuming a null value. For example, "timeout =

3000" would use a timeout value of 3 seconds. This CacheLoader is available in JBossCache
version 1.3.0 and above.

Note that the Sleepycat implementation is much more efficient than the filesystem-based
implementation, and provides transactional guarantees, but requires a commercial license if
distributed with an application (see http://www.sleepycat.com/jeforjbosscache for details).

An implementation of CacheLoader has to have an empty constructor due to the way it is
instantiated.

The properties element defines a configuration specific to the given implementation. The
filesystem-based implementation for example defines the root directory to be used, whereas a
database implementation might define the database URL, name and password to establish a
database connection. This configuration is passed to the CacheLoader implementation via
CacheLoader.setConfig(Properties). Note that backspaces may have to be escaped.

Configuration via XML

51

Analogous to the CacheLoaderConfig attribute in pre-1.3.0 configurations.

preload allows us to define a list of nodes, or even entire subtrees, that are visited by the
cache on startup, in order to preload the data associated with those nodes. The default ("/")
loads the entire data available in the backend store into the cache, which is probably not a good
idea given that the data in the backend store might be large. As an example, /a,
/product/catalogue loads the subtrees /a and /product/catalogue into the cache, but
nothing else. Anything else is loaded lazily when accessed. Preloading makes sense when one
anticipates using elements under a given subtree frequently. Note that preloading loads all
nodes and associated attributes from the given node, recursively up to the root node.
Analogous to the CacheLoaderPreload attribute in pre-1.3.0 configurations.

fetchPersistentState determines whether or not to fetch the persistent state of a cache
when joining a cluster. Only one configured cache loader may set this property to true; if more
than one cache loader does so, a configuration exception will be thrown when starting your
cache service. Analogous to the CacheLoaderFetchPersistentState attribute in pre-1.3.0
configurations.

async determines whether writes to the cache loader block until completed, or are run on a
separate thread so writes return immediately. If this is set to true, an instance of
org.jboss.cache.loader.AsyncCacheLoader is constructed with an instance of the actual
cache loader to be used. The AsyncCacheLoader then delegates all requests to the underlying
cache loader, using a separate thread if necessary. See the Javadocs on
org.jboss.cache.loader.AsyncCacheLoader for more details. If unspecified, the async

element defaults to false. Analogous to the CacheLoaderAsynchronous attribute in pre-1.3.0
configurations.

Note on using the async element: there is always the possibility of dirty reads since all writes
are performed asynchronously, and it is thus impossible to guarantee when (and even if) a write
succeeds. This needs to be kept in mind when setting the async element to true.

ignoreModifications determines whether write methods are pushed down to the specific
cache loader. Situations may arise where transient application data should only reside in a file
based cache loader on the same server as the in-memory cache, for example, with a further
shared JDBC cache loader used by all servers in the network. This feature allows you to write to
the 'local' file cache loader but not the shared JDBC cache loader. This property defaults to
false, so writes are propagated to all cache loaders configured.

purgeOnStatup empties the specified cache loader (if ignoreModifications is false) when
the cache loader starts up.

3. Cache passivation

A CacheLoader can be used to enforce node passivation and activation on eviction in a
TreeCache.

Cache Passivation is the process of removing an object from in-memory cache and writing it to
a secondary data store (e.g., file system, database) on eviction. Cache Activation is the process
of restoring an object from the data store into the in-memory cache when it's needed to be used.

Chapter 7. Cache Loaders

52

2 Of course they can enable state transfer, if they want to have a warm or hot cache after startup.

In both cases, the configured CacheLoader will be used to read from the data store and write to
the data store.

When the eviction policy in effect calls evict() to evict a node from the cache, if passivation is
enabled, a notification that the node is being passivated will be emitted to the tree cache
listeners and the node and its children will be stored in the cache loader store. When a user
calls get() on a node that was evicted earlier, the node is loaded (lazy loaded) from the cache
loader store into the in-memory cache. When the node and its children have been loaded,
they're removed from the cache loader and a notification is emitted to the tree cache listeners
that the node has been activated.

To enable cache passivation/activation, you can set passivation to true. The default is false.
You set it via the XML cache configuration file. The XML above shows the passivation

element when configuring a cache loader. When passivation is used, only the first cache loader
configured is used. All others are ignored.

4. CacheLoader use cases

4.1. Local cache with store

This is the simplest case. We have a JBossCache instance, whose mode is LOCAL, therefore no
replication is going on. The CacheLoader simply loads non-existing elements from the store and
stores modifications back to the store. When the cache is started, depending on the preload

element, certain data can be preloaded, so that the cache is partly warmed up.

When using PojoCache, this means that entire POJOs can be stored to a database or a
filesystem, and when accessing fields of a POJO, they will be lazily loaded using the
CacheLoader to access a backend store. This feature effectively provides simple persistency for
any POJO.

4.2. Replicated caches with all nodes sharing the same store

The following figure shows 2 JBossCache nodes sharing the same backend store:

Figure 7.1. 2 nodes sharing a backend store

Both nodes have a CacheLoader that accesses a common shared backend store. This could for
example be a shared filesystem (using the FileCacheLoader), or a shared database. Because
both nodes access the same store, they don't necessarily need state transfer on
startup.2Rather, theFetchInMemoryState attribute could be set to false, resulting in a 'cold'
cache, that gradually warms up as elements are accessed and loaded for the first time. This
would mean that individual caches in a cluster might have different in-memory state at any given
time (largely depending on their preloading and eviction strategies).

When storing a value, the writer takes care of storing the change in the backend store. For

CacheLoader use cases

53

example, if node1 made change C1 and node2 C2, then node1 would tell its CacheLoader to
store C1, and node2 would tell its CacheLoader to store C2.

4.3. Replicated caches with only one node having a store

Figure 7.2. 2 nodes but only one accesses the backend store

This is a similar case as the previous one, but here only one node in the cluster interacts with a
backend store via its CacheLoader. All other nodes perform in-memory replication. A use case
for this is HTTP session replication, where all nodes replicate sessions in-memory, and - in
addition - one node saves the sessions to a persistent backend store. Note that here it may
make sense for the CacheLoader to store changes asynchronously, that is not on the caller's
thread, in order not to slow down the cluster by accessing (for example) a database. This is a
non-issue when using asynchronous replication.

4.4. Replicated caches with each node having its own store

Figure 7.3. 2 nodes each having its own backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated across the
cluster and (b) persisted using the CacheLoader. This means that all datastores have exactly
the same state. When replicating changes synchronously and in a transaction, the two phase
commit protocol takes care that all modifications are replicated and persisted in each datastore,
or none is replicated and persisted (atomic updates).

Note that currently JBossCache is not an XAResource, that means it doesn't implement
recovery. When used with a TransactionManager that supports recovery, this functionality is not
available.

The challenge here is state transfer: when a new node starts it needs to do the following:

1. Tell the coordinator (oldest node in a cluster) to send it the state

2. The coordinator then needs to wait until all in-flight transactions have completed. During this
time, it will not allow for new transactions to be started.

3. Then the coordinator asks its CacheLoader for the entire state using loadEntireState(). It
then sends back that state to the new node.

4. The new node then tells its CacheLoader to store that state in its store, overwriting the old
state. This is the CacheLoader.storeEntireState() method

5. As an option, the transient (in-memory) state can be transferred as well during the state

Chapter 7. Cache Loaders

54

transfer.

6. The new node now has the same state in its backend store as everyone else in the cluster,
and modifications received from other nodes will now be persisted using the local
CacheLoader.

4.5. Hierarchical caches

If you need to set up a hierarchy within a single VM, you can use the
LocalDelegatingCacheLoader. This type of hierarchy can currently only be set up
programmatically. The code below shows how a first-level cache delegates to a local
second-level cache:

TreeCache firstLevel, secondLevel;
LocalDelegatingCacheLoader cache_loader;

// create and configure firstLevel
firstLevel=new TreeCache();

// create and configure secondLevel
secondLevel=new TreeCache();

// create DelegatingCacheLoader
cache_loader=new LocalDelegatingCacheLoader(secondLevel);

// set CacheLoader in firstLevel
firstLevel.setCacheLoader(cache_loader);

// start secondLevel
secondLevel.startService();

// start firstLevel
firstLevel.startService();

If you need to set up a hierarchy across VMs but within a cluster, you can use the
RpcDelegatingCacheLoader, which delegates all cache loading requests from non-coordinator
caches to the cluster's coordinator cache. The coordinator cache is the first cache in the cluster
to come online. Note that if the coordinator cache leaves the cluster for any reason, the second
cache in the cluster to come online becomes the coordinator and so on. The XML below shows
how to configure a cluster using RpcDelegatingCacheLoader:

<!-- ==
-->
<!-- Defines TreeCache configuration
-->
<!-- ==
-->

<mbean code="org.jboss.cache.TreeCache"
name="jboss.cache:service=TreeCache">

Hierarchical caches

55

...
<attribute name="CacheLoaderConfiguration">

<config>
<passivation>false</passivation>
<preload>/some/stuff</preload>
<cacheloader>

<class>org.jboss.cache.loader.RpcDelegatingCacheLoader</class>
<!-- whether the cache loader writes are asynchronous -->
<async>false</async>
<!-- only one cache loader in the chain may set

fetchPersistentState to true.
An exception is thrown if more than one cache loader sets

this to true.
-->
<fetchPersistentState>false</fetchPersistentState>
<!-- determines whether this cache loader ignores writes -

defaults to false.
-->
<ignoreModifications>false</ignoreModifications>
<!-- if set to true, purges the contents of this cache loader

when
the cache starts up.
Defaults to false. -->
<purgeOnStartup>false</purgeOnStartup>

</cacheloader>
</config>

</attribute>
...
</mbean>

Note that currently (JBossCache 1.3.0) this cache loader is not well supported, and has not
been tested. We suggest to use TcpDelegatingCacheLoader instead (see next).

4.6. TcpDelegatingCacheLoader

This cache loader allows to delegate loads and stores to another instance of JBossCache,
which could reside (a)in the same address space, (b) in a different process on the same host, or
(c) in a different process on a different host. Option (a) is mostly used for unit testing, and the
envisaged use is (b) and (c).

A TcpDelegatingCacheLoader talks to a remote TcpCacheServer, which can be a standalone
process, or embedded as an MBean inside JBoss. The TcpCacheServer has a reference to
another JBossCache, which it can create itself, or which is given to it (e.g. by JBoss, using
dependency injection).

The TcpDelegatingCacheLoader is configured with the host and port of the remote
TcpCacheServer, and uses this to communicate to it.

An example set of a TcpCacheServer running inside of JBoss is shown below:

Chapter 7. Cache Loaders

56

<server>

<classpath codebase="./lib" archives="jboss-cache.jar"/>

<mbean code="org.jboss.cache.loader.tcp.TcpCacheServer"
name="jboss.cache:service=TcpCacheServer">

<depends optional-attribute-name="Cache"
proxy-type="attribute">jboss.cache:service=TreeCache</depends>

<attribute
name="BindAddress">${jboss.bind.address:localhost}</attribute>

<attribute name="Port">7500</attribute>
<attribute name="MBeanServerName"></attribute>
<!--<attribute

name="CacheName">jboss.cache:service=TreeCache</attribute>-->
</mbean>

</server>

The BindAddress and Port define where its server socket is listening on, and an existing
JBossCache MBean is injected into it (assigned to 'Cache'). This means that all requests from
the TcpDelegatingCacheLoader will be received by this instance and forwarded to the
JBossCache MBean.

Note that there is also a 'Config' attribute which points to a config XML file for JBossCache. If it
is set, then the TcpCacheServer will create its own instance of JBossCache and configure it
according to the Config attribute.

The client side looks as follow:

<attribute name="CacheLoaderConfiguration">
<config>

<cacheloader>
<class>org.jboss.cache.loader.tcp.TcpDelegatingCacheLoader</class>

<properties>
host=localhost
port=7500

</properties>
</cacheloader>

</config>
</attribute>

This means this instance of JBossCache will delegate all load and store requests to the remote
TcpCacheServer running at localhost:7500.

A typical use case could be multiple replicated instance of JBossCache in the same cluster, all
delegating to the same TcpCacheServer instance. The TcpCacheServer might itself delegate to
a database via JDBCCacheLoader, but the point here is that - if we have 5 nodes all accessing
the same dataset - they will load the data from the TcpCacheServer, which has do execute one
SQL statement per unloaded data set. If the nodes went directly to the database, then we'd
have the same SQL executed multiple times. So TcpCacheServer serves as a natural cache in

TcpDelegatingCacheLoader

57

front of the DB (assuming that a network round trip is faster than a DB access (which usually
also include a network round trip)).

To alleviate single point of failure, we could combine this with a ChainingCacheLoader, where
the first CacheLoader is a ClusteredCacheLoader, the second a TcpDelegatingCacheLoader,
and the last a JDBCacheLoader, effectively defining our cost of access to a cache in increasing
order of cost.

4.7. RmiDelegatingCacheLoader

Similar to the TcpDelegatingCacheLoader, the RmiDelegatingCacheLoader uses RMI as a
method of communicating with a remote cache.

An RmiDelegatingCacheLoader talks to a remote RmiCacheServer, which is a standalone
process. The RmiCacheServer has a reference to another JBossCache, which it can create
itself, or which is given to it (e.g. by JBoss, using dependency injection).

The RmiDelegatingCacheLoader is configured with the host, port of the remote RMI server and
the bind name of the RmiCacheServer, and uses this to communicate.

An example set of an RmiCacheServer running inside of JBoss is shown below:

<server>

<classpath codebase="./lib" archives="jboss-cache.jar"/>

<mbean code="org.jboss.cache.loader.rmi.RmiCacheServer"
name="jboss.cache:service=RmiCacheServer">
<depends optional-attribute-name="Cache"
proxy-type="attribute">jboss.cache:service=TreeCache</depends>
<!-- the address and port of the RMI server. -->
<attribute

name="BindAddress">${jboss.bind.address:localhost}</attribute>
<attribute name="Port">1098</attribute>
<attribute name="BindName">MyRmiCacheServer</attribute>
<attribute name="MBeanServerName"></attribute>
<!--<attribute

name="CacheName">jboss.cache:service=TreeCache</attribute>-->
</mbean>

</server>

The BindAddress and Port should point to an already-running RMI server and the BindName is
the name the object is bound to in the RMI server. An existing JBossCache MBean is injected
into it (assigned to 'Cache'). This means that all requests from the TcpDelegatingCacheLoader
will be received by this instance and forwarded to the JBossCache MBean.

Note that there is also a 'Config' attribute which points to a config XML file for JBossCache. If it
is set, then the RmiCacheServer will create its own instance of JBossCache and configure it

Chapter 7. Cache Loaders

58

3 ???

according to the Config attribute.

The client side looks as follow:

<attribute name="CacheLoaderConfiguration">
<config>

<cacheloader>
<class>org.jboss.cache.loader.RmiDelegatingCacheLoader</class>

<properties>
host=localhost
port=1098

name=MyRmiCacheServer
</properties>

</cacheloader>
</config>

</attribute>

This means this instance of JBossCache will delegate all load and store requests to the remote
RmiCacheServer running as MyRmiCacheServer on an RMI server running on localhost:1098.

Very similar use case scenarios that apply to TcpDelegatingCacheLoaders above apply to
RmiDelegatingCacheLoaders as well.

5. JDBC-based CacheLoader

JBossCache is distributed with a JDBC-based CacheLoader implementation that stores/loads
nodes' state into a relational database. The implementing class is
org.jboss.cache.loader.JDBCCacheLoader.

The current implementation uses just one table. Each row in the table represents one node and
contains three columns:

• column for FQN (which is also a primary key column)

• column for node contents (attribute/value pairs)

• column for parent FQN

FQN's are stored as strings. Node content is stored as a BLOB. WARNING: TreeCache does
not impose any limitations on the types of objects used in FQN but this implementation of
CacheLoader requires FQN to contain only objects of type java.lang.String. Another
limitation for FQN is its length. Since FQN is a primary key, its default column type is VARCHAR

which can store text values up to some maximum length determined by the database. FQN is
also subject to any maximum primary key length restriction imposed by the database.

See http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader3 for configuration tips with

JDBC-based CacheLoader

59

???
???

specific database systems.

5.1. JDBCCacheLoader configuration

5.1.1. Table configuration

Table and column names as well as column types are configurable with the following properties.

• cache.jdbc.table.name - the name of the table. The default value is 'jbosscache'.

• cache.jdbc.table.primarykey - the name of the primary key for the table. The default value is
'jbosscache_pk'.

• cache.jdbc.table.create - can be true or false. Indicates whether to create the table during
startup. If true, the table is created if it doesn't already exist. The default value is true.

• cache.jdbc.table.drop - can be true or false. Indicates whether to drop the table during
shutdown. The default value is true.

• cache.jdbc.fqn.column - FQN column name. The default value is 'fqn'.

• cache.jdbc.fqn.type - FQN column type. The default value is 'varchar(255)'.

• cache.jdbc.node.column - node contents column name. The default value is 'node'.

• cache.jdbc.node.type - node contents column type. The default value is 'blob'. This type must
specify a valid binary data type for the database being used.

5.1.2. DataSource

If you are using JBossCache in a managed environment (e.g., an application server) you can
specify the JNDI name of the DataSource you want to use.

• cache.jdbc.datasource - JNDI name of the DataSource. The default value is 'java:/DefaultDS'.

5.1.3. JDBC driver

If you are not using DataSource you have the following properties to configure database access
using a JDBC driver.

• cache.jdbc.driver - fully qualified JDBC driver name.

• cache.jdbc.url - URL to connect to the database.

• cache.jdbc.user - user name to connect to the database.

• cache.jdbc.password - password to connect to the database.

Chapter 7. Cache Loaders

60

5.1.4. Configuration example

Below is an example of a JDBC CacheLoader using Oracle as database. The
CacheLoaderConfiguration XML element contains an arbitrary set of properties which define the
database-related configuration.

<attribute name="CacheLoaderConfiguration">
<config>

<passivation>false</passivation>
<preload>/some/stuff</preload>
<cacheloader>

<class>org.jboss.cache.loader.JDBCCacheLoader</class>
<!-- same as the old CacheLoaderConfig attribute -->
<properties>

cache.jdbc.table.name=jbosscache
cache.jdbc.table.create=true
cache.jdbc.table.drop=true
cache.jdbc.table.primarykey=jbosscache_pk
cache.jdbc.fqn.column=fqn
cache.jdbc.fqn.type=varchar(255)
cache.jdbc.node.column=node
cache.jdbc.node.type=blob
cache.jdbc.parent.column=parent
cache.jdbc.driver=oracle.jdbc.OracleDriver
cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB
cache.jdbc.user=SCOTT
cache.jdbc.password=TIGER

</properties>
<!-- whether the cache loader writes are asynchronous -->
<async>false</async>
<!-- only one cache loader in the chain may set

fetchPersistentState to true.
An exception is thrown if more than one cache loader sets

this to true.
-->

<fetchPersistentState>true</fetchPersistentState>
<!-- determines whether this cache loader ignores writes -

defaults to false.
-->
<ignoreModifications>false</ignoreModifications>
<!-- if set to true, purges the contents of this cache loader

when the cache
starts up. Defaults to false. -->
<purgeOnStartup>false</purgeOnStartup>

</cacheloader>
</config>

</attribute>

As an alternative to configuring the entire JDBC connection, the name of an existing data
source can be given:

<attribute name="CacheLoaderConfiguration">
<config>

JDBCCacheLoader configuration

61

<passivation>false</passivation>
<preload>/some/stuff</preload>
<cacheloader>

<class>org.jboss.cache.loader.JDBCCacheLoader</class>
<!-- same as the old CacheLoaderConfig attribute -->
<properties>

cache.jdbc.datasource=java:/DefaultDS
</properties>
<!-- whether the cache loader writes are asynchronous -->
<async>false</async>
<!-- only one cache loader in the chain may set

fetchPersistentState to true.
An exception is thrown if more than one cache loader sets

this to true.
-->

<fetchPersistentState>true</fetchPersistentState>
<!-- determines whether this cache loader ignores writes -

defaults to false.
-->
<ignoreModifications>false</ignoreModifications>
<!-- if set to true, purges the contents of this cache loader

when the cache
starts up. Defaults to false. -->
<purgeOnStartup>false</purgeOnStartup>

</cacheloader>
</config>

</attribute>

Chapter 7. Cache Loaders

62

TreeCacheMarshaller
Rather than using standard Java serialization to serialize java.lang.reflect.Method objects
and their parameters when remote caches talk to each other to replicate data, JBoss Cache
uses its own mechanism to marshall and unmarshall data called the TreeCacheMarshaller.

In addition to providing the performance and efficiency enhancements over standard Java
serialization, The TreeCacheMarshaller also performs one other function. In order to
deserialize an object replicated to it from a remote cache, a cache instance needs to have
access to the classloader that defines the object's class. This is simple if the cache's own
classloader can access the required classes, but for situations where JBoss Cache is used as a
service supporting clients that use different classloaders, the TreeCacheMarshaller can be
configured to use different classloaders on a per-region basis by allowing application code to
register a classloader that should be used to handle replication for a portion of the tree.

1. Basic Usage

TreeCache exposes the following basic API for controlling the behavior of
TreeCacheMarshaller:

/**
* Sets whether marshalling uses scoped class loaders on a per region basis.
*
* This property must be set to true before any call to
* {@link #registerClassLoader(String, ClassLoader)} or
* {@link #activateRegion(String)}
*
* @param isTrue
*/

void setUseRegionBasedMarshalling(boolean isTrue);

/**
* Gets whether marshalling uses scoped class loaders on a per region basis.
*/

boolean getUseRegionBasedMarshalling();

/**
* Registers the given classloader with TreeCacheMarshaller for
* use in unmarshalling replicated objects for the specified region.
*
* @param fqn The fqn region. This fqn and its children will use this

classloader for
* (un)marshalling.
* @param cl The class loader to use
*
* @throws RegionNameConflictException if fqn is a descendant of
* an FQN that already has a classloader registered.
* @throws IllegalStateException if useMarshalling is false
*/

void registerClassLoader(String fqn, ClassLoader cl) throws
RegionNameConflictException;

Chapter 8.

63

/**
* Instructs the TreeCacheMarshaller to no longer use a special
* classloader to unmarshal replicated objects for the specified region.
*
* @param fqn The fqn of the root node of region.
*
* @throws RegionNotFoundException if no classloader has been registered for
* fqn.
* @throws IllegalStateException if useMarshalling is false
*/

void unregisterClassLoader(String fqn) throws RegionNotFoundException;

Property UseRegionBasedMarshalling controls whether classloader-based marshalling should
be used. This property should be set as part of normal cache configuration, typically in the
cache's XML configuration file:

<attribute name="UseRegionBasedMarshalling">true</attribute>

Anytime after UseRegionBasedMarshalling is set to true, the application code can call
registerClassLoader to associate a classloader with the portion of the cache rooted in a
particular FQN. Once registered, the classloader will be used to unmarshal any replication traffic
related to the node identified by the FQN or to any of its descendants.

At this time, registerClassLoader only supports String-based FQNs.

Note that it is illegal to register a classloader for an FQN that is a descendant of an FQN for
which a classloader has already been registered. For example, if classloader X is registered for
FQN /a, a RegionNameConflictException will be thrown if an attempt is made to register
classloader Y for FQN /a/b.

Method unregisterClassLoader is used to remove the association between a classloader and
a particular cache region. Be sure to call this method when you are done using the cache with a
particular classloader, or a reference to the classloader will be held, causing a memory leak!

2. Region Activation/Inactivation

The basic API discussed above is helpful, but in situations where applications with different
classloaders are sharing a cache, the lifecycle of those applications will typically be different
from that of the cache. The result of this is that it is difficult or impossible to register all required
classloaders before a cache is started. For example, consider the following scenario:

1. TreeCache on machine A starts.

2. On A a classloader is registered under FQN /x.

3. Machine B starts, so TreeCache on B starts.

Chapter 8. TreeCacheMarshaller

64

4. An object is put in the machine A cache under FQN /x/1.

5. Replication to B fails, as the required classloader is not yet registered.

6. On B a classloader is registered under FQN /x, but too late to prevent the replication error.

Furthermore, if any objects had been added to server A before server B was started, the initial
transfer of state from A to B would have failed as well, as B would not be able to unmarshal the
transferred objects.

To resolve this problem, if region-based marshalling is used a cache instance can be configured
to ignore replication events for a portion of the tree. That portion of the tree is considered
"inactive". After the needed classloader has been registered, the portion of the tree can be
"activated". Activation causes the following events to occur:

• Any existing state for that portion of the tree is transferred from another node in the cluster
and integrated into the local tree.

• TreeCacheMarshaller begins normal handling of replication traffic related to the portion of the
tree.

In addition to the basic marshalling related API discussed above, TreeCache exposes the
following API related to activating and inactivating portions of the cache:

/**
* Sets whether the entire tree is inactive upon startup, only responding
* to replication messages after {@link #activateRegion(String)} is
* called to activate one or more parts of the tree.
* <p>
* This property is only relevant if {@link #getUseRegionBasedMarshalling()}

is
* true.
*
*/

public void setInactiveOnStartup(boolean inactiveOnStartup);

/**
* Gets whether the entire tree is inactive upon startup, only responding
* to replication messages after {@link #activateRegion(String)} is
* called to activate one or more parts of the tree.
* <p>
* This property is only relevant if {@link #getUseRegionBasedMarshalling()}

is
* true.
*/

public boolean isInactiveOnStartup();

/**
* Causes the cache to transfer state for the subtree rooted at
* subtreeFqn and to begin accepting replication messages

Region Activation/Inactivation

65

* for that subtree.
*
* NOTE: This method will cause the creation of a node
* in the local tree at subtreeFqn whether or not that
* node exists anywhere else in the cluster. If the node does not exist
* elsewhere, the local node will be empty. The creation of this node will
* not be replicated.
*
* @param subtreeFqn Fqn string indicating the uppermost node in the
* portion of the tree that should be activated.
*
* @throws RegionNotEmptyException if the node subtreeFqn
* exists and has either data or children
*
* @throws IllegalStateException if useRegionBasedMarshalling is false
*/

public void activateRegion(String subtreeFqn)
throws RegionNotEmptyException, RegionNameConflictException,

CacheException;

/**
* Causes the cache to stop accepting replication events for the subtree
* rooted at subtreeFqn and evict all nodes in that subtree.
*
* @param subtreeFqn Fqn string indicating the uppermost node in the
* portion of the tree that should be activated.
* @throws RegionNameConflictException if subtreeFqn indicates
* a node that is part of another subtree that is being specially
* managed (either by activate/inactiveRegion()
* or by registerClassLoader())
* @throws CacheException if there is a problem evicting nodes
*
* @throws IllegalStateException if useRegionBasedMarshalling is false
*/

public void inactivateRegion(String subtreeFqn) throws
RegionNameConflictException,
CacheException;

Property InactiveOnStartup controls whether the entire cache should be considered inactive
when the cache starts. In most use cases where region activation is needed, this property would
be set to true. This property should be set as part of normal cache configuration, typically in the
cache's XML configuration file:

<attribute name="InactiveOnStartup">true</attribute>

When InactiveOnStartup is set to true, no state transfer will be performed on startup, even if
property FetchInMemoryState is true.

When activateRegion() is invoked, each node in the cluster will be queried to see if it has
active state for that portion of the tree. If one does, it will return the current state, which will then
be integrated into the tree. Once state is transferred from one node, no other nodes will be

Chapter 8. TreeCacheMarshaller

66

asked for state. This process is somewhat different from the initial state transfer process that
occurs at startup when property FetchInMemoryState is set to true. During initial state transfer,
only the oldest member of the cluster is queried for state. This approach is inadequate for
region activation, as it is possible that the oldest member of the cluster also has the region
inactivated, and thus cannot provide state. So, each node in the cluster is queried until one
provides state.

Before requesting state from other nodes, activateRegion() will confirm that there is no
existing data in the portion of the tree being activated. If there is any, a
RegionNotEmptyException will be thrown.

It is important to understand that when a region of the tree is marked as inactive, this only
means replication traffic from other cluster nodes related to that portion of the tree will be
ignored. It is still technically possible for objects to be placed in the inactive portion of the tree
locally (via a put call), and any such local activity will be replicated to other nodes. TreeCache
will not prevent this kind of local activity on an inactive region, but, as discussed above
activateRegion() will throw an exception if it discovers data in a region that is being activated.

2.1. Example usage of Region Activation/Inactivation

As an example of the usage of region activation and inactivation, let's imagine a scenario where
a TreeCache instance is deployed as a shared MBean service by deploying a -service.xml in
the JBoss /deploy directory. One of the users of this cache could be a web application, which
when started will register its classloader with the TreeCache and activate its own region of the
cache.

First, the XML configuration file for the shared cache service would be configured as follows
(only relevant portions are shown):

<?xml version="1.0" encoding="UTF-8" ?>
<server>
<classpath codebase="./lib" archives="jboss-cache.jar, jgroups.jar" />

<!-- ==
-->
<!-- Defines TreeCache configuration

-->
<!-- ==

-->
<mbean code="org.jboss.cache.TreeCache"

name="com.xyz.cache:service=SharedCache">

.......

<!-- Configure Marshalling -->
<attribute name="getUseRegionBasedMarshalling">true</attribute>
<attribute name="InactiveOnStartup">true</attribute>

........

</mbean>

Example usage of Region

67

</server>

For the webapp, registering/unregistering the classloader and activating/inactivating the app's
region in the cache are tasks that should be done as part of initialization and destruction of the
app. So, using a ServletContextListener to manage these tasks seems logical. Following is
an example listener:

package example;

import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

import org.jboss.cache.TreeCacheMBean;
import org.jboss.mx.util.MBeanProxyExt;

public class ActiveInactiveRegionExample implements ServletContextListener
{

private TreeCacheMBean cache;

public void contextInitialized(ServletContextEvent arg0) {
try {

findCache();

cache.registerClassLoader("/example",
Thread.currentThread().getContextClassLoader());

cache.activeRegion("/example");
}
catch (Exception e) {

// ... handle exception
}

}

public void contextDestroyed(ServletContextEvent arg0) {
cache.inactivateRegion("/example");
cache.unregisterClassLoader("/example");

}

private void findCache() throws MalformedObjectNameException {
// Find the shared cache service in JMX and create a proxy to it
ObjectName cacheServiceName_ = new

ObjectName("com.xyz.cache:service=SharedCache");
// Create Proxy-Object for this service
cache = (TreeCacheMBean) MBeanProxyExt.create(TreeCacheMBean.class,

cacheServiceName_);
}

}

The listener makes use of the JBoss utility class MBeanProxyExt to find the TreeCache in JMX

Chapter 8. TreeCacheMarshaller

68

and create a proxy to it. (See the "Running and using TreeCache inside JBoss" section below
for more on accessing a TreeCache). It then registers its classloader with the cache and
activates its region. When the webapp is being destroyed, it inactivates its region and
unregisters its classloader (thus ensuring that the classloader isn't leaked via a reference to it
held by TreeCacheMarshaller).

Note the order of the method calls in the example class -- register a classloader before
activating a region, and inactivate the region before unregistering the classloader.

3. Region Activation/Inactivation with a CacheLoader

The activateRegion()/inactivateRegion() API can be used in conjunction with a CacheLoader as
well, but only if the cache loader implementation implements interface
org.jboss.cache.loader.ExtendedCacheLoader. This is a subinterface of the normal
CacheLoader interface. It additionally specifies the following methods needed to support the
partial state transfer that occurs when a region is activated:

/**
* Fetch a portion of the state for this cache from secondary storage
* (disk, DB) and return it as a byte buffer.
* This is for activation of a portion of new cache from a remote cache.
* The new cache would then call {@link #storeState(byte[], Fqn)}.
*
* @param subtree Fqn naming the root (i.e. highest level parent) node of
* the subtree for which state is requested.
*
* @see org.jboss.cache.TreeCache#activateRegion(String)
*/

byte[] loadState(Fqn subtree) throws Exception;

/**
* Store the given portion of the cache tree's state in secondary

storage.
* Overwrite whatever is currently in secondary storage.
*
* @param state the state to store
* @param subtree Fqn naming the root (i.e. highest level parent) node of
* the subtree included in state.
*/

void storeState(byte[] state, Fqn subtree) throws Exception;

/**
* Sets the RegionManager this object should use to manage
* marshalling/unmarshalling of different regions using different
* classloaders.
*
* NOTE: This method is only intended to be used
* by the TreeCache instance this cache loader is
* associated with.
*
*
* @param manager the region manager to use, or null.
*/

Activation/Inactivation

69

1 http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization

void setRegionManager(RegionManager manager);

JBossCache currently comes with two implementations of ExtendedCacheLoader,
FileExtendedCacheLoader and JDBCExtendedCacheLoader. These classes extend
FileCacheLoader and JDBCCacheLoader, respectively, implementing the extra methods in the
extended interface.

4. Performance over Java serialization

To achieve the performance and efficiency gains, the TreeCacheMarshaller uses a number of
techniques including method ids for known methods and magic numbers for known internal
class types which drastically reduces the size of calls to remote caches, greatly improving
throughput and reducing the overhead of Java serialization.

To make things even faster, the TreeCacheMarshaller uses JBoss Serialization1, a highly
efficient drop-in replacement for Java serialization for user-defined classes. JBoss Serialization
is enabled and always used by default, although this can be disabled, causing the marshalling
of user-defined classes to revert to Java serialization. JBoss Serialization is disabled by passing
in the -Dserialization.jboss=false environment variable into your JVM.

5. Backward compatibility

Marshalling in JBoss Cache is now versioned. All communications between caches contain a
version short which allows JBoss Cache instances of different versions to communicate with
each other. Up until JBoss Cache 1.4.0, all versions were able to communicate with each other
anyway since they all used simple serialization of org.jgroups.MethodCall objects, provided
they all used the same version of JGroups. This requirement (more a requirement of the
JGroups messaging layer than JBoss Cache) still exists, even though with JBoss Cache 1.4.0,
we've moved to a much more efficient and sophisticated marshalling mechanism.

JBoss Cache 1.4.0 and future releases of JBoss Cache will always be able to unmarshall data
from previous versions of JBoss Cache. For JBoss Cache 1.4.0 and future releases to marshall
data in a format that is compatible with older versions, however, you would have to start JBoss
Cache with the following configuration attribute:

<!-- takes values such as 1.2.3, 1.2.4 and 1.3.0 -->
<attribute name="ReplicationVersion">1.2.4</attribute>

Chapter 8. TreeCacheMarshaller

70

http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization
http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization

State Transfer
"State Transfer" refers to the process by which a JBoss Cache instance prepares itself to begin
providing a service by acquiring the current state from another cache instance and integrating
that state into its own state.

1. Types of State Transfer

The state that is acquired and integrated can consist of two basic types:

1. "Transient" or "in-memory" state. This consists of the actual in-memory state of another
cache instance -- the contents of the various in-memory nodes in the cache that is providing
state are serialized and transferred; the recipient deserializes the data, creates
corresponding nodes in its own in-memory tree, and populates them with the transferred
data.

"In-memory" state transfer is enabled by setting the cache's FetchInMemoryState property
to true.

2. "Persistent" state. Only applicable if a non-shared cache loader is used. The state stored in
the state-provider cache's persistent store is deserialized and transferred; the recipient
passes the data to its own cache loader, which persists it to the recipient's persistent store.

"Persistent" state transfer is enabled by setting a cache loader's
CacheLoaderFetchPersistentState property to true. If multiple cache loaders are
configured in a chain, only one can have this property set to true; otherwise you will get an
exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the same
persistent store that provides the data will just end up receiving it. Therefore, if a shared
cache loader is used, the cache will not allow a persistent state transfer even if a cache
loader has CacheLoaderFetchPersistentState set to true.

Which of these types of state transfer is appropriate depends on the usage of the cache.

1. If a write-through cache loader is used, the current cache state is fully represented by the
persistent state. Data may have been evicted from the in-memory state, but it will still be in
the persistent store. In this case, if the cache loader is not shared, persistent state transfer is
used to ensure the new cache has the correct state. In-memory state can be transferred as
well if the desire is to have a "hot" cache -- one that has all relevant data in memory when the
cache begins providing service. (Note that the "CacheLoaderPreload" configuration
parameter can be used as well to provide a "warm" or "hot" cache without requiring an
in-memory state transfer. This approach somewhat reduces the burden on the cache
instance providing state, but increases the load on the persistent store on the recipient side.)

2. If a cache loader is used with passivation, the full representation of the state can only be

Chapter 9.

71

obtained by combining the in-memory (i.e. non-passivated) and persistent (i.e. passivated)
states. Therefore an in-memory state transfer is necesssary. A persistent state transfer is
necessary if the cache loader is not shared.

3. If no cache loader is used and the cache is solely a write-aside cache (i.e. one that is used to
cache data that can also be found in a persistent store, e.g. a database), whether or not
in-memory state should be transferred depends on whether or not a "hot" cache is desired.

2. When State Transfer Occurs

If either in-memory or persistent state transfer is enabled, a full or partial state transfer will be
done at various times, depending on how the cache is used. "Full" state transfer refers to the
transfer of the state related to the entire tree -- i.e. the root node and all nodes below it. A
"partial" state transfer is one where just a portion of the tree is transferred -- i.e. a node at a
given Fqn and all nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at the
following times:

1. Initial state transfer. This occurs when the cache is first started (as part of the processing of
the start() method). This is a full state transfer. The state is retrieved from the cache
instance that has been operational the longest. If there is any problem receiving or integrating
the state, the cache will not start.

Initial state transfer will occur unless:

a. The cache's InactiveOnStartup property is true. This property is used in conjunction
with region-based marshalling; see below for more on this.

b. Buddy replication is used. See below for more on state transfer with buddy replication.

2. Partial state transfer following region activation. Only relevant when region-based marshalling
is used. Here a special classloader is needed to unmarshal the state for a portion of the tree.
State transfer cannot succeed until the application registers this classloader with the cache.
Once the application registers its classloader, it calls activateRegion(String fqn). As part
of the region activation process, a partial state transfer of the relevant subtree's state is
performed. The state is requested from the oldest cache instance in the cluster; if that
instance responds with no state, state is requested from each instance one by one until one
provides state or all instances have been queried.

Typically when region-based marshalling is used, the cache's InactiveOnStartup property
is set to true. This suppresses initial state transfer, which would fail due to the inability to
deserialize the transferred state.

3. Buddy replication. When buddy replication is used, initial state transfer is disabled. Instead,
when a cache instance joins the cluster, it becomes the buddy of one or more other
instances, and one or more other instances become its buddy. Each time an instance

Chapter 9. State Transfer

72

determines it has a new buddy providing backup for it, it pushes it's current state to the new
buddy. This "pushing" of state to the new buddy is slightly different from other forms of state
transfer, which are based on a "pull" approach (i.e. recipient asks for and receives state).
However, the process of preparing and integrating the state is the same.

This "push" of state upon buddy group formation only occurs if the InactiveOnStartup

property is set to false. If it is true, state transfer amongst the buddies only occurs when
the application calls activateRegion(String fqn) on the various members of the group.

Partial state transfer following an activateRegion() call is slightly different in the buddy
replication case as well. Instead of requesting the partial state from one cache instance, and
trying all instances until one responds, with buddy replication the instance that is activating a
region will request partial state from each instance for which it is serving as a backup.

When State Transfer Occurs

73

74

Version Compatibility and
Interoperability
While this is not absolutely guaranteed, generally speaking within a major version, releases of
JBoss Cache are meant to be compatible and interoperable. Compatible in the sense that it
should be possible to upgrade an application from one version to another by simply replacing
the jars. Interoperable in the sense that if two different versions of JBoss Cache are used in the
same cluster, they should be able to exchange replication and state transfer messages. Note
however that interoperability requires use of the same JGroups version in all nodes in the
cluster. In most cases, the version of JGroups used by a version of JBoss Cache can be
upgraded.

In the 1.2.4 and 1.2.4.SP1 releases, API compatibility and interoperability with previous
releases was broken. The primary purpose of the 1.2.4.SP2 release was to restore API
compatibility and interoperability. Note, however, that restoring API compatibility with earlier
releases meant that 1.2.4.SP2 is not completely API compatible with the other two 1.2.4
releases. If you have built applications on top of 1.2.4 or 1.2.4.SP1, please recompile before
upgrading to 1.2.4.SP2 in order to be sure you have no issues.

Beginning in 1.2.4.SP2, a new configuration attribute ReplicationVersion has been added.
This attribute needs to be set in order to allow interoperability with previous releases. The value
should be set to the release name of the version with which interoperability is desired, e.g.
"1.2.3". If this attribute is set, the wire format of replication and state transfer messages will
conform to that understood by the indicated release. This mechanism allows us to improve
JBoss Cache by using more efficient wire formats while still providing a means to preserve
interoperability.

In a rare usage scenario, multiple different JBoss Cache instances may be operating on each
node in a cluster, but not all need to interoperate with a version 1.2.3 cache, and thus some
caches will not be configured with ReplicationVersion set to 1.2.3. This can cause problems
with serialization of Fqn objects. If you are using this kind of configuration, are having problems
and are unwilling to set ReplicationVersion to 1.2.3 on all caches, a workaround is to set
system property jboss.cache.fqn.123compatible to true.

Chapter 10.

75

76

Configuration
All properties of the cache are configured via setters and can be retrieved via getters. This can
be done either manually, or via the PropertyConfigurator and an XML file.

1. Sample XML-Based Configuration

A sample XML configuration file is shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<server>
<classpath codebase="./lib" archives="jboss-cache.jar, jgroups.jar" />

<!-- ==
-->
<!-- Defines TreeCache configuration

-->
<!-- ==

-->
<mbean code="org.jboss.cache.TreeCache"

name="jboss.cache:service=TreeCache">
<depends>jboss:service=Naming</depends>
<depends>jboss:service=TransactionManager</depends>

<!-- Configure the TransactionManager -->
<attribute name="TransactionManagerLookupClass">

org.jboss.cache.DummyTransactionManagerLookup
</attribute>

<!--
Node locking scheme :
PESSIMISTIC (default)
OPTIMISTIC
-->
<attribute name="NodeLockingScheme">PESSIMISTIC</attribute>

<!--
Node locking isolation level :

SERIALIZABLE
REPEATABLE_READ (default)
READ_COMMITTED
READ_UNCOMMITTED
NONE

(ignored if NodeLockingScheme is OPTIMISTIC)
-->
<attribute name="IsolationLevel">REPEATABLE_READ</attribute>

<!-- Lock parent before doing node additions/removes -->
<attribute name="LockParentForChildInsertRemove">true</attribute>

<!-- Valid modes are LOCAL
REPL_ASYNC

Chapter 11.

77

REPL_SYNC
INVALIDATION_ASYNC
INVALIDATION_SYNC

-->
<attribute name="CacheMode">LOCAL</attribute>

<!-- Whether each interceptor should have an mbean
registered to capture and display its statistics. -->

<attribute name="UseInterceptorMbeans">true</attribute>

<!-- Name of cluster. Needs to be the same for all TreeCache nodes in a
cluster, in order to find each other -->
<attribute name="ClusterName">JBoss-Cache-Cluster</attribute>

<!-- Uncomment next three statements to enable JGroups multiplexer.
This configuration is dependent on the JGroups multiplexer being
registered in an MBean server such as JBossAS. -->

<!--
<depends>jgroups.mux:name=Multiplexer</depends>
<attribute

name="MultiplexerService">jgroups.mux:name=Multiplexer</attribute>
<attribute name="MultiplexerStack">udp</attribute>
-->

<!-- JGroups protocol stack properties. ClusterConfig isn't used if the
multiplexer is enabled and successfully initialized. -->

<attribute name="ClusterConfig">
<config>

<!-- UDP: if you have a multihomed machine,
set the bind_addr attribute to the appropriate NIC IP

address
-->
<!-- UDP: On Windows machines, because of the media sense feature

being broken with multicast (even after disabling media
sense)

set the loopback attribute to true
-->
<UDP mcast_addr="228.1.2.3" mcast_port="45566" ip_ttl="64"

ip_mcast="true"
mcast_send_buf_size="150000" mcast_recv_buf_size="80000"
ucast_send_buf_size="150000" ucast_recv_buf_size="80000"
loopback="false" />

<PING timeout="2000" num_initial_members="3" up_thread="false"
down_thread="false" />

<MERGE2 min_interval="10000" max_interval="20000" />
<FD shun="true" up_thread="true" down_thread="true" />
<VERIFY_SUSPECT timeout="1500" up_thread="false" down_thread="false"

/>
<pbcast.NAKACK gc_lag="50" max_xmit_size="8192"

retransmit_timeout="600,1200,2400,4800" up_thread="false"
down_thread="false" />

<UNICAST timeout="600,1200,2400" window_size="100"
min_threshold="10"

down_thread="false" />
<pbcast.STABLE desired_avg_gossip="20000" up_thread="false"

down_thread="false" />
<FRAG frag_size="8192" down_thread="false" up_thread="false" />

Chapter 11. Configuration

78

<pbcast.GMS join_timeout="5000" join_retry_timeout="2000"
shun="true"

print_local_addr="true" />
<pbcast.STATE_TRANSFER up_thread="false" down_thread="false" />

</config>
</attribute>

<!-- The max amount of time (in milliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
existing members in a clustered environment

-->
<attribute name="InitialStateRetrievalTimeout">5000</attribute>

<!-- Number of milliseconds to wait until all responses for a
synchronous call have been received.

-->
<attribute name="SyncReplTimeout">10000</attribute>

<!-- Max number of milliseconds to wait for a lock acquisition -->
<attribute name="LockAcquisitionTimeout">15000</attribute>

<!-- Name of the eviction policy class. -->
<attribute

name="EvictionPolicyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

<!-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">
<config>

<attribute name="wakeUpIntervalSeconds">5</attribute>
<!-- Cache wide default -->
<region name="/_default_">
<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>
<!-- Maximum time an object is kept in cache regardless of idle

time -->
<attribute name="maxAgeSeconds">120</attribute>

</region>

<region name="/org/jboss/data">
<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>

<region name="/org/jboss/test/data">
<attribute name="maxNodes">5</attribute>
<attribute name="timeToLiveSeconds">4</attribute>

</region>
</config>

</attribute>

<!-- New 1.3.x cache loader config block -->
<attribute name="CacheLoaderConfiguration">

<config>
<!-- if passivation is true, only the first cache loader is

used;
the rest are ignored -->

<passivation>false</passivation>

Sample XML-Based Configuration

79

<preload>/a/b, /allTempObjects, /some/specific/fqn</preload>
<shared>false</shared>

<!-- we can now have multiple cache loaders, which get
chained -->

<cacheloader>
<class>org.jboss.cache.loader.FileCacheLoader</class>
<!-- same as the old CacheLoaderConfig attribute -->
<properties>

location=/tmp/myFileStore
</properties>
<!-- whether the cache loader writes are asynchronous

-->
<async>false</async>
<!-- only one cache loader in the chain may set

fetchPersistentState
to true.
An exception is thrown if more than one cache loader
sets this to
true. -->

<fetchPersistentState>true</fetchPersistentState>
<!-- determines whether this cache loader ignores writes

-
defaults to
false. -->

<ignoreModifications>false</ignoreModifications>
<!-- if set to true, purges the contents of this cache

loader
when the cache starts up. Defaults to false. -->

<purgeOnStartup>false</purgeOnStartup>
</cacheloader>

<cacheloader>
<class>org.jboss.cache.loader.JDBCCacheLoader</class>
<!-- same as the old CacheLoaderConfig attribute -->
<properties>

cache.jdbc.driver=com.mysql.jdbc.Driver
cache.jdbc.url=jdbc:mysql://localhost:3306/jbossdb
cache.jdbc.user=root
cache.jdbc.password=

</properties>
<!-- whether the cache loader writes are asynchronous

-->
<async>true</async>
<!-- only one cache loader in the chain may set

fetchPersistentState
to true. An exception is thrown if more than one

cache loader
sets this to true. -->

<fetchPersistentState>false</fetchPersistentState>
<!-- determines whether this cache loader ignores writes

- defaults
to false. -->

<ignoreModifications>true</ignoreModifications>
<!-- if set to true, purges the contents of this cache

loader when the
cache starts up. Defaults to false. -->

Chapter 11. Configuration

80

1 We will switch to using an XMBean in a future release.
2 http://www.jgroups.org
3 http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

<purgeOnStartup>false</purgeOnStartup>
</cacheloader>

</config>
</attribute>

</mbean>
</server>

The PropertyConfigurator.configure() method needs to have as argument a filename which is
located on the classpath; it will use be used to configure JBoss Cache from the properties
defined in it. Note that this configuration file is used to configure JBoss Cache both as a
standalone cache, and as an MBean if run inside the JBoss container.1

2. Definition of XML attributes

A list of definitions of each of the XML attributes used above:

Name Description

BuddyReplicationConfig An XML element that contains detailed buddy
replication configuration. See section above
on Buddy Replication.

CacheLoaderConfiguration An XML element that contains detailed cache
loader configuration. See section above on
Cache Loaders.

CacheMode LOCAL, REPL_SYNC, REPL_ASYNC,
INVALIDATION_SYNC or
INVALIDATION_ASYNC

ClusterConfig The configuration of the underlying JGroups
stack. Ignored if MultiplexerService and
MultiplexerStack are used. See the various
*-service.xml files in the source distribution
etc/META-INF folder for examples. See the
JGroups documentation2 or the JGroups wiki
page3 for more information.

Definition of XML attributes

81

http://www.jgroups.org
http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

ClusterName Name of cluster. Needs to be the same for all
nodes in a cluster in order for them to
communicate with each other.

EvictionPolicyClass The name of a class implementing
EvictionPolicy. Deprecated; it is preferable to
configure the eviction policy class as part of
the EvictionPolicyConfig.

EvictionPolicyConfig Configuration parameter for the specified
eviction policy. Note that the content is
provider specific.

FetchInMemoryState (renamed from
FetchStateOnStartup)

Whether or not to acquire the initial
in-memory state from existing members.
Allows for hot/cold caches (true/false). Also
see the fetchPersistentState element in
CacheLoaderConfiguration.

InactiveOnStartup Whether or not the entire tree is inactive upon
startup, only responding to replication
messages after activateRegion() is called
to activate one or more parts of the tree. If
true, property FetchInMemoryState is
ignored. This property should only be set to
true if UseRegionBasedMarshalling is also
true.

InitialStateRetrievalTimeout Time in milliseconds to wait for initial state
retrieval. This should be longer than
LockAcquisitionTimeout as the node
providing state may need to wait that long to
acquire necessary read locks on the cache.

IsolationLevel Node locking isolation level : SERIALIZABLE,
REPEATABLE_READ (default),
READ_COMMITTED,
READ_UNCOMMITTED, and NONE. Note
that this is ignored if NodeLockingScheme is
OPTIMISTIC. Case doesn't matter. See
documentation on Transactions and
Concurrency for more details.

LockAcquisitionTimeout Time in milliseconds to wait for a lock to be
acquired. If a lock cannot be acquired an

Chapter 11. Configuration

82

exception will be thrown.

MultiplexerService The JMX object name of the service that
defines the JGroups multiplexer. In JBoss AS
5 this service is normally defined in the
jgroups-multiplexer.sar. If this attribute is
defined, the cache will look up the multiplexer
service in JMX and will use it to obtain a
multiplexed JGroups channel. The
configuration of the channel will be that
associated with MultiplexerStack. The
ClusterConfig attribute will be ignored.

MultiplexerStack The name of the JGroups stack to be used
with the TreeCache cluster. Stacks are
defined in the configuration of the external
MultiplexerService discussed above. In
JBoss AS 5 this is normally done in the
jgroups-multiplexer.sar\META-INF\multiplexer-stacks.xml
file. The default stack is udp. This attribute is
used in conjunction with
MultiplexerService.

NodeLockingScheme May be PESSIMISTIC (default) or
OPTIMISTIC. See documentation on
Transactions and Concurrency for more
details.

ReplicationVersion Tells the cache to serialize cluster traffic in a
format consistent with that used by the given
release of JBoss Cache. Different JBoss
Cache versions use different wire formats;
setting this attribute tells a cache from a later
release to serialize data using the format from
an earlier release. This allows caches from
different releases to interoperate. For
example, a 1.2.4.SP2 cache could have this
value set to "1.2.3", allowing it to interoperate
with a 1.2.3 cache. Valid values are a
dot-separated release number, with any SP
qualifer also separated by a dot, e.g. "1.2.3"
or "1.2.4.SP2".

ReplQueueInterval Time in milliseconds for elements from the
replication queue to be replicated.

Definition of XML attributes

83

ReplQueueMaxElements Max number of elements in the replication
queue until replication kicks in.

SyncCommitPhase This option is used to control the behaviour of
the commit part of a 2-phase commit protocol,
when using REPL_SYNC (does not apply to
other cache modes). By default this is set to
false. There is a performance penalty to
enabling this, especially when running in a
large cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
Clustered Caches for more information on
this.

SyncReplTimeout For synchronous replication: time in
milliseconds to wait until replication acks have
been received from all nodes in the cluster.

SyncRollbackPhase This option is used to control the behaviour of
the rollback part of a 2-phase commit
protocol, when using REPL_SYNC (does not
apply to other cache modes). By default this is
set to false. There is a performance penalty
to enabling this, especially when running in a
large cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
Clustered Caches for more information on
this.

TransactionManagerLookupClass The fully qualified name of a class
implementing TransactionManagerLookup.
Default is JBossTransactionManagerLookup.
There is also an option of
DummyTransactionManagerLookup for
example.

UseInterceptorMbeans Specifies whether each interceptor should
have an associated mbean registered.
Interceptor mbeans are used to capture
statistics and display them in JMX. This
setting enables or disables all such
interceptor mbeans. Default value is true.

UseRegionBasedMarshalling When unmarshalling replicated data, this
option specifies whether or not to use different

Chapter 11. Configuration

84

classloaders (for different cache regions).
This defaults to false if unspecified.

UseReplQueue For asynchronous replication: whether or not
to use a replication queue (true/false).

LockParentForChildInsertRemove When used with pessimistic locking and
IsolationLevel of REPEATABLE_READ, this
parameter specifies whether parent nodes
need to be locked for writing when adding or
removing child nodes. This prevents phantom
reads, providing
"stronger-than-repeatable-read" data integrity.
This defaults to false and is ignored if used
with optimistic locking or other isolation levels.

3. Overriding options

As of JBoss Cache 1.3.0, a new API has been introduced, to allow you to override certain
behaviour of the cache on a per invocation basis. This involves creating an instance of
org.jboss.cache.config.Option, setting the options you wish to override on the Option

object and passing it in as a parameter to overloaded versions of get(), put() and remove().
See the javadocs on the Option class for details on these options.

Overriding options

85

86

Management Information
JBoss Cache includes JMX MBeans to expose cache functionality and provide statistics that
can be used to analyze cache operations. JBoss Cache can also broadcast cache events as
MBean notifications for handling via JMX monitoring tools.

1. JBoss Cache MBeans

JBoss Cache provides an MBean that allows JMX access to a cache instance. This MBean is
accessible from an MBean server through the service name specified in the cache instance's
configuration. For example, the Tomcat clustering cache instance is accessible through the
service named "jboss.cache:service=TomcatClusteringCache." This MBean can be used to
perform most cache operations via JMX.

JBoss Cache also provides MBeans for each interceptor configured in the cache's interceptor
stack. These MBeans are used to capture and expose statistics related to cache operations.
They are hierarchically associated with the cache's primary MBean and have service names
that reflect this relationship. For example, a replication interceptor MBean for the
TomcatClusteringCache instance will be accessible through the service named
"jboss.cache:service=TomcatClusteringCache,treecache-interceptor=ReplicationInterceptor."

2. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and exposes the statistics through interceptor
MBeans. Cache interceptor MBeans are enabled by default; these MBeans can be disabled for
a specific cache instance through the UseInterceptorMbeans attribute. See the Configuration
chapter for further details on configuration of this attribute.

Each interceptor's MBean provides an attribute that can be used to disable maintenance of
statistics for that interceptor. Note that the majority of the statistics are provided by the
CacheMgmtInterceptor MBean so this interceptor is the most significant in this regard. If you
want to disable all statistics for performance reasons, you should utilize the
UseInterceptorMbeans configuration setting as this will prevent the CacheMgmtInterceptor from
being included in the cache's interceptor stack when the cache is started.

Each interceptor provides the following common operations and attributes.

• dumpStatistics - returns a Map containing the interceptor's attributes and values.

• resetStatistics - resets all statistics maintained by the interceptor.

• setStatisticsEnabled(boolean) - allows statistics to be disabled for a specific interceptor.

The following table describes the statistics currently available for JBoss Cache.

Chapter 12.

87

MBean Name Attribute Type Description

ActivationInterceptor Activations long Number of passivated nodes that
have been activated.

CacheLoaderInterceptorCacheLoaderLoads long Number of nodes loaded through
a cache loader.

CacheLoaderInterceptorCacheLoaderMisses long Number of unsuccessful attempts
to load a node through a cache
loader.

CacheMgmtInterceptor Hits long Number of successful attribute
retrievals.

CacheMgmtInterceptor Misses long Number of unsuccessful attribute
retrievals.

CacheMgmtInterceptor Stores long Number of attribute store
operations.

CacheMgmtInterceptor Evictions long Number of node evictions.

CacheMgmtInterceptor NumberOfAttributes int Number of attributes currently
cached.

CacheMgmtInterceptor NumberOfNodes int Number of nodes currently
cached.

CacheMgmtInterceptor ElapsedTime long Number of seconds that the
cache has been running.

CacheMgmtInterceptor TimeSinceReset long Number of seconds since the
cache statistics have been reset.

CacheMgmtInterceptor AverageReadTime long Average time in milliseconds to
retrieve a cache attribute,
including unsuccessful attribute
retrievals.

CacheMgmtInterceptor AverageWriteTime long Average time in milliseconds to
write a cache attribute.

CacheMgmtInterceptor HitMissRatio double Ratio of hits to hits and misses. A
hit is a get attribute operation that
results in an object being returned
to the client. The retrieval may be
from a cache loader if the entry
isn't in the local cache.

CacheMgmtInterceptor ReadWriteRatio double Ratio of read operations to write
operations. This is the ratio of
cache hits and misses to cache
stores.

CacheStoreInterceptor CacheLoaderStores long Number of nodes written to the
cache loader.

Chapter 12. Management Information

88

MBean Name Attribute Type Description

InvalidationInterceptor Invalidations long Number of cached nodes that
have been invalidated.

PassivationInterceptor Passivations long Number of cached nodes that
have been passivated.

TxInterceptor Prepares long Number of transaction prepare
operations performed by this
interceptor.

TxInterceptor Commits long Number of transaction commit
operations performed by this
interceptor.

TxInterceptor Rollbacks long Number of transaction rollbacks
operations performed by this
interceptor.

Table 12.1. JBoss Cache Management Statistics

3. Receiving Cache Notifications

JBoss Cache users can register a listener to receive cache events as described in the Eviction
Policies chapter. Users can alternatively utilize the cache's management information
infrastructure to receive these events via JMX notifications. Cache events are accessible as
notifications by registering a NotificationListener for the CacheMgmtInterceptor MBean. This
functionality is only available if cache statistics are enabled as described in the previous section.

The following table depicts the JMX notifications available for JBoss Cache as well as the cache
events to which they correspond. These are the notifications that can be received through the
CacheMgmtInterceptor MBean. Each notification represents a single event published by JBoss
Cache and provides user data corresponding to the parameters of the event.

Notification Type Notification Data TreeCacheListener Event

org.jboss.cache.CacheStarted String : cache service name cacheStarted

org.jboss.cache.CacheStopped String : cache service name cacheStopped

org.jboss.cache.NodeCreated String : fqn NodeCreated

org.jboss.cache.NodeEvicted String : fqn NodeEvicted

org.jboss.cache.NodeLoaded String : fqn NodeLoaded

org.jboss.cache.NodeModifed String : fqn NodeModifed

org.jboss.cache.NodeRemoved String : fqn NodeRemoved

org.jboss.cache.NodeVisited String : fqn NodeVisited

org.jboss.cache.ViewChange String : view ViewChange

org.jboss.cache.NodeActivate Object[0]=String: fqn NodeActivate

Receiving Cache Notifications

89

Notification Type Notification Data TreeCacheListener Event

Object[1]=Boolean: pre

org.jboss.cache.NodeEvict Object[0]=String: fqn

Object[1]=Boolean: pre

NodeEvict

org.jboss.cache.NodeModify Object[0]=String: fqn

Object[1]=Boolean: pre

Object[2]=Boolean: isLocal

NodeModify

org.jboss.cache.NodePassivate Object[0]=String: fqn

Object[1]=Boolean: pre

NodePassivate

org.jboss.cache.NodeRemove Object[0]=String: fqn

Object[1]=Boolean: pre

Object[2]=Boolean: isLocal

NodeRemove

Table 12.2. JBoss Cache MBean Notifications

The following is an example of how to programmatically receive cache notifications when
running in a JBoss application server environment. In this example, the client uses a filter to
specify which events are of interest.

MyListener listener = new MyListener();
NotificationFilterSupport filter = null;

// get reference to MBean server
Context ic = new InitialContext();
MBeanServerConnection server =
(MBeanServerConnection)ic.lookup("jmx/invoker/RMIAdaptor");

// get reference to CacheMgmtInterceptor MBean
String cache_service = "jboss.cache:service=TomcatClusteringCache";
String mgmt_service = cache_service +
",treecache-interceptor=CacheMgmtInterceptor";
ObjectName mgmt_name = new ObjectName(mgmt_service);

// configure a filter to only receive node created and removed events
filter = new NotificationFilterSupport();
filter.disableAllTypes();
filter.enableType(CacheMgmtInterceptor.NOTIF_NODE_CREATED);
filter.enableType(CacheMgmtInterceptor.NOTIF_NODE_REMOVED);

// register the listener with a filter
// leave the filter null to receive all cache events
server.addNotificationListener(mgmt_name, listener, filter, null);

// ...

Chapter 12. Management Information

90

// on completion of processing, unregister the listener
server.removeNotificationListener(mgmt_name, listener, filter, null);

The following is the simple notification listener implementation used in the previous example.

private class MyListener implements NotificationListener, Serializable {
public void handleNotification(Notification notification, Object

handback) {
String message = notification.getMessage();
String type = notification.getType();
Object userData = notification.getUserData();
System.out.println(type + ": "+message);
if (userData == null) {

System.out.println("notification data is null");
}
else if (userData instanceof String) {

System.out.println("notification data: "+(String)userData);
}
else if (userData instanceof Object[]) {

Object[] ud = (Object[])userData;
for (int i = 0; i > ud.length; i++) {

System.out.println("notification data: "+ud[i].toString());
}

}
else {

System.out.println("notification data class: " +
userData.getClass().getName());

}
}

}

Note: the JBoss Cache management implementation only listens to cache events after a client
registers to receive MBean notifications. As soon as no clients are registered for notifications,
the MBean will remove itself as a cache listener.

4. Accessing Cache MBeans in a Standalone
Environment

JBoss Cache MBeans are readily accessed when running cache instances in an application
server that provides an MBean server interface such as JBoss JMX Console. Refer to server
documentation for instructions on how to access MBeans running in a server's MBean
container.

JBoss Cache MBeans are also accessible when running in a non-server environment if the JVM
is JDK 5.0 or later. When running a standalone cache in a JDK 5 environment, you can access
the cache's MBeans as follows.

Accessing Cache MBeans in a Standalone

91

1. Set the system property -Dcom.sun.management.jmxremote when starting the JVM where
the cache will run.

2. Once the JVM is running, start the JDK 5 jconsole utility, located in the JDK's /bin directory.

3. When the utility loads, you will be able to select your JVM and connect to it. The JBoss
Cache MBeans will be available on the MBeans panel.

Note: The jconsole utility will automatically register as a listener for cache notifications when
connected to a JVM running JBoss Cache instances.

The following figure shows cache interceptor MBeans in jconsole. Cache statistics are displayed
for the CacheMgmt interceptor:

Figure 12.1. CacheMgmtInterceptor MBean

Chapter 12. Management Information

92

Running JBoss Cache within JBoss
Application Server
If JBoss Cache is run in JBoss AS then JBoss Cache can be deployed as an MBean. The steps
below illustrate how to do this. We do not deploy JBoss Cache as a Service Archive (SAR), but
as a JAR (jboss-cache.jar in the lib directory) and an XML file defining the MBean. Of course,
JBoss Cache can also be deployed as a SAR, or even as part of a WAR, EJB or EAR.

First, the jboss-cache.jar file has to be copied to the /lib directory and JBoss AS has to be
restarted. Then a regular JBoss Cache configuration file in XML format has to be copied to the
/deploy directory. The XML file format is the same as discussed in the Configuration chapter.

In order to be used from a client such as a servlet in the Tomcat web container inside the same
JBoss container, JMX can be used:

MBeanServer server=MBeanServerLocator.locateJBoss();
TreeCacheMBean cache;
cache=(TreeCacheMBean)MBeanProxyExt.create(TreeCacheMBean.class,
"jboss.cache:service=TreeCache", server);
cache.put("/a/b/c", null);

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server inside the
current VM. The static create() method creates a dynamic proxy to the given interface and uses
JMX to dynamically dispatch methods invoked against the generated interface. The name used
to look up the MBean is the same as defined in the configuration file.

1. Running as an MBean

If JBoss Cache is run inside of JBoss AS (as an MBean), we can bind it into JNDI using
JrmpProxyFactory, just like any other MBean. Below is an example of how to do this:

<mbean
code="org.jboss.invocation.jrmp.server.JRMPProxyFactory"
name="mydomain:service=proxyFactory,type=jrmp,target=factory">
<attribute
name="InvokerName">jboss:service=invoker,type=jrmp</attribute>
<attribute
name="TargetName">jboss.cache:service=TreeCache</attribute>
<attribute name="JndiName">MyCache</attribute> <attribute
name="InvokeTargetMethod">true</attribute> <attribute
name="ExportedInterface">org.jboss.cache.TreeCacheMBean</attribute>
<attribute name="ClientInterceptors"> <iterceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
</iterceptors> </attribute>
<depends>jboss:service=invoker,type=jrmp</depends>
<depends>jboss.cache:service=TreeCache</depends>

Chapter 13.

93

</mbean>

The InvokerName attribute needs to point to a valid JBoss invoker MBean. TargetName is the
JMX name of the MBean that needs to be bound into JNDI. JndiName is the name under which
the MBean will be bound, and ExportedInterface is the interface name of the MBean.

Chapter 13. Running JBoss Cache within JBoss Application Server

94

Index

95

96

	JBoss Cache Tree Cache 1.4.1
	Table of Contents
	Preface
	Chapter 1. Introduction
	1. What is a TreeCache?
	2. TreeCache Basics

	Chapter 2. Architecture
	Chapter 3. Basic API
	Chapter 4. Clustered Caches
	1. Local Cache
	2. Clustered Cache - Using Replication
	2.1. Replicated Caches and Transactions
	2.1.1. One Phase Commits
	2.1.2. Two Phase Commits

	2.2. Buddy Replication
	2.2.1. Selecting Buddies
	2.2.2. BuddyPools
	2.2.3. Failover
	2.2.4. Implementation
	2.2.5. Configuration

	3. Clustered Cache - Using Invalidation

	Chapter 5. Transactions and Concurrency
	1. Concurrent Access
	1.1. Locks
	1.2. Pessimistic locking
	1.2.1. Isolation levels
	1.2.2. Insertion and Removal of Nodes

	1.3. Optimistic locking
	1.3.1. Architecture
	1.3.2. Configuration

	2. Transactional Support
	2.1. Example

	Chapter 6. Eviction Policies
	1. Eviction Policy Plugin
	2. TreeCache Eviction Policy Configuration
	3. TreeCache LRU eviction policy implementation
	4. TreeCache FIFO eviction policy implementation
	5. TreeCache MRU eviction policy implementation
	6. TreeCache LFU eviction policy implementation

	Chapter 7. Cache Loaders
	1. The CacheLoader Interface
	2. Configuration via XML
	3. Cache passivation
	4. CacheLoader use cases
	4.1. Local cache with store
	4.2. Replicated caches with all nodes sharing the same store
	4.3. Replicated caches with only one node having a store
	4.4. Replicated caches with each node having its own store
	4.5. Hierarchical caches
	4.6. TcpDelegatingCacheLoader
	4.7. RmiDelegatingCacheLoader

	5. JDBC-based CacheLoader
	5.1. JDBCCacheLoader configuration
	5.1.1. Table configuration
	5.1.2. DataSource
	5.1.3. JDBC driver
	5.1.4. Configuration example

	Chapter 8. TreeCacheMarshaller
	1. Basic Usage
	2. Region Activation/Inactivation
	2.1. Example usage of Region Activation/Inactivation

	3. Region Activation/Inactivation with a CacheLoader
	4. Performance over Java serialization
	5. Backward compatibility

	Chapter 9. State Transfer
	1. Types of State Transfer
	2. When State Transfer Occurs

	Chapter 10. Version Compatibility and Interoperability
	Chapter 11. Configuration
	1. Sample XML-Based Configuration
	2. Definition of XML attributes
	3. Overriding options

	Chapter 12. Management Information
	1. JBoss Cache MBeans
	2. JBoss Cache Statistics
	3. Receiving Cache Notifications
	4. Accessing Cache MBeans in a Standalone Environment

	Chapter 13. Running JBoss Cache within JBoss Application Server
	1. Running as an MBean

	Index

