JBoss Enterpise
SOA Platform 4.3

Services Guide

Your guide to services available on
the JBoss Enterprise SOA Platform

* JBoss

‘ ‘ a division of Red Hat

Services Guide

JBoss Enterpise SOA Platform 4.3 Services Guide

Your guide to services available on the JBoss Enterprise SOA
Platform

Edition 1.0

Copyright © 2008 Red Hat, Inc.. This material may only be distributed subject to the terms and
conditions set forth in the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported
License (which is presently available at http.//creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072USAPhone: +1 919 754 3700
Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588Research Triangle Park, NC 27709USA

This book contains details of the services available with the 4.3 GA release of the JBoss SOA
Platform.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Preface vii
1. DOCUMENT CONVENTIONSiitiiiiie ittt et e e et et e e e et e e e e e et e e et e e an e eaneeeanaaeens vii

1.1. TypographiC CONVENTIONSuiiitiiiiiie et e e e e e e e eanaas vii

1.2. PUll-QUOLE CONVENTIONSiiiiiieiiiii ettt e e e viii

1.3. NOtES aNd WAIMINGS ...ceitiiiiiii ettt e et e e b iX

2. We Need FEedDACK! ... X

1. What is the Registry? 1
I U o o 3 Tox 1 o o R 1
1.2.2. WHY dO | NEEA 112 ..ot et e e 1

1.1.2. HOW 0O | USE 112 ettt e e e e e e e eas 1

1.1.3. ReQIStry VS REPOSIHOIY ...uiiieiiiiiieiii ettt e e e e e e e e e e e e e e e aanaees 1

1.2.4. SOA COMPONENES L.ttt ettt e et e e et e et e e tn et et eaaeananns 2

O T 1 P 2

1.1.6. The Registry and the JBoss SOA PIatformcoooiiiiiiiiiiiiiie e 3

2. Configuring the Registry 5
P2 I [1 £ To [11 1o] o IR PSP 5

2.2. The Components INVOIVEAccouiiiiiiiiii e e e e e e aanas 6

2.3. The Registry Implementation CIAaSSc.viiiiiiiiii e 6

2.4, USING JAXR ittt ettt e et a et a e et e e aanan 7

2.5. UsSIiNg SCOUL @Nnd JUDDIoouiiiiiiii ettt 7

3. Registry Configuration Examples 11
10 I [1 To [T o] o H PSPPSR 11

3.2, EMDEAAEA ... e 11

3.3. RMI using the juddi.war or jboSSeSh.Sar ..o 12

3.4. RMI using your own JNDI Registration of the RMI Servicecccooiviiiiiiiiiiiiiinieiennnnn. 15

G 78 TR 1 A P 17

4. UDDI Browser 21
o I 1 (o To 1§ o 1 o] o E PRSPPI 21

U S I Y= (U o 21

5. Registry Troubleshooting 23
5.1. Scout and JUDDI PItFAllSoiiiiiiiieiiii e e e 23

2 |V o] £ 01 (0] 40 = LT] o I PP 23

6. What is a Rule Service? 25
700 O 1 o To 11 o 1 o] o 1 PPN 25

7. Rule Services Using Drools 27
4% R 11 (o To [Tt o] RSP SPPR 27

A S {0 | oS T A O == Vi o o PP 27

7.3. RUIE SEIrVICE CONSUMEISiiitiieii ittt ettt e e et et e et e e et e e eaneaeanaas 28

A o] 1T [U] =i o] o [P 29

7.5, ODJECE PAtNS ...eiiiii e e 32

7.6. Deploying and PacKagingiivuioeeiiiiiee et 33

8. What is Content-Based Routing? 37
S 70 I [o o [F{od 1 o] o PSPPI 37

8.2. SIMPIE EXAMPIE ...ttt e 37

9. Content Based Routing Using Drools 39
1S [o To [T o] PSPPSR 39

9.2. Three Different ROUtiNg ACHION CIAaSSESuuiiiiiiiiiiiiiii i 39

Services Guide

9.3, RUIE SEE CrEALION ...uviiii ettt e et e et e e n e e e e e e ennnes
9.4, XPath Domain Specific LANQUAGEccuuniiiiiiiiiei et eae e
S T o] 01T U1 =11 o] o PP
9.6. ODJECT PALNSieii e
0.7, StAtEfUl RUIESceee et e e e e e e e
LS RS T {01 1= A0 =T o N
9.9. RuleAgent and Business Rule Management SYStemccccuveviiiiiiiiieiiieeciiieeei e
9.10. Executing BUSINESS RUIEScouiiiiiiiie e
9.11. Changing RuleService Implementationscoiiiiiiiiiiii e
9.12. Deployment and Packagingccoeuuiiiiiiiieiiii e

10. Content Based Routing Using Smooks

00 Tt O 1010 Yo [T T o T

11. Message Transformation

O Y 1 0T o
7 € I N = T o 1) (0] 0 4 F= 11] -
11.3. ActionProcessor Data TranSformMationoeuviriiniiniiiiiii e e e eaas

12. jBPM Integration

12.1. Integration CONfIQUIALIONc.uuiiiiii ettt et e e e e eeeeb e e eeb e eees
12.2. [BPM CONFIQUIALION ...uiiiiii ettt ettt e e et e e e et e e e eebaeeeees
12.3. Creation and Deployment of a Process Definitioncccooveviiiiiiiiiiiiiiiiiecci e
12.4. JBOSSESB 10 JBPM ...iiiiiiiiiiiii et
12.4.1. ESB to jBPM Exception Handlingccoovviiiiiiiiiii e
12.5. JBPM 10 JBOSSESB ... iiiiiiiiiiiiii ittt ettt et e e aeaae
12.5.0. ESBNOUIEE oeiitiiiii ettt e e e e e et e
12.5.2. ESBACHONHANGIETiiiiieiee et e e e e eens
12.5.3. jBPM to ESB Exception Handlingcooeiiiiiiiiiiiii e
12.5.4. SCeNErio 1: TIME-0OULuuuuiieeiiiieirii s e e e et e e e e e e e ee e e e e e eeenes
12.5.5. Scenerio 2: EXception TranSitionccoveiiiiiiiii e e e
12.5.6. Scenerio 3: EXCeption DECISIONiiiuiiiiiiiiieii e

13. Service Orchestration

13.1. Orchestrating WED SEIVICEScvvuiiiiiii e e e ean s
13.2. Orchestration DIAgIaMoiieunieeiieiie e e e e e e e e e e e e e e e e e e et e e et e e eenaeeees
13.3. Process Deployment and INStANtIAtIONcoouiiiiiiiiiiiie e
S 2 S 0o o] 013 o] IR PSP

14. The Message Store

14.1. MeSsage StOre iNtEIfACEc.uiiiiiiiiiii e e e e e e e e e e aaaeees
14.2. Configuring the MESSAJE STOMEccuuiiiiiiiiii e e e e ean s

15. Security

15.1. Security Service ConfiQUIatioNuiiiiiiiiiiiii e
15.1.1. Configuring SECUNLY ON SEIVICES ...c..uuiiiiiiiiieiiiiii ettt
15.2. AUTNENEICALION ...t e
15.2.1. AUthentiCatioNREQUESTc.uuiiii e e e e e e e et e eaaeees
15.3. JBOSSESB SECUIMIYCONTEXLEuieuiiiitiieiiie ettt e et e et e e et et e et e e et e e ea e eanaas
15.4. Security Context Propagationco..iooiiiiiiai e e
15.5. CUSIOMIZING SECUILY ...iiieiiieeiiti ettt et ettt e e ettt e e ettt e e e et e e e eab e e eenta e aeens
15.6. Provided Login MOGUIESoiiiiiiiiii e
15.6.1. CertificateLoginMOUIEcovuuiiiiiei e e e e e
ST ST = o] (=Y =T o] o1 o

15.7. SecurityService

A. Revision History

Vi

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts® set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctr1-Alt-F1 to switch to the first virtual terminal. Press Ctr1-Al1t-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

! https://fedorahosted.org/liberation-fonts/

Vii

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories

> Character Map from the main menu bar. Next, choose Search > Find... from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example . com and your username on that
machine is john, type ssh john@example.com.

The mount -0 remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

viii

Notes and Warnings

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktopl downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;

public class ExClient

{
public static void main(String args[])
throws Exception
{
InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();
System.out.println("Created Echo");
System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
}
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes
your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will
apply. Ignoring Important boxes won't cause data loss but may cause irritation and
frustration.

Preface

Warning
A A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product JBoss_SOA_Platform.

When submitting a bug report, be sure to mention the manual's identifier: SOA_ESB_ Services_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

What is the Registry?

1.1. Introduction

The JBoss SOA Registry provides applications and businesses a central point to store information
about their services. It is expected to provide the same level of information and the same breadth of
services to its clients as that of a conventional market place. Ideally a registry should also enable the
automated discovery and execution of e-commerce transactions and enabling a dynamic environment
for business transactions. Therefore, a registry is more than an “e-business directory”. It is an inherent
component of the SOA infrastructure.

1.1.1. Why do | need it?

It is not difficult to discover, manage and interface with business partners on a small scale using
manual or ad hoc techniques. However this approach does not scale with increases in the number

of services, the frequency of interactions and the physical distribution of the environment. A registry
solution based on agreed upon standards provides a common way to publish and discover services.

It offers a central place where you query whether a partner has a service that is compatible with in-
house technologies or to find a list of companies that support shipping services on the other side of the
globe.

Service registries are central to most service oriented architectures and at runtime act as a contact
point to correlate service requests to actual behaviors. A service registry has meta-data entries for
all artifacts within the SOA that are used at both runtime and design time. Items inside a service
registry may include service description artifacts such as WSDL, Service Policy descriptions, various
XML schema used by services, artifacts representing different versions of services, governance

and security artifacts (e.g., certificates, audit trails), etc. During the design phase, business process
designers may use the registry to link together calls to several services to create a workflow or
business process.

Note
The registry may be replicated or federated to improve performance and reliability. It
need not be a single point of failure.

1.1.2. How do | use it?

From a business analyst’s perspective, it is similar to an Internet search engine for business
processes. From a developers perspective, they use the registry to publish services and query the
registry to discover services matching various criteria.

1.1.3. Registry Vs Repository

A registry allows for the registration of services, discovery of metadata and classification of entities
into predefined categories. Unlike a respository, it does not have the ability to store business process
definitions or WSDL or any other documents that are required for trading agreements. A registry is
essentially a catalogue of items, whereas a repository contains those items.

Chapter 1. What is the Registry?

1.1.4. SOA Components
vl

"A SOA is a specific type of distributed system in which the agents are 'services'."".

The key components of a Service Oriented Architecture are the messages that are exchanged, agents
that act as service requesters and providers, and the shared transport mechanisms that allow the flow
of messages. A description of a service that exists within an SOA is essentially just a description of
the messages exchanged between itself and its users. Within an SOA there are three critical roles:
requester, provider, and broker.

Service Provider
A Provider allows access to services, creates a description of a service and publishes it to the
service broker.

Service Broker
A Broker hosts a registry of service descriptions. It is responsible for linking a requestor to a
service provider.

Service Requester
A Requester is responsible for discovering a service by searching through the service descriptions
given by the service broker. A requestor is also responsible for binding to services provided by the
service provider.

Service

Eroker

Service
Requestor

Y~

Service
Provider

1.1.5. UDDI

The Universal Description, Discovery and Integration (UDDI) registry is a directory service for
Web Services. It enables service discovery through queries to the UDDI registry at design time
or at run time. It also allows providers to publish descriptions of their services to the registry. The

! Refer to the W3C Working Draft on Web Services Architecture [http://www.w3.0rg/TR/2003/WD-ws-arch-20030808/
#id2617708] for a more detailed definition.

http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708
http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708
http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708

The Registry and the JBoss SOA Platform

registry typically contains a URL that locates the WSDL document for the web services and contact
information for the service provider. Within UDDI information is classified into the following categories.

» White pages: contain general information such as the name, address and other contact information
about the company providing the service.

» Yellow pages: categorize businesses based on the industry their services cater to.

» Green pages: provide information that will enable a client to bind to the service that is being
provided.

1.1.6. The Registry and the JBoss SOA Platform

The registry plays a central role within JBoss SOA. It is used to store endpoint references (EPRSs) for
the services deployed. It may be updated dynamically when services first start-up, or statically by an
external administrator.

It is not possible for the registry to determine the status of the entities its data represents. For example
if an EPR is registered with the registry then there can be no guarantee that the EPR is valid (it may
be malformed) or it may represent a service that is no longer active. At present JBoss SOA does

not perform life-cycle monitoring of the services that are deployed within it. If services fail or move
elsewhere, their EPRs that may reside within the registry will remain until they are explicitly updated or
removed by an administrator. Therefore, if you get warnings or errors related to EPRs obtained from
the registry, you should consider informing those responsible for the services.

Chapter 2.

Configuring the Registry

2.1. Introduction

The JBoss SOA Platform Registry architecture allows for a great deal of flexibility when it comes to the
configuration of either a Registry or Repository. By default we use a JAXR implementation (Scout) and
a UDDI (juDDI), in an embedded way.

The following properties can be used to configure the JBoss SOA Registry. In the jbossesh -
properties.xml there is section called registry

<properties name='"registry">
<property name="org.jboss.soa.esb.registry.implementationClass"

value="org.jboss.internal.soa.esbh.services.registry.JAXRRegistryImpl"/>
<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>
<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>
<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>
<property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>

<property name="org.jboss.soa.esb.registry.password" value="password"/>
<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>
</properties>

JBoss SOA Registry Properties

org.jboss.soa.esb.registry.implementationClass
A class that implements the jbossesb Registry interface. We have provided one implementation
(JAXRRegistry interface).

org.jboss.soa.esb.registry.factoryClass
The class name of the JAXR ConnectionFactory implementation.

org.jboss.soa.esb.registry.queryManagerURI
The URI used by JAXR to query.

org.jboss.soa.esb.registry.lifeCycleManagerURI
The URI used by JAXR to edit.

org.jboss.soa.esb.registry.user
The username used for edits.

org.jboss.soa.esb.registry.password
The password for the specified user.

org.jboss.soa.esb.scout.proxy.transportClass
The name of the class used by Scout to do the transport from Scout to the UDDI.

Chapter 2. Configuring the Registry

2.2. The Components Involved

The registry can be configured in many ways. Figure 2.1, “Blue print of the Registry component
architecture” shows a blue print of all the registry components. From the top down we can see that
JBoss SOA funnels all interaction with the registry through the Registry Interface. By default it then
calls into a JAXR implementation of this interface. The JAXR API needs an implementation, which by
default is Scout. The Scout JAXR implementation calls into a jUDDI registry. However there are many
other configuration options.

JBossESB

Registry Interface

JAXR
Other Java API

JAXR Implementation

Other XML
Registry

Figure 2.1. Blue print of the Registry component architecture
2.3. The Registry Implementation Class

org.jboss.soa.esb.registry.implementationClass

By default we use the JAXR API. The JAXR API is a convenient API since it allows us to connect any
kind of XML based registry or repository. However, if for example you want to use Systinet's Java
API you can do that by writing your own SystinetRegistrylmplentation class and referencing it in this

property.

Using JAXR

2.4. Using JAXR

org.jboss.soa.esh.registry.factoryClass

If you decided to use JAXR then you will have to pick a JAXR implementation to use. This property is
used to configure that class. JBoss SOA defaults to using Scout, and this property is set to the Scout
factory class 'org.apache.ws.scout.registry.ConnectionFactorylmpl'.

The next step is to tell the JAXR implementation the location of the registry or repository for

guerying and updating. This is done by setting the org.jboss.soa.esbh.registry.queryManagerURI, and
org.jboss.soa.esb.registry.lifeCycleManagerURI. The username and password for the UDDI are set in
org.jboss.soa.esb.registry.user and org.jboss.soa.esh.registry.password respectively.

2.5. Using Scout and juDDI

org.jpboss.soa.esh.scout.proxy.transportClass

When using Scout and jUDDI there is an additional optional parameter. This is the transport class that
should be used for communication between Scout and jUDDI. Thus far there are four implementations
of this class which are based on SOAP, SAAJ, RMI and Local (embedded Java).

Important
Note that when you change the transport, you will also have to change the query and
lifecycle URIs.

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="http://localhost:8080/juddi/inquiry"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="http://localhost:8080/juddi/publish"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.AxisTransport"/>

Example 2.1. Using SOAP

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?
org.apache.juddi.registry.rmi.Inquiry#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?
org.apache.juddi.registry.rmi.Publish#publish"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.RMITransport"/>

Example 2.2. Using RMI

Chapter 2. Configuring the Registry

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>

Example 2.3. Using Local

You have two requirements when using jUDDI:

1.

You need access to the jUDDI database. You will need to create a schema in your database, and
add the jbossesb publisher. The jUDDI-registry directory contains database creation scripts for
several common database systems.

The configuration of jJUDDI is done in esb. juddi.xml. If you do not use a datasource you need
to take special care to set the following properties:

<entry key="juddi.isUseDataSource'">false</entry>

<entry key="juddi.jdbcDriver">com.mysql.jdbc.Driver</entry>
<entry key="juddi.jdbcUrl">jdbc:mysql://localhost/juddi</entry>
<entry key="juddi.jdbcUsername">juddi</entry>

<entry key="juddi.jdbcPassword">juddi</entry>

If you do use a datasource you need something like:

<entry key="juddi.isUseDataSource">true</entry>
<entry key="juddi.dataSource">java:comp/env/jdbc/juddiDB</entry>

The database can be automatically created if the specified user has enough rights to create tables.
You must also ensure that the isCreateDatabase flag is set to true, and that the sqlFiles
parameter settings indicates the database that you are using. The jUDDI creation scripts are located in
the juddi. jar.

<!-- <entry key="juddi.tablePrefix”>JUDDI_</entry> -->
<entry key="juddi.isCreateDatabase">true</entry>
<entry key="juddi.databaseExistsSq">select * from
${prefix}BUSINESS_ENTITY

</entry>

<entry key="juddi.sqglFiles'">
juddi-sql/mysql/create_database.sql, juddi sql/mysql/
insert_publishers.sql

</entry>

jUDDI supports the following databases:

+ Daffodildb

« DB2

Using Scout and jUDDI

Derby

Firebird

HSQLDB

informix

jdatastore

mysq|

oracle

postgresq|

Sybase (can be used for Microsoft SQLServer)

totalxml

10

Chapter 3.

Registry Configuration Examples

3.1. Introduction

By default the JBoss SOA Platform is configured to use the JAXR API using the Scout JAXR
implementation and jUDDI as the registry. Here are some examples of how you can deploy them.

3.2. Embedded

All JBoss SOA components ! can embed the registry. They all can connect to the same database or

use different ones.
Java Application 2

Java Application 1

Local Local

Figure 3.1. Embedded juDDI

L In this case the "component” being refered to is actually the JVM.

11

Chapter 3. Registry Configuration Examples

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache. juddi.registry.local.PublishService#publish"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
<property name="org.jboss.soa.esb.registry.password" value="password"/>
<property name="org.jboss.soa.esb.scout.proxy.transportClass"

value="org.apache.ws.scout.transport.LocalTransport"/>
</properties>

Example 3.1. Properties for Embedded jUDDI

3.3. RMI using the juddi.war or jbossesh.sar

The JBoss SOA includes juddi.war in the jJUDDI-registry directory. When deployed this brings
up the regular webservices but also an RMI service. You also need to deploy a datasource which
points to your jUDDI database. An example file is supplied for MySQL.

The jbossesb. sar only registers a RMI service. So you would only need to deploy the juddi.war
if you need webservice access.

12

RMI using the juddi.war or jbossesh.sar

Java Application 1 Java Application 2 Non Java App 3

RMI-Service

juddi.war

Figure 3.2. RMI using the juddi.war

13

Chapter 3. Registry Configuration Examples

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?
org.apache.juddi.registry.rmi.Inquiry#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?
org.apache.juddi.registry.rmi.Publish#publish"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
<property name="org.jboss.soa.esb.registry.password" value="password"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.RMITransport"/>
</properties>

Example 3.2. Properties

The juddi.war provides a RMI Service if enabled by the following setting in the web . xm1

<!-- uncomment if you want to enable making calls in juddi with rmi -->
<servlet>

<servlet-name>RegisterServicesWithJNDI</servlet-name>
<servlet-class>org.apache.juddi.registry.rmi.RegistrationService</
servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

Make sure to include, for example, the following JNDI settings in your juddi.properties:

JNDI settings (used by RMITransport)
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming

Important
The RMI clients need to have scout-client. jar in their classpath.

14

RMI using your own JNDI Registration of the RMI Service

3.4. RMI using your own JNDI Registration of the RMI
Service

If you don't want to deploy the juddi.war you can setup another JBoss SOA component in the the
same JVM as jUDDI to register the RMI service.

JNDI-Registration

Java Application 1 Java Application 2

RMI-Service

juDDI

Figure 3.3. RMI using your own JNDI registration

In this example Application1 will need to be configured with the Local settings, and Application2 will
need the RMI settings.

15

Chapter 3. Registry Configuration Examples

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
<property name="org.jboss.soa.esb.registry.password" value="password"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>
</properties>

Example 3.3. Local settings, used for Applicationl

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?
org.apache.juddi.registry.rmi.Inquiry#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?
org.apache.juddi.registry.rmi.Publish#publish"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesbh"/>
<property name="org.jboss.soa.esb.registry.password" value="password"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.RMITransport"/>
</properties>

Example 3.4. RMI settings, used for Application2

For Application2, using RMI, the hostname of the queryManagerURI and lifeCycleManagerURI
properties need to be set to that of the host on which the jUDDI service is running.

Obviously applicationl needs to have access to a naming service.

16

SOAP

//Getting the JNDI setting from the config

String factoryInitial = Config.getStringProperty(

Properties env = new Properties();

env.setProperty(RegistryEngine.PROPNAME_JAVA NAMING_FACTORY_INITIAL, factoryInitial]
env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_PROVIDER_URL,
providerURL);

env.setProperty(RegistryEngine.PROPNAME_JAVA_ NAMING_FACTORY_URL_PKGS,
factoryURLPkgs);

InitialContext context = new InitialContext(env);
Inquiry inquiry = new InquiryService();
log.info("Setting " + INQUIRY_SERVICE + ", " +
inquiry.getClass().getName());

mInquery = inquiry;
context.bind(INQUIRY_SERVICE, inquiry);
Publish publish = new PublishService();
log.info("Setting " + PUBLISH_SERVICE + ", " +
publish.getClass().getName());

mPublish = publish;
context.bind(PUBLISH_SERVICE, publish);

Example 3.5. JNDI registration process for Applicationl

3.5. SOAP

Communication between Scout and jJUDDI can also be provided via SOAP based webservices. As
with RMI you need to deploy the juddi.war and configure the datasource.

If you are not also using RMI you should disable the RMI service by commenting out the
RegisterServicesWithJNDI servlet in the web . xm1.

17

Chapter 3. Registry Configuration Examples

Java Application 1 Java Application 2 Java Application 3

B

Figure 3.4. Accessing a jUDDI registry using SOAP

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="http://localhost:8080/juddi/inquiry"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="http://localhost:8080/juddi/publish"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
<property name="org.jboss.soa.esb.registry.password" value="password"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"

value="org.apache.ws.scout.transport.AxisTransport"/>
</properties>

Example 3.6. Properties for accessing a jUDDI registry using SOAP

18

SOAP

Note
JBossAS 4.2 ships with older versions of Scout and jUDDI. It is recommended to

remove the juddi. sar to prevent versioning issues if you must deploy using this older

version

19

20

Chapter 4.

UDDI Browser

4.1. Introduction
The JBoss SOA Platform does not ship with an included UDDI browser.

The UDDI browser ub can be downloaded from http.//www.uddibrowser.org. Before configuring ub
make sure the juddi.war is deployed. This is required to enable webservice communication to
juDDI.

4.2. UB Setup

ub is a standalone Java application. Start ub and select Edit > UDDI Registries, and add an entry
called jUDDI

UDDI Registries
@ jubDi

add Edit Delete Connect Close

Figure 4.1. Add a connection

Click on 'connect' and select View > Find More > Find All Businesses

File Edit | View | Tools Help
Advanced Find... — , _
My LD O : : value |Mi...
Find More k Find 4ll Businesses
Search
Query Manager... Find All Senices
Refresh MyUDDI Find All tModels
Refresh Search Results :
Refresh All
g, AEE N e E|Ear___ __
@ 2007.11.75 T3 T5AE: Detaull locale Tor JYM is en_US

Ready

Figure 4.2. View all Businesses

In the left pane you should see the Red Hat/JBossESB organization. You can navigate into the
individual services and their ServiceBindings.

21

http://www.uddibrowser.org

Chapter 4. UDDI Browser

File Edit View Tools Help

& X 4 @5 £ Ay oueres

MO

Search Resuls

-4 Marme Walue Misc
' Red HatiJBossESE 1" [key 337F7770-92E5-11DC-BTFO-B =
£ JBossESE Bk 7OBT3I0EE41C
o= # ImvokerService §§ AccessPoaoint [=Yxmlversion="1.0" =
o % OperationsCollectorSerice : SEE;%‘”QZ"UTF'B"?’ | i
T # DataCollectorSenice ¥minswsa="httpfschemas.xml
¢ £* DeadLetterService = soap.orghwsi2004008addressin
% l=7emilversion="1.0" encoding="UTF- o=
category (JBossESB-Internal))
- & baarersenc e e
o= L& CperationsFilerService Fhddresss
o~ ¥ InvokerFilerSemvice =wsa ReferenceProperties= |
] zjhossesh destination-type =
e e —

@ 2007.11.15 13:10:58: Default locale for JVM is en_US
@ 2007.11.15 13:14:10: Starting business gquery
8 2007.11.15 13:14:11: Query completed with 1 results

Ready

Figure 4.3. View Services and ServiceBindings

Each ServiceBinding contains an EPR in its AccessPoint.

Some features of ub may not work, but it should give enough functionality to maintain jUDDI. The
JBoss ESB community project is currently looking for a good web based console for maintaining

juDDI.

22

Chapter 5.

Registry Troubleshooting

5.1. Scout and jUDDI pitfalls

Make sure to put our version of the jaxr-api-1.0.jar, scout-0.7rc2-embedded. jar
and the juddi-embedded. jar first. The versions of these libraries that are included with the
JBoss Application Server are incompatiable. This should get resolved in future release of JBoss
Application Server.

If you use RMI you need the juddi-client. jar.

Make sure the jbossesb-properties.xml file is in the classpath and readable or else the
registry will try to instantiate classes with the name of 'null'.

Make sure you have a juddi.properties file on your classpath for jUDDI to configure itself.

JBoss SOA uses esh. juddi.xml, but generates the juddi.properties file for jUDDI to read.

Make sure to read the README in the jUDDI -registry directory, for instructions regarding
prepopulating your own juDDI database.

In the event that a service fails or does not shut down cleanly, it is possible that old entries may
persist within a registry. You will have to remove these manually.

5.2. More Information

Further community resources for Registry Troubleshooting can be found at:

The JBoss jUDDI wiki http://www.jboss.org/community/docs/DOC-11217

JBossESB user forum: http://www.jboss.com/index.html?module=bb&op=viewforum&f=246.

23

http://www.jboss.org/community/docs/DOC-11217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=246

24

Chapter 6.

What is a Rule Service?

6.1. Introduction

The JBoss SOA Rule Service allows you to deploy rules created in JBoss Drools as services. This
has two major benefits. First, the amount of required client code to integrate rules into your application
environment is dramatically reduced. Secondly, rules can be accessed as part of a action chain or
orchestarted business process. An understanding of JBoss Drools will aid the reader in understanding
these types of services.

Note
JBoss Drools is supported out of the box but it is possible to use other rule engines in
its place.

Rule Services are supported by the BusinessRuleProcessor action class and the DroolsRuleService
which implements the RuleService interface.

The BusinessRuleProcessor supports rules loaded from the classpath that are defined in .drl
and .ds1 files, dslr files (domain specific language support), and decision tables using . x1s files.
However there is no way to specify multiple rule files in the jboss-esb.xml file. These file-based
rules are primarily for testing, prototypes, and very simple rule services.

Complex rule services need to use the Drools RuleAgent.

The RuleService uses the RuleAgent to access rule packages from the Drools BRMS or local file
system. These rule packages can contain thousands of rules, created through the Drools BRMS
business rule editor, imported DRL files, rules written in a Domain Specific Language, and rules from
Decision Tables.

Use of the Drools RuleAgent is the recommended approach for production systems.

The BusinessRuleProcessor action supports both Drools stateless and stateful execution models.

Stateless Rule Services

Most rule services will be stateless. In the stateless model, a message is sent to the rule service that
includes all the facts in the message body to be inserted into the rule engine. The rules execute and
update either of the message or the facts.

Stateful Rule Services

Stateful execution takes place over time, with several messages being sent to the rule service. The
rules are executed each time, updating either of the message or the facts until a final message is
received that tells the rule service to dispose of the stateful session. This configuration is currently
limited in that there can only be a single stateful rule service in the message flow in this model.

25

26

Chapter 7.

Rule Services Using Drools

7.1. Introduction

The Rule Service support in the JBoss SOA Platform uses JBoss Rules as its rule engine. This
integration is acheived using:

* The BusinessRulesProcessor action class

Rules written in Drools drl, dsl, decision table, or business rule editor.

The ESBMessage

The objects in the ESBMessage content, which is the data going into the rules engine.

When a message gets send to the BusinessRulesProcessor a rule set executes over the objects in the
message and updates either of those objects or the message.

7.2. Rule Set Creation

A rule set can be created using Red Hat Developer Studio.Since the message is added as a global,
you need to add jbossesb-rosetta. jar to your Drools project.

For a detailed discussion on rule creation and the Drools language itself please refer to the included
JBoss Rules Reference Guide.

There are only three requirements when writing rules for deployment on the JBoss SOA Platform as a
service.

1. Allrules deployed as a rule service must define the ESBMessage as a global.

Most rule services will want to update the message as a way of communicating results to other
services in the flow, so the BusinessRulesProcessor or DroolsRuleService will always set the
message as a global.

#declare any global variables here
global org.jboss.soa.esb.message.Message;

Example 7.1. defining ESBMessage as a global

2. If additional globals other than the ESBMessage are required, they must be set in higher salience>
rule.

The BusinessRulesProcessor and DroolsRuleService does not provide a means to set globals in
jboss-esb.xml. This could be supported in the future.

27

Chapter 7. Rule Services Using Drools

rule "Set a global"

salience 100

when

then

drools.setGlobal("foo", new Foo());
end

Example 7.2. declaring a global in a higher salience rule

3. The ESBRuleService does not provide a means to start a RuleFlow from the rule service itself.
This could be supported in the future.

7.3. Rule Service Consumers

The consumer of a rule service has little to worry about. There is no need for the consumer to creating
rulebases or working memories, inserting facts or firing the rules. Instead the consumer just has to
worry about adding facts, and possibly some properties, to the message.

In some cases the client is JBoss SOA aware, and will add the objects to the message directly.

MessageFactory factory = MessageFactory.getInstance();
message = factory.getMessage(MessageType.JAVA SERIALIZED);
order = new Order();

order.setOrderId(

<xslthl:number>0</xslthl:number>

)

order.setQuantity(

<xslthl:number>20</xslthl:number>

)

order.setUnitPrice(new Float("20.0"));
message.getBody().add("Order", order);

Example 7.3. Adding objects to a message directly

In other cases the data may be in an XML message, and a transformation service will be added to the
message flow to transform the XML to POJOs before the rule service is invoked.

Stateful Rule Execution
Stateful rule execution requires a few properties to be added the messages.

For the first message:

message.getProperties().setProperty("dispose", false);
message.getProperties().setProperty("continue", false); // this is the
default

For all the subsequest messages but the final message:

message.getProperties().setProperty("dispose", false);

28

Configuration

message.getProperties().setProperty("continue", true);

For the final message:

message.getProperties().setProperty("dispose", true); // this is the
default
message.getProperties().setProperty("continue", true);

Important

These can be added directly by an JBoss SOA aware client but a client that is not
JBoss SOA aware will have to communicate the position of the message (first, ongoing,
last) in the data. You will also need to add an action class to the pipeline to add the
properties to the ESB message.

quickstarts/business_ruleservice stateful is an example of this type of
service.

7.4. Configuration

A rule service is configured in the jboss-esb action element for the service.

The action class and name is required. The name is user defined.

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="0OrderDiscountRuleService">

One of the following is also required:

o Adrlfile
<property name="ruleSet" value="drl/OrderDiscount.drl" />
» A dsl and dslr (domain specific language) files

<property name="ruleSet" value="dsl/approval.dslr" />
<property name="ruleLanguage" value="dsl/acme.dsl" />

» adecisionTable on the classpath
<property name="decisionTable" value="PolicyPricing.xls" />

» A properties file on the classpath that tells the rule agent how to find the rule package. This could
specify a url or a local file.

<property name="ruleAgentProperties"
value="brmsdeployedrules.properties" />

29

Chapter 7. Rule Services Using Drools

Several example configurations follow:

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="0OrderDiscountRuleService">
<property name="ruleSet" value="drl/OrderDiscount.drl" />
<property name="ruleReload" value="true" />
<property name="object-paths">
<object-path esb="body.Order" />
</property>
</action>

Example 7.4. Rules are in a drl, execution is stateless

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="0OrderDiscountMultipleRuleServiceStateful">
<property name="ruleSet
value="drl/0rderDiscountOnMultipleOrders.drl" />
<property name="ruleReload" value="false" />
<property name="stateful" value="true" >
<property name="object-paths">
<object-path esb="body.Customer" />
<object-path esb="body.Order" />
</property>
</action>

In this scenario the client may send multiple messages over time to the rule service. For example, the
first message may contain a customer object, and the next several messages contain orders for that
customer. Each time a message is received, the rules will be fired. On the final message, the client
can add a property to the message to tell the rule service to dispose of the working memory.

Example 7.5. Rules are in a drl, execution is stateful

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="PolicyApprovalRuleService">
<property name="ruleSet" value="dsl/approval.dslr" />
<property name="rulelLanguage" value="dsl/acme.dsl" />
<property name="ruleReload" value="true" />
<property name="object-paths">
<object-path esb="body.Driver" />
<object-path esb="body.Policy" />
</property>
</action>

Example 7.6. Rules in a Domain Specific Language, stateless execution

30

Configuration

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="PolicyPricingRuleService'">
<property name="decisionTable"
value="decisionTable/PolicyPricing.x1s" />
<property name="ruleReload" value="true" />
<property name="object-paths">
<object-path esbh="body.Driver" />
<object-path esb="body.Policy" />
</property>
</action>

Example 7.7. Rules in a DecisionTable, stateless execution

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="RuleAgentPolicyService'">
<property name="ruleAgentProperties"
value="ruleAgent/brmsdeployedrules.properties" />
<property name="object-paths">
<object-path esb="body.Driver" />
<object-path esbh="body.Policy" />
</property>
</action>

Example 7.8. Rules in the BRMS, stateless execution

The Action Configuration Attributes to the action tag specify which action is to be used and which
name this action is to be given.

The Action Configuration Attributes specify the set of rules (ruleSet) to be used in this action.

BusinessRulesProcessor Action Configuration Attributes

Attribute Description
Class Action class
Name Custom action name

BusinessRulesProcessor Action Configuration Properties

Property Description

ruleSet Optional reference to a file containing the ruleSet. The set of rules
that is used to evaluate the content. Only 1 ruleSet can be given
for each rule service instance.

ruleLanguage Optional reference to a file containing the definition of a Domain
Specific Language to be used for evaluating the rule set. If this is
used, the file in ruleSet should be a dslr file.

ruleReload Optional property which can be set to true to enable hot
redeployment of rule sets. Enabling this feature will increase the
overhead on the rules processing. Note that rules will also reload
if the . esb archive in which they live is redeployed.

31

Chapter 7. Rule Services Using Drools

Property Description

decisionTable Optional reference to a file containing the definition of a
spreadsheet containing rules.

ruleAgentProperties Optional reference to a properties file containing the location
(URL or file path) to the compiled rule packages. Note there is no
need to specify ruleReload with a ruleAgent as this is controlled
through the properties file.

stateful Optional property which can be set to true to specify that the rule
service will receive multiple messages over time, adding the new
facts to the rule engine working memory and re-executing the
rules each time.

object-paths Optional property to pass Message objects into JBoss Rules
working memory.

7.5. Object Paths

Note that JBossRules treats objects as shallow objects to achieve highly optimized performance. To
evaluate an object deeper than the object tree the optional object-paths property can be used. This
results in the extraction of objects from the message, using an “ESB Message Object Path”.

The expresssion language MVEL is used to extract the object and the path used should follow the
syntax:

location.objectname. [beanname] . [beanname]. ..

location
one of either the message body, header, properties or attachment

objectname
name of the object. Attachments can be named or numbered, so for attachments this can be a
number.

beannames
optionally you traverse a bean graph by specifying bean names

Example MVEL expressions

Expression Result
properties.Order gets the property object named Order
attachment.1 gets the first attachment Object

attachment.AttachmentOne gets the attachment named AttachmentOne
attachment.1.0rder gets getOrder () return object on the attached Object.

body.Order1.lineitem obtains the object named "Order1" from the body of the message.
Next it will call getLineitem() on this object. More elements
can be added to the query to traverse the bean graph.

It is important to remember that you have to add java import statements on the objects you import
into your rule set.

The Object Mapper cannot flatten out entire collections. If you need to do that you have to use a
transformation on the message first, to unroll the collection.

32

Deploying and Packaging

7.6. Deploying and Packaging

It is recommended that you package up your code into units of functionality, using .esb packages. The
idea is to package up your routing rules alongside the rule services that use the rule sets. The figure
below shows a layout of the business_rules_service quickstart to demonstrate a typical package.

33

Chapter 7. Rule Services Using Drools

v [META-INF
D deployment.xmil
D jposs-esh.xmil

D MANIFEST.MF

- [J org

v | _J samples
v [J quickstart

w [_J businessrules
~ E} dvdstore
j Customer.class

j OrderHeader.class

j Orderlitem.class

v E} test

j ReviewMessage.class

j sendMsMessage.class

j UpdateCustomerstatus.class
D jpm-queue-service . xml

S map_order components.groovy

D MyBusinessRules.drl

D MyBusinessRulesDiscount.drl

S MyRoutingRules.drl

D smooks-res. xmil

Figure 7.1. Typical .esb archive which uses JBoss Rules.

Deploying and Packaging

Finally make sure to deploy and reference the jbrules.esb in your deployment . xml.

<jbossesb-deployment>
<depends>jboss.esb:deployment=jbrules.esb</depends>
</jbossesb-deployment>

35

36

Chapter 8.

What is Content-Based Routing?

8.1. Introduction

Typically, information within the ESB is conveniently packaged, transferred, and stored in the form
of a message. Messages are addressed to Endpoint References (services or clients), that identify
the machine/process/object that will ultimately deal with the content of the message. However, what
happens if the specified address is no longer valid? For example, the service has failed or been
removed from service? It is also possible that the service no longer deals with messages of that
particular type; in which case, presumably some other service still handles the original function, but
how should the message be handled? What if other services besides the intended recipient are
interested in the message's content? What if no destination is specified?

One possible solution to these problems is Content-Based Routing. Content-based routing seeks to
route messages, not by a specified destination, but by the actual content of the message itself. In a
typical application, a message is routed by opening it up and applying a set of rules to its content to
determine the parties interested in its content.

The ESB can determine the destination of a given message based on the content of that message,
freeing the sending application from having to know anything about where a message is going to end

up.

Content-based routing and filtering networks are extremely flexible and very powerful. When built
upon established technologies such as MOM (Message Oriented Middleware), JMS (Java Message
Services), and XML (Extensible Markup Language) they are also reasonably easy to implement.

8.2. Simple Example

Content-based routing systems are typically built around two types of entities: routers (of which there
may be only one) and services (of which there is usually more than one). Services are the ultimate
consumers of messages. How services publish their interest in specific types of messages with the
routers is implementation dependent, but some mapping must exist between message type (or some
aspect of the message content) and services in order for the router to direct the flow of incoming
messages.

Routers, as their name suggests, route messages. They examine the content of the messages they
receive, apply rules to that content, and forward the messages as the rules dictate.

In addition to routers and services, some systems may also include harvesters, which specialize in
finding interesting information, packaging it up as a formatted message before sending it to a router.
Harvesters mine many sources of information including mail transfer agent message stores, news
servers, databases and other legacy systems.

The diagram below illustrates a typical CBR architecture using an ESB. At the heart of the system,
represented by the cloud, is the ESB. Messages are sent from the client into the ESB, which directs
them to the Router. This is then responsible for sending the messages to their ultimate destination (or
destinations, as shown in this example).

37

Chapter 8. What is Content-Based Routing?

Router

Client

Services

38

Chapter 9.

Content Based Routing Using Drools

9.1. Introduction

The Content Based Router (CBR) in the JBossESB uses JBossRules/Drools as its evaluation engine.
JBossESB integrates with Drools through three different routing action classes,

 arouting rule set, written in Drools drl (and optionally dsl) language.

» The EsbMessage content, either the serialized XML, or objects in the message, which is the data
going into the rules engine.

« destination(s) which is the result coming out of the rules engine.

When a message gets send to the CBR, a certain rule set will evaluate the message content and
return a set of Service destinations. We discuss how a target rule set can be targeted, how the
message content is evaluated and what is done with the destination results.

9.2. Three Different Routing Action Classes

JBossESB ships with three slightly different routing action classes. Each of these action classes
implements an Enterprise Integration Pattern. The JBossESB Wiki contains more information about
the Enterprise Integration Pattern. The following actions are supported:

org.jboss.soa.esh.actions.ContentBasedRouter

Implements the Content Based Routing pattern. It routes a message to one or more destination
services based on the message content and the rule set it is evaluating it against. The CBR throws an
exception when no destinations are matched for a given rule set/message combination. This action will
terminate any further pipeline processing, so it should be the last action of your pipeline.

org.jboss.soa.esh.actions.ContentBasedWireTap

Implements the WireTap pattern. The WireTap is an Enterprise Integration Pattern (EIP) where a

copy of the message is send to a control channel. The CBR-WT is identical in functionality to the
ContentBasedRouter, however it does not terminate the pipeline which makes it suitable to be used as
a WireTap.

rg.jboss.soa.esb.actions.MessageFilter

Implements the Message-Filter pattern. The Message Filter pattern represents the case where
messages can simply be dropped if certain content requirements are not met. The CBR-MF is identical
in functionality to the ContentBasedRouter, but it does not throw an exception if the rule set does not
match any destinations. In this case the message is simply filter out.

9.3. Rule Set Creation

A rule set can be created using the JBossIDE or Red Hat Developer Studio which includes a plug-in
for JBossRules. Figure 9.1, “Create a new ruleSet using JBossIDE or JBoss Developer Studio” shows
a screen shot of the plug-in. For a detailed discussion on rule creation and the Drools language itself
please see the Drools documention. To turn a regular ruleSet into a Countent Based Routing RuleSet

39

Chapter 9. Content Based Routing Using Drools

you must be evaluating an EsbMessage and the rule match should result in a List of Strings containing
the service destination names. To do this you need to make sure you remember two things:

 your rule set imports the EsbMessage
import org.jboss.soa.esb.message.Message

« and your rule set defines the following global variable which will make the list of destinations
available to the ESB

global java.util.List destinations;

4| ContentBasedoute, .. 4| ContentBasediViret... "I BossESERUles.drl X

e = -l

Package com.jboas., soa.esh., rOUTing.chr

3 5 e - TN

import org.jboss.=zon . ash . messsge Maszsgs;
import org.jboss.sos.=sh.message. format . MessageTyper

global java.uril.List descimaciona;

rule "Houting Huls =serlialized bassd message™
whan
Maazsage| cype == MessageType.JAVA SERTIALIZED)
then
gyotem. out.println (*Serialized®);

destinaciond .add("serialized-gestainatign®})

rule "Routing Rule - XML based message®

Figure 9.1. Create a new ruleSet using JBossIDE or JBoss Developer Studio

The message will be added to the working memory of the rules engine. Figure 2 shows an example
where the MessageType is used to determine to which destination the Message is going to be send.
This particular ruleSet is shipped in the JBossESBRules.drl file and the rule checks if the type is XML
or Serializable.

9.4. XPath Domain Specific Language

For XML-based messages it is convenient to do XPath based evaluation. To support this we ship a
“Domain Specific Language” implementation which allows us to use XPath expressions in the rule file.
defined in the XPathLanguage.dsl. To use it you need to reference it in your ruleSet with: expander
XPathLanguage.dsl

Currently the XPath Language makes sure the message is of the type JBOSS_ XML and it defines

1. xpathMatch <element> :yields true if an element by this name is matched.

40

Configuration

2. xpathEquals <element>, <value> :yields true if the element is found and it's value equals
the value.

3. xpathGreaterThan <element>, <value> :yields true if the element is found and it's value is
greater than the value.

4. xpathLessThan <element>, <value> :yields true if the element is found and it's value is
lower then the value.

The XPathLanguage .dsl is defined in a file called XPathLanguage .ds1, and can be customized if
needed, or you can define your own DSL altogether. The Quickstart called fun_cbr demonstrates this
use of XPath.

9.5. Configuration

Now that we have seen all the individual pieces how does it all tie together? It basically all comes
down to configuration at this point, which is all done in your jboss-esb.xml. The Service
Configuration below shows a service configuration fragment. In this fragment the service is listening on
a JMS queue.

Each ESBMessage is passed on to in this case the ContentBasedRouter action class which is
loaded with a certain rule set. It sets the ESBMessage into Working Memory, fires the rules, obtains
the list of destinations and routes copies of the ESBMessage to these services. It uses the rule

set JbossESBRules.drl, which matches two destinations, name 'xml-destination' and 'serialized-
destination'. These names are mapped to real service names in the 'route-to' section.

41

Chapter 9. Content Based Routing Using Drools

<service category="MessageRouting"
name="YourServiceName"
description="CBR Service">
<listeners>
<jms-listener name="CBR-Listener"
busidref="QueueA" maxThreads="1">
</jms-listener>
</listeners>
<actions>
<action class="org.jboss.soa.esb.actions.ContentBasedRouter"
name="YourActionName'">
<property name="ruleSet" value="JBossESBRules.drl"/>
<property name="ruleReload" value="true"/>
<property name="destinations">
<route-to destination-name="xml-destination"
service-category="categoryol"
service-name="jbossesbtest1" />
<route-to destination-name="serialized-destination"
service-category="category02"
service-name="jbossesbtest2" />
</property>
<property name="object-paths">
<object-path esb="body.testl1" />
<object-path esb="body.test2" />
</property>
</action>
</actions>
</service>

Figure 9.2. Example Content Based Routing Service Configuration

The action attributes to the action tag are shown in the following table. The attributes specify which
action is to be used and which name this action is to be given.

Attribute Description

Class Action class, one of :
org.jboss.soa.esbh.actions.ContentBasedRouter,
org.jboss.soa.esb.actions.ContentBasedWireTap or
org.jboss.soa.esb.actions.MessageFilter

Name Custom action name
Table 9.1. CBR Action Configuration Attributes

The action properties are shown in the following table. The properties specify the set of rules (ruleSet)
to be used in this action.

Property Description

ruleSet Name of the filename containing the Drools ruleSet. The set of rules that is used
to evaluate the content. Only 1 ruleSet can be given for each CBR instance.

Object Paths

Property Description

ruleLanguage Optional reference to a file containing the definition of a Domain Specific
Language to be used for evaluating the rule set.

ruleAgentProperties This property points to a rule agent properties file located on the classpath. The
properties file can contain a property that points to precompiled rules packages
on the file system, in a directory, or identified by an URL for integration with the
BRMS. See the “RuleAgent” section below for more information.

ruleReload Optional property which can be set to true to enable 'hot' redeployment
of rule sets. Note that this feature will cause some overhead on the rules
processing. Note that rules will also reload if the .esb archive in which they live
is redeployed.

stateful Optional property which tells the RuleService to use a stateful session where
facts will be remembered between invokations. See the “Stateful Rules” section
for more information about stateful rules.

destinations A set of route-to properties each containing the logical name of the destination
along with the Service category and name as referenced in the registry. The
logical name is the name which should be used in the rule set.

object-paths Optional property to pass Message objects into Drools WorkingMemory.
Table 9.2. CBR Action Configuration Properties

9.6. Object Paths

Note that JBossRules treats objects as shallow objects to achieve highly optimized performance. To
evaluate an object deeper than the object tree the optional object -paths property can be used,
which results in the extraction of objects from the message, using an “ESB Message Object Path”.
MVEL is used to extract the object and the path used should follow the syntax:

location.objectname. [beanname] . [beanname]. ..

where,

location
one of {body, header, properties, attachment}

objectname
name of the object name, attachments can be named or numbered, so for attachments this can be
a number too.

beannames
optionally you traverse a bean graph by specifying bean names

Examples:

* properties.Order - gets the property object named Order

« attachment.1 - gets the first attachment Object

« attachment.FirstAttachment - gets the attachment named FirstAttachment

e attachment.1.0rder - gets getOrder () return object on the attached Object.

43

Chapter 9. Content Based Routing Using Drools

e body.Order1.1lineitem - obtains the object named Order1 from the body of the message. Next
it will call getLineitem() on this object. More elements can be added to the query to traverse the
bean graph.

It is important to remember that you have to add java import statements on the objects you import
into your rule set.

Finally, the Object Mapper cannot flatten out entire collections, so if you need to do that you have to do
a (Smooks-) transformation on the message first, to unroll the collection.

9.7. Stateful Rules

Using stateful sessions means that facts will be remembered across invocations. When stateful is set
to true the working memory will not be disposed.

Stateful rule services must be told via messge properties when to continue with a current stateful
session and when to dispose of it. To signal that you want to continue an existing stateful session two
message properties must be set :

message.getProperties().setProperty(“dispose”, false);
message.getProperties().setProperty(“continue”, true);

When you invoke the rules for the last time you must set “dispose” to true so that the working memory
is disposed:

message.getProperties().setProperty(“dispose”, true);
message.getProperties().setProperty(“continue”, true);

For more details about the RuleService please see Chapter 7, Rule Services Using Drools.

For an example of using stateful rules take a look at the business_ruleservice_stateful quickstart

9.8. RuleAgent

By using the rule agent property you can use precompiled rules packages that can be located on
the local file system, in a local directory, or point to an URL. For information about the configuration
options that exist for the properties file please refer to section 9.4.4.1. The Rule Agent1 of the Drools
manual.

For more details about the RuleService please see Chapter 7, Rule Services Using Drools.

For an example of using a rule agent take a look at the business_ruleservice ruleAgent quickstart.

9.9. RuleAgent and Business Rule Management System

By using the rule agent property you can effectively integrate your service with a Business Rule
Management System (BRMS). This can be accomplished by specifying a URL in the rule agent
properties file. For information about the how to configure the URL and the other properties please
refer to section 9.4.4.1. The Rule Agent2 of the Drools manual.

. http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889
2 http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889

44

http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889

Executing Business Rules

For more details about the RuleService please see Chapter 7, Rule Services Using Drools.

For information about the how to install and configure the BRMS please refer to the chapter Chapter
92 of the Drools manual.

9.10. Executing Business Rules

Rule execution for modifying data in the message according to business rules

is closely related to rule execution for routing. An example Quickstart called
business_rule_service demonstrates this use case. This quickstart uses the action class
org.jboss.soa.esb.actions.BusinessRulesProcessor.

The functionality of the Business Rule Processor (BRP) is identical to the Content Based Router,

but it does not do any routing, instead it returns the modified EsbMessage for further action pipeline
processing. You may mix business and routing rules in one rule set if you wish to do so, but routing will
only occur if you use one of the three routing action classes mentioned earlier.

9.11. Changing RuleService Implementations

If you would like to use a different RuleService than the default one that is shipped with JBossESB,
then this is possible by specifying the class you would like to use in the action configuration:

<property name="ruleServiceImplClass" value="org.com.YourRuleService" />

The requirement is that your rule service implements the interface:
org.jboss.soa.esb.services.rules.RuleService.

9.12. Deployment and Packaging

It is recommended that you package up your code into units of functionality, using .esb packages. The
idea is to package up your routing rules alongside the rule services that use the rule sets. Figure 9.3,
“Typical .esb archive which uses Drools.” below shows a layout of the simple_cbr quickstart to
demonstrate a typical package.

3 http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09.html

45

http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09.html

Chapter 9. Content Based Routing Using Drools

= Ej simple_cbresb
= [] META-INF
D deployment.xml
D jposs-esh.xml

D MAMIFEST.MF

= | _J quickstart
~ Ej simplechr

v 'E:J test

D Receive|M5Message . class

D sendMsMessage.class
j My|M5ListenerAction.class
j Return|M5Message.class

j RouteExpressionshipping.class

j RouteNormalshipping.class

D jpm-queue-service xml
| | simpleCBRRules.drl.xml

{j simpleCBRRules-XPath.drl

Figure 9.3. Typical .esb archive which uses Drools.

Finally make sure to deploy and reference the jbrules.esb in your deployment . xml.

46

Deployment and Packaging

<jbossesb-deployment>
<depends>jboss.esb:deployment=jbrules.esb</depends>
</jbossesb-deployment>

47

48

Chapter 10.

Content Based Routing Using Smooks

10.1. Introduction

The SmooksAction can be used for splitting HUGE messages into split fragments and performing
Content-Based Routing on these split fragments.

An example of this might be a huge order message with thousands/millions of order items per
message. You might need to split the order up by order item and route each order item split fragment
to one or more destinations based on the fragment content. This example can be illustrated as follows:

Ehordar a4 1L

=prrdwrkhs 1 17Erwdn
= am A by 1 SRR Ty
sprderes LdNc ,‘[Iﬁ?:-’:’:-

W] CANEACE 1T
n oardry Atem Ad=" 20y
wpriadm L2 200 cprmdec]
wigutan Ll 2 g waml i Ly
“prives-X lD durioer
Fi < curdor -i Les -
=] Aupnder-ilew pd— 5%
“podm L3337 cprmdacl s
Sguanlilys 34 g ecml i Ly
R AT LR Y JIN TR T EC by
Fi I DrHeL -1 tert:
S efe..
-
B ronder-1t e .
Er el -

=i -

L -
CRFboTel Tiler-" 1% 33 0" ot LSOt r

Bl wrheser: e

n roper Abemas -

n wndrE At =t 15

SAX Event Stream (HUGE Méssage),,....

Figure 10.1. Message Splitting

tem :i'i‘__gsﬂ'; AL Spl It
P i
- _’__-"'F- =Ty T AN
e 5 1P MThrE.
. R Lt b
i © ArIAt. e
0 cartadlay
LT 1 R T
- e tgmrali Ly
—— e A e
=T ¥
il e cd L i
rprderazten 2d-' ¥ oviler—" i1t Split
k! ~oust omer’-

Lo e O TR
b 123 1750 merbet e
[} ¢ frmAtrEey
[l cArkailas
CPENAINT. T 22 20 prnmirt Tid -

cqueal i Lps 3 agnanl.ilys

Sprivasde i
F e Laides
Frlfonderi Luc

N
*,

Al

etc. ..

_ £ onrders
T [Aordard 41-1 il
[z 221 2xml
-‘ [o -2 3 1-3umil
£ [HAnmaraii-aml
/; [Aorzer-di1-s=ml
[2] cin 221 5.amil
ra Bedar-z31-7.5ml

The above illustration shows how we would like to perform the by-order-item splitting operation and
route the split messages to file. The split messages contain a full XML document with data merged
from the order header and the order item in question i.e. not just a dumb split. In this illustration, we
simply route all the message fragments to file, but with the Smooks Action, we can also route the

fragment messages to JMS and to a Database and in different formats (EDI, populated Java Objects,

etc).

The Smooks configuration for the above example would look as follows. Resource configurations #1

and #2 are there to bind data from the source message into Java Object in the Smooks bean context.

In this case, we're just binding the data into HahMaps. The Map being populated in configuration #2

is recreated and repopulated for every order item as the message is being filtered. The populated

Java Objects (from resources #1 and #2) are use to populate a FreeMarker template (resource #4),
which gets applied on every order item, with the result of the templating operation being output to a
FileResourceStream (resource #3). The FileResourceStream (resource #3) also gets applied on every
order item, managing the file output for the split messages.

This functionality is available in JBoss ESB 4.3 GA as a Technical Preview and we would greatly
appreciate your feedback. What the above does not show is how to perform the content based routing

49

Chapter 10. Content Based Routing Using Smooks

using <condition> elements on the resources. It also doesn't demonstrate how to route fragments to

message aware endpoints. We will be adding a quickstart dedicated to demoing these features of the
ESB. Check the User Forum for details.

50

Chapter 11.

Message Transformation

The JBoss ESB supports message data transformation through several of mechanisms.

11.1. Smooks

Smooks is, among other things, a Fragment based Data Transformation and Analysis tool (XML, EID,
CSV, Java etc). It supports a wide range of data processing and manipulation features.

Message Transformation on the JBoss ESB is supported by the SmooksAction component. This is
an ESB Action component that allows the Smooks Data Transformation/Processing Framework to be
plugged into an ESB Action Processing Pipeline.

A wide range of source (XML, CSV, EDI, Java etc) and target (XML, Java, CSV, EDI etc) data formats
are supported by the SmooksAction component. A wide range of Transformation Technologies are
also supported, all within a single framework.

Samples and Tutorials

A number of Transformation Quickstart samples are included in the JBoss SOA Platform distribution.
These can be found in the samples/quickstarts directory. The directory name of each
transformation quickstart begins with transform_.

The JBoss SOA Platform Programmers Guide also contains more detailed material on this topic as
well as references to additional information on the Smooks website.

Note
Some of the Quickstarts use the older SmooksTransformer action class instead of the
newer SmooksAction. The SmooksTransformer will be deprecated in a future release.

11.2. XSL Transformations

JBoss ESB supports message transformation through the standard XSLT usage model, as well as
through the Smooks. Native XSLT may be added in future releases. Support for XSLT can be provided
by creating a custom org. jboss.soa.esb.actions.ActionProcessor implementation.

11.3. ActionProcessor Data Transformation

Where Smooks can not handle a specific transformation usecase, you can
implement a custom transformation solution through implementation of the
org.jboss.soa.esb.actions.ActionProcessor interface.

51

52

Chapter 12.

JBPM Integration

JBoss jBPM is a powerful workflow and Business Process Management (BPM) engine. It enables

the creation of business processes that coordinate between people, applications and services. JBoss
jBPM uses a modular architecture combining easy development of workflow applications with a flexible
and scalable process engine. The JBoss jBPM process designer visually represents the business
process steps to facilitate a strong link between the business analyst and the technical developer. This
document assumes that you are familiar with jBPM. If you are not you should read the included jBPM
Reference Guide first.

JBossESB integrates the jBPM so that it can be used for two purposes.

1. Service Orchestration

ESB services can be orchestrated using jBPM. You can create a jBPM process definition which
makes calls into ESB services.

2. Human Task Management

jBPM allows you to incorporate human task management integrated with machine based services.

12.1. Integration Configuration

The jbpm.esb deployment that ships with the ESB includes the full jBPM runtime and the jBPM
console. The runtime and the console share a common jBPM database. The ESB Databaselnitializer
mbean creates this database on startup. The configuration for this mbean is found in the file
jbpm.esb/jbpm-service.xml.

<classpath codebase="deploy" archives="jbpm.esb"/>
<classpath codebase="deploy/jbossesb.sar/1ib"
archives="jbossesb-rosetta.jar"/>

<mbean code="org.jboss.internal.soa.esb.dependencies.DatabaseInitializer"

name="jboss.esb:service=JBPMDatabaseInitializer">

<attribute name="Datasource'">java:/JbpmDS</attribute>

<attribute name="ExistsSql">select * from JBPM_ID_USER</attribute>

<attribute name="SqglFiles">

jbpm-sql/jbpm.jpdl.hsqldb.sql, jbpm-sgl/import.sql

</attribute>

<depends>jboss.jca:service=DataSourceBinding, name=JbpmDS</depends>
</mbean>

<mbean code="org.jboss.soa.esb.services.jbpm.configuration.JbpmService"

name="jboss.esh:service=JbpmService">
</mbean>

Figure 12.1. ESB Databaselnitializer mbean configuration

The first Mbean configuration element contains the configuration for the Databaselnitializer.

53

Chapter 12. jBPM Integration

Datasource The datasource for the jBPM database java:/JbpmDS

ExistsSql The SQL command that is used to confirm the Select * from JBPM_ID_USER
existance of the database.

SqlFiles The files containing the SQL commands to jopm-sqgl/jbpm.jpdl.hsgldb.sql,
create the jBPM database if it is not found. jopm-sqgl/import.sql

Table 12.1. ESB Databaselnitializer mbean default values

The Databaselnitializer mbean is configured in jopm-service.xml to wait for the JbpmDS to be
deployed, before deploying itself. The second mbean “JbpmService” ties the lifecycle of the jBPM

job executor to the jppm.esb lifecycle, it starts a job executor instance on startup and stops it on
shutdown. The JbpmDS datasource is defined in the jopm-ds.xml and by default it uses a HSQL
database. In production you will want change to a production strength database. All jopm.esb
deployments should share the same database instance so that the various ESB nodes have access to
the same processes definitions and instances.

The jBPM console is a web application accessible at http:/localhost:8080/jbpm-console when you
start the server.
@

JB

. Red Hat

You must provide security credentials to access this management console.

User Name |
Password I

Lag In |

Figure 12.2. jBPM Console Login

Please check the jBPM Reference Guide to change the security settings for this application. This

will involve changing some settings in the conf/login-config.xml. The console can be used for
deploying and monitoring jBPM processes, but can also be used for human task management. For the
different users a customized task list will be shown and they can work on these tasks. The quickstart
bpm_orchestration4 demonstrates this feature. The jbpm.esb/META-INF directory contains the
deployment.xml and the jboss-esb.xml.

The deployment . xml specifies the resources this esb archive depends on which are the
jbossesbh.esb and the JbpmDS datasource. This information is used to determine the deployment
order.

54

http://localhost:8080/jbpm-console

jBPM Configuration

<jbossesb-deployment>
<depends>jboss.esb:deployment=jbossesb.esb</depends>
<depends>jboss.jca:service=DataSourceBinding, name=JbpmDS</depends>
</jbossesb-deployment>

Figure 12.3. deployment.xml dependancy declarations

The jboss-esb.xml deploys one internal service called “JBpmCallbackService”

<services>
<service category="JBossESB-Internal" name="JBpmCallbackService"
description="Service which makes Callbacks into jBPM">
<listeners>
<jms-listener name="JMS-DCQListener"
busidref="jBPMCallbackBus" maxThreads="1" />
</listeners>
<actions mep="OnewWay'">
<action name="action"
class="org.jboss.soa.esb.services.jbpm.actions.JBpmCallback"/>
</actions>
</service>
</services>

Figure 12.4. JBpmCallbackService

This service listens to the jJBPMCallbackBus, which by default is a IMS Queue on either a JBBossMQ
(jbmq-queue-service.xml) or a JbossMessaging (jbm-queue-service.xml) messaging
provider. Make sure only one of these files gets deployed in your jbpm.esb archive. If you want to
use your own provider simple modify the provider section in the jboss-esb.xml to reference your
JMS provider.

<providers>
<jms-provider name="CallbackQueue-JMS-Provider"
connection-factory="ConnectionFactory">
<jms-bus busid="jBPMCallbackBus">
<jms-message-filter dest-type="QUEUE"
dest-name="queue/CallbackQueue" />
</jms-bus>
</jms-provider>
</providers>

Figure 12.5. Modifying the provider section in the jboss-esb.xml for your own JMS

Section 12.5, “jBPM to JBossESB” contains more details about JbpmCallbackService.

12.2. jBPM Configuration

The configuration of jBPM itself is managed by three files: jbpm.cfg.xml , hibernate.cfg.xml
and jbpm.mail. templates.xml.

55

Chapter 12. jBPM Integration

jbpm.cfg.xml is set to use the JTA transaction manager by default.

<service name="persistence">
<factory>

<bean class="org.jbpm.persistence.jta.JtaDbPersistenceServiceFactory">
<field name="isTransactionEnabled"><false/></field>
<field name="isCurrentSessionEnabled"><true/></field>
<!--field name="sessionFactoryJndiName">
<string value="java:/myHibSessFactJndiName" />
</field-->

</bean>
</factory>
</service>

Figure 12.6. Default values in jbpm.cfg.xml
Other settings are left to the default jBPM settings.

The hibernate.cfg.xml file is also slightly modified to use the JTA transaction manager

<!-- JTA transaction properties (begin) ===
==== JTA transaction properties (end) -->
<property name="hibernate.transaction.factory class">
org.hibernate.transaction.JTATransactionFactory</property>

<property name="hibernate.transaction.manager_lookup_class">
org.hibernate.transaction.JBossTransactionManagerLookup</property>

Figure 12.7. Default values in hibernate.cfg.xml

Hibernate is not used to create the database schema. The Databaselnitiazer mbean refered to in
Section 12.1, “Integration Configuration” is used for this.

The jbpm.mail. templates.xml is left empty by default. For more details on each of these
configuration files please see the jBPM documentation.

Important
The configuration files that usually ship with jbpm-console.war have been removed.

This is done to centralized all the configuration in the files in the root of the jbpm. esb
archive.

12.3. Creation and Deployment of a Process Definition

To create a Process Definition we recommend using JBoss Developer Studio.

56

Creation and Deployment of a Process Definition

[P] procassDefinition 53 =)

' [:3 Select
L_l Margues

i Start
s State
End <=Node»= «. <<Task Node>=>

of g Fork Intake Order = Raview Order

= Join

"2y Decision
i} Node 2 ==Node== X <<Task Node==
W2 Task Node Calculate Discount Review Discount
&2 Mail Node

L& Process
slate ‘];:} <z oda==

i g':;g Ship It

— Transton

==Slar Stale==
ﬁ start

<<ffd Siale>»

& end

Diagram | Deployment Design | Source |
Figure 12.8. JBoss Developer Studio - jBPM Graphical Editor

The graphical editor allows you to create a process definition visually. Nodes and transitions between
nodes can be added, modified or removed. The process definition saves as an XML document which
can be stored on a file system and deployed to a jBPM instance (database). Each time you deploy the
process instance jBPM will version it and will keep the older copies. This allows processes that are in
flight to complete using the process instance they were started on. New process instances will use the
latest version of the process definition.

To deploy a process definition the server needs to be up and running. Only then can you go to the
'Deployment' tab in the graphical designer to deploy a process archive (par).

57

Chapter 12. jBPM Integration

P| processDefinition
Deployment

Files and Falders

Selzct the files and falders to mncluds i the
process ardnive.

[¥#] ¥ .ged. test.xml
[#]ui Rewview_Qrder.xhim
[¥] forms.mi

[#] | gpd.xmi

[¥]] processdefinition. xmi
|1 processimage. jog

Reset Defaults

Local Save Settings

Choose if and where you wish o save the
process archive lecally,

[[]5ave Process Archive Localy

Lacaton: BN T

= H
Java Claszes and Resources
Sefact the Java dasses and resources to
indude in the process arceve.
% [src
Reset Defaults

Deployment Server Settings
Spedfy the settings of the server yau wish to
deploy o,

Server Mame: locakast

|
Server Part: &0a0 |
|

Server Deplyyer: fbpm-consalefupload

lTestCnnna:b:m... J

| Deplay Process archive... |

Diagram Deployment | Design | Sounos

Figure 12.9. JBoss Developer Studio - jBPM Deployment View

In some cases it would suffice to deploy just the processdefinition.xml, but in most cases you
will be deploying other type of artifacts as well, such as task forms.

It is also possible to deploy Java classes in a process archive, which means that they end up in the
database where they will be stored and versioned. This is not recommended to do this in the ESB
environment as it can lead to class loading issues. The recommended practice is to deploy your

classes in the lib directory of the server.

There are three mechanisms that you can use to deploy a process defination.

1. You can deploy directly from JBoss Developer Studio, by clicking on the Deploy Process Archive

button in the Deployment view

2. You can saving the deployment to a local . par file from the Deployment view and then use the
jBPM console to deploy the archive. You need to be able to login to the console with administrative

privileges to do this.

3. You can also deploy by using the DeployProcessToServer jBPM ant task.

58

JBossESB to jBPM

Deploy New Process Definition

File to upload: Browse ..

Deploy

Figure 12.10. jBPM Console - uploading a new Process Definition

12.4. JBossESB to jBPM

The JBoss ESB can make calls into jBPM using the BpmProcessor action. This action uses the jBPM
command API to make calls into jBPM. The following jBPM commands have been implemented.

NewProcessinstanceCommand

This command starts a new Processinstance with a process definition that was already deployed to
jBPM. The NewProcessinstanceCommand leaves the Process Instance in the start state, which is
needed if there is an task associated to the Start node such as a task on an actor's tasklist.

StartProcessinstanceCommand
This command is identical to the NewProcesslnstance-Command except that the new Process
Instance is automatically moved from the Start position into the first Node.

CancelProcessinstanceCommand

This command cancels a ProcessInstance. You can use this in situation such as when event comes in
which should result in the cancellation of the entire ProcessInstance. This action requires some jBPM
context variables to be set on the message, in particular the Processinstance Id.

<action name="create_new_process_instance"
class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

<property name="command" value="StartProcessInstanceCommand" />
<property name="process-definition-name" value="processDefinition2"/>
<property name="actor" value="FrankSinatra'"/>

<property name="esbToBpmVars'">

<!-- esb-name maps to getBody().get("evari") -->
<mapping esb="eVarl" bpm="counter" default="45" />
<mapping esb="BODY_CONTENT" bpm="theBody" />

</property>

</action>

Figure 12.11. BpmProcessor action configuration in jboss-esb.xml

There are two required action attributes.

59

Chapter 12. jBPM Integration

name
You are free to use any value for the name attribute as long as it is unique in the action pipeline.
class

This attributes must be set to
org.jboss.soa.esb.services.jbpm.actions.BpmProcessor

The following configuration properties can also be set.

1.

command

This is a required property. It needs to be one of NewProcessinstanceCommand,
StartProcessinstanceCommand or CancelProcessinstanceCommand.

processdefinition

This is a required property for the NewProcessIinstanceCommands and
StartProcessinstanceCommands if the process-definition-id property is not used. The value of this
property should reference the already deployed process definition that you want to create a new
instance of. This property does not apply to the Signal- and CancelProcessinstanceCommands.

process-definition-id

This is a required property for the NewProcessinstanceCommands and
StartProcessinstanceCommands if the processdefinition property is not used. The value of this
property should reference the already deployed process definition that you want to create a new
instance of. This property does not apply to the Signal- and CancelProcessinstanceCommands.

actor

This is a optional property to specify the jBPM actor id. This applies only to
NewProcesslnstanceCommand and StartProcessinstanceCommand.

key

This is a optional property to specify the value of the jBPM key. The key is a string based business
key property on the process instance. The combination of business key and process definition
must be unique if a business key is supplied. The key value can hold an MVEL expression to
extract the desired value from the EsbMessage. For example if you have a named parameter
called businessKey in the body of your message you would use body.businessKey. This property
is used for NewProcessIinstanceCommand and StartProcessinstanceCommand only.

transition-name

This is a optional property. This property only applies to StartProcessinstanceCommand and
Signal. It is used if there is more then one transition out of the current node. If this property is
not specified then the default transition out of the node is taken. The default transition is the first
transition in the list of transitions defined for that node in the jBPM processdefinition.xml.

esbToBpmVars

This is a optional property for the New- and StartProcessinstanceCommands. This property
defines a list of variables that need to be extracted from the EsbMessage and set into jBPM

60

ESB to jBPM Exception Handling

context for the particular process instance. The list consists of mapping elements. Each mapping
element can have the following attributes:

* esb

This is a required attribute which can contain an MVEL expression to extract a value anywhere
from the EsbMessage.

* bpm

This is a optional attribute containing the name which be used on the jBPM side. If omitted the
esb name is used.

» default

This is a optional attribute which can hold a default value if the esb MVEL expression does not
find a value set in the EsbMessage.

* reply-to-originator

This is a optional property for the New- and StartProcessinstanceCommands. If this property is
specified, with a value of true, then the creation of the process instance will store the ReplyTo/
FaultTo EPRs of the invoking message within the process instance. These values can then be
used within subsequent EsbNotifier/EsbActionHandler invocations to deliver a message to the
ReplyTo/FaultTo addresses.

8. jbpmProcessinstid

This is a required parameter for CancelProcessinstanceCommand only. It is up to the user make
sure this value is set as a named parameter on the EsbMessage body.

12.4.1. ESB to jBPM Exception Handling

For ESB calls into jBPM an exception of the type JbpmException can be thrown from the jBPM
Command API. This exception is not handled by the integration and we let it propagate into the ESB
Action Pipeline code. The action pipeline will log the error, send the message to the DeadLetterService
(DLS), and send the an error message to the faultTo EPR, if a faultTo EPR is set on the message.

12.5. jBPM to JBossESB

jBPM to JBossESB communication provides us with the capability to use jBPM for service
orchestration. Service Orchestration itself will be discussed in more detail in the next chapter but we
will focus on the details of the integration here first.

The integration implements two jBPM action handler classes, EsbActionHandler and
EsbNotifier. The EsbActionHandler is a request-reply type action, which sends a message to
a Service and then waits for a response. EsbNotifier does not wait for a response. The interaction
with JBossESB is asynchronous in nature and does not block the process instance while the Service
executes.

First we'll discuss EsbNotifier as it implements a subset of the configuration of
EsbActionHandler.

61

Chapter 12. jBPM Integration

12.5.1. ESBNotifier

The EsbNotifier action should be attached to an outgoing transition so the jBPM processing
can continue while the request to the ESB service is processed in the background. In the jBPM
processdefinition.xml we need attach the EsbNotifier to the outgoing transition.

<node name="ShipIt">
<transition name="ProcessingComplete" to="end">
<action name="ShipItAction"
class="org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier">
<esbCategoryName>BPM_Orchestration4</eshCategoryName>
<esbServiceName>ShippingService</esbServiceName>

<bpmToEshVars>
<mapping bpm="entireCustomerAsObject" esb="customer" />
<mapping bpm="entireOrderAsObject" esb="orderHeader" />
<mapping bpm="entireOrderAsXML" esb="entireOrderAsXML" />

</bpmToEsbVvars>

</action>
</transition>
</node>

Figure 12.12. Ship It node with EsbNotifier attached
The following attributes can be specified.
* name
This is required attribute. User specified name of the action
* class

This is a required attribute. Required to be set to
org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier.

The following subelements can be specified.
« eshCategoryName

The category name of the ESB service. This is required if you are not using the reply-to-originator
functionality.

* eshServiceName

The name of the ESB service. This is required if you are not using the reply-to-originator
functionality.

* replyToOriginator
Specify the reply or fault originator address previously stored in the process instance on creation.
 globalProcessScope

This element is optional. This boolean valued parameter sets the default scope in which the
bpmToEshVars are looked up. If the globalProcessScope is set to true the variables are looked for

62

ESBActionHandler

up the token hierarchy (process-instance scope). If set to false it retrieves the variables in the scope
of the token. If the token does not have a variable for the given name, the variable is searched for
up the token hierarchy. If omitted the globalProcessScope is set to false for retrieving variables.

* bpmToEsbVars

This element is optional. This element takes a list of mapping sub-elements to map a jBPM context
variable to a location in the EsbMessage. Each mapping element can have the following attributes.

e bpm

This is a required attribute. The name of the variable in jBPM context. The name can be MVEL
type expression so you can extract a specific field from a larger object. The MVEL root is set to
the jBPM Contextinstance.

<mapping bpm="token.name" esb="TokenName" />

<mapping bpm="node.name" esb="NodeName" />

<mapping bpm="node.id" esb="esbNodeId" />

<mapping bpm="node.leavingTransitions[0].name" esb="transName" />
<mapping bpm="processInstance.id" esb="piId" />

<mapping bpm="processInstance.version" esb="piVersion" />

Example 12.1. Mapping jBPM context variable to a location in the EsbMessage

You can also reference jBPM context variable names directly.
e esb

This attribute is optional. The name of the variable on the EsbMessage. The name can be a
MVEL type expression. By default the variable is set as a named parameter on the body of the
EsbMessage. If you decide to omit the esb attribute, the value of the bpm attribute is used.

¢ default

This attribute is optional. If the variable is not found in jBPM context the value of this field is taken
instead.

* process-scope

This attribute is optional. This boolean valued parameter can override the setting of the setting of
the globalProcessScope for this mapping.

Note

When working on variable mapping configuration it is recommended to turn on debug
level logging.

12.5.2. ESBActionHandler

The EsbActionHandler is designed to work as a reply-response type call into JBossESB. The
EsbActionHandler should be attached to the node. When this node is entered this action will be called.
The EsbActionHandler executes and leaves the node waiting for a transition signal. The signal can

63

Chapter 12. jBPM Integration

come from any other thread of execution, but under normal processing the signal will be send by the
JBossESB callback Service.

<action name='"create_new_process_instance"

class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

<property name="command" value="StartProcessInstanceCommand" />
<property name="process-definition-name" value="processDefinition2"/>
<property name="actor" value="FrankSinatra"/>

<property name="esbToBpmVars">

<!-- esb-name maps to getBody().get("evari") -->
<mapping esb="eVarli" bpm="counter" default="45" />
<mapping esb="BODY_CONTENT" bpm="theBody" />

</property>

</action>

Example 12.2. Configuration for the EsbActionHandler

The configuration for the EsbActionHandler action extends the EsbNotifier configuration. The
extensions are the following subelements.

* esbToBpmVars

This element is optional. This subelement is identical to the esbToBpmVars property mentioned
in Section 12.4, “JBossESB to jBPM” for the BpmProcessor configuration. The element defines a
list of variables that need to be extracted from the EsbMessage and set into jBPM context for the
particular process instance. If unspecified the globalProcessScope value defaults to true when
setting variables. The list consists of mapping elements. Each mapping element can have the
following attributes.

esb

A required attribute which can contain an MVEL expression to extract a value anywhere from the
EsbMessage.

bpm

An optional attribute containing the name which be used on the jBPM side. If this is not supplied
then the esb name is used.

default

An optional attribute which can hold a default value if the esb MVEL expression does not find a
value set in the EsbMessage.

process-scope

An optional attribute. This boolean valued parameter can override the setting of the setting of the
globalProcessScope for this mapping.

« exceptionTransition

64

jBPM to ESB Exception Handling

An optional element. The name of the transition that should be taken if an exception occurs while
processing the Service. This requires the current node to have more then one outgoing transition
where one of the transition handles exception processing.

Optionally you may want to specify a timeout value for this action. For this you can use a jBPM native
Timer on the node. Example 12.3, “Specifying a timeout value for an action” demonstrates adding a
timeout so if no signal is received within 10 seconds of entering this node the transition called time-
out is taken.

<timer name='timeout' duedate='10 seconds' transition='time-out'/>

Example 12.3. Specifying a timeout value for an action

12.5.3. JBPM to ESB Exception Handling

There are two types of scenarios where exceptions can arise.

1. MessageDeliveryException is thrown by the Servicelnvoker when delivery of the message to the
ESB failed. If this happens things are pretty bad and you have probably misspelled the name of
the Service you are trying to reach. This type of exception can be thrown from both the EsbNotifier
as well as the EsbActionHandler. In the jBPM node you can add an ExceptionHandler to handle
this exception.

2. The second type of exception is when the Service received the request, but something goes
wrong during processing. Only if the call was made from the EsbActionHandler it makes sense to
report back the exception to jBPM. If the call was made from the EsbNotifier jBPM processing has
already moved on, and it is of little value to notify the process instance of the exception. This is
why the exception-transition can only be specified for EsbAction-Handler.

To illustrate the type of error handling that is now possible using standard jBPM features we will
discuss some scenarios illustrated in Figure 12.13, “Three exception handling scenarios: time-out,
exception-transition and exception-decision.”.

65

Chapter 12. jBPM Integration

==Start State== ==f\lode==
§ i ok -Iﬁ[-
start Senvicel

time-out-transition

ak
-I:C:{E[' ==Mode== exception = ==fnd State==
Service? ~ ExceptionHandling
ok exceptionCondition
Tﬁ!} <=MNode== ok 2 ==Decision==>

.] . .
Servicel exceptionDecision

ik

==End Stale==
end

Figure 12.13. Three exception handling scenarios: time-out, exception-transition and exception-
decision.

12.5.4. Scenerio 1: Time-out

When using the EsbActionHandler action and the node is waiting for a callback, it maybe that you
want to limit how long you want to wait for. For this scenario you can add a timer to the node. This is
how Servicel is setup in Figure 5. The timer can be set to a certain due date. In this case it is set to 10
seconds.

<node name="Servicel'">

<action class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>MockCategory</esbCategoryName>
<esbServiceName>MockService</esbServiceName>
</action>

<timer name='timeout' duedate='10 seconds'
transition="'time-out-transition'/>

66

Scenerio 2: Exception Transition

<transition name="ok" to="Service2"></transition>
<transition name="time-out-transition" to="ExceptionHandling"/>

</node>

Node Servicel has 2 outgoing transitions. The first one is called ok while the second one is called
time-out-transition. Under normal processing the call back would signal the default transition,
which is the ok transition since it is defined first. However if the execution of the service takes

more then 10 seconds the timer will fire. The transition attribute of the timer is set to time-out -
transition, so this transition will be taken on time-out. In Figure 5 this means that the processing
ends up in the ExceptionHandling node in which one can perform compensating work.

12.5.5. Scenerio 2: Exception Transition

To handle exceptions that may occur during processing of the Service, one can define an
exceptionTransition. When doing so the faultTo EPR is set on the message so the ESB will make a
callback to this node, signaling it with the exceptionTransition. Service2 has two outgoing transitions.
Transition ok will be taken under normal processing, while the exception transition will be taken
when the Service processing throws an exception.

<node name="Service2">
<action class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>MockCategory</eshCategoryName>
<esbServiceName>MockService</esbServiceName>
<exceptionTransition>exception</exceptionTransition>
</action>
<transition name="ok" to="Service3"></transition>
<transition name="exception" to="ExceptionHandling"/>
</node>

Example 12.4. Definition of Service 2

In this definition of Service2, the exceptionTransition in the action is set to “exception”. In this scenario
the process also ends in the ExceptionHandling node.

12.5.6. Scenerio 3: Exception Decision

Scenario 3 is illustrated in the configuration of Service3 and the exceptionDecision node that
follows it. The idea is that processing of Service3 completes normally and the default transition out of
node Service3 is taken. However, somewhere during the Service execution an errorCode was set, and
the exceptionDecision node checks if a variable called errorCode was set.

67

Chapter 12. jBPM Integration

<node name="Service3">
<action class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>MockCategory</esbCategoryName>
<esbServiceName>MockService</esbServiceName>
<esbToBpmVars>
<mapping esb="SomeExceptionCode" bpm="errorCode"/>
</esbToBpmvars>
</action>
<transition name="ok" to="exceptionDecision"></transition>
</node>

<decision name="exceptionDecision">
<transition name="ok" to="end"></transition>
<transition name="exceptionCondition" to="ExceptionHandling">
<condition>#{ errorCode!=void }</condition>
</transition>
</decision>

Example 12.5. Definition of Service 3

where the esbToBpmVars mapping element extracts the errorCode called Some -ExceptionCode
from the EsbMessage body and sets in the jBPM context, if this SomeExceptionCode is set that is.
In the next node exceptionDecision the “ok” transition is taken under normal processing, but if
a variable called errorcCode is found in the jBPM context, the exceptionCondition transition is
taken. This is using the decision node feature of jBPM where transition can nest a condition.

For more details on conditional transitions please refer to the included jBPM Reference Guide.

68

Chapter 13.

Service Orchestration

Service Orchestration is the arrangement of business processes. Traditionally BPEL is used to
execute SOAP based WebServices. If you want to orchestrate JBossESB regardless of their end
point type, then it makes more sense to use jBPM. This chapter explains how to use the integration
discussed earlier to do Service Orchestration using jBPM.

13.1. Orchestrating Web Services

JBossESB provides WS-BPEL support via its Web Service components. For details on these
components and how to configure and use them, see the Message Action Guide.

JBoss and JBossESB also have a special support agreement with ActiveEndpoints L for their award
wining ActiveBPEL 2 WS-BPEL Engine. JBoss ESB includes with the webservice_bpel QuickStart
which demonstrates how the JBoss ESB and ActiveBPEL > can collaborate effectively to provide

a WS-BPEL based orchestration layer on top of a set of Services that don't expose Webservice
Interfaces. JBossESB provides the Webservice Integration and ActiveBPEL 4 provides the Process
Orchestration. A number of flash based walk-thrus of this Quickstart are also available online 5,

Note
ActiveEndpoints WS-BPEL engine does not run on versions of JBossAS since 4.0.5.
However, it can be deployed and run successfully on Tomcat as our examples illustrate.

13.2. Orchestration Diagram

A key component of Service Orchestration is to use a flow-chart like design tool to design and deploy
processes. The jBPM IDE can be used for just this. Figure 13.1, “Orchestration diagram for the
bpm_orchestration4 QuickStart ” shows an example of such a flow-chart, which represents a
simplified order process. This example is taken from the bpm_orchestration4 QuickStart which
ships with JBossESB.

In Figure 13.1, “Orchestration diagram for the bpm_orchestration4 QuickStart ” three of the nodes
are JBossESB Services, the Intake Order, Calculate Discount and the Ship It nodes. For these nodes
the regular Node type was used, which is why these are labeled with <<Node>>. Each of these nodes
have the EsbActionHandler attached to the node itself. This means that the jBPM node will send

a request to the Service and then it will remain in a wait state, waiting for the ESB to call back into

the node with the response of the Service. The response of the service can then be used within jBPM
context.

For example when the Service of the Intake Order responds, the response is then used to populate
the Review Order form. The Review Order node is a Task Node. Task Nodes are designed for human
interaction. In this case someone is required to review the order before the Order Process can
process.

! http://www.active-endpoints.com/
2 http://www.active-endpoints.com/
3 http://www.active-endpoints.com/
4 http://www.active-endpoints.com/
5 http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html

69

http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html
http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html

Chapter 13. Service Orchestration

To create the diagram in Figure 13.1, “Orchestration diagram for the bpm_orchestration4
QuickStart 7, select File > New > Other, and from the Selection wizard select JBoss jBPM Process
Definition. The wizard will direct you to save the process definition. From an organizational point

of view it is recommended use one directory per process definition, as you will typically end up with
multiple files per process design.

==5lart State==
()]

start
==Mode== e = Task Mode==
Intake Order — Review Order
<<Mode=> W = Task Node==
Calculate Discount = Review Discount
-t-:."'.]'.:.:de:--} ==End State==
Ship It end

Figure 13.1. Orchestration diagram for the bpm_orchestration4 QuickStart

After creating a new process definition. You can drag and drop any item from jBPM IDE menu palette
into the process design view. You can switch between the design and source modes if needed to
check the XML elements that are being added, or to add XML fragments that are needed for the
integration. Recently a new type of node was added called ESB Service.

Before building the Order Process diagram of Figure 13.1, “Orchestration diagram for the
bpm_orchestration4 QuickStart ” you need to create and test the three Services. These services
are ordinary ESB services and are defined in the jboss-esh.xml. Check the jbhoss-esb.xml of
the bpm_orchestration4 QuickStart if you want details on them, but they only thing of importance
to the Service Orchestration are the Services names and categories as shown in the following jboss-
esb.xml fragment:

<services>
<service category="BPM_orchestration4_Starter_Service"
name="Starter_Service"
description="BPM Orchestration Sample 4: Use this service to start a
process instance">
<l-- ..., =-=->
</service>
<service category="BPM_Orchestration4" name="IntakeService"
description="IntakeService: transforms, massages, calculates priority">
<l-- ... -->
</service>
<service category="BPM_Orchestration4" name="DiscountService"

70

Orchestration Diagram

description="DiscountService'">
</service>
<service category="BPM_Orchestration4" name="ShippingService"
description="ShippingService">
== (,00 ==2
</service>
</services>

These Service can be referenced using the EshActionHandler or EsbNotifier Action
Handlers.The EsbActionHandler is used when jBPM expects a response, while the EsbNotifier
can be used if no response back to jBPM is needed.

Now that the ESB services are known we drag the Start state node into the design view. A new
process instance will start a process at this node. Next we drag in a Node (or ESB Service if
available). Name this Node Intake Order. We can connect the Start and the Intake Order Node by
selecting Transition from the menu and by subsequently clicking on the Start and Intake Order Node.
You should now see an arrow connecting these two nodes, pointing to the Intake Order Node.

Next we need to add the Service and Category names to the Intake Node. Select the Source view.
The Intake Order Node should look like:

<node name="Intake Order">
<transition name="" to="Review Order"></transition>
</node>

Then we add the EsbHandlerAction class reference and the subelement configuration for the Service
Category and Name, BPM_Orchestration4 and IntakeService respectively.

<node name="Intake Order">
<action name="esbAction" class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>IntakeService</esbServiceName>

<!-- async call of IntakeService -->
</action>
<transition name="" to="Review Order"></transition>
</node>

Next we want to send the some jBPM context variables along with the Service call. In this example
we have a variable named entireOrderAsXML which we want to set in the default position on the
EsbMessage body. For this to happen we add:

<bpmToEsbVars>
<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />
</bpmToEsbVvars>

which will cause the XML content of the variable “entireOrderAsXML" to end up in the body of the
EsbMessage, so the IntakeService will have access to it, and the Service can work on it, by letting
it flow through each action in the Action Pipeline. When the last action is reached it the replyTo is
checked and the EsbMessage is send to the JBpmCallBack Service, which will make a call back

71

Chapter 13. Service Orchestration

into jBPM signaling the “Intake Order” node to transition to the next node (“Review Order”). This time
we will want to send some variables from the EsbMessage to jBPM. Note that you can send entire
objects as long both contexts can load the object's class. For the mapping back to jBPM we add an

“esbToEsbVars” element. Putting it all together we end up with:

<node name="Intake Order">
<action name="esbAction" class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler'">
<esbCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>IntakeService</esbServiceName>

<bpmToEsbVars>

<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />
</bpmToEsbVvars>

<esbToBpmVars>

<mapping esb="body.entireOrderAsXML" bpm="entireOrderAsxML"/>
<mapping esb="body.orderHeader" bpm="entireOrderAsObject" />
<mapping esb="body.customer" bpm="entireCustomerAsObject" />
<mapping esb="body.order_orderId" bpm="order_orderid" />
<mapping esb="body.order_totalAmount" bpm="order_totalamount" />
<mapping esb="body.order_orderPriority" bpm="order_priority" />
<mapping esb="body.customer_firstName" bpm="customer_firstName" />
<mapping esb="body.customer_lastName" bpm="customer_lastName" />
<mapping esb="body.customer_status" bpm="customer_status" />
</esbToBpmvars>

</action>

<transition name="" to="Review Order"></transition>

</node>

So after this Service returns we have the following variables in the jBPM context for this process:

entireOrderAsXML, entireOrderAsObject, entireCustomerAsObject, and for demo purposes
we also added some flattened variables: order_orderid, order_totalAmount, order_priority,
customer_firstName, customer_lastName and customer_status.

72

Orchestration Diagram

==5tart Stale==
ﬂ start

<<hpdz== = <=Task Nodz==

Intake Order = Review Order

" ==Node>> . <<T3s« Node=>
Calculate Discount "= Revizw Discount

'E;I' {{H:.:ujg}}
Ship it

= <<End Stale=>
end

Figure 13.2. The Order process reached the “Review Order” node

In our Order process we require a human to review the order. We therefore add a “Task Node” and
add the task “Order Review”, which needs to be performed by someone with actor_id “user”. The

XML-fragment looks like:

<task-node name="Review Order'">

<task name="Order Review">

<assignment actor-id="user'"></assignment>
<controller>

<variable

name="customer_firstName"

access="read,write, required"></variable>

<variable name="customer_lastName" access="read,write,required">
<variable name="customer_status" access="read"></variable>
<variable name="order_totalamount" access="read"></variable>
<variable name="order_priority" access="read"></variable>
<variable name="order_orderid" access='"read"></variable>
<variliable name="order_discount" access="read"></variable>
<variable name="entireOrderAsXML" access='"read"></variable>
</controller>

</task>

<transition name="" to="Calculate Discount"></transition>

</task-node>

73

Chapter 13. Service Orchestration

In order to display these variables in a form in the jbpm-console we need to create an xhtml dataform
(see the Review_Order.xhtml file in the bpm_orchestration4 quick start [JBESB-QS] and tie this for this
TaskNode using the forms.xml file:

<forms>

<form task="Order Review" form="Review_Order.xhtml"/>
<form task="Discount Review" form="Review_Order.xhtml"/>
</forms>

Note that in this case the same form is used in two task nodes. The variables are referenced in the
Review Order form like this, which references the variables set in the jBPM context:

<jbpm:datacell>

<f:facet name="header">

<h:outputText value="customer_firstName"/>
</f:facet>

<h:inputText value="#{var['customer_firstName']}" />
</jbpm:datacell>

When the process reaches the “Review Node”, as shown in Figure 13.2, “The Order process reached
the “Review Order” node”. When the 'user' user logs into the jppm-console the user can click on
"Tasks” to see a list of tasks, as shown in Figure 13.3, “The task list for user ‘user”. The user can
‘examine' the task by clicking on it and the user will be presented with a form as shown in Figure 13.4,
“The "Order Review" form”. The user can update some of the values and click “Save and Close” to let
the process move to the next Node.

Mamage. Pocesses | Tashks

First Prov - Page 1 of 1 - Moxt Lost

Moclcd . Start End S
[0 Mamc Actors Assigned To Status Date Date Actions
H IE' IE] E o D[enphy -lka- Clear -lka-
1 Orcer Revew L=er Mot Started Cxamire Suspend |Smart

Figure 13.3. The task list for user 'user'

74

Orchestration Diagram

Order Review

cus=lvmer MlirslHame JE

customer_lastName QIR

rustnmer_status Bl

order_totalaomount JEENA

order_priorrty 3

]

order orderid

order_discount

entire0rder w0 ELAroenl-"59 .57

Actions | Save || Cavcel || Sav= and Close |

Figure 13.4. The "Order Review" form

The next node is the “Calculate Discount” node. This is an ESB Service node again and the
configuration looks like:

<node name="Calculate Discount">

<action name="esbAction" class="
org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>DiscountService</esbServiceName>

<bpmToEsbVars>

<mapping bpm="entireCustomerAsObject" esb="customer" />

<mapping bpm="entireOrderAsObject" esb="orderHeader" />

<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />
</bpmToEsbVvars>

<esbToBpmVars>

<mapping esb="order"

bpm="entireOrderAsObject" />

<mapping esb="body.order_orderDiscount" bpm="order_discount" />
</esbToBpmvars>

</action>

<transition name="" to="Review Discount"></transition>

</node>

The Service receives the customer and orderHeader objects as well as the entireOrderAsXML, and
computes a discount. The response maps the body.order_orderDiscount value onto a jBPM context
variable called “order_-discount”, and the process is signaled to move to the “Review Discount” task
node.

75

Chapter 13. Service Orchestration

Discount Review

customer_firstName {324

customer_lastName QJUVGEE

customer_status 6O

order_totalamount [JEER:M

order_priority 3

order_orderid 2

order_discount 8.5

entireOrder <0rder netAmount="59_97

Actions Save || Cancel || Save and Close

Figure 13.5. The "Discount Review" form

The user is asked to review the discount, which is set to 8.5. On “Save and Close” the process moves
to the “Ship It” node, which again is an ESB Service. If you don't want the Order process to wait for the
Ship It Service to be finished you can use the EsbNotifier action handler and attach it to the outgoing
transition:

<node name="ShipIt">

<transition name="ProcessingComplete" to="end">

<action name="ShipItAction" class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier">
<esbCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>ShippingService</esbServiceName>
<bpmToEshbVars>

<mapping bpm="entireCustomerAsObject" esb="customer" />
<mapping bpm="entireOrderAsObject" esb="orderHeader" />
<mapping bpm="entireOrderAsXML" esb="entireOrderAsXML" />
</bpmToEsbvars>

</action>

</transition>

</node>

After notifying the ShippingService the Order process moves to the ‘end’ state and terminates. The
ShippingService itself may still be finishing up. In bpm_orchestration4 it uses drools to determine
whether this order should be shipped 'normal’ or 'express'.

76

Process Deployment and Instantiation

13.3. Process Deployment and Instantiation

In the previous paragraph we create the process definition and we quietly assumed

we had an instance of it to explain the process flow. But now that we have created the
processdefinition.xml, we can deploy it to jJBPM using the IDE, ant or the jbpm-console (as
explained in Chapter 1). In this example we use the IDE and deployed the files: Review_Order.xhtml,
forms.xml, gpd.xml, processdefinition.xml and the processimage.jpg. On deployment the IDE creates a
par achive and deploys this to the jBPM database. We do not recommend deploying Java code in par
archives as it may cause class loading issues. Instead we recommend deploying classes in jar or esb
archives.

When the process definition is deployed a new process instance can be created. It is interesting
to note that we can use the 'StartProcessinstanceCommand” which allows us to create a process
instance with some initial values already set. Take a look at:

<service category="BPM_orchestration4_Starter_Service"
name="Starter_Service"

description="BPM Orchestration Sample 4: Use this service to start a
process instance'>

<listeners>

</listeners>
<actions>
<action name="setup_key" class=
"org.jboss.soa.esb.actions.scripting.GroovyActionProcessor'">
<property name="script"
value="/scripts/setup_key.groovy" />
</action>
<action name="start_a_new_order_process" class=
"org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">
<property name="command"
value="StartProcessInstanceCommand" />
<property name="process-definition-name"
value="bpm4_ESBOrderProcess" />
<property name="key" value="body.businessKey" />
<property name="esbToBpmVars'">

<mapping esb="BODY_CONTENT" bpm="entireOrderAsxML" />
</property>

</action>

</actions>

</service>

where new process instance is invoked and using some groovy script, and the jBPM key is set to

the value of 'Orderld’ from an incoming order XML, and the same XML is subsequently put in jBPM
context using the esbToBpmVars mapping. In the bpm_orchestration4 QuickStart the XML came
from the Seam DVD Store and the SampleOrder .xml looks like:

<Order orderId="2" orderDate="Wed Nov 15 13:45:28 EST

2006" statusCode="0" netAmount="59.97" totalAmount="64.92" tax="4.95">
<Customer userName="userl" firstName="Rex" lastName="Myers" state="SD"/>
<OrderLines>
<OrderLine position="1" quantity="1">

77

Chapter 13. Service Orchestration

<Product productId="364" title="Superman Returns"
price="29.98"/>

</0rderLine>

<OrderLine position="2" quantity="1">

<Product productId="299" title="Pulp Fiction" price="29.99"/>
</0OrderLine>

</0OrderLines>

</0Order>

Note that both ESB as well as jBPM deployments are hot. An extra feature of jBPM is that process
deployments are versioned. Newly created process instances will use the latest version while existing
process instances will finish using the process deployment on which they where started.

13.4. Conclusion

We have demonstrated how jBPM can be used to orchestrate Services as well as do Human Task
Management. Note that you are free to use any jBPM feature. For instance look at the QuickStart
bpm_orchestration2 how to use the jBPM fork and join concepts.

78

Chapter 14.

The Message Store

The message store mechanism in JBossESB is designed with audit tracking purposes in mind. As with
other ESB services, it is a pluggable service, which allows for you, the developer to plug in your own
persistence mechanism should you have special needs. The implementation supplied with JBossESB
is a database persistence mechanism. If you require say, a file persistence mechanism, then it's

just a matter of you writing your own service to do this, and override the default behaviour with a
configuration change.

One thing to point out with the Message Store — this is a base implementation. We will be working
with the community and partners to drive the feature functionality set of the message store to support
advanced audit and management requirements. This is meant to be a starting point.

Important
In JBossESB 4.2 the Message Store is also used for storing messages that need to be

redelivered in the event of failures. You can find additional details on this topic in the
SOA Programmers Guide.

14.1. Message Store interface

The MessageStore is responsible for reading and writing Messages upon request. Each Message
must be uniquely identified within the context of the store and each MessageStore implementation
uses a URI to accomplish this identification. This URI is used as the “key” for that message in the

database.

public interface MessageStore
{
public MessageURIGenerator getMessageURIGenerator();
public URI addMessage (Message message, String classification)
throws MessageStoreException;
public Message getMessage (URI uid) throws MessageStoreException;
public void setUndelivered(URI uid) throws MessageStoreException;
public void setDelivered(URI uid) throws MessageStoreException;
public Map<URI, Message> getUndeliveredMessages(String classification)
throws MessageStoreException;
public Map<URI, Message> getAllMessages(String classification)
throws MessageStoreException;
public Message getMessage (URI uid, String classification)
throws MessageStoreException;
public int removeMessage (URI uid, String classification)
throws MessageStoreException;

}

Figure 14.1. The org. jboss.soa.esb.services.persistence.MessageStore interface

79

Chapter 14. The Message Store

Important
MessageStore implementations may use different formats for their URIs.

Messages can be stored within the store based upon classification using addMessage. If the
classification is not defined then it is up to the implementation of the MessageStore how it will store the
Message. Furthermore, the classification is only a hint: implementations are free to ignore this field if
necessary.

It is implementation dependent as to whether or not the MessageStore imposes any kind of
concurrency control on individual Messages. As such, you should use the removeMessage operation
with care.

Because the current MessageStore interface is designed to support both audit trail and redelivery
scenarios, you should not use the setUndelivered/setDelivered and associated operations unless they
are applicable.

The default implementation of the MessageStore is provided by the
org.jboss.internal.soa.esb.persistence.format.db.DBMessageStoreImpl class. The
methods in this implementation make the required DB connections using a pooled Database Manager,
DBConnectionManager.

To override the MessageStore implementation you should look at the MessageActionGuide and the
MessagePersister Action.

The Message Store interface does not currently support transactions. Any use of the store within the
scope of a global transaction will not be coordinated within the scope of any global transaction. This
means that each message store update or read will be done as a separate, independent, transaction.
Future versions of the Message Store will provide for control over whether or not specific interactions
should be conducted within the scope of any enclosing transactional context.

14.2. Configuring the Message Store

To configure your Message Store you have to override the default service implementation by editing
the settings found in the jbossesb-properties.xml file.

<properties name="dbstore">
<!-- connection manager type -->
<property name="org.jboss.soa.esb.persistence.db.conn.manager" value=
"org.jboss.internal.soa.esb.persistence.manager.StandaloneConnectionManager"/
>
<!-- this property is only used for the j2ee connection manager -->
<property name="org.jboss.soa.esb.persistence.db.datasource.name"
value="java:/JBosseshDS"/>
<!-- standalone connection pooling settings -->
<!-- mysql
<property name="org.jboss.soa.esb.persistence.db.connection.url"
value="jdbc:mysqgl://localhost/jbossesb"/>
<property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
value="com.mysql.jdbc.Driver"/>
<property name="org.jboss.soa.esb.persistence.db.user"

80

Configuring the Message Store

value="kstam"/> -->

<l-- postgres

<property name="org.jboss.soa.esb.persistence.db.connection.url"
value="jdbc:postgresql://localhost/jbossesb"/>

<property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
value="org.postgresql.Driver"/>

<property name="org.jboss.soa.esb.persistence.db.user"

value="postgres"/>

<property name="org.jboss.soa.esb.persistence.db.pwd"
value="postgres"/> -->

<!-- hsqldb -->

<property name="org.jboss.soa.esb.persistence.db.connection.url"
value="jdbc:hsqldb:hsql://localhost:9001/jbossesb"/>

<property name="org.

value="org.hsqldb.
<property name="org.
<property name="org.
<property name="org.

value="2"/>

<property name="org.

value="2"/>

<property name="org.

value="5"/>

jboss.soa.esb.

jdbcDriver"/>

jboss.soa.esb.
jboss.soa.esb.
jboss.soa.esb.

jboss.soa.esb.

jboss.soa.esb.

<!--table managed by pool to test

created by pool

<property name="org.
value="pooltest"/>
<property name="org.

value="5000"/>
</properties>

automatically

jboss.soa.esb.

jboss.soa.esb.

persistence.db.jdbc.driver"
persistence.db.user" value="sa"/>
persistence.db.pwd" value=""/>
persistence.db.pool.initial.size"
persistence.db.pool.min.size"
persistence.db.pool.max.size"

for valid connections

—=>
persistence.db.pool.test.table"

persistence.db.pool.timeout.millis"

The section in the property file called “dbstore” has all the settings required by the database
implementation of the message store. The standard settings, like URL, db user, password, pool sizes

can all be modified here.

The scripts for the required database schema are very simple. They can be found under 1ib/
jbossesh.esh/message-store-sql/<db_type>/create_database.sql of your JBoss ESB

installation.

The structure of the table can be seen from the sample SQL.

CREATE TABLE message
(

uuid varchar(128) NOT NULL,
type varchar(128) NOT NULL,
message text(4000) NOT NULL,

delivered varchar(10)

NOT NULL,

classification varchar(10),

PRIMARY KEY (uuid’)
)7

Example 14.1. Sample SQL for message store table creation

81

Chapter 14. The Message Store

the uuid column is used to store a unique key for this message, in the format of a standard URI. A key
for a message would look like:

urn:jboss:esb:message:UID: + UUID.randomUUID()

This logic uses the UUID random number generator and the type will be the type of the stored
message. JBossESB ships with JIBOSS_ XML and JAVA_SERIALIZED currently.

The “message” column will contain the actual message content.

The supplied database message store implementation works by invoking a connection manager to
your configured database. Supplied with Jboss ESB is a standalone connection manager, and another
for using a JNDI datasource.

To configure the database connection manager, you need to provide the connection manager
implementation in the jbossesb-properties.xml file. The properties that you would need to
change are:

<!-- connection manager type -->

<property name="org.jboss.soa.esb.persistence.db.conn.manager"
value="org.jboss.internal.soa.esb.persistence.format.db.Standalone

ConnectionManager"/>

<!-- property name="org.jboss.soa.esb.persistence.db.conn.manager"
value="org.jboss.soa.esb.persistence.manager.J2eeConnectionManager"/ -->
<!-- this property is only used for the j2ee connection manager -->

<property name="org.jboss.soa.esb.persistence.db.datasource.name"
value="java:/JBossesbDS"/>

The two supplied connection managers for managing the database pool are:
org.jboss.soa.esb.persistence.manager.J2eeConnectionManager and
org.jboss.soa.esb.persistence.manager.StandaloneConnectionManager.

The Standalone manager uses C3PO to manage the connection pooling logic, and the
J2eeConnectionManager uses a datasource to manage it's connection pool. This is intended
for use when deploying your ESB endpoints inside a container such as Jboss AS or

Tomcat. You can plug in your own connection pool manager by implementing the interface
org.jboss.internal.soa.esb.persistence.manager.ConnectionManager.

Once you have implemented this interface, you update the properties file with your new class, and the
connection manager factory will now use your implementation.

82

Chapter 15.

Security

Services in JBossESB can be configured to be secure which means that the service will only be
executed if authentication succeeds and if the caller is authorized to execute the service.

A service can be invoked by using a gateway or by using the Servicelnvoker to directly invoke the
ESB service. When calling a service via a gateway, the gateway is responsible for extracting the
security information needed to authenticate the caller. It does this by extracting the information from
the transport that the gateway handles. Using this information the gateway creates an authentication
request that is encrypted and then passed to the ESB.

When using the Servicelnvoker a gateway is not involved and it is the responsibility of the client to
create the authentication request prior to invoking the service. Both of these situations will be looked at
in the following sections.

The default security implementation is JAAS based but this is a configurable feature. The following
sections describe the security components and how they can be configured.

15.1. Security Service Configuration

The Security Service is configured along with everything else in jbossesb-properties.xml.

<properties name="security">

<property name="org.jboss.soa.esb.services.security.implementationClass"
value="org.jboss.internal.soa.esbh.services.security.JaasSecurityService"/
>

<property name="org.jboss.soa.esb.services.security.callbackHandler"
value=
"org.jboss.internal.soa.esb.services.security.UserPassCallbackHandler"/>

<property name="org.jboss.soa.esb.services.security.sealAlgorithm"
value="TripleDES"/>

<property name="org.jboss.soa.esb.services.security.sealKeySize"
value="168"/>

<property name="org.jboss.soa.esb.services.security.contextTimeout"
value="30000"/>

<property name=
"org.jboss.soa.esb.services.security.contextPropagatorImplemtationClass"
value=
"org.jboss.internal.soa.esb.services.security.JBossASContextPropagator"/>

<property name="org.jboss.soa.esh.services.security.publicKeystore"
value="/publicKeyStore"/>

<property name=
"org.jboss.soa.esb.services.security.publicKeystorePassword"
value="testKeystorePassword"/>

83

Chapter 15. Security

<property name="org.jboss.soa.esb.services.security.publicKeyAlias"
value="testAlias"/>

<property name="org.jboss.soa.esb.services.security.publicKeyPassword"
value="testPassword"/>

<property
name="org.jboss.soa.esb.services.security.publicKeyTransformation"
value="RSA/ECB/PKCS1Padding"/>

</properties>

jbossesh-properties.xml security settings
org.jboss.soa.esb.services.security.implementationClass
This is the concrete SecurityService implementation that should be used. Required. Default is
JaasSecurityService.

org.jboss.soa.esb.services.security.callbackHandler
Optional. A default CallbackHandler implementation when a JAAS based SecurityService is being
used. See “Customizing security” for more information about the callbackHandler property.

org.jboss.soa.esb.services.security.sealAlgorithm
The algorithm to use for sealing the SecurityContext.

org.jboss.soa.esb.services.security.sealKeySize
The size of the secret/symmetric key used to encrypt/decrypt the SecurityContext.

org.jboss.soa.esb.services.security.contextTimeout
The amount of time in milliseconds that a security context is valid for. This is a global setting that
may be overridden on a per service basis by specifying this same property name on the security
element in jboss-esb.xml.

org.jboss.soa.esb.services.security.contextPropagatorimplementationClass
Optional property that configures a global SecurityContextPropagator. For more details on the
SecurityContextPropagator please refer to the “Security Context Propagation”.

org.jboss.soa.esb.services.security.publicKeystore
Path to the keystore that holds a keys used for encrypting and decrypting data external to the
ESB. This is used to encrypt the AuthenticationRequest .

org.jboss.soa.esb.services.security.publicKeystorePassword
Password to the public keystore.

org.jboss.soa.esb.services.security.publicKeyAlias
Alias to use.

org.jboss.soa.esb.services.security.publickeyPassword
Password for the alias if one was specified upon creation.

org.jboss.soa.esb.services.security.publickeyPassword
Optional cipher transformation in the format: “algorithm/mode/padding”. If not specified this will
default to the keys algorithm.

84

Configuring Security on Services

The JAAS login modules are configured in the way you would except using the login-config.xml file
located in the conf directory of your JBoss Application Server. So you can use the ones that come pre-
configured but also add you own login modules.

By default JBossESB ships with example keystore which should not be used in production. They are
only provided as sample to help users get security working “out of the box”. The sample keystore can
be updated with custom generate key pairs.

15.1.1. Configuring Security on Services

Security is configured per-service. A service in JBossESB can be declared as being secured and that
it requires authentication.

Services are configured by adding a “security” element to the service in jbossesb.xml:

<security moduleName="messaging" runAs="adminRole"
rolesAllowed="adminRole, normalUsers”
callbackHandler="org.jboss.internal.soa.esb.services.security.User

PassCallbackHandler">

<property name="propertyl" value="valuel"/>

<property name="property2" value="value2"/>

</security>

Security properties description
moduleName
A named module that exist in conf/login-config.xml

runAs
An optional runAs role.

rolesAllowed
An optional comma separated list of roles that are allowed to execute the service. This is a check
that is performed after a caller has been authenticated, to verfiy that the caller in a member of
the roles specified. The roles will have been assigned after a successful authentication by the
underlying security mechanism.

callbackHandler
An optional CallbackHandler that will override the one defined in jbossesb-properties.xml.

property
Optional properties can be defined which will be made available to the CallbackHandler
implementation.

Security properties overrides:

org.jboss.soa.esbh.services.security.contextTimeout
Optional property that lets the service override the global security context timeout (ms) specified in
jbossesb-properties.xml.

org.jboss.soa.esbh.services.security.contextPropagatorimplementationClass
Optional property that lets the service override the global security context propagator class
implementation specified in jbossesb-properties.xml.

85

Chapter 15. Security

<security moduleName="messaging"
runAs="adminRole" rolesAllowed="adminRole”>

<property
name="org.jboss.soa.esb.services.security.contextTimeout"
value="50000"/>

<property name=
"org.jboss.soa.esb.services.security.contextPropagatorImplementationClass"
value="org.xyz.CustomSecurityContextPropagator" />

</security>

Example 15.1. Overriding global configuration settings

15.2. Authentication

To authenticate a caller, security information needs to be provided. If the call to the service is coming
through a gateway, then the gateway will extract the required information from the transport that the

gateway works with. For a web service call this would entail extracting either the UsernameToken or
the BinarySecurityToken from the security element in the SOAP header.

When a service needs to call another services. and that service requires authentication, another
authentication process will be performed. So having a chain of services that are all configured for
authentication will cause multiple authentications to be performed. To minimize such overhead

the ESB will store an encrypted SecurityContext which will be propagated with the ESB Message
object between services. If the ESB detects that a Message has a SecurityContext check that the
SecurityContext is still valid and if so re-authentication is not performed. Note that the SecurityContext
is only valid of a single ESB node. If the message is routed to a different ESB node a re-authentication
will still be requried.

15.2.1. AuthenticationRequest

An AuthenticationRequest is intended to carry security information needed for authentication between
a gateway and a service, or between two services.

An instance of this class should be set on the message object before calling the service configured for
authentication:

byte[] encrypted = PublicCryptoUtil.INSTANCE.encrypt((Serializable)
authRequest);
message.getContext.setContext(SecurityService.AUTH_REQUEST, encrypted);

Note that the authentication context is encrypted and then set in the message context. This will be
decrypted by the ESB to perform authentication. See Section 15.1, “Security Service Configuration” for
information on how to configure the public keystore for this purpose.

The security_basic QuickStart shows an example of using a external client and how to prepare
the Message before using the ServiceInvoker, see the SendEsbMessage class for more
information. This quickstart also shows how you can configure jbossesb-properties.xml for
client usage.

86

JBossESB SecurityContext

15.3. JBossESB SecurityContext

A SecurityContext in JBossESB is an object that is local to a specific ESB node, or really to the JVM of
the node. The SecurityContext is created after a successful authentication has be performed and it will
be used locally in the ESB where it was created to save having to re-authenticate with every call.

A timeout is specified for the context which is the time, in milliseconds, that the context is valid for.
This value can be specified globally in jbossesb-properties.xml of overridden per-service by
specifying the value in jboss-esb.xml. Additional details can be found in Section 15.1.1, “Configuring
Security on Services” and Section 15.1, “Security Service Configuration”.

15.4. Security Context Propagation

Propagation in this case refers to propagating security context information in a way specific to an
external system. For example, you might want to have the same credentials that were used to call
the ESB, be used as the credentials when calling a EJB method. This can be accomplished by
specifiying a SecurityContextPropagator that will perform the security context propagation specific to
the destination environment.

A SecurityContextPropagator can be configured globally by specifying the
org.jboss.soa.esb.services.security.contextPropagatorImplementationClass in
jbossesb-properties.xml, or per-service by specifying the same property in jboss-esb.xml.
Section 15.1.1, “Configuring Security on Services” and Section 15.1, “Security Service Configuration”
contain more examples of this.

Implementations of SecurityContextPropagator
Package: org.jboss.internal.soa.esb.services.securityClass:
JBossASContextPropagator
This propagator will propagate security credentials to a JBoss Application Server. If you
need to write your own implementation you only have to write a class that implements
org.jboss.internal.soa.esb.services.security.SecurityContextPropagator
and then either specify that implementation in jbossesb-properties.xml or jboss-esb.xml
as noted above.

15.5. Customizing security

The default security implementation in JBossESB is based on JAAS and named JaasSecurityService.
Custom login modules can be added in conf/login-config.xml of an JBoss Application Server.

Since different login modules will require different information, the callback handler to be used can
be specified in the security configuration for that Service. This can be accomplished by specifying the
callbackHandler attribute belonging to the security element defined on the service.

The callbackHandler should specify a fully qualified class name of a class that implements the
EsbhCallbackHandler interface:

public interface EsbCallbackHandler extends CallbackHandler
{

void setAuthenticationRequest(final AuthenticationRequest authRequest);
void setSecurityConfig(final SecurityConfig config);

}

87

Chapter 15. Security

The AuthenticationRequest will contain the principal and credentials needed authenticate a
caller.

The SecurityConfig will give access to the security configuration in jboss-esb.xml.

Both of these are made available to the CallbackHandler which it can use to populate the
Callback instances required by the login module.

15.6. Provided Login Modules

This section lists the login modules provided with JBossESB. Please note that all login modules
available with JBoss AS are available as well and custom login modules should be easy to add.

15.6.1. CertificateLoginModule

This login module performs authentication by verifiying that a certificate passed with the call to the
ESB, can be verified against a certificate in a local keystore.

Upon successful authentication the certificates Common Name(CN) will be used to create a principal.
If role mapping is in use then it is the CN that will be used in the role mapping. Refer to Section 15.6.2,
“Role Mapping” for details on the role mapping functionality.

<security moduleName="CertLogin" rolesAllowed="worker”
callbackHandler="org.jboss.soa.esb.services.security.auth.loginUserPass
CallbackHandler">
<property name="alias" value="certtest"/>
</security>

Example 15.2. CertificateLoginModule configuration

CertificateLogin Module Properties

moduleName
Identifies the JAAS Login module to use. This module will be specified in JBossAS login-
config.xml.

rolesAllowed
Comma separated lite of roles that are allowed to execute this service.

alias
The alias to look up in the local keystore which will be used to verify the callers certificate.

Example of fragment from login-config.xml

<application-policy name="CertLogin'">
<authentication>

<login-module
code="org.jboss.soa.esb.services.security.auth.login.CertificateLoginModule"
flag = "required" >

<module-option name="keyStoreURL">

file://pathToKeyStore
</module-option>

88

Role Mapping

<module-option name="keyStorePassword">storepassword</module-option>
<module-option name="rolesPropertiesFile">
file://pathToRolesFile
</module-option>
</login-module>
</authentication>
</application-policy>

Properties

keyStoreURL
Path to the keystore that will be used to verify the certificates. This can be a file on the local file
system or on the classpath.

keyStorePassword
Password for the above keystore.

rolesPropertiesFile
Optional. Path to a file containing role mappings. Refer to Section 15.6.2, “Role Mapping” for
additional details.

15.6.2. Role Mapping

This file is can be optionally specified in 1login-config.xml by using rolesPropertiesFile. This can
point to a file on the local file system or to a file on the classpath. This file contains a mapping of users
to roles:

user=rolel,role2, ...
guest=guest
esbuser=esbrole

The current implementation will use the Common Name(CN) specified
for the certificate as the user name.

The unicode escape is needed only if your CN contains a space
Austin\u@020Powers=esbrole, worker

For an example please look at the security_cert QuickStart.

15.7. SecurityService

The SecurityService interface is the central component in JBossESB security. This interface is shown
below:

public interface SecurityService

{

void configure() throws ConfigurationException;

void authenticate(
final SecurityConfig securityConfig,
final SecurityContext securityContext,
final AuthenticationRequest authRequest)

89

Chapter 15. Security

throws SecurityServiceException;

boolean checkRolesAllowed(
final List<String> rolesAllowed,
final SecurityContext securityContext);

boolean isCallerInRole(
final Subject subject,
final Principal role);

void logout(final SecurityConfig securityConfig);
void refreshSecurityConfig();
The default implementation is based on JAAS, but this can be customized by implementing the above

interface and configuring the custom SecurityService be used in jbossesb-properties.xml. For
more details of the SecurityService interface's method please refer to the javadocs.

90

Appendix A. Revision History

Revision History
Revision 1.0 Tue 9 Sep 2008 DarrinMisondmison@redhat.com
Created

91

mailto:dmison@redhat.com

92

	Services Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. What is the Registry?
	1.1. Introduction
	1.1.1. Why do I need it?
	1.1.2. How do I use it?
	1.1.3. Registry Vs Repository
	1.1.4. SOA Components
	1.1.5. UDDI
	1.1.6. The Registry and the JBoss SOA Platform

	Chapter 2. Configuring the Registry
	2.1. Introduction
	2.2. The Components Involved
	2.3. The Registry Implementation Class
	2.4. Using JAXR
	2.5. Using Scout and jUDDI

	Chapter 3. Registry Configuration Examples
	3.1. Introduction
	3.2. Embedded
	3.3. RMI using the juddi.war or jbossesb.sar
	3.4. RMI using your own JNDI Registration of the RMI Service
	3.5. SOAP

	Chapter 4. UDDI Browser
	4.1. Introduction
	4.2. UB Setup

	Chapter 5. Registry Troubleshooting
	5.1. Scout and jUDDI pitfalls
	5.2. More Information

	Chapter 6. What is a Rule Service?
	6.1. Introduction

	Chapter 7. Rule Services Using Drools
	7.1. Introduction
	7.2. Rule Set Creation
	7.3. Rule Service Consumers
	7.4. Configuration
	7.5. Object Paths
	7.6. Deploying and Packaging

	Chapter 8. What is Content-Based Routing?
	8.1. Introduction
	8.2. Simple Example

	Chapter 9. Content Based Routing Using Drools
	9.1. Introduction
	9.2. Three Different Routing Action Classes
	9.3. Rule Set Creation
	9.4. XPath Domain Specific Language
	9.5. Configuration
	9.6. Object Paths
	9.7. Stateful Rules
	9.8. RuleAgent
	9.9. RuleAgent and Business Rule Management System
	9.10. Executing Business Rules
	9.11. Changing RuleService Implementations
	9.12. Deployment and Packaging

	Chapter 10. Content Based Routing Using Smooks
	10.1. Introduction

	Chapter 11. Message Transformation
	11.1. Smooks
	11.2. XSL Transformations
	11.3. ActionProcessor Data Transformation

	Chapter 12. jBPM Integration
	12.1. Integration Configuration
	12.2. jBPM Configuration
	12.3. Creation and Deployment of a Process Definition
	12.4. JBossESB to jBPM
	12.4.1. ESB to jBPM Exception Handling

	12.5. jBPM to JBossESB
	12.5.1. ESBNotifier
	12.5.2. ESBActionHandler
	12.5.3. jBPM to ESB Exception Handling
	12.5.4. Scenerio 1: Time-out
	12.5.5. Scenerio 2: Exception Transition
	12.5.6. Scenerio 3: Exception Decision

	Chapter 13. Service Orchestration
	13.1. Orchestrating Web Services
	13.2. Orchestration Diagram
	13.3. Process Deployment and Instantiation
	13.4. Conclusion

	Chapter 14. The Message Store
	14.1. Message Store interface
	14.2. Configuring the Message Store

	Chapter 15. Security
	15.1. Security Service Configuration
	15.1.1. Configuring Security on Services

	15.2. Authentication
	15.2.1. AuthenticationRequest

	15.3. JBossESB SecurityContext
	15.4. Security Context Propagation
	15.5. Customizing security
	15.6. Provided Login Modules
	15.6.1. CertificateLoginModule
	15.6.2. Role Mapping

	15.7. SecurityService

	Appendix A. Revision History

