
JBoss Enterprise
SOA Platform 4.3

Programmers Guide
A guide for developers using the JBoss Enterprise SOA Platform

Programmers Guide

JBoss Enterprise SOA Platform 4.3 Programmers Guide
A guide for developers using the JBoss Enterprise SOA Platform
Edition 1.0

Copyright © 2008 Red Hat, Inc.. This material may only be distributed subject to the terms and
conditions set forth in the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported
License (which is presently available at http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

 1801 Varsity Drive
 Raleigh, NC 27606-2072USAPhone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588Research Triangle Park, NC 27709USA

The guide contains information for programmers developing on with the JBoss Enterprise SOA
Platform.

http://creativecommons.org/licenses/by-nc-sa/3.0/

iii

Preface vii
1. Document Conventions .. vii

1.1. Typographic Conventions .. vii
1.2. Pull-quote Conventions ... viii
1.3. Notes and Warnings .. ix

2. We Need Feedback! ... x

1. The Enterprise Service Bus 1
1.1. What is an ESB? ... 1
1.2. When would you use an ESB? ... 1

2. JBoss ESB 5
2.1. Rosetta .. 5
2.2. The core of JBossESB summarized .. 6

3. Services and Messages 9
3.1. The Service ... 9
3.2. The Message ... 11

3.2.1. The Header ... 14
3.2.2. The Context .. 18
3.2.3. The Fault .. 18
3.2.4. The Body .. 18
3.2.5. Extensions to Body .. 19
3.2.6. Attachments .. 20
3.2.7. Properties .. 21
3.2.8. The MessageFactory ... 22

4. Building and Using Services 25
4.1. Listeners, Notifiers/Routers and Actions ... 25

4.1.1. Listeners ... 25
4.1.2. Notifiers .. 25
4.1.3. Actions and Messages ... 29
4.1.4. Handling responses ... 30
4.1.5. Error handling when processing actions .. 30

4.2. Meta-Data and Filters ... 31
4.3. What is a Service ... 33

4.3.1. ServiceInvoker ... 33
4.3.2. Services and ServiceInvoker .. 34
4.3.3. InVM Transport .. 35

4.4. Service Contract Definition .. 36

5. Other Components 39
5.1. The Message Store .. 39
5.2. Data Transformation ... 39
5.3. Content-based Routing ... 40
5.4. The Registry .. 40

6. Example 41
6.1. How to use the Message .. 41

6.1.1. The Message Structure .. 41
6.1.2. The Service ... 42
6.1.3. Unpacking the payload .. 43
6.1.4. The Client ... 44
6.1.5. Hints and Tips ... 45

Programmers Guide

iv

7. Advanced Topics 47
7.1. Fail-over and Load-balancing Support ... 47

7.1.1. Services, EPRs, listeners and actions ... 47
7.1.2. Replicated Services ... 48
7.1.3. Protocol Clustering .. 52
7.1.4. Clustering .. 54
7.1.5. Channel Fail-over and Load Balancing .. 54
7.1.6. Message Redelivery .. 56

7.2. Scheduling of Services ... 58
7.2.1. Simple Schedule .. 58
7.2.2. Cron Schedule .. 59
7.2.3. Scheduled Listener .. 59
7.2.4. Example Configurations ... 60
7.2.5. Quartz Scheduler Property Configuration .. 61

8. Fault-tolerance and Reliability 63
8.1. Failure classification ... 63

8.1.1. JBossESB and the Fault Models .. 64
8.1.2. Failure Detectors and Failure Suspectors .. 65

8.2. Reliability Guarantees ... 66
8.2.1. Message Loss ... 67
8.2.2. Suspecting Endpoint Failures ... 68
8.2.3. Supported Crash Failure Modes ... 68
8.2.4. Component Specifics ... 68
8.2.5. Gateways .. 68
8.2.6. ServiceInvoker ... 68
8.2.7. JMS Broker ... 68
8.2.8. Action Pipelining .. 68

8.3. Recommendations .. 69

9. Configuration 71
9.1. Overview .. 71
9.2. Providers ... 72
9.3. Services ... 74
9.4. Transport Specific Type Implementations ... 77
9.5. FTP Provider Configuration ... 80
9.6. FTP Listener Configuration ... 81

9.6.1. Read-only FTP Listener ... 81
9.7. Transitioning from the Old Configuration Model .. 83
9.8. Configuration .. 84

10. Web Services Support 85
10.1. JBossWS ... 85

11. Out-of-the-box Actions 87
11.1. Transformers & Converters .. 87
11.2. Business Process Management ... 95
11.3. Scripting ... 97
11.4. Services ... 98
11.5. Routing ... 100
11.6. Notifier ... 103
11.7. Webservices/SOAP ... 108
11.8. Miscellaneous ... 115

v

12. Developing Custom Actions 117
12.1. Configuring Actions Using Properties ... 117

13. Connectors and Adapters 121
13.1. Introduction .. 121
13.2. The Gateway .. 121

13.2.1. Gateway Data Mappings .. 122
13.2.2. How to change the Gateway Data Mappings ... 122

13.3. Connecting via JCA .. 123
13.3.1. Configuration ... 124

A. Writing JAXB Annotation Introduction Configurations 127

B. Service Orientated Architecture Overview 129
B.1. Why SOA? .. 130
B.2. Basics of SOA ... 132
B.3. Advantages of SOA .. 132

B.3.1. Interoperability ... 132
B.3.2. Efficiency .. 133
B.3.3. Standardization ... 133
B.3.4. Statefull and Stateless Services ... 133

B.4. JBossESB and its Relationship with SOA .. 135

Glossary 137

C. Revision History 141

vi

vii

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl-Alt-F1 to switch to the first virtual terminal. Press Ctrl-Alt-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

viii

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Notes and Warnings

ix

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes
your life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will
apply. Ignoring Important boxes won't cause data loss but may cause irritation and
frustration.

Preface

x

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product JBoss_SOA_Platform.

When submitting a bug report, be sure to mention the manual's identifier:
SOA_ESB_Programmers_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

The Enterprise Service Bus

1.1. What is an ESB?
The ESB is seen as the next generation of EAI – better and without the vendor-lockin characteristics of
old. As such, many of the capabilities of a good ESB mirror those of existing EAI offerings. Traditional
EAI stacks consist of: Business Process Monitoring, Integrated Development Environment, Human
Workflow User Interface, Business Process Management, Connectors, Transaction Manager, Security,
Application Container, Messaging Service, Metadata Repository, Naming and Directory Service,
Distributed Computing Architecture.

As with EAI systems, ESB is not about business logic – that is left to higher levels. It is about
infrastructure logic. Although there are many different definitions of what constitutes an ESB, what
everyone agrees on now is that an ESB is part of an SOA infrastructure. However, SOA is not
simply a technology or a product: it's a style of design, with many aspects (such as architectural,
methodological and organisational) unrelated to the actual technology. But obviously at some point it
becomes necessary to map the abstract SOA to a concrete implementation and that's where the ESB
comes in to play.

You can learn more about SOA principles and ESB architectures in Appendix B, Service Orientated
Architecture Overview.

1.2. When would you use an ESB?
The figures below illustrate some concrete examples where JBossESB would be useful. Although
these examples are specific to interactions between participants using non-interoperable JMS
implementations, the principles are general and can be applied to other transports such as FTP and
HTTP.

The first diagram shows simple file movement between two systems where messaging queuing is not
involved.

Figure 1.1. Simple file movement between two systems without messaging queuing

The next diagram illustrates how transformation can be injected into the same scenario using
JBossESB.

Chapter 1. The Enterprise Service Bus

2

Figure 1.2. Simple file movement with transformation between two systems without messaging
queuing

In the next series of examples, we use a queuing system (e.g., a JMS implementation).

Figure 1.3. Using messaging queuing

The diagram below shows transformation and queuing in the same situation.

When would you use an ESB?

3

Figure 1.4. Using messaging queuing with transformation

JBossESB can be used in more than multi-party scenarios. For example, the diagram below shows
basic data transformation via the ESB using the file system.

Figure 1.5. basic data transformation via the ESB using the file system

The final scenario is again a single party example using transformation and a queuing system.

Chapter 1. The Enterprise Service Bus

4

Figure 1.6. single party example using transformation and a queuing system

In the following chapters we shall look at the core concepts within JBossESB and how they can be
used to develop SOA-based applications.

Chapter 2.

5

JBoss ESB

2.1. Rosetta
The core of the JBoss Enterprise SOA Platform is Rosetta, an ESB that has been in commercial
deployment at a mission critical sites for over 3 years. These deployments have included highly
heterogenus environments. One such instance included an IBM mainframe running z/OS, DB2
and Oracle databases, Windows and Linux servers, a variety of third party applications as well as
interoperation with third parties outside of the corporation’s IT infrastructure.

Figure 2.1. The Rosetta Architecture

In the diagram, processor classes refer to the Action classes within the core that are responsible for
processing on triggered events.

There are many reasons why you may want disparate applications, services and components to
interoperate. The most common reason is to leverage legacy systems in new deployments. Such
interactions between these entities may occur both synchronously or asynchronously.

Rosetta was developed not only to facilitate such deployments but also to provide an infrastructure
and set of tools that to meet the following objectives:

• Be easily configured to work with a wide variety of transport mechanisms such as email and JMS.

• Offer a general purpose object repository.

• Enable pluggable data transformation mechanisms.

Chapter 2. JBoss ESB

6

• Support logging of interactions, both business and processing events that flowed through the
framework.

• make it simple to isolate business logic from transport and triggering mechanisms

• allow flexible plug-ins of ad hoc business logic and data transformations

• be simple for future users to replace and extend the standard base classes that come with the
framework

• enable the triggering of custom ‘action classes’ that can be unaware of transport and triggering
mechanisms

Important
There are two trees within the Within JBossESB source:
org.jboss.internal.soa.esb and org.jboss.soa.esb. You should limit your
use of anything within the org.jboss.internal.soa.esb package because the
contents are subject to change without notice. org.jboss.soa.esb is covered by our
deprecation policy.

2.2. The core of JBossESB summarized
Rosetta is built on four core architectural components:

• Message Listener and Message Filtering code

• Data transformation using the SmooksAction action processor

• A Content Based Routing service

• A Message Repository for saving messages & events exchanged within the ESB

These capabilities are offered through a set of business classes, adapters and processors, which will
be described in detail later. Interactions between clients and services are supported via a range of
different approaches, including JMS, flat-file system and email.

An example JBoss SOA Platform deployment is shown below. We shall return to this diagram in
subsequent sections.

The core of JBossESB summarized

7

Figure 2.2. Example JBoss SOA Platform deployment

Important
Some of the components in Figure 2.2, “Example JBoss SOA Platform deployment”
such as the LDAP server are optional components and may not be provided out-of-the-
box. Furthermore, the Processor and Action distinction shown in the above diagram is
merely an illustrative convenience to show the concepts involved when an incoming
event (message) triggers the underlying ESB to invoke higher-level services.

In the following chapters we shall look at the various components within the JBoss SOA Platform ,how
they interact and how they can be used to develop Service Orientated applications.

8

Chapter 3.

9

Services and Messages
In keeping with SOA principles, everything within the JBoss ESB is considered to be either a service
or a message.

Services encapsulate the business logic or points of integration with legacy systems.

Messages are the way in which clients and services communicate with each other.

In the following sections we shall look at how Services and Messages are supported.

3.1. The Service
A Service in the JBoss ESB is defined a list of Action classes that process an Message in a sequential
manner. This list of Action classes is referred to as an Action Pipeline. A Service can also define a
list of Listeners. Listeners act like inbound routers for the Service, routing messages to the Action
Pipeline.

The following is a very simple configuration that defines a single Service that simply prints the contents
of the Message to the console.

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/
product/etc/schemas/xml/jbossesb-1.0.1.xsd">

 <services>
 <service category="Retail" name="ShoeStore"
 description="Acme Shoe Store Service" invmScope="GLOBAL">
 <actions>
 <action name="println"
 class="org.jboss.soa.esb.actions.SystemPrintln" />
 </actions>
 </service>
 </services>
</jbossesb>

Example 3.1. Simple service example printing contents of message to console.

A Service has category and name attributes. When the JBoss ESB deploys the Service it uses these
attributes to register the Service's listeners as endpoints in the Service Registry. Clients can invoke the
Service using the class ServiceInvoker.

ServiceInvoker invoker = new ServiceInvoker(“Retail”, “ShoeStore”);
Message message = MessageFactory.getInstance().getMessage();

message.getBody().add(“Hi there!”);
invoker.deliverAsync(message);

Example 3.2. Invoking the service from the client

Chapter 3. Services and Messages

10

The ServiceInvoker uses the Service Registry to lookup the available Endpoint addresses for the
service "Retail:ShoeStore". It takes care of all the details of getting the message from the Client to one
of the available Service Endpoints. The message transport process is completely transparent to the
client.

The Endpoint addresses made available to the ServiceInvoker will depend on the list of listeners
configured on the Service, such as JMS, FTP or HTTP. No listeners are configured on the Service in
the above example, but its InVM listener has been enabled using invmScope="GLOBAL". The InVM
transport is a new ESB feature in the SOA Platform 4.3 release that provides communication between
services running on the same JVM. Section 4.3.3, “InVM Transport” contains more information about
this feature.

You need to explicitly add listener configurations to a service to enable additional Endpoints.

The JBoss ESB supports two forms of listener configuration:

• Gateway Listeners

These listener configurations provide a Gateway Endpoint. These Endpoint types provide a point of
entry for messages from outside of your JBoss ESB deployment. They also have the responsibility
for normalizing the message payload by wrapping it into an ESB Messagebefore shipping it to the
Service's Action Pipeline.

• ESB Aware Listeners

These listener configurations provide an ESB Aware Endpoint. These Endpoint types are used to
exchange ESB Messages between ESB Aware components.

Note
An ESB Message is one that is an implementation of the
org.jboss.soa.esb.message.Message. This is described fully in Section 3.2,
“The Message”. An ESB Aware component is one that deals with ESB Messages.

The Endpoints are configured for the service are configured in the same configuration file as the
services other details. The transport level details are defined by adding a <providers> section. A
reference to the provider is then added as a <listener>.

In the following example we have added a <jms-provider> section that defines a single <jms-bus> for
the Shoe Store JMS Queue. This is then referenced in the <jms-listener> defined on the Shoe Store
Service.

The Message

11

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/
product/etc/schemas/xml/jbossesb-1.0.1.xsd">

 <providers>
 <jms-provider name="JBossMQ" connection-factory="ConnectionFactory">
 <jms-bus busid="shoeStoreJMSGateway">
 <jms-message-filter dest-type="QUEUE"
 dest-name="queue/shoeStoreJMSGateway"/>
 </jms-bus>
 </jms-provider>
 </providers>

 <services>
 <service category="Retail" name="ShoeStore" invmScope="GLOBAL"
 description="Acme Shoe Store Service">

 <listeners>
 <jms-listener name="shoeStoreJMSGateway"
 busidref="shoeStoreJMSGateway" is-gateway="true"/>
 </listeners>

 <actions>
 <action name="println"
 class="org.jboss.soa.esb.actions.SystemPrintln" />
 </actions>
 </service>
 </services>

</jbossesb>

Example 3.3. a JMS Gateway listener added to the above ShoeStore Service example

The Shoe Store service is can now be accessed using either of two Endpoints, the InVM Endpoint and
the new JMS Gateway Endpoint. For performance reasons the ServiceInvoker will always try to
use a Service's local InVM Endpoint in preference to other Endpoint types if one is available.

3.2. The Message
All interactions between clients and services within JBossESB occur through the exchange of
Messages. Development using a message-exchange pattern is recommended to encourage loose
coupling. The requests and responses should be independent messages correlated where necessary
by the infrastructure or application. Applications constructed in this way can be more tolerant of failure
and give developers more flexibility in their deployment and message delivery requirements.

The following guidelines are recommended to ensure loose coupling of services and robust SOA
applications.

1. Use one-way message exchanges rather than a request-response architecture.

Chapter 3. Services and Messages

12

2. Keep the contract definition within the exchanged messages. You should avoid defining a service
interface that exposes your back-end implementation choices as this will make it very difficult to
change the implementation at a later date.

3. Use an extensible message structure for the message payload so that changes to it can be
versioned over time for backward compatibility.

4. Do not develop excessively fine-grained services as they often lead to excessively complex
applications that cannot be easily adapted to changes in your environment. The paradigm of SOA
is one of services, not distributed objects.

A one-way message delivery pattern with requests and responses requires the information about
where responses should be sent to be encoded in the message. That information may be present
in the message body (the payload) and dealt with by the application, or as part of the initial request
message and dealt with by the ESB infrastructure.

Central to the ESB is the notion of a message whose structure is similar to that found in SOAP.

<xs:complexType name="Envelope">
 <xs:attribute ref="Header" use="required"/>
 <xs:attribute ref="Context" use="required"/>
 <xs:attribute ref="Body" use="required"/>
 <xs:attribute ref="Attachment" use="optional"/>
 <xs:attribute ref="Properties" use="optional"/>
 <xs:attribute ref="Fault" use="optional"/>
</xs:complexType>

Example 3.4. ESB Message schema sample

Pictorially the basic structure of the Message can be represented as shown below. In the rest of this
section we shall examine each of these components in more detail.

Figure 3.1. Basic Structure of a Message

In UML, the Message structure can be represented as:

The Message

13

Figure 3.2. the Message structure represented as UML

Each message is an implementation of the org.jboss.soa.esb.message.Message interface.
That package contains the interfaces for the various fields within the Message.

public interface Message
{
 public Header getHeader ();
 public Context getContext ();
 public Body getBody ();
 public Fault getFault ();
 public Attachment getAttachment ();
 public URI getType ();
 public Properties getProperties ();
}

Example 3.5. The org.jboss.soa.esb.message.Message interface

From an application/service perspective the message payload is a combination of the Body,
Attachments and Properties.

Warning
At this time it is recommended that developers do not use Properties or Attachments.

Chapter 3. Services and Messages

14

The general concepts they embody are currently being re-evaluated and may change
significantly in future releases.

It is recommended that the data for your Properties and Attachments be included as
part of the Message Body.

The UML representation of the payload is shown below:

Figure 3.3. UML representation of the message payload

3.2.1. The Header
The Header contains routing and addressing information for the message as Endpoint References
(EPRs) as well as information to uniquely identify the message. JBossESB uses an addressing
scheme based on the WS-Addressing standard from W3C.

The relationship between the Header and the various EPRs can be illustrated in UML as:

The Header

15

Figure 3.4. Relationship between the Header and ERPs in UML

The role of the header must be considered when developing and using your services. For example, if
you require a synchronous interaction pattern based on request and response, you will be expected to
set the ReplyTo field, or a default EPR will be used. Even with request/response, the response need
not go back to the original sender, if you so choose. Likewise, when sending one-way messages (no
response), you should not set the ReplyTo field because it will be ignored.

Your ReplyTo or FaultTo EPRs should always use the LogicalEPR, as opposed to one of the Physical
EPRs (JMS-EPR etc). A LogicalEPR is an EPR that simply specifies the name and category of an
ESB Service/Endpoint. It contains no physical addressing information.

The LogicalEPR is the preferred option because it makes no assumptions about the capabilities of the
user of the EPR (typically the ESB itself, but not necessarily). The client of the LogicalEPR can use the
Service name and category details supplied in the EPR to lookup the physical endpoint details for that
Service/Endpoint at the point in time when they intend making the invocation i.e. they will get relevant
addressing information. The client will also be able to select an physical endpoint type that suits it.

Note
The Message Header is immutable once transmitted between endpoints.

Although the interfaces allow the Header to be modified JBossESB will ignore such
changes. It is likely that in future releases the API will disallow such modifications to
avoid confusion. These rules are laid down in the WS-Addressing standards.

Chapter 3. Services and Messages

16

public interface Header
{
 public Call getCall ();
 public void setCall (Call call);
}

Example 3.6. The org.jboss.soa.esb.message.Header interface

The content of the Message Header is contained in an instance of the
org.jboss.soa.esb.addressing.Call class.

public class Call
{
 public Call ();
 public Call (EPR epr);

 public void setTo (EPR epr);
 public EPR getTo () throws URISyntaxException;

 public void setFrom (EPR from);
 public EPR getFrom () throws URISyntaxException;

 public void setReplyTo (EPR replyTo);
 public EPR getReplyTo () throws URISyntaxException;

 public void setFaultTo (EPR uri);
 public EPR getFaultTo () throws URISyntaxException;

 public void setRelatesTo (URI uri);
 public URI getRelatesTo () throws URISyntaxException;

 public void setAction (URI uri);
 public URI getAction () throws URISyntaxException;

 public void setMessageID (URI uri);
 public URI getMessageID () throws URISyntaxException;

 public void copy (Call from);
}

Example 3.7. org.jboss.soa.esb.addressing.Call

org.jboss.soa.esb.addressing.Call supports both one way and request reply interaction
patterns.

Property Type Required Description

To EPR Yes The address of the intended receiver of this message.

From EPR No Reference of the endpoint where the message originated.

The Header

17

Property Type Required Description

ReplyTo EPR No An EPR that identifies the intended receiver for replies to this
message.

FaultTo EPR No An endpoint reference that identifies the intended receiver for
faults related to this message.

Action URI Yes An identifier that uniquely and opaquely identifies the
semantics implied by this message.

MessageID URI Depends A URI that uniquely identifies this message.

Table 3.1. org.jboss.soa.esb.addressing.Call Properties

ReplyTo
The ReplyTo property is an EPR that identifies the intended receiver for replies to this message. The
message header must contain a ReplyTo if a reply is expected.

JBossESB supports default ReplyTo values for each type of transport. This is used in situations where
a response is required but the ReplyTo property has not been supplied. Some of these defaults require
system administrators to configure JBossESB correctly.

Transport ReplyTo

JMS A queue with the same name as the one used to deliver the original request with the
suffix of _reply.

JDBC A table in the same database with the same name as the one used to deliver the
original request with the suffix of _reply_table. The reply table needs the same column
definitions as the request table.

files For both local and remote files, no administration changes are required. Responses
are written into the same directory as the request but with a unique suffix to ensure
that only the original sender will pick up the response.

Table 3.2. Default ReplyTo by transport

FaultTo
The FaultTo is an EPR that identifies the intended receiver for Faults related to this message. Faults
are fully described in Section 3.2.3, “The Fault”.

The JBossESB will route any Fault to the EPR in the FaultTo property of the incoming message. If
FaultTo is not set, JBossESB will check the ReplyTo and From properties in turn. If no valid EPR is
obtained as a result of checking all of these fields, the error will be output to the console.

This property can be absent if the sender cannot receive fault messages or you do not want any
response at all. However it is recommended in such scenerios to use the DeadLetter Queue Service
EPR as your FaultTo or any faults that do occur will be saved for later processing.

MessageID
The MessageID property is a URI that is used to uniquely identify each message.

Two different messages must not have the same MessageID, but a re-transmitted message may use
the same MessageID as the original.

MessageID must be set if a reply is expected, or if either of the ReplyTo or FaultTo properties are set.

Chapter 3. Services and Messages

18

3.2.2. The Context
The Context contains session related information, such as transaction or security contexts. This
release of the JBoss ESB does not support user-enhanced Contexts. This will be a feature of the 5.0
release.

3.2.3. The Fault
The Fault is used to convey error information. The information is represented within the Body.

public interface Fault
{
 public URI getCode ();
 public void setCode (URI code);

 public String getReason ();
 public void setReason (String reason);

 public Throwable getCause ();
 public void setCause (Throwable ex);
}

Example 3.8. The org.jboss.soa.esb.message.Fault interface

3.2.4. The Body
The Body typically contains the payload of the message. You can can use the Body to send an
arbitrary number of different data types. You are not restricted to sending and receiving single data
items within a Body. How these objects are serialized to and from the message body is up to the
specific Object type.

public interface Body
{
 public static final String DEFAULT_LOCATION
 = "org.jboss.soa.esb.message.defaultEntry";

 public void add (Object value);
 public void add (String name, Object value);
 public Object get ();
 public Object get (String name);
 public String[] getNames()
 public void merge (Body b);
 public Object remove (String name);
 public void replace (Body b);
}

Example 3.9. The org.jboss.soa.esb.message.Body interface

Important
The byte array component of the Body was deprecated in JBossESB 4.2.1. If you
wish to continue using a byte array in conjunction with other data stored in the

Extensions to Body

19

Body, then simply use add with a unique name. If your clients and services want to
agree on a location for a byte array, then you can use the one that JBossESB uses:
ByteBody.BYTES_LOCATION.

It is easiest to work with the Message Body through the named Object approach. You can add, remove
and inspect individual data items within the Message payload without having to decode the entire
Body. Furthermore, you can combine named Objects within the payload with the byte array.

The name for any given named object in a message must be unique or an exception will be thrown.

Any type of Objects can be added to the Body. If you add objects that are not Java Serializable
you must provide JBossESB with the ability to marshal and unmarshal the Message. Refer to
Section 3.2.8, “The MessageFactory” for more information.

You need to pay attention to the objects that you serialize into the Body because not all serialized
objects will be meaningful or useful at the receiver. A database connection object, for example, will
be of little use when received at a client which does not have access to the database server. The use
of Serialized Java objects in messages can also introduce dependancies that limit possible service
implementations.

The default named Object (DEFAULT_LOCATION) should be used with care so that multiple services
or Actions do not overwrite each other's data.

The default behaviour of all ESB components (Actions, Listeners, Gateways, Routers, Notifiers etc) is
to get and set data on the message using the message's Default Payload Location.

All ESB components use the MessagePayloadProxy to manage getting and setting of the payload
on the message. It handles the default case, as outlined above, but also allows this to be overridden
in a uniform manner across all components. It allows the "get" and "set" location for the message
payload to be overridden in a uniform way using the following component properties:

• get-payload-location: The location from which to retrieve the message payload.

• set-payload-location: The location on which to set the message payload.

Note
Prior to JBossESB 4.2.1GA there was no default message payload exchange pattern in
place. Subsequent releases can be configured to be backwards compatible by setting
the use.legacy.message.payload.exchange.patterns property to true in the core
section of the jbossesb-properties.xml file in the jbossesb.sar.

3.2.5. Extensions to Body
As well as manipulating the contents of a Message Body directly in terms of bytes or name/value
pairs, there are a number of interfaces available to simplify this by providing predefined message
structures and methods to manipulate them.

These interfaces are extensions on the basic Body interface and can be used in conjunction with
existing clients and services. Message consumers do not need to be aware of these new types
because the underlying data structure of the message remains unchanged.

Chapter 3. Services and Messages

20

You can create Messages that have Body implementations based on one of these specific
interfaces by using the XMLMessageFactory or SerializedMessageFactory classes. The
XMLMessageFactory and SerializedMessageFactory classes are more convenient to use
when working with Messages than MessageFactory and its associated classes.

For each of the various Body types you will find an associated create method, such as
createTextBody that allows you to create and initialize a Message of the specific type. Once
created the Message can be manipulated directly through the raw Body or by using its interface
methods. The Body structure is maintained even after tranmission so it can be manipulated by the
message receipient using the methods of the interface that created it.

org.jboss.soa.esb.message.body.content.TextBody
The content of the Body is an arbitrary String, and can be manipulated using the getText and
setText methods.

org.jboss.soa.esb.message.body.content.ObjectBody
The content of the Body is a Serialized Object, and can be manipulated using the getObject and
setObject methods.

org.jboss.soa.esb.message.body.content.MapBody
The content of the Body is a Map(String, Serialized), and can be manipulated using the setMap and
other methods.

org.jboss.soa.esb.message.body.content.TextBody
The content of the Body is an arbitrary String, and can be manipulated using the getText and
setText methods.

org.jboss.soa.esb.message.body.content.ObjectBody
The content of the Body is a Serialized Object, and can be manipulated using the getObject and
setObject methods.

org.jboss.soa.esb.message.body.content.MapBody
The content of the Body is a Map(String, Serialized), and can be manipulated using the setMap and
other methods.

org.jboss.soa.esb.message.body.content.BytesBody
The content of the Body is a byte stream that contains an arbitrary Java data-type. It can be
manipulated using the methods for the data-type being . Once created the BytesMessage should be
placed into either a read-only or write-only mode, depending upon how it needs to be manipulated.
You can change between these modes by using the readMode() and writeMode() methods but
each time the mode is changed the buffer pointer will be reset. It is necessary to call the flush()
method to ensure that all of your updates have been applied to the Body.

3.2.6. Attachments
Messages may contain attachments that do not appear in the main payload body such as images,
drawings, binary document formats and zip files. The Attachment interface supports both named

Properties

21

and unnamed attachments. In the current release of JBossESB only Java Serialized objects may be
attachments. This restriction will be removed in a subsequent release.

Attachments may be used for a number of reasons. Generally they are used to provide a more logical
structure for the message. The performance of large messages can also be improved by allowing the
streaming of the attachments between endpoints.

The JBossESB does not support specifying other encoding mechanisms for the Message or
attachment streaming. This feature will be added in a later release and where appropriate will be tied
in to the SOAP-with-attachments delivery mechanism. Currently attachments are treated in the same
way as named objects within the Body.

Warning
At this time it is recommended that developers do not use Properties or Attachments.

The general concepts they embody are currently being re-evaluated and may change
significantly in future releases.

It is recommended that the data for your Properties and Attachments be included as
part of the Message Body.

public interface Attachment
{
 Object get(String name);
 Object put(String name, Object value);

 Object remove(String name);

 String[] getNames();

 Object itemAt (int index) throws IndexOutOfBoundsException;
 Object removeItemAt (int index) throws IndexOutOfBoundsException
 Object replaceItemAt(int index, Object value)
 throws IndexOutOfBoundsException;

 void addItem (Object value);
 void addItemAt (int index, Object value)
 throws IndexOutOfBoundsException;

 public int getNamedCount();
}

Example 3.10. The org.jboss.soa.esb.message.Attachment interface

3.2.7. Properties
A set of message properties, which can be used to define additional meta-data for the message.
JBossESB does not implement Properties using java.util.Properties as it would place restrictions
on the types of clients and services that could used. Web Services stacks also do this for the same
reason. If you need to send java.util.Properties then you can embed them within the current
abstraction.

Chapter 3. Services and Messages

22

Warning
At this time it is recommended that developers do not use Properties or Attachments.

The general concepts they embody are currently being re-evaluated and may change
significantly in future releases.

It is recommended that the data for your Properties and Attachments be included as
part of the Message Body.

public interface Properties
{
 public Object getProperty(String name);
 public Object getProperty(String name, Object defaultVal);

 public Object setProperty(String name, Object value);
 public Object remove(String name);

 public int size();
 public String[] getNames();
}

Example 3.11. The org.jboss.soa.esb.message.Properties interface

3.2.8. The MessageFactory
Although each ESB component deals with ESB Messages as a collection of Java objects it is often
necessary to serialize these messages. Situations where this might be done include saving to a
datastore, sending the message between different JBossESB processes or debugging.

JBossESB does not impose a single specific normalized format for message serialisation because the
requirements of the format will be influenced by the unique characteristics of each ESB deployment.All
implementations of the org.jboss.soa.esb.message.Message interface are obtained from the
org.jboss.soa.esb.message.format.MessageFactory class.

public abstract class MessageFactory
{
 public abstract Message getMessage ();
 public abstract Message getMessage (URI type);

 public static MessageFactory getInstance ();
}

Example 3.12. org.jboss.soa.esb.message.format.MessageFactory

Message serialization implementations are uniquely identified by a URI. You can either specify the
implementation when creating a new instance, or use the configured default.

Currently JBossESB provides two implementations, JBOSS_XML and JBOSS_SERIALIZED. These
implementations are defined in the org.jboss.soa.esb.message.format.MessageType class.

The MessageFactory

23

Additional Message implementations may be provided at runtime through the
org.jboss.soa.esb.message.format.MessagePlugin.

public interface MessagePlugin
{
 public static final String MESSAGE_PLUGIN =
 "org.jboss.soa.esb.message.format.plugin";

 public Message getMessage ();
 public URI getType ();
}

Example 3.13. org.jboss.soa.esb.message.format.MessagePlugin

Each plug-in must uniquely identify the type of Message implementation it provides
using the getType() method. Plug-in implementations must be identified to the
system in the jbossesb-properties.xml file using property names with the
org.jboss.soa.esb.message.format.plugin extension.

3.2.8.1. MessageType.JAVA_SERIALIZED
This implementation requires that all components of a Message are Serializable. It requires that
recipients of this type of Message is able to de-serialize the Message. In other words it must be able to
instanstiate the Java classes contained in the Message.

This implementation requires that all contents are Java Serializable. Any attempt to add a non-
Serializable object to the Message will result in a IllegalParameterException being thrown.

The URI is urn:jboss/esb/message/type/JAVA_SERIALIZED.

Important
You should be wary about using the JAVA_SERIALIZED version of the Message format
because it can easily tie your applications to specific service implementations.

3.2.8.2. MessageType.JBOSS_XML
This uses an XML representation of the Message. The schema for the message is defined in
message.xsd within the schemas directory.

The URI is urn:jboss/esb/message/type/JBOSS_XML.

If you add non Java Serializable objects to the Message you will have to provide a mechanism
for marshalling those objects to and from XML. This can be done by creating a plugin using the
org.jboss.soa.esb.message.format.xml.marshal.MarshalUnmarshalPlugin interface.

public interface MarshalUnmarshalPlugin
{
 public static final String MARSHAL_UNMARSHAL_PLUGIN =
 "org.jboss.soa.esb.message.format.xml.plugin";

Chapter 3. Services and Messages

24

 public boolean marshal (Element doc, Object param)
 throws MarshalException;

 public Object unmarshal (Element doc) throws UnmarshalException;

 public URI type ();
}

Marshalling plug-ins must be registered with the system through the jbossesb-properties.xml
configuration file. They must have attribute names that start with the MARSHAL_UNMARSHAL_PLUGIN.

When packing objects in XML, JBossESB runs through the list of registered plug-ins until it finds one
that can deal with the object type. If it does not find a suitable plugin it returns a Fault message as
described in Section 3.2.3, “The Fault”. The name of the plug-in that packed the object is also attached
to facilitate unpacking at the Message receiver.

Chapter 4.

25

Building and Using Services

4.1. Listeners, Notifiers/Routers and Actions

4.1.1. Listeners
Listeners encapsulate the endpoints for ESB-aware message reception. Upon receipt of a message, a
Listener feeds that message into a “pipeline” of message processors that process the message before
routing the result to the “replyTo” endpoint. The action processing that takes place in the pipeline
may consist of steps wherein the message gets transformed in one processor, some business logic
is applied in the next processor, before the result gets routed to the next step in the pipeline, or to
another endpoint.

4.1.2. Notifiers
Notifiers are the way in which success or error information may be propagated to ESB-unaware
endpoints. You should not use Notifiers for communicating with ESB-aware endpoints. This may
mean that you cannot have ESB-aware and ESB-unaware endpoints listening on the same channel.
Consider using Couriers or the ServiceInvoker within your Actions if you want to communicate with
ESB-aware endpoints.

Not all ESB-aware transports are supported for Notifiers (and vice versa). Notifiers are deliberately
simple in what they allow to be transported: either a byte[] or a String (obtained by calling
toString() on the payload).

Note
JMSNotifier was sending the type of JMS message (TextMessage or
ObjectMessage) depending upon the type of ESB Message (XML or Serializable,
respectively). This was wrong, as the type of ESB Message should not affect
the way in which the Notifier sends responses. As of JBossESB 4.2.1CP02,
the message type to be used by the Notifier can be set as a property
(org.jboss.soa.esb.message.transport.jms.nativeMessageType)
on the ESB message. Possible values are NotifyJMS.NativeMessage.text or
NotifyJMS.NativeMessage.object. For backward compatibility with previous
releases, the default value depends upon the ESB Message type: object for
Serializable and text for XML. However, we encourage you not to rely on defaults.

As outlined above, the responsibility of a listener is to act as a message delivery endpoint and to
deliver messages to an “Action Processing Pipeline”. Each listener configuration needs to supply
information for:

• the Registry (see service-category, service-name, service-description and EPR-
description tag names). If you set the optional remove-old-service tag name to true then the
ESB will remove any existing service entry from the Registry prior to adding this new instance.
However, this should be used with care, because the entire service will be removed, including all
EPRs.

• instantiation of the listener class (see listenerClass tag name).

Chapter 4. Building and Using Services

26

• the EPR that the listener will be servicing. This is transport specific. The following example
corresponds to a JMS EPR (see connection-factory, destination-type, destination-name, jndi-type,
jndi-URL and message-selector tag names).

• the “action processing pipeline”. One or more <action> elements each that must contain at least
the 'class' tagname that will determine which action class will be instantiated for that step in the
processing chain.

Notifiers

27

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/
product/etc/schemas/xml/jbossesb-1.0.1.xsd" parameterReloadSecs="5">

<providers>
 <jms-provider name="JBossMQ"
 connection-factory="ConnectionFactory"
 jndi-URL="jnp://127.0.0.1:1099"
 jndi-context-factory="org.jnp.interfaces.NamingContextFactory"
 jndi-pkg-prefix="org.jboss.naming:org.jnp.interfaces">
 <jms-bus busid="quickstartGwChannel">
 <jms-message-filter dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_Request_gw"/>
 </jms-bus>
 <jms-bus busid="quickstartEsbChannel">
 <jms-message-filter dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_Request_esb"/>
 </jms-bus>
 </jms-provider>
</providers>

<services>
 <service category="FirstServiceESB"
 name="SimpleListener" description="Hello World">
 <listeners>
 <jms-listener name="JMS-Gateway"
 busidref="quickstartGwChannel" maxThreads="1"
 is-gateway="true"/>
 <jms-listener name="helloWorld"
 busidref="quickstartEsbChannel" maxThreads="1"/>
 </listeners>

 <actions>
 <action name="action1" class="org.jboss.soa.esb.samples.
quickstart.helloworld.MyJMSListenerAction"
 process="displayMessage" />
 <action name="notificationAction"
 class="org.jboss.soa.esb.actions.Notifier">
 <property name="okMethod" value="notifyOK" />
 <property name="notification-details">
 <NotificationList type="ok">
 <target class="NotifyConsole"/>
 </NotificationList>
 <NotificationList type="err">
 <target class="NotifyConsole"/>
 </NotificationList>
 </property>

 </action> </actions> </service> </services>
</jbossesb>

Example 4.1. HelloWorld Quickstart service configuration

Chapter 4. Building and Using Services

28

This example configuration will instantiate a listener object (jms-listener attribute) that will wait for
incoming ESB Messages, serialized within a javax.jms.ObjectMessage, and will deliver each incoming
message to an ActionProcessingPipeline consiting of two steps (<action> elements):

1. action1. MyJMSListenerAction (a trivial example follows)

2. notificationAction. An org.jboss.soa.esb.actions.SystemPrintln

The following trivial action class will prove useful for debugging your XML action configuration

public class MyJMSListenerAction
{
 ConfigTree _config;

 public MyJMSListenerAction(ConfigTree config) { _config = config; }

 public Message process (Message message) throws Exception
 {
 System.out.println(message.getBody().getContents());
 return message;
 }
}

Action classes are the main way in which ESB users can tailor the framework to their specific needs.
The ActionProcessingPipeline class will expect any action class to provide at least the following:

• A public constructor that takes a single argument of type ConfigTree

• One or more public methods that take a Message argument, and return a Message result

Optional public callback methods that take a Message argument will be used for notification of the
result of the specific step of the processing pipeline (see items 5 and 6 below).

The org.jboss.soa.esb.listeners.message.ActionProcessingPipeline class will
perform the following steps for all steps configured using <action> elements

1. Instantiate an object of the class specified in the 'class' attribute with a constructor that takes a
single argument of type ConfigTree

2. Analyze contents of the 'process' attribute.

Contents can be a comma separated list of public method names of the instantiated class (step 1),
each of which must take a single argument of type Message, and return a Message object that
will be passed to the next step in the pipeline

If the 'process' attribute is not present, the pipeline will assume a single processing method called
process

Using a list of method names in a single <action> element has some advantages compared to
using successive <action> elements, as the action class is instantiated once, and methods will be
invoked on the same instance of the class. This reduces overhead and allows for state information
to be kept in the instance objects.

This approach is useful for user supplied (new) action classes, but the other alternative (list of
<action> elements) continues to be a way of reusing other existing action classes.

Actions and Messages

29

3. Sequentially invoke each method in the list using the Message returned by the previous step

4. If the value returned by any step is null the pipeline will stop processing immediately.

5. Callback method for success in each <action> element: If the list of methods in the 'process'
attribute was executed successfully, the pipeline will analyze contents of the okMethod attribute.
If none is specified, processing will continue with the next <action> element. If a method name
is provided in the okMethod attribute, it will be invoked using the Message returned by the last
method in step 3. If the pipeline succeeds then the okMethod notification will be called on all
handlers from the last one back to the initial one.

6. Callback method for failure in each <action> element: If an Exception occurs then the
exceptionMethod notification will be called on all handlers from the current (failing) handler
back to the initial handler. At present time, if no exceptionMethod was specified, the only output
will be the logged error. If an ActionProcessingFaultException is thrown from any process
method then an error message will be returned as per the rules defined in the next section. The
contents of the error message will either be whatever is returned from the getFaultMessage of
the exception, or a default Fault containing the information within the original exception.

Action classes supplied by users to tailor behaviour of the ESB to their specific needs, might
need extra run time configuration (for example the Notifier class in the XML above needs the
<NotificationList> child element). Each <action> element will utilize the attributes mentioned above
and will ignore any other attributes and optional child elements. These will be however passed
through to the action class constructor in the require ConfigTree argument. Each action class will be
instantiated with it's corresponding <action> element and thus does not see (in fact must not see)
sibling action elements.

Note
In JBoss ESB 4.3 GA the name of the property used to enclose NotificationList
elements in the <action> target is not validated.

4.1.3. Actions and Messages
Actions are triggered by the arrival of a Message. The specific Action implementation is expected to
know where the data resides within a Message. Because a Service may be implemented using an
arbitrary number of Actions, it is possible that a single input Message could contain information on
behalf of more than one Action. In which case it is incumbent on the Action developer to choose one
or more unique locations within the Message Body for its data and communicate this to the Service
consumers.

Furthermore, because Actions may be chained together it is possible that an Action earlier in the chain
modifies the original input Message, or replaces it entirely.

Note
From a security perspective, you should be careful about using unknown Actions within
your Service chain. We recommend encrypting information.

If Actions share data within an input Message and each one modifies the information as it flows
through the chain, by default we recommend retaining the original information so that Actions

Chapter 4. Building and Using Services

30

further down the chain still have access to it. Obviously there may be situations where this is either
not possible or would be unwise. Within JBossESB, Actions that modify the input data can place
this within the org.jboss.soa.esb.actions.post named Body location. This means that
if there are N Actions in the chain, Action N can find the original data where it would normally
look, or if Action N-1 modified the data then N will find it within the other specified location. To
further facilitate Action chaining, Action N can see if Action N-2 modified the data by looking in the
org.jboss.soa.esb.actions.pre named Body location.

Note
As mentioned earlier, you should use the default named Body location with care when
chaining Actions in case chained Actions use it in a conflicting manner.

4.1.4. Handling responses
There are two processing mechanisms supported for handling responses in the action pipeline, implicit
processing (based on the response of the actions) and explicit processing.

If the processing is implicit then responses will be processed as follows: -

• If any action in the pipeline returns a null message then no response will be sent.

• If the final action in the pipeline returned a non-error response then a reply will be sent to the
ReplyTo EPR of the request message or, if not set, to the From EPR of the request message. In the
event that there is no way to route responses, an error message will be logged by the system.

If the processing is explicit then responses will be processed as follows: -

• If the action pipeline is specified as 'OneWay' then the pipeline will never send a response

• If the pipeline is specific as 'RequestResponse' then a reply will be sent to the ReplyTo EPR of the
request message or, if not set, to the From EPR of the request message. In the event that there is
no EPR is specified then no error message will be logged by the system.

We recommend that all action pipelines should use the explicit processing mechanism. This can be
enabled by simply adding the 'mep' attribute to the 'actions' element in the jboss-esb.xml file. The
value of this attribute should be either OneWay or RequestResponse.

4.1.5. Error handling when processing actions
When processing an action chain, it is possible that errors may occur. Such errors should be thrown
as exceptions from the Action pipeline, thus terminating the processing of the pipeline. As mentioned
earlier, a Fault Message may be returned within an ActionProcessingFaultException. If it is important
for information about errors to be returned to the sender (or some intermediary) then the FaultTo EPR
should be set. If this is not set, then JBossESB will attempt to deliver error messages based on the
ReplyTo EPR and, if that is also not set, the From EPR. If none of these EPRs has been set, then error
information will be logged locally.

Error messages of various types can be returned from the Action implementations. However,
JBossESB supports the following “system” error messages, all of which may be identified by the
mentioned URI in the message Fault, in the case that an exception is thrown and no application
specific Fault Message is present:

Meta-Data and Filters

31

urn:action/error/actionprocessingerror
this means that an action in the chain threw an ActionProcessingFaultException but did
not include a fault message to return. The exception details will be contained within the reason
String of the Fault.

urn:action/error/unexpectederror
an unexpected exception was caught during the processing. Details about the exception can be
found in the reason String of the Fault.

urn:action/error/disabled
action processing is disabled.

If an exception is thrown within your Action chain, then it will be propagated back to the client within
a FaultMessageException, which is re-thrown from the Courier or ServiceInvoker classes.
This exception, which is also thrown whenever a Fault message is received, will contain the Fault
code and reason, as well as any propagated exception.

4.2. Meta-Data and Filters
As a message flows through the ESB it may be useful to attach meta-data to it, such as the time
it entered the ESB and the time it left. Furthermore, it may be necessary to dynamically augment
the message; for example, adding transaction or security information. Both of these capabilities are
supported in JBossESB through the filter mechanism, for both gateway and ESB nodes.

Note
the filter property name, the package for the InputOutputFilter and its signature all
changed in JBossESB 4.2 MR3 from earlier milestone releases.

The class org.jboss.soa.esb.filter.InputOutputFilter has two methods:

• public Message onOutput (Message msg, Map<String, Object> params) throws
CourierException which is called as a message flows to the transport. An implementation may
modify the message and return a new version. Additional information may be provided by the caller
in the form of extra parameters.

• public Message onInput (Message msg, Map<String, Object> params) throws
CourierException which is called as a message flows from the transport. An implementation
may modify the message and return a new version. Additional information may be provided by the
caller in the form of extra parameters.

Filters are defined in the filters section of the jbossesb-properties.xml file (typically located
in the jbossesb.sar archive) using the property org.jboss.soa.esb.filter.<number>, where <number>
can be any value and is used to indicate the order in which multiple filters are to be called (lowest to
highest).

JBossESB ships with org.jboss.internal.soa.esb.message.filter.MetaDataFilter
and org.jboss.internal.soa.message.filter.GatewayFilter which add the following
meta-data to the Message as Properties with the indicated property names and the returned String
values. See the chapter 12, 'Connectors and Adapters' for more information about Gateways.

Chapter 4. Building and Using Services

32

Gateway-related Message Properties
org.jboss.soa.esb.message.transport.type

File, FTP, JMS, SQL, or Hibernate.

org.jboss.soa.esb.message.source
The name of the file from which the message was read.

org.jboss.soa.esb.message.time.dob
The time the message entered the ESB, e.g., the time it was sent, or the time it arrived at a
gateway.

org.jboss.soa.esb.mesage.time.dod
The time the message left the ESB, e.g., the time it was received.

org.jboss.soa.esb.gateway.original.file.name
If the message was received via a file related gateway node, then this element will contain the
name of the original file from which the message was sourced.

org.jboss.soa.esb.gatway.original.queue.name
If the message was received via a JMS gateway node, then this element will contain the name of
the queue from which it was received.

org.jboss.soa.esb.gateway.original.url
If the message was received via a SQL gateway node, then this element will contain the original
database URL.

Note
Although it is safe to deploy the GatewayFilter on all ESB nodes, it will only add
information to a Message if it is deployed on a gateway node.

More meta-data can be added to the message by creating and registering suitable filters. Your filter
can determine whether or not it is running within a gateway node through the presence (or absence) of
the following named entries within the additional parameters.

Gateway-generated Message Parameters
org.jboss.soa.esb.gateway.file

The File from which the Message was sourced. This will only be present if this gateway is file
based.

org.jboss.soa.esb.gateway.config
The ConfigTree that was used to initialize the gateway instance.

Note
Only file based, JMS and SQL gateways have support for the GatewayFilter in
JBoss ESB 4.3 GA.

What is a Service

33

4.3. What is a Service
JBossESB does not impose restrictions on what constitutes a service. As we discussed earlier in this
document, the ideal SOA infrastructure encourages a loosely coupled interaction pattern between
clients and services, where the message is of critical importance and implementation specific details
are hidden behind an abstract interface. This allows for the implementations to change without
requiring clients/users to change. Only changes to the message definitions necessitate updates to the
clients.

As such and as we have seen, JBossESB uses a message driven pattern for service definitions and
structures: clients send Messages to services and the basic service interface is essentially a single
process method that operates on the Message received. Internally a service is structured from one
or more Actions, that can be chained together to process incoming the incoming Message. What an
Action does is implementation dependent, e.g., update a database table entry, or call an EJB.

When developing your services, you first need to determine the conceptual interface/contract that it
exposes to users/consumers. This contract should be defined in terms of Messages, e.g., what the
payload looks like, what type of response Message will be generated (if any) etc.

Note
Once defined, the contract information should be published within the registry. At
present JBossESB does not have any automatic way of doing this.

Clients can then use the service as long as they do so according to the published contract. How your
service processes the Message and performs the work necessary, is an implementation choice. It
could be done within a single Action, or within multiple Actions. There will be the usual trade-offs to
make, e.g., manageability versus re-usability.

Note
In subsequent releases we will be improving tool support to facilitate the development
of services.

4.3.1. ServiceInvoker
From a clients perspective, the Courier interface and its various implementations can be used to
interact with services. However, this is still a relatively low-level approach, requiring developer code
to contact the registry and deal with failures. Furthermore, since JBossESB has fail-over capabilities
for stateless services, this would again have to be managed by the application. See the Advanced
chapter for more details on fail-over.

In JBossESB 4.2, the ServiceInvoker was introduced to help simplify the development effort. The
ServiceInvoker hides much of the lower level details and opaquely works with the stateless service
fail-over mechanisms. As such, ServiceInvoker is the recommended client-side interface for using
services within JBossESB.

public class ServiceInvoker
{
 public ServiceInvoker(Service service) throws MessageDeliverException;

Chapter 4. Building and Using Services

34

 public ServiceInvoker(String serviceCategory, String serviceName) throws
 MessageDeliverException;

 public Message deliverSync(Message message, long timeoutMillis) throws
 MessageDeliverException, RegistryException, FaultMessageException;
 public void deliverAsync(Message message) throws
 MessageDeliverException;
}

An instance of ServiceInvoker can be created for each service with which the client requires
interactions. Once created, the instance contacts the registry where appropriate to determine the
primary EPR and, in the case of fail-overs, any alternative EPRs.

Once created, the client can determine how to send Messages to the service: synchronously (via
deliverSync) or asynchronously (via deliverAsync). In the synchronous case, a timeout must be
specified which represents how long the client will wait for a response. If no response is received
within this period, a MessageDeliverException is thrown.

As mentioned earlier in this document, when sending a Message it is possible to specify values for To,
ReplyTo, FaultTo etc. within the Message header. When using the ServiceInvoker, because
it has already contacted the registry at construction time, the To field is unnecessary. In fact, when
sending a Message through ServiceInvoker, the To field will be ignored in both the synchronous and
asynchronous delivery modes. In a future release of JBossESB it may be possible to use any supplied
To field as an alternate delivery destination should the EPRs returned by the registry fail to resolve to
an active service.

Note
It is possible that multiple EPRs may be present in the Registry with the same Service
Name/Category and that some of these EPRs may not be ESB-aware, e.g., Gateways.
If the ServiceInvoker receives ESB-unaware EPRs from the Registry then it will
ignore them. You may see the warning: “Invalid EPR for service (probably ESB-
unaware)”.

4.3.2. Services and ServiceInvoker
In a client-service environment the terms client and service are used to represent roles and a single
entity can be a client and a service simultaneously. As such, you should not consider ServiceInvoker
to be the domain of “pure” clients: it can be used within your Services and specifically within Actions.
For example, rather than using the built-in Content Based Routing, an Action may wish to re-route
an incoming Message to a different Service based on evaluation of certain business logic. Or an
Action could decide to route specific types of fault Messages to the Dead Letter Queue for later
administration.

The advantage of using ServiceInvoker in this way is that your Services will be able to benefit
from the opaque fail-over mechanism described in the Advanced chapter. This means that one-way
requests to other Services, faults etc. can be routed in a more robust manner without imposing more
complexity on the developer.

InVM Transport

35

4.3.3. InVM Transport
The InVM transport is a new feature in JBossESB 4.3 that provides communication between services
running on the same JVM. This means that instances of ServiceInvoker can invoke a service from
within the same JVM without any networking or message serialization overhead.

The default InVM Scope for an ESB deployment is specified in the jbossesb-properties.xml file
using the core:jboss.esb.invm.scope.default property. The supplied configured value is NONE however
if this property is undefined the default scope is actually GLOBAL.

The JBossESB currently supports 2 scopes.

NONE
The Service is not invokable over the InVM transport. JBossESB is configured with this as the
default value.

GLOBAL
The Service is invokable over the InVM transport from within the same Classloader scope.

A LOCAL scope will be added in a future release, which will restrict invocation to within the same
deployed .esb archive.

Each service can specify their own InVM scope in the invmScope attribute on the <service> element
of their services configuration.

<service category="ServiceCat" name="ServiceName" invmScope="GLOBAL"
 description="Test Service">
 <actions mep="RequestResponse">
 <action name="action"
 class="org.jboss.soa.esb.listeners.SetPayloadAction">
 <property name="payload" value="Tom Fennelly" />
 </action>
 </actions>
</service>

Example 4.2. Enabling GLOBAL inVM scope for a service

Load Balancing
When using the ServiceInvoker, preference is always given to invoking a service over its InVM
transport if one is available. Other load balancing strategies are only be applied in the absence of an
InVM endpoint for the target Service.

Transaction Semantics
The InVM transport in JBossESB is not transactional and the message queue is held only in volatile
memory. This means that the Message Queue for this transport will be lost in the case of system
failure or shutdown.

Lock-step Delivery
The InVM Transport delivers messages with low overhead to an in-memory message queue. This is
very fast and the message queue can become overwhelmed if delivery is happening too quickly for the

Chapter 4. Building and Using Services

36

Service consuming the messages. To mitigate these situations the InVM transport provides a "Lock-
Step" delivery mechanism.

The "Lock-Step" delivery method attempts to ensure that messages are not delivered to a service
faster than the service is able to retreive them. It does this by blocking message delivery until the
receiving Service picks up the message or a timeout period expires.

This is not a synchronous delivery method. It does not wait for a response or for the service to process
the message. It only blocks until the message is removed from the queue by the service.

Lock Step delivery is disabled by default, but can be enabled for a service using it's <property>
settings on the <service>:

inVMLockStep
A boolean value controlling whether LockStep delivery is enabled

inVMLockStepTimeout
The maximum number of milliseconds that message delivery will be blocked while waiting for a
message to be retreived.

<service category="ServiceCat" name="Service2"
 description="Test Service">
 <property name="inVMLockStep" value="true" />
 <property name="inVMLockStepTimeout" value="4000" />

 <actions mep="RequestResponse">
 <action name="action" class="org.jboss.soa.esb.mock.MockAction" />
 </actions>
</service>

Example 4.3. Enabling "Lock-Step" delivery

4.4. Service Contract Definition
A contract definition can be specified on a service by the inclusion of XML schema definitions
representing the incoming request, outgoing response and fault detail messages which are supported
by the corresponding service. The schemas representing the request and response messages are
used to define the format of the contents for the main body section of the message and can enforce
validation of that content.

The schemas are declared by specifying the following attributes on the <actions> element associated
with the service.

Name Description Type

inXsd The resource containing the schema for the
request message, representing a single element.

xsd:string

outXsd The resource containing the schema for the
response message, representing a single
element.

xsd:string

faultXsd A comma separated list of schemas, each
representing one or more fault elements.

xsd:string

Service Contract Definition

37

Name Description Type

requestLocation The location of the request contents within the
body, if not the default location.

xsd:string

responseLocation The location of the response contents within the
body, if not the default location.

xsd:string

Table 4.1. Service Contact Attributes

Message validation
The contents of the request and response messages can be automatically validated providing that the
associated schema has been declared on the <actions> element. The validation can be enabled by
specifying the 'validate' attribute on the <actions> element with a value of 'true'.

Validation is disabled by default.

Exposing an ESB service as a webservice
Declaration of the contract schemas will automatically enable the exposure of the ESB service through
a webservice endpoint, the contract for which can be located through the contract web application.
This functionality can modified by specifying the 'webservice' attribute, the values for which are as
follows.

• false

No webservice endpoint will be published

• true

A webservice endpoint is published (default)

The following example illustrates the declaration of a service which wishes to validate the request/
response messages but without exposing the service through a webservice endpoint.

<service category="ServiceCat" name="ServiceName" description="Test
 Service">
 <actions mep="RequestResponse" inXsd="/request.xsd" outXsd="/
response.xsd"
 webservice="false" validate="true">
 <!-- -->
 </actions>
</service>

The following example illustrates the declaration of a service which wishes to validate the request/
response messages and expose the service through a webservice endpoint. In addition the service
expects the request to be provided in the named body location 'REQUEST' and will return its response
in the named body location 'RESPONSE'.

<service category="ServiceCat" name="ServiceName" description="Test
 Service">
 <actions mep="RequestResponse" inXsd="/request.xsd" outXsd="/
response.xsd"

Chapter 4. Building and Using Services

38

 validate="true" requestLocation=”REQUEST” responseLocation=”RESPONSE”>
 <!-- -->
 </actions>
</service>

Chapter 5.

39

Other Components
In this chapter we shall look at other infrastructural components and services within JBossESB.
Several of these services have their own documentation which you should also read: the aim of this
chapter is to simply give an overview of what else is available to developers.

5.1. The Message Store
The message store mechanism in JBossESB is designed with audit tracking purposes in mind. As with
other ESB services, it is a pluggable service, which allows for you, the developer to plug in your own
persistence mechanism should you have special needs. The implementation supplied with JBossESB
is a database persistence mechanism. If you require say, a file persistence mechanism, then it’s
just a matter of you writing your own service to do this, and override the default behaviour with a
configuration change.

One thing to point out with the Message Store – this is a base implementation. We will be working
with the community and partners to drive the feature functionality set of the message store to support
advanced audit and management requirements. This is meant to be a starting point.

5.2. Data Transformation
Often clients and services will communicate using the same vocabulary. However, there are situations
where this is not the case and on-the-fly transformation from one data format to another will be
required. It is unrealistic to assume that a single data format will be suitable for all business objects,
particularly in a large scale or long running deployment. Therefore, it is necessary to provide a
mechanism for transforming from one data format to another.

In JBossESB this is the role the Transformation Service. This version of the ESB is shipped with
an out-of-the-box Transformation Service based on Milyn Smooks. Smooks is a Transformation
Implementation and Management framework. It allows you implement your transformation logic in
XSLT, Java etc and provides a management framework through which you can centrally manage the
transformation logic for your message-set.

There are a number of QuickStarts included that provide different examples of implementing
transformations.

1. jboss-as/samples/quickstarts/transform_CSV2XML/

This quickstart demonstrates how to transform a comma separated value (CSV) file to an xml. The
tranformation is done by configuring Smooks and performing two transformations, the first one
from CSV to an intermediate xml format, and then the second from the intermediate xml format to
the target xml.

2. jboss-as/samples/quickstarts/transform_XML2POJO/

This quickstart illustrates the use of Smooks to perform a simple transformation to convert an XML
file into Java POJOs.

3. jboss-as/samples/quickstarts/transform_XML2POJO2/

This quickstart demonstrates the transform of two different XML files to a common set of POJOs.

4. jboss-as/samples/quickstarts/transform_XML2XML_simple/

Chapter 5. Other Components

40

This is a very basic example of how to manually define and apply a Message Transformation
within JBossESB. It applies a very simple XSLT to a SampleOrder.xml message and prints the
before and after XML to the console.

5. jboss-as/samples/quickstarts/transform_XML2XML_date_manipulation/

This Quickstart continues on from the transformation_XML2XML_simple Quickstart and
demonstrates how you can simplify your transformations by combining XSLT with Java. Java
is used to perform the string manipulation on the SampleOrder date field (OrderDate.java)
and XSLT is used for providing a template for output. The original and the transformed
SampleOrder.xml messages are printed to the Java console.

6. jboss-as/samples/quickstarts/transform_XML2XML_stream/

This is a very basic example of how to stream a fragment of a transformation to an ESB Service.
The trick behind this is using a Smooks DOMVisitor that sends the element it is passed in its
visitBefore and visitAfter.

7. jboss-as/samples/quickstarts/transform_EDI2XML_Groovy_XSLT/

This is the most advanced of the transform Quickstarts. Be sure to go through the other
transformation Quickstarts before going through this. There's an accompanying Flash demo at
http://labs.jboss.com/portal/jbossesb/resources/tutorials/xformation-demos/console-demo-03.html
which walks you through this Quickstart.

The complete Smooks documentation can be found on the Smooks project website at http://
milyn.codehaus.org/docs/v1.0/SmooksUserGuide_v1.0.html.

5.3. Content-based Routing
Sometimes it is necessary for the ESB to dynamically route messages to their sources. For example,
the original destination may no longer be available, the service may have moved, or the application
simply wants to have more control over where messages go based on content, time-of-day etc. The
Content-based Routing mechanism within JBossESB can be used to route Messages based on
arbitrarily complex rules, which can be defined within XPath or Jboss Rules notation.

5.4. The Registry
In the context of SOA, a registry provides applications and businesses a central point to store
information about their services. It is expected to provide the same level of information and the same
breadth of services to its clients as that of a conventional market place. Ideally a registry should also
facilitate the automated discovery and execution of e-commerce transactions and enabling a dynamic
environment for business transactions. Therefore, a registry is more than an “e-business directory”. It
is an inherent component of the SOA infrastructure.

In many ways, the Registry Service is at the heart of JBossESB: services can self-publish their
endpoint references (EPRs) into the Registry when they are activated, and remove them when they
are taken out of service. Consumers can consult the Registry to determine the EPR for the right
service for the work at hand.

http://labs.jboss.com/portal/jbossesb/resources/tutorials/xformation-demos/console-demo-03.html
http://milyn.codehaus.org/docs/v1.0/SmooksUserGuide_v1.0.html
http://milyn.codehaus.org/docs/v1.0/SmooksUserGuide_v1.0.html

Chapter 6.

41

Example

6.1. How to use the Message
The Message is a critical component in the SOA development approach. In contains application
specific data sent from clients to services and vice versa. In some cases that data may be as simple
as “turn on the light”, or as complex as “search this star chart for any anomalous data that may
indicate a planet.” What goes into a Message is entirely application specific and represents an
important aspect of the contract between a service and its clients. In this section we shall describe
some best practices around the Message and how to use it.

Let's consider the following example which uses a Flight Reservation service. This service supports
the following operations:

reserveSeat
This takes a flight number and seat number and returns success or failure indication.

querySeat
This takes a flight number and a seat number and returns an indication of whether or not the seat
is currently reserved.

upgradeSeat
This takes a flight number and two seat numbers (the currently reserved seat and the one to move
to).

When developing this service, it will likely use technologies such as EJB3, Hibernate etc. to implement
the business logic. In this example we shall ignore how the business logic is implemented and
concentrate on the service.

The role of the service is to plug the logic into the bus. In order to do this, we must determine how
the service is exposed on to the bus, i.e., what contract it defines for clients. In the current version
of JBossESB, that contract takes the form of the Messages that clients and services can exchange.
There is no formal specification for this contract within the ESB, i.e., at present it is something that the
developer defines and must communicate to clients out-of-band from the ESB. This will be rectified in
subsequent releases.

6.1.1. The Message Structure
From a service perspective, of all the components within a Message, the Body is probably the most
important, since it is used to convey information specific to the business logic. In order to interact, both
client and service must understand each other. This takes the form of agreeing on the transport (e.g.,
JMS or HTTP), as well as agreeing on the dialect (e.g., where in the Message data will appear and
what format it will take).

If we take the simple case of a client sending a Message directly to our Flight Reservation service,
then we need to determine how the service can determine which of the operations the Message
concerns. In this case the developer decides that the opcode (operation code) will appear within the
Body as a String (“reserve”, “query”, “upgrade”) at the location “org.example.flight.opcode”. Any other
String value (or the absence of any value) will be considered an illegal Message.

Chapter 6. Example

42

Note
It is important that all values within a Message are given unique names, to avoid
clashes with other clients or services.

The Message Body is the primary way in which data should be exchanged between clients and
services. It is flexible enough to contain any number of arbitrary data type. The other parameters
necessary for carrying out the business logic associated with each operation would also be suitably
encoded.

• org.example.flight.seatnumber for the seat number, which will be an integer.

• org.example.flight.flightnumber for the flight number, which will be a String.

• org.example.flight.upgradenumber for the upgraded seat number, which will be an integer.

Operation opcode seatnumber flightnumber upgradenumber

reserveSeat String: reserve integer String N/A

querySeat String: query integer String N/A

upgradeSeat String: upgrade integer String integer

Table 6.1. Operation Parameters

As we have mentioned, all of these operations return information to the client. Such information
will likewise be encapsulated within a Message. The determination of the format of such response
Messages will go through the same processes as we are currently describing. For simplification
purposes we shall not consider the response Messages further.

From a JBossESB Action perspective, the service may be built using one or more Actions. For
example, one Action may pre-process the incoming Message and transform the content in some way,
before passing it on to the Action which is responsible for the main business logic. Each of these
Actions may have been written in isolation (possibly by different groups within the same organization
or by completely different organizations). It is important that each Action have a unique view of the
Message data that it acts on. If this is not the case it is possible for chained Actions to overwrite or
otherwise interfere with each other.

6.1.2. The Service
At this point we have enough information to construct the service. For simplicity, we shall assume that
the business logic is encapsulated within the following pseudo-object:

class AirlineReservationSystem
{
 public void reserveSeat (...);
 public void querySeat (...);
 public void upgradeSeat (...);
}

Unpacking the payload

43

Note
You could develop your business logic from POJOs, EJBs, Spring etc. JBossESB
provides support for many of these approaches out of the box. You should examine the
relevant documentation and examples.

The process method of the service Action (we'll assume no chaining of Actions) then becomes
(ignoring error checking):

public Message process (Message message) throws Exception
{
 String opcode = message.getBody().get(“org.example.flight.opcode”);

 if (opcode.equals(“reserve”))
 reserveSeat(message);

 else if (opcode.equals(“query”))
 querySeat(message);

 else if (opcode.equals(“upgrade”))
 upgradeSeat(message);

 else
 throw new InvalidOpcode();

 return null;
}

Note
As with WS-Addressing, rather than embed the opcode within the Message Body, you
could use the Action field of the Message Header. This has the drawback that it does
not work if multiple JBossESB Actions are chained together and each needs a different
opcode.

6.1.3. Unpacking the payload
As you can see, the process method is only the start. Now we must provide methods to decode the
incoming Message payload (the Body):

public void reserveSeat (Message message) throws Exception
{
 int seatNumber = message.getBody().get(“org.example.flight.seatnumber”);
 String flight =
 message.getBody().get(“org.example.flight.flightnumber”);

 boolean success =
 airlineReservationSystem.reserveSeat(seatNumber, flight);

Chapter 6. Example

44

 // now create a response Message
 Message responseMessage = ...

 responseMessage.getHeader().getCall().setTo(
 message.getHeader().getCall().getReplyTo()
);

 responseMessage.getHeader().getCall().setRelatesTo(
 message.getHeader().getCall().getMessageID()
);

 // now deliver the response Message
}

What this method illustrates is how the information within the Body is extracted and then used to
invoke a method on some business logic. In the case of reserveSeat, a response is expected by the
client. This response Message is constructed using any information returned by the business logic as
well as delivery information obtained from the original received Message. In this example, we need the
To address for the response, which we take from the ReplyTo field of the incoming Message. We also
need to relate the response with the original request and we accomplish this through the RelatesTo
field of the response and the MessageID of the request.

All of the other operations supported by the service will be similarly coded.

6.1.4. The Client
As soon as we have the Message definitions supported by the service, we can construct the client
code. The business logic used to support the service is never exposed directly by the service (that
would break one of the important principles of SOA: encapsulation). This is essentially the inverse of
the service code:

ServiceInvoker flightService = new ServiceInvoker(...);
Message request = // create new Message of desired type

request.getBody().add(“org.example.flight.seatnumber”,
<xslthl:number>1</xslthl:number>
);
request.getBody().add(“ org.example.flight.flightnumber”, “BA1
<xslthl:number>234</xslthl:number>
”);

request.getHeader().getCall().setMessageID(
<xslthl:number>1234</xslthl:number>
);
request.getHeader().getCall().setReplyTo(myEPR);

Message response = null;

do
{
 response = flightService.deliverSync(request,

Hints and Tips

45

<xslthl:number>1000</xslthl:number>
);

 if (response.getHeader().getCall().getRelatesTo() ==
<xslthl:number>1234</xslthl:number>
)
 {
 // it's out response!

 break;
 }
 else
 response = null; // and keep looping

} while maximumRetriesNotExceeded;

Note
Much of what we have outlined above may seem similar to those who have worked with
traditional client/server stub generators. In those systems, the low-level details, such
as opcodes and parameters, would be hidden behind higher level stub abstractions.
In future releases of JBossESB we intend to support such abstractions to easy the
development approach. As such, working with the raw Message components, such as
Body and Header, will be hidden from the majority of developers.

6.1.5. Hints and Tips
You may find the following useful when developing your clients and services.

• When developing your Actions make sure that any payload information specific to an Action is
maintained in unique locations within the Message Body.

• Try not to expose any back-end service implementation details within your Message. This will make
it difficult to change the implementation without affecting clients. Message definitions (contents,
formats etc.) which are implementation agnostic help to maintain loose coupling.

• For stateless services, use the ServiceInvoker as it will opaquely handle fail-over.

• When building request/response applications, use the correlation information (MessageID and
RelatesTo) within the Message Header.

• Consider using the Header Action field for your main service opcode.

• If using asynchronous interactions in which there is no delivery address for responses, consider
sending any errors to the MessageStore so that they can be monitored later.

• Until JBossESB provides more automatic support for service contract definition and publication,
consider maintaining a separate repository of these definitions that is available to developers and
users.

46

Chapter 7.

47

Advanced Topics
In this chapter we shall look at some more advanced concepts within JBossESB.

7.1. Fail-over and Load-balancing Support
In mission critical systems it is important to design with redundancy in mind. The JBoss ESB
includes built-in fail-over, load balancing and delayed message redelivery to help you build a robust
architecture. When you use SOA it is implied that the Service has become the building unit. JBossESB
allows you to replicate identical services across many nodes. Where each node can be a virtual or
physical machine running an instance of JBossESB. The collective of all these JBossESB instances
is called "The Bus". Services within the bus use different delivery channels to exchange messages.
In ESB terminology one such channel maybe JMS, FTP, HTTP, etc. These different "protocols" are
provided by systems external to the ESB; the JMS-provider, the FTP server, etc. Services can be
configured to listen to one or more protocols. For each protocol that it is configured to listen on, it
creates an End Point Reference (EPR) in the Registry.

7.1.1. Services, EPRs, listeners and actions
As we have discussed previously, within the jboss-esb.xml each service element consists of one
or more listeners and one or more actions. Let's take a look at the JBossESBHelloworld example.
The configuration fragment below is loosely based on the configuration of the JBossESBHelloworld
example. When the service initializes it registers the category, name and description to the UDDI
registry. Also for each listener element it will register a ServiceBinding to UDDI, in which it stores an
EPR. In this case it will register a JMSEPR for this service, as it is a jms-listener. The jms specific
like queue name etc are not shown, but appeared at the top of the jboss-esb.xml where you can find
the 'provider' section. In the jms-listener we can simply reference the "quickstartEsbChannel" in the
busidref attribute.

Figure 7.1. helloworld quickstart example, one service instance on one node.

Chapter 7. Advanced Topics

48

...
<service category="FirstServiceESB" name="SimpleListener" description="Hello
 World">
 <listeners>
 <jms-
listener name="helloWorld" busidref="quickstartEsbChannel" maxThreads="1"/
>
 </listeners>
 <actions>

 <action name="action1" class="org.jboss.soa.esb.actions.SystemPrintln"/
>
 </actions>
</service>
...

Example 7.1. helloworld quickstart example, configuration fragment

Given the category and service name, another service can send a message to our Hello World Service
by looking up the Service in the Registry. It will receive the JMSEPR and it can use that to send a
message to. All this heavy lifting is done in the ServiceInvoker class. When our HelloWorld Service
receives a message over the quickstartEsbChannel, it will hand this message to the process method
of the first action in the ActionPipeline, which is the SystemPrintln action.

Note
Because ServiceInvoker hides much of the fail-over complexity from users, it
necessarily only works with native ESB Messages. Additionally not all gateways have
been modified to use the ServiceInvoker, so incoming ESB-unaware messages to
those gateway implementations may not always be able to take advantage of service
fail-over.

7.1.2. Replicated Services
In our example we have this service running on let's say Node1. What happens if we simply take
the helloworld.esb and deploy it to Node2 as well (see figure 7-2)? Let's say we're using jUDDI
for our Registry and we have configured all our nodes to access one central jUDDI database (it
is recommended to use a clustered database for that). Node2 will find that the FirstServiceESB -
SimpleListener Service is already registered! It will simply add a second ServiceBinding to this service.
So now we have 2 ServiceBindings for this Service. We now have our first replicated Service! If Node1
goes down, Node2 will keep on working.

Replicated Services

49

Figure 7.2. Two service instances each on a different node.

You will get load balancing as both service instances listen to the same queue. However this means
that we still have a single point of failure in our setup. This is where Protocol Clustering maybe an
option, which we shall describe in the next section.

This type of replication can be used to increase the availability of a service or to provide load
balancing. To further illustrate, consider the diagram below which has a logical service (Application
Service) that is actually comprised of 4 individual services, each of which provides the same
capabilities and conforms to the same service contract. They differ only in that they do not need
to share the same transport protocol. However, as far as the users of Application Service are
concerned they see only a single service, which is identified by the service name and category. The
ServiceInvoker hides the fact that Application Service is actually composed of 4 other services from

Chapter 7. Advanced Topics

50

the clients. It masks failures of the individual services and will allow clients to make forward progress
as long as at least one instance of the replicated service group remains available.

Note
This type of replication should only be used for stateless services.

Replicated Services

51

Although service providers can replicate services independantly of service consumers, in some
circumstances the sender of a message will not want silent fail-over to occur. You need to set the

Chapter 7. Advanced Topics

52

message property org.jboss.soa.esb.exceptionOnDeliverFailure to true to prevent automatic silent
fail-over. When you set this property a MessageDeliverException is thrown by the ServiceInvoker
instead of attempting to resend the message. This can be specified for all Messages by setting this
property in the Core section of the JBossESB property file.

7.1.3. Protocol Clustering
Some JMS providers can be clustered. JBossMessaging is one of these providers, which is why we
use this as our default JMS provider in JBossESB. When you cluster JMS you remove a single point of
failure from your architecture, see Figure 7-3.

Figure 7.3. Protocol Clustering example using JMS

Please read the documentation on Clustering for JBossMessaging if you want to enable JMS
clustering. Both JBossESB replication and JMS clustering can be used together, as illustrated in the
following figure. In this example, Service A is identified in the registry by a single JMSEpr. However,
opaquely to the client, that JMSEpr points to a clustered JMS queue, which has been separately
configured to support 3 services. This is a federated approach to availability and load balancing. In
fact masking the replication of services from users (the client in the case of the JBossESB replication

Protocol Clustering

53

approach, and JBossESB in the case of the JMS clustering) is in line with SOA principles: hiding these
implementation details behind the service endpoint and not exposing them at the contract level.

Chapter 7. Advanced Topics

54

Note
If using JMS clustering in this way you will obviously need to ensure that your
configuration is correctly configured. For instance, if you place all of your ESB services
within a JMS cluster then you cannot expect to benefit from ESB replication.

Other examples of Protocol Clustering would be a NAS for the FileSystem protocol, but what if your
provider simply cannot provide any clustering? Well in that case you can add multiple listeners to
your service, and use multiple (JMS) providers. However this will require fail-over and load-balancing
across providers which leads us to the next section.

7.1.4. Clustering
If you would like to run the same service on more than one node in a cluster you have to wait for
service registry cache revalidation before the service is fully working in the clustered environment. You
can setup this cache revalidation timeout in deploy/jbossesb.sar/jbossesb-properties.xml:

<properties name="core">
<property name="org.jboss.soa.esb.registry.cache.life" value="60000"/>
</properties>

60 seconds is the default timeout.

7.1.5. Channel Fail-over and Load Balancing
Our HelloWorld Service can listen to more then 1 protocol. Here we have added an ftp channel.

...
<service category="FirstServiceESB" name="SimpleListener" description="Hello
 World">
 <listeners>
 <jms-listener name="helloWorld"
 busidref="quickstartEsbChannel" maxThreads="1"/>
 <jms-
listener name="helloWorld2" busidref="quickstartFtpChannel2" maxThreads="1"/
>
 </listeners>
...

Now our Service is simultaneously listening to two JMS queues. Now these queues can be provided
by JMS providers on different physical boxes! So we now have a made a redundant JMS connection
between two services. We can even mix protocols in this setup, so we can also add and ftp-listener to
the mix.

Channel Fail-over and Load Balancing

55

Figure 7.4. Adding two FTP servers to the mix.

Chapter 7. Advanced Topics

56

...
<service category="FirstServiceESB" name="SimpleListener"
 description="Hello World">
 <listeners>
 <jms-listener name="helloWorld" busidref="quickstartEsbChannel"
 maxThreads="1"/>
 <jms-listener name="helloWorld2" busidref="quickstartJmsChannel2"
 maxThreads="1"/>
 <ftp-listener name="helloWorld3" busidref="quickstartFtpChannel3"
 maxThreads="1"/>
 <ftp-listener name="helloWorld4" busidref="quickstartFtpChannel3"
 maxThreads="1"/>
 </listeners>
...

When the ServiceInvoker tries to deliver a message to our Service it will get a choice of
8 EPRs now (4 EPRs from Node1 and 4 EPRs from Node2). How will it decide which one
to use? For that you can configure a Policy. In the jbossesb-properties.xml you can set the
'org.jboss.soa.esb.loadbalancer.policy'. Right now three Policies are provided, or you can create your
own.

• First Available. If a healthy ServiceBinding is found it will be used unless it dies, and it will move to
the next EPR in the list. This Policy does not provide any load balancing between the two service
instances.

• Round Robin. Typical Load Balance Policy where each EPR is hit in order of the list.

• Random Robin. Like the other Robin but then random.

The EPR list the Policy works with may get smaller over time as dead EPRs will be
removed from the (cached) list. When the list is emptied or the time-to-live of the list cache
is exceeded, the ServiceInvoker will obtain a fresh list of EPRs from the Registry. The
'org.jboss.soa.esb.registry.cache.life' can be set in the jbossesb-properties file, and is defaulted
to 60,000 milliseconds. What if none of the EPRs work at the moment? This is where we may use
Message Redelivery Service.

7.1.6. Message Redelivery
If the list of EPRs contains nothing but dead EPRs the ServiceInvoker can do one of two things:

• If you are trying to deliver the message synchronously it will send the message to the
DeadLetterService, which by default will store to the DLQ MessageStore, and it will send a failure
back to the caller. Processing will stop. Note that you can configure the DeadLetterService in the
jbossesb.esb if for instance you want it to go to a JMS queue, or if you want to receive a notification.

• If you are trying to deliver the message asynchronously (recommended), it too will send the
message to the DeadLetterService, but the message will get stored to the RDLVR MessageStore.
The Redeliver Service (jbossesb.esb) will retry sending the message until the maximum number of
redelivery attempts is exceeded. In that case the message will get stored to the DLQ MessageStore
and processing will stop.

Message Redelivery

57Figure 7.5. Message Relivery

Chapter 7. Advanced Topics

58

Note
The DeadLetterService is turned on by default, however in the jbossesb-
properties.xml you could set org.jboss.soa.esb.dls.redeliver to false to
turn off its use.

7.2. Scheduling of Services
JBoss ESB 4.3 GA supports two types of providers.

1. Bus Providers, which supply messages to action processing pipelines via messaging protocols
such as JMS and HTTP. This provider type is “triggered” by the underlying messaging provider.

2. Schedule Providers, which supply messages to action processing pipelines based on a schedule
driven model i.e. where the underlying message delivery mechanism (e.g. the file system) offers
no support for triggering the ESB when messages are available for processing, a scheduler
periodically triggers the listener to check for new messages.

Scheduling is new to the JBoss ESB and not all of the listeners have been migrated over to this model
yet.

JBoss ESB 4.3 GA offers a <schedule-listener> as well as 2 <schedule-
provider> types - <simple-schedule> and <cron-schedule>. The <schedule-
listener> is configured with a “composer” class, which is an implementation of the
org.jboss.soa.esb.listeners.ScheduledEventMessageComposer interface.

7.2.1. Simple Schedule
This schedule type provides a simple scheduling capability based on a the following attributes:

scheduleid
A unique identifier string for the schedule. Used to reference a schedule from a listener.

frequency
The frequency (in seconds) with which all schedule listeners should be triggered.

execCount
The number of times the schedule should be executed.

startDate
The schedule start date and time. The format of this attribute value is that of the XML Schema
type “dateTime”. See dateTime.

endDate
The schedule end date and time. The format of this attribute value is that of the XML Schema type
“dateTime”. See dateTime.

Example:

<providers>
 <schedule-provider name="schedule">

Cron Schedule

59

 <simple-schedule scheduleid="1-sec-trigger" frequency="1" execCount="5"
 />
 </schedule-provider>
</providers>

7.2.2. Cron Schedule
This schedule type provides scheduling capability based on a CRON expression. The attributes for
this schedule type are as follows:

scheduleid
A unique identifier string for the schedule. Used to reference a schedule from a listener

cronExpression
CRON expression

startDate
The schedule start date and time. The format of this attribute value is that of the XML Schema
type “dateTime”. See dateTime.

endDate
The schedule end date and time. The format of this attribute value is that of the XML Schema type
“dateTime”. See dateTime.

Example:

<providers>
 <schedule-provider name="schedule">
 <cron-schedule scheduleid="cron-trigger" cronExpression="0/1 * * * * ?"
 />
 </schedule-provider>
</providers>

7.2.3. Scheduled Listener
The <scheduled-listener> can be used to perform scheduled tasks based on a <simple-schedule> or
<cron-schedule> configuration.

It's configured with an event-processor class, which can be an implementation
of one of org.jboss.soa.esb.schedule.ScheduledEventListener or
org.jboss.soa.esb.listeners.ScheduledEventMessageComposer.

ScheduledEventListener
Event Processors that implement this interface are simply triggered through the “onSchedule”
method. No action processing pipeline is executed.

ScheduledEventMessageComposer
Event Processors that implement this interface are capable of “composing” a message for the
action processing pipeline associated with the listener.

Chapter 7. Advanced Topics

60

The attributes of this listener are:

1. name
The name of the listener instance

2. event-processor
The event processor class that's called on every schedule trigger. Se above for
implementation details.

3. One of:

scheduleidref
The scheduleid of the schedule to use for triggering this listener.

schedule-frequency
Schedule frequency (in seconds). A convenient way of specifying a simple schedule directly
on the listener.

7.2.4. Example Configurations
The following is an example configuration involving the <scheduled-listener> and the <cron-schedule>.

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/
product/etc/schemas/xml/jbossesb-1.0.1.xsd">

 <providers>
 <schedule-provider name="schedule">
 <cron-schedule scheduleid="cron-trigger" cronExpression="0/1
 * * * * ?" />
 </schedule-provider>
 </providers>

 <services>

 <service category="ServiceCat" name="ServiceName" description="Test
 Service">

 <listeners>
 <scheduled-listener name="cron-schedule-
listener" scheduleidref="cron-trigger"
 event-
processor="org.jboss.soa.esb.schedule.MockScheduledEventMessageComposer"
 />
 </listeners>

 <actions>

 <action name="action" class="org.jboss.soa.esb.mock.MockAction" />
 </actions>
 </service>

Quartz Scheduler Property Configuration

61

 </services>

</jbossesb>

7.2.5. Quartz Scheduler Property Configuration
The Scheduling functionality in JBossESB is built on top of the Quartz Scheduler. The default Quartz
Scheduler instance configuration used by JBossESB is as follows:

org.quartz.scheduler.instanceName = DefaultQuartzScheduler
org.quartz.scheduler.rmi.export = false
org.quartz.scheduler.rmi.proxy = false
org.quartz.scheduler.wrapJobExecutionInUserTransaction = false

org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount =
<xslthl:number>2</xslthl:number>

org.quartz.threadPool.threadPriority =
<xslthl:number>5</xslthl:number>

org.quartz.threadPool.threadsInheritContextClassLoaderOfInitializingThread
 = true

org.quartz.jobStore.misfireThreshold =
<xslthl:number>60000</xslthl:number>

org.quartz.jobStore.class = org.quartz.simpl.RAMJobStore

Any of these Scheduler configurations can be overridden, or/and new ones can be added. You can
do this by simply specifying the configuration directly on the <schedule-provider> configuration as a
<property> element. For example, if you wish to increase the thread pool size to 5:

<schedule-provider name="schedule">
 <property name=”org.quartz.threadPool.threadCount” value=”5” />
 <cron-schedule scheduleid="cron-trigger" cronExpression="0/1 * * *
 * ?" />
</schedule-provider>

62

Chapter 8.

63

Fault-tolerance and Reliability
In this Chapter we shall look at the reliability characteristics of JBossESB. We shall examine what
failure modes you should expect to be tolerated with this release and give advice on how to improve
the fault tolerance of your applications. However, in order to proceed we need to define some
important terms. If you wish to skip the following sections because you understand this topic already,
you may go straight to the Reliability Guarantees section.

Dependability is defined as the trustworthiness of a component such that reliance can be justifiably
placed on the service (the behavior as perceived by a user) it delivers. The reliability of a component is
a measure of its continuous correct service delivery. A failure occurs when the service provided by the
system no longer complies with its specification. An error is that part of a system state which is liable
to lead to failure, and a fault is defined as the cause of an error.

A fault-tolerant system is one which is designed to fulfill its specified purpose despite the occurrence of
component failures. Techniques for providing fault-tolerance usually require mechanisms for consistent
state recovery mechanisms, and detecting errors produced by faulty components. A number of fault-
tolerance techniques exist, including replication and transactions.

8.1. Failure classification
It is necessary to formally describe the behaviour of a system before the correctness of applications
running on it can be demonstrated. This process establishes behaviourable restrictions for
applications, and clarifies the implications in weakening or strengthening these restrictions.

Categorizing system components according to the types of faults they are assumed to exhibit is a
recommended method of building such a formal description with respect to fault-tolerance.

Each component in the system has a specification of its correct behavior for a given set of inputs.
A non-faulty component will produce an output that is in accordance with this specification. The
response from a faulty component need not be as specified. The response from a given component
for a given input will be considered to be correct if both the output value is correct and it is produced
within a specified time limit.

Four possible classifications of failures are: omission, value, timing, and arbitrary.

Omission fault/failure
A component that does not respond to an input from another component, and thereby fails by not
producing the expected output is exhibiting an omission fault and the corresponding failure an
omission failure. A communication link which occasionally loses messages is an example of a
component suffering from an omission fault.

Value fault/failure
A fault that causes a component to respond within the correct time interval but with an
incorrect value is termed a value fault (with the corresponding failure called a value failure). A
communication link which delivers corrupted messages on time suffers from a value fault.

Timing fault/failure
A timing fault causes the component to respond with the correct value but outside the specified
interval (either too soon, or too late). The corresponding failure is a timing failure. An overloaded
processor which produces correct values but with an excessive delay suffers from a timing failure.
Timing failures can only occur in systems which impose timing constraints on computations.

Chapter 8. Fault-tolerance and Reliability

64

Arbitrary fault/failure
The previous failure classes have specified how a component can be considered to fail in either
the value or time domain. It is possible for a component to fail in both the domains in a manner
which is not covered by one of the previous classes. A failed component which produces such an
output will be said to be exhibiting an arbitrary failure (Byzantine failure).

An arbitrary fault causes any violation of a component’s specified behavior. All other fault types
preclude certain types of fault behavior, the omission fault type being the most restrictive. Thus the
omission and arbitrary faults represent two ends of a fault classification spectrum, with the other fault
types placed in between. The latter failure classifications thus subsume the characteristics of those
classes before them, e.g., omission faults (failures) can be treated as a special case of value, and
timing faults (failures). Such ordering can be represented as a hierarchy:

Figure 8.1. Fault classification hierarchy

8.1.1. JBossESB and the Fault Models
Within JBossESB there is nothing that will allow it to tolerate Byzantine/arbitrary failures. As you can
probably imagine, these are extremely difficult failures to detect due to their nature. Protocols do exist
to allow systems to tolerate arbitrary failures, but they often require multi-phase coordination or digital
signatures. Future releases of JBossESB may incorporate support for some of these approaches.

Because value, timing and omission failures often require semantic information concerning the
application (or specific operations), there is only so much that JBossESB can do directly to assist
with these types of faults. However, by correct use of JBossESB capabilities such as RelatesTo and
MessageID within the Message header, it is possible for applications to determine whether or not a
received Message is the one they are waiting for or a delayed Message, for example. Unfortunately
Messages that are provided too soon by a service, e.g., asynchronous one-way responses to one-way
requests, may be lost due to the underlying transport implementation. For instance, if using a protocol
such as HTTP there is a finite buffer (set at the operating system level) within which responses can be
held before they are passed to the application. If this buffer is exceeded then information within it may
be lost in favor of new Messages. Transports such as FTP or SQL do not necessarily suffer from this
specific limitation, but may exhibit other resource restrictions that can result in the same behavior.

Tolerating Messages that are delayed is sometimes easier than tolerating those that arrive too early.
However, from an application perspective, if an early Message is lost (e.g., by buffer overflow) it is not
possible to distinguish it from one that is infinitely delayed. Therefore, if you construct your applications

Failure Detectors and Failure Suspectors

65

(consumers and services) to use a retry mechanism in the case of lost Messages, timing and omission
failures should be tolerated, with the following exception: your consumer picks up an early response
out of order and incorrectly processes it (which then becomes a value failure). Fortunately if you use
RelatesTo and MessageID within the Message header, you can spot incorrect Message sequences
without having to process the entire payload (which is obviously another option available to you).

Within a synchronous request-response interaction pattern, many systems built upon RPC will
automatically resend the request if a response has not been received within a finite period of time.
Unfortunately at present JBossESB does not do this and you will have to used the timeout mechanism
within Couriers or ServiceInvoker to determine when (and whether) to send the Message again. As we
saw in the Advanced Chapter, it will retransmit the Message if it suspects a failure of the service has
occurred that would affect Message delivery.

Note
You should use care when retransmitting Messages to services. JBossESB currently
has no notion of retained results or detecting retransmissions within the service, so
any duplicate Messages will be delivered to the service automatically. This may mean
that your service receives the same Message multiple times (e.g., it was the initial
service response that got lost rather than the initial request). As such, your service may
attempt to perform the same work. If using re-transmission (either explicitly or through
the ServiceInvoker fail-over mechanisms), you will have to deal with multiple requests
within your service to ensure it is idempotent.

The use of transactions (such as those provided by JBossTS) and replication protocols (as provided
by systems like JGroups) can help to tolerate many of these failure models. Furthermore, in the case
where forward progress is not possible because of a failure, using transactions the application can
then roll back and the underlying transaction system will guarantee data consistency such that it will
appear as though the work was never attempted. At present JBossESB offers transactional support
through JBossTS when deployed within the JBoss Application Server.

8.1.2. Failure Detectors and Failure Suspectors
An ideal failure detector is one which can allow for the unambiguous determination of the liveliness
of an entity, (where an entity may be a process, machine etc.,), within a distributed system. However,
guaranteed detection of failures in a finite period of time is not possible because it is not possible to
differentiate between a failed system and one which is simply slow in responding.

Current failure detectors use timeout values to determine the liveness of entities: for example, if
a machine does not respond to an “are-you-alive?” message within a specified time period, it is
assumed to have failed. If the values assigned to such timeouts are wrong (e.g., because of network
congestion), incorrect failures may be assumed, potentially leading to inconsistencies when some
machines “detect” the failure of another machine while others do not. Therefore, such timeouts are
typically assigned given what can be assumed to be the worst case scenario within the distributed
environment in which they are to be used, e.g., worst case network congestion and machine load.
However, distributed systems and applications rarely perform exactly as expected from one execution
to another. Therefore, fluctuations from the worst case assumptions are possible, and there is always
a finite probability of making an incorrect failure detection decision.

Guaranteed failure detection is not possible. However, known active entities can communicate
with each other and agree that an unreachable entity may have failed. This is the work of a failure

Chapter 8. Fault-tolerance and Reliability

66

suspector. Therefore, if one entity assumes another has failed, a protocol is executed between the
remaining entities to either agree that it will be assumed to have failed (in which case it is excluded
from the system and no further work by it will be accepted) or that it has not failed. The fact that one
entity thinks it has failed does not mean that all entities will reach the same decision. If the entity has
not failed and is excluded then it must eventually execute another protocol to be recognised as being
alive.

The advantage of the failure suspector is that all correctly functioning entities within the distributed
environment will agree upon the liveness of another suspected failed entity. The disadvantage is that
such failure suspection protocols are heavy-weight, typically requiring several rounds of agreement. In
addition, since suspected failure is still based upon timeout values, it is possible for non-failed entities
to be excluded, thus reducing (possibly critical) resource utilisation and availability.

Some applications can tolerate the fact that failure detection mechanisms may occasionally return
an incorrect answer. However, for other applications the incorrect determination of the liveliness of
an entity may lead to problems such as data corruption, or in the case of mission critical applications
(e.g., aircraft control systems or nuclear reactor monitoring) could result in loss of life.

At present JBossESB does not support failure detectors or failure suspectors. We hope to address this
shortcoming in future releases. For now you should develop your consumers and services using the
techniques previously mentioned (e.g., MessageID and time-out/retry) to attempt to determine whether
or not a given service has failed. In some situations it is better and more efficient for the application to
detect and deal with suspected failures.

8.2. Reliability Guarantees
As we have seen, there are a range of ways in which failures can happen within a distributed system.
In this section we will translate those into concrete examples of how failures could affect JBossESB
and applications deployed on it. In the section on Recommendations we shall cover ways in which you
can configure JBossESB to better tolerate these faults, or how you should approach your application
development.

There are many components and services within JBossESB. The failure of some of them may go
unnoticed to some or all of your applications depending upon when the failure occurs. For example,
if the Registry Service crashes after your consumer has successfully obtained all necessary EPR
information for the services it needs in order to function, then it will have no adverse affect on your
application. However, if it fails before this point, your application will not be able to make forward
progress. Therefore, in any determination of reliability guarantees it is necessary to consider when
failures occur as well as the types of those failures.

It is never possible to guarantee 100% reliability and fault tolerance. Hardware failure and human
error is inevitable. However you can ensure with a high degree of probability that a system will
tolerate failures, ensure data consistency and make forward progress. Fault-tolerance techniques
such as transactions or replication always comes at the cost of performance. This trade-off between
performance and fault-tolerance is best achieved with knowledge of the application. Attempting
to uniformly impose a specific approach to all applications inevitably leads to poorer performance
in situations where it was not necessary. As such, you will find that many of the fault-tolerance
techniques supported by JBossESB are disabled by default. You should enable them when it makes
sense to do so.

Message Loss

67

8.2.1. Message Loss
We have previously discussed how message loss or delay may adversely affect applications. We have
also shown some examples of how messages could be lost within JBossESB. In this section we shall
discuss message loss in more detail.

Many distributed systems support reliable message delivery, either point-to-point (one consumer and
one provider) or group based (many consumers and one provider). Typically the semantics imposed
on reliability are that the message will be delivered or the sender will be able to know with certainty
that it did not get to the receiver, even in the presence of failures. It is frequently the case that systems
employing reliable messaging implementations distinguish between a message being delivered to the
recipient and it being processed by the recipient: for instance, simply getting the message to a service
does not mean much if a subsequent crash of the service occurs before it has time to work on the
contents of the message.

Within JBossESB, the only transport you can use which gives the above mentioned failure semantics
on Message delivery and processing is JMS: with transacted sessions (an optional part of the
JMSEpr), it is possible to guarantee that Messages are received and processed in the presence of
failures. If a failure occurs during processing by the service, the Message will be placed back on to the
JMS queue for later re-processing. However, this does have some important performance implications:
transacted sessions can be significantly slower than non-transacted sessions so should be used with
caution.

Because none of the other transports supported by JBossESB come with transactional or reliable
delivery guarantees, it is possible for Messages to be lost. However, in most situations the likelihood
of this occurring is small. Unless there is a simultaneous failure of both sender and receiver (possible
but not probable), the sender will be informed by JBossESB about any failure to deliver the Message.
If a failure of the receiver occurs whilst processing and a response was expected, then the receiver will
eventually time-out and can retry.

Note
Using asynchronous message delivery can make failure detection/suspicion difficult
(theoretically impossible to achieve). You should consider this aspect when developing
your applications.

For these reasons, the Message fail-over and redelivery protocol that was described in the Advanced
Chapter is a good best-effort approach. If a failure of the service is suspected then it will select an
alternative EPR (assuming one is available) and use it. However, if this failure suspicion is wrong, then
it is possible that multiple services will get to operate on the same Message concurrently. Therefore,
although it offers a more robust approach to fail-over, it should be used with care. It works best where
your services are stateless and idempotent, i.e., the execution of the same message multiple times is
the same as executing it once.

For many services and applications this type of redelivery mechanism is fine. The robustness it
provides over a single EPR can be a significant advantage. The failure modes where it does not work,
i.e., where the client and service fails or the service is incorrectly assumed to have failed, are relatively
uncommon. If your services cannot be idempotent, then until JBossESB supports transactional
delivery of messages or some form of retained results, you should either use JMS or code your
services to be able to detect retransmissions and cope with multiple services performing the same
work concurrently.

Chapter 8. Fault-tolerance and Reliability

68

8.2.2. Suspecting Endpoint Failures
We saw earlier how failure detection/suspicion is difficult to achieve. In fact until a failed machine
recovers, it is not possible to determine the difference between a crashed machine or one that is
simply running extremely slowly. Networks can also become partitioned - a situation where the
network becomes divided, and effectively acts as two or more separate networks. When this happens
consumers on different parts of the network can only see the services available in their part of the
network. This is sometimes called "split-brain syndrome".

8.2.3. Supported Crash Failure Modes
When using transactions or a reliable message delivery protocol such as JMS, JBossESB is able to
recover from a catastrophic failure that shuts down the entire system.

Without these, JBossESB can only tolerate failures when the liveness of the endpoints involved can be
guaranteed.

8.2.4. Component Specifics
In this section we shall look at specific components and services within JBossESB.

8.2.5. Gateways
Once a message is accepted by a Gateway it will not be lost unless sent within the ESB using an
unreliable transport. All of the following JBossESB transports can be configured to either reliably
deliver the Message or ensure it is not removed from the system: JMS, FTP, SQL. Unfortunately HTTP
cannot be so configured.

8.2.6. ServiceInvoker
The ServiceInvoker will place undeliverable Messages to the Redelivery Queue if sent
asynchronously. Synchronous Message delivery that fails will be indicated immediately to the sender.
In order for the ServiceInvoker to function correctly the transport must indicate an unambiguous failure
to deliver to the sender. A simultaneous failure of the sender and receiver may result in the Message
being lost.

8.2.7. JMS Broker
Messages that cannot be delivered to the JMS broker will be queued within the Redelivery Queue. For
enterprise deployments a clustered JMS broker is recommended.

8.2.8. Action Pipelining
As with most distributed systems, we differentiate between a Message being received by the container
within which services reside and it being processed by the ultimate destination. It is possible for
Messages to be delivered successfully but for an error or crash during processing within the Action
pipeline to cause it to be lost. As mentioned previously, it is possible to configure some of the
JBossESB transports to they do not delete received Messages when they are processed, so they will
not be lost in the event of an error or crash.

Recommendations

69

8.3. Recommendations
Given the previous overview of failure models and the capabilities within JBossESB to tolerate them,
we arrive at the following recommendations:

• Try to develop stateless and idempotent services. If this is not possible, use MessageID to identify
Messages so your application can detect retransmission attempts. If retrying Message transmission,
use the same MessageID. Services that are not idempotent and would suffer from redoing the
same work if they receive a retransmitted Message, should record state transitions against the
MessageID, preferably using transactions. Applications based around stateless services tend to
scale better as well.

• If developing stateful services, use transactions and a JMS implementation (clustered preferably).

• Cluster your Registry and use a clustered/fault-tolerant back-end database, to remove any single
points of failure.

• Ensure that the Message Store is backed by a highly available database.

• Clearly identify which services and which operations on services need higher reliability and fault
tolerance capabilities than others. This will allow you to target transports other than JMS at those
services, potentially improving the overall performance of applications. Because JBossESB allows
services to be used through different EPRs concurrently, it is also possible to offer these different
qualities of service (QoS) to different consumers based on application specific requirements.

• Because network partitions can make services appear as though they have failed, avoid transports
that are more prone to this type of failure for services that cannot cope with being misidentified as
having crashed.

• In some situations (e.g., HTTP) the crash of a server after it has dealt with a message but before
it has responded could result in another server doing the same work because it is not possible to
differentiate between a machine that fails after the service receives the message and process it, and
one where it receives the message and doesn't process it.

• Using asynchronous (one-way) delivery patterns will make it difficult to detect failures of services:
there is typically no notion of a lost or delayed Message if responses to requests can come at
arbitrary times. If there are no responses at all, then it obviously makes failure detection more
problematical and you may have to rely upon application semantics to determine that Messages
did not arrive, e.g., the amount of money in the bank account does not match expectations. When
using either the ServiceInvoker or Couriers to delivery asynchronous Messages, a return from the
respective operation (e.g., deliverAsync) does not mean the Message has been acted upon by the
service.

• The Message Store is used by the redelivery protocol. However, as mentioned previously this is
a best-effort protocol for improved robustness and does not use transactions or reliable message
delivery. This means that certain failures may result in Messages being lost entirely (they do not get
written to the store before a crash), or delivered multiple times (the redelivery mechanism pulls a
Message from the store, delivers it successfully but there is a crash that prevents the Message from
being removed from the store; upon recovery the Message will be delivered again).

• Some transports, such as FTP, can be configured to retain Messages that have been processed,
although they will be uniquely marked to differentiate them from un-processed Messages. The
default approach is often to delete Messages once they have been processed, but you may want to

Chapter 8. Fault-tolerance and Reliability

70

change this default to allow your applications to determine which Messages have been dealt with
upon recovery from failures.

Despite what you may have read in this Chapter, failures are uncommon. Over the years hardware
reliability has improved significantly and good software development practices including the use
of formal verification tools have reduced the chances of software problems. We have given the
information within this Chapter to assist you in determining the right development and deployment
strategies for your services and applications. Not all of them will require high levels of reliability and
fault tolerance, with associated reducing in performance. However, some of them undoubtedly will.

Chapter 9.

71

Configuration

9.1. Overview
JBoss ESB 4.3 GA configuration is based on the jbossesb-1.0.1 XSD1. This XSD is always the
definitive reference for the ESB configuration.

Figure 9.1. JBoss ESB Configuration Model

1. <providers>
This part of the model centrally defines all the message <bus> providers used by the
message <listener>s, defined within the <services> section of the model.

2. <services>
This part of the model centrally defines all of the services under the control of a single
instance of JBoss ESB. Each <service> instance contains either a “Gateway” or “Message
Aware” listener definition.

By far the easiest way to create configurations based on this model, is to use an XSD aware XML
Editor such as the XML Editor in the Eclipse IDE. This provides the author with auto-completion
features when editing the configuration. Right mouse-click on the file -> Open With -> XML Editor.

1 http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd

http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd

Chapter 9. Configuration

72

9.2. Providers

Figure 9.2. Providers Configuration Model

The <providers> part of the configuration defines all of the message <provider> instances for a single
instance of the ESB. Two types of providers are currently supported:

• Bus Providers
These specify provider details for “Event Driven” providers i.e. for lsiteners that are “pushed”
messages. Examples of this provider type would be the <jms-provider>.

• Schedule Provider
Provider configurations for schedule driven listeners i.e. listeners that “pull” messages.

A Bus Provider (e.g. <jms-provider>) can contain multiple <bus> definitions. The <provider> can
also be decorated with <property> instances relating to provider specific properties that are common
across all <bus> instances defined on that <provider> (e.g. for JMS - “connection-factory”, “jndi-
context-factory” etc). Likewise, each <bus> instance can be decorated with <property> instances
specific to that <bus> instance (e.g. for JMS - “destination-type”, “destination-name” etc).

As an example, a provider configuration for JMS would be as follows:

Providers

73

<providers>
 <provider name="JBossMQ">
 <property name="connection-factory" value="ConnectionFactory" />
 <property name="jndi-URL" value="jnp://localhost:1099" />
 <property name="protocol" value="jms" />
 <property name="jndi-pkg-prefix" value="com.xyz"/>

 <bus busid="local-jms">
 <property name="destination-type" value="topic" />
 <property name="destination-name" value="queue/B" />
 <property name="message-selector" value="service='Reconciliation'"
 <property name=”persistent” value=”true”/>
 </bus>
 </provider>
</providers>

The above example uses the “base” <provider> and <bus> types. This is perfectly legal, but we
recommend use of the specialized extensions of these types for creating real configurations, namely
<jms-provider> and <jms-bus> for JMS. The most important part of the above configuration is the
busid attribute defined on the <bus> instance. This is a required attribute on the <bus> element/
type (including all of its specializations - <jms-bus> etc). This attribute is used within the <listener>
configurations to refer to the <bus> instance on which the listener receives its messages. More on this
later.

Chapter 9. Configuration

74

9.3. Services

Figure 9.3. Services Configuration Model

The <services> part of the configuration defines each of the Services under the management of this
instance of the ESB. It defines them as a series of <service> configurations. A <service> can also be
decorated with the following attributes.

Name Description Type Required

name The Service Name
under which the
Service is Registered in
the Service Registry.

xsd:string true

Services

75

Name Description Type Required

category The Service Category
under which the
Service is Registered in
the Service Registry.

xsd:string true

description Human readable
description of the
Service. Stored in the
Registry.

xsd:string true

Table 9.1. Service Attributes

A <service> may define a set of <listeners> and a set of <actions>. The configuration model defines a
“base” <listener> type, as well as specializations for each of the main supported transports i.e. <jms-
listener>, <sql-listener> etc.

The “base” <listener> defines the following attribute. These attribute definitions are inherited by all
<listener> extensions.

Name Description Type Required

name The name of the
listener. This attribute
is required primarily for
logging purposes.

xsd:string true

busrefid Reference to the busid
of the <bus> through
which the listener
instance receives
messages.

xsd:string true

maxThreads The max number of
concurrent message
processing threads that
the listener can have
active.

xsd:int True

is-gateway Whether or not the
listener instance is a
“Gateway”. 1

xsd:boolean true

1 A message bus defines the details of a specific message channel/transport.

Table 9.2. Listener Attributes

Listeners can define a set of zero or more <property> elements (just like the <provider> and <bus>
elements/types). These are used to define listener specific properties.

Note
For each gateway listener defined in a service, an ESB aware listener (or “native”)
listener must also be defined as gateway listeners do not define bidirectional endpoints,
but rather “startpoints” into the ESB. From within the ESB you cannot send a message
to a Gateway. Also, note that since a gateway is not an endpoint, it does not have an
Endpoint Reference (EPR) persisted in the registry.

Chapter 9. Configuration

76

An example of a <listener> reference to a <bus> can be seen in the following illustration (using “base”
types only).

A Service will do little without a list of one or more <actions>. <action>s typically contain the logic for
processing the payload of the messages received by the service (through it's listeners). Alternatively, it
may contain the transformation or routing logic for messages to be consumed by an external Service/
entity.

The <action> element/type defines the following attributes.

Name Description Type Required

name The name of the
action. This attribute is
required primarily for
logging purposes.

xsd:string true

class The
org.jboss.soa.esb.actions.ActionProcessor
implementation class
name.

xsd:string true

process The name of the
“process” method
that will be reflectively
called for message
processing.(Default is
the “process” method

xsd:int false

Transport Specific Type Implementations

77

Name Description Type Required
as defined on the
ActionProcessor
class).

Table 9.3. Action Attributes

In a list of <action> instances within an <actions> set, the actions are called (their “process” method
is called) in the order in which the <action> instances appear in the <actions> set. The message
returned from each <action> is used as the input message to the next <action> in the list.

Like a number of other elements/types in this model, the <action> type can also contain zero or more
<property> element instances. The <property> element/type can define a standard name-value-pair, or
contain free form content (xsd:any). According to the XSD, this free form content is valid child content
for the <property> element/type no matter where it is in the configuration (on any of <provider>, <bus>,
<listener> and any of their derivatives). However, it is only on <action> defined <property> instances
that this free form child content is used.

As stated in the <action> definition above, actions are implemented through implementing the
org.jboss.soa.esb.actions.ActionProcessor class. All implementations of this interface must contain a
public constructor of the following form:

public ActionZ(org.jboss.soa.esb.helpers.ConfigTree configuration);

It is The Constructor supplies an instance of a ConfigTree with the action attributes. The free form
content from the action property instances is also included in this.

So an example of an <actions> configuration might be as follows:

<actions>
 <action name="MyAction-1" class="com.acme.MyAction1"/>
 <action name="MyAction-2" class="com.acme.MyAction2">
 <property name=”propA” value=”propAVal” />
 </action>
 <action name="MyAction-3" class="com.acme.MyAction3">
 <property name=”propB” value=”propBVal” />
 <property name=”propC”>
 <!-- Free form child content... -->
 <some-free-form-element>zzz<some-free-form-element>
 </property>
 </action>
</actions>

9.4. Transport Specific Type Implementations
The JBoss ESB configuration model defines transport specific specializations of the “base” types
<provider>, <bus> and <listener> (JMS, SQL etc). This allows us to have stronger validation on the
configuration, as well as making configuration easier for those that use an XSD aware XML Editor
(e.g. the Eclipse XML Editor). These specializations explicitly define the configuration requirements
for each of the transports supported by JBoss ESB out of the box. It is recommended to use these

Chapter 9. Configuration

78

specialized types instead of the “base” types when creating JBoss ESB configurations, the only
alternative being where a new transport is being supported outside an official JBoss ESB release.

The same basic principals that apply when creating configurations from the “base” types also apply
when creating configurations from the transport specific alternatives:

1. Define the provider configuration e.g. <jms-provider>.

2. Add the bus configurations to the new provider (e.g. <jms-bus>), assigning a unique busid
attribute value.

3. Define your <services> as normal, adding transport specific listener configurations (e.g. <jms-
listener> that reference (using busidref) the new bus configurations you just made e.g. <jms-
listener> referencing a <jms-bus>.

The only rule that applies when using these transport specific types is that you cannot cross reference
from a listener of one type, to a bus of another type i.e. you can only reference a <jms-bus> from a
<jms-listener>. A runtime error will result where cross references are made.

So the transport specific implementations that are in place in this release are:

JMS
<jms-provider>, <jms-bus>, <jms-listener> and <jms-message-filter>: The <jms-
message-filter> can be added to either the <jms-bus> or <jms-listener> elements. Where
the <jms-provider> and <jms-bus> specify the JMS connection properties, the <jms-message-
filter> specifies the actual message QUEUE/TOPIC and selector details.

SQL
<sql-provider>, <sql-bus>, <sql-listener> and <sql-message-filter>: The <sql-
message-filter> can be added to either the <sql-bus> or <sql-listener> elements.
Where the <sql-provider> and <ftp-bus> specify the JDBC connection properties, the <sql-
message-filter> specifies the message/row selection and processing properties.

FTP
<ftp-provider>, <ftp-bus>, <ftp-listener> and <ftp-message-filter>: The <ftp-
message-filter> can be added to either the <ftp-bus> or <ftp-listener> elements. Where
the <ftp-provider> and <ftp-bus> specify the FTP access properties, the <ftp-message-
filter> specifies the message/file selection and processing properties

Hibernate
<hibernate-provider>, <hibernate-bus>, <hibernate-listener> : The <hibernate-
message-filter> can be added to either the <hibernate-bus> or <hibernate-listener>
selements. Where the <hibernate-provider> specifies File System access properties like the
location of the hibernate configuration property, the <hibernate-message-filter> specifies what
classnames and events should be listened to.

File System
<fs-provider>, <fs-bus>, <fs-listener> and <fs-message-filter> The <fs-message-
filter> can be added to either the <fs-bus> or <fs-listener> elements. Where the <fs-

Transport Specific Type Implementations

79

provider> and <sql-bus> specify the File System access properties, the <fs-message-filter>
specifies the message/file selection and processing properties.

Schedule
<schedule-provider>. This is a special type of provider and differs from the bus based providers
listed above. See Scheduling for more.

JMS/JCA Integration
<jms-jca-provider>: This provider can be used in place of the <jms-provider> to enable
delivery of incoming messages using JCA inflow. This introduces a transacted flow to the action
pipeline, encompassing actions within a JTA transaction.

As you'll notice, all of the currently implemented transport specific types include an additional type
not present in the “base” types, that being <*-message-filter>. This element/type can be added inside
either the <*-bus> or <*-listener>. Allowing this type to be specified in both places means you can
specify message filtering globally for the bus (for all listeners using that bus), or locally on a listener by
listener basis.

Note
In order to list and describe the attributes for each transport specific type, you can
use the jbossesb-1.0.1 XSD2, which is fully annotated with descriptions of each of the
attributes. Using an XSD aware XML Editor such as the Eclipse XML Editor makes
working with these types far easier.

Property Name Description Comments

dest-type The type of destination, either
QUEUE or TOPIC

Mandatory

dest-name The name of the Queue or
Topic

Mandatory

selector Allows multiple listeners to
register with the same queue/
topic, but they will filter on this
message selector.

Optional

persistent Indicates if the delivery mode
for JMS should be persistent or
not. True or false

Optional. Default is true

acknowledge-mode The JMS Session acknowledge
mode. Can be one of
AUTO_ACKNOWLEDGE,
CLIENT_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE

Optional. Default is
AUTO_ACKNOWLEDGE

jms-security-principal JMS destination user name.
Will be used when creating a
connection to the destination.

Optional

http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd

Chapter 9. Configuration

80

Property Name Description Comments

jms-security-credential JMS destination password.
Will be used when creating a
connection to the destination.

Optional

Table 9.4. JMS Message Filter Configuration

Example configuration:

 <jms-bus busid="quickstartGwChannel">
 <jms-message-filter
 dest-type="QUEUE"
 dest-name="queue/quickstart_jms_secured_Request_gw"
 jms-security-principal="esbuser"
 jms-security-credential="esbpassword"/>
</jms-bus>

9.5. FTP Provider Configuration
Property Name Description Comments

hostname Can be a combination of
<host:port> of just <host>
which will use port 21.

Mandatory

username Username that will be used for
the ftp connection.

Mandatory

password Password for the above user Mandatory.

directory The ftp directory that is
monitored for incoming new
files

Mandatory.

input-suffix The file suffix used to filter files
targeted for comsumption by
the ESB (note: add the dot, so
something like '.esbIn'). This
can also be specified as an
empty string to specify that all
files should be retrieved.

Mandatory.

work-suffix The file suffix used while the
file is being process, so that
another thread or process won't
pick it up too.

Optional. Defaults to
.esbInProcess.

post-delete If true, the file will be deleted
after it is processed. Note that
in that case post-directory and
post-suffix have no effect.

Optional. Defaults to true.

post-directory The ftp directory to which the
file will be moved after it is
processed by the ESB

Optional. Defaults to the value of
directory above.

FTP Listener Configuration

81

Property Name Description Comments

post-suffix The file suffix which will be
added to the file name after it is
processed.

Optional. Defaults to .esbDone.

error-delete If true, the file will be deleted
if an error occurs during
processing. Note that in that
case error-directory and error-
suffix have no effect.

Optional. Defaults to true.

error-directory The ftp directory to which the
file will be moved after when an
error occurs during processing.

Optional. Defaults to the value of
directory above.

error-suffix The file suffix which will be
added to the file name after an
error occurs during processing.

Optional. Defaults to .esbError.

protocol The protocol, can be one of:
• sftp (SSH File Transfer

Protocol)

• ftps (FTP over SLL)

• ftp (default).

Optional. Defaults to ftp.

passive Indicates that the ftp connection
is in passive. Setting this to
true means the ftp client will
establish two connection to the
ftpserver client.

Optional. Defaults to false,
meaning that the client will tell
the ftpserver which port the
ftpserver should connect to . The
ftpserver then estabilshes the
connection to the client.

read-only If true, the ftp server does not
permit write operations on
files. Note that in this case
the following properties have
no effect: work-suffix, post-
delete,post-directory, post-
suffix, error-delete, error-
directory, and error-suffix.

Optional. Defaults to false. See
section “Read-only FTP Listener
for more information

Table 9.5. FTP Provider Configuration

9.6. FTP Listener Configuration
Schedule Listener that polls for remote files based on the configured schedule (scheduleidref). See
Service Scheduling.

9.6.1. Read-only FTP Listener
Setting the ftp-provider property “read-only” to true will tell the system that the remote file system
does not allow write operations. This is often the case when the ftp server is running on a mainframe
computer where permissions are given to a specific file.

Chapter 9. Configuration

82

The read-only implementation uses JBoss TreeCache to hold a list of the filenames that have
been retrieved and only fetch those that have not previously been retrieved. The cache should be
configured to use a cacheloader to persist the cache to stable storage.

Please note that there must exist a strategy for removing the filenames from the cache. There might
be an archiving process on the mainframe that moves the files to a different location on a regular
basis. The removal of filenames from the cache could be done by having a database procedure that
removes all filenames from the cache every couple of days. Another strategy would be to specify
a TreeCacheListener that upon evicting filenames from the cache also removes them from the
cacheloader. The eviction period would then be configurable. This can be configured by setting a
property (removeFilesystemStrategy-cacheListener) in the ftp-listener configuration.

Property Name Description Comments

scheduleidref Schedule used by the FTP
listener

See Service Scheduling.

remoteFilesystemStrategy-
class

Override the remote file
system strategy with a
class that implements:
org.jboss.soa.esb.listeners.gateway.remotestrategies.RemoteFileSystemStrategy.

Optional. Defaults to
org.jboss.soa.esb.listeners.gateway.remotestrategies.ReadOnlyRemoteFileSystemStrategy

remoteFilesystemStrategy-
configFile

Specifiy a JBoss TreeCache
configuration file on the local
file system or one that exists on
the classpath.

Optional. Defaults to looking
for a file named /ftpfile-
cache-config.xml which it
expects to find in the root of the
classpath

removeFilesystemStrategy-
cacheListener

Specifies an JBoss
TreeCacheListener
implementation to be used with
the TreeCache.

Optional. Default is no
TreeCacheListener.

Table 9.6. Read-only FTP Listener Configuration

Example configuration:

<ftp-listener name="FtpGateway"
 busidref="helloFTPChannel"
 maxThreads="1"
 is-gateway="true"
 schedule-frequency="5">
 <property name="remoteFileSystemStrategy-configFile" value="./
ftpfile-cache-config.xml"/>
 <property name="remoteFileSystemStrategy-
cacheListener" value="org.jboss.soa.esb.listeners.gateway.remotestrategies.cache.DeleteOnEvictTreeCacheListener"/
>

</ftp-listener>

Example snippet from JBoss cache configuration:

<region name="/ftp/cache">
 <attribute name="maxNodes">5000</attribute>

Transitioning from the Old Configuration Model

83

 <attribute name="timeToLiveSeconds">1000</attribute>
 <attribute name="maxAgeSeconds">86400</attribute>
</region>

Property Name Description Comments

maxNodes The maximum number of files
that will be stored in the cache.

0 denotes no limit

timeToLiveSeconds Time to idle (in seconds) before
the node is swept away.

0 denotes no limit

maxAgeSeconds Time an object should exist
in TreeCache (in seconds)
regardless of idle time before
the node is swept away

0 denotes no limit

Table 9.7. Read-only FTP Listener Configuration contd.

The helloworld_ftp_action quickstart demonstrates the readonly configuration. Run 'ant help' in the
helloworld_ftp_action quickstart directory for instructions on running the quickstart. Please refer to the
JBoss Cache documentation for more information about the configuration options available (http://
labs.jboss.com/jbosscache/docs/index.html).

9.7. Transitioning from the Old Configuration Model
This section is aimed at developers that are familiar with the old JBoss ESB non-XSD based
configuration model.

The old configuration model used a free form (non-validatable) XML configuration with ESB
components receiving thier configurations via an instance of org.jboss.soa.esb.helpers.ConfigTree.
The new configuration model is XSD based, however the underlying component configuration pattern
is still via an instance of org.jboss.soa.esb.helpers.ConfigTree. This means that at the moment, the
XSD based configurations are mapped/transformed into ConfigTree style configurations.

Developers that were used to using the old model now need to keep the following in mind:

1. Read all of the docs on the new configuration model. Don't assume you can infer the new
configurations based on your knowledge of the old.

2. The only location where free-form markup is supported in the new configuration is on the
<property> element/type. This type is allowed on <provider>, <bus> and <listener> types (and
sub-types). However, the only location in which <property> based free form markup is mapped
into the ConfigTree configurations is where the <property> exists on an <action>. In this case,
the <property> content is mapped into the target ConfigTree <action>. Note however, if you
have 1+ <property> elements with free form child content on an <action>, all this content will be
concatenated together on the target ConfigTree <action>.

3. When developing new Listener/Action components, you must ensure that the ConfigTree
based configuration these components depend on can be mapped from the new XSD based
configurations. An example of this is how in the ConfigTree configuration model, you could decide
to supply the configuration to a listener component via attributes on the listener node, or you
could decide to do it based on child nodes within the listener configuration. This type of free form
configuration on <listener> components is not supported on the XSD to ConfigTree mapping i.e.

Chapter 9. Configuration

84

the child content in the above example would not be mapped from the XSD configuration to the
ConfigTree style configuration. In fact, the XSD configuration simply would not accept the arbitrary
content, unless it was in a <property> and even in that case (on a <listener>), it would simply be
ignored by the mapping code.

9.8. Configuration
All components within the core receive their configuration parameters as
XML. How these parameters are provided to the system is hidden by the
org.jboss.soa.esb.parameters.ParamRepositoryFactory:

public abstract class ParamRepositoryFactory
{
 public static ParamRepository getInstance();
}

This returns implementations of the org.jboss.soa.esb.parameters.ParamRepository
interface which allows for different implementations:

public interface ParamRepository
{
 public void add(String name, String value) throws
 ParamRepositoryException;
 public String get(String name) throws ParamRepositoryException;
 public void remove(String name) throws ParamRepositoryException;
}

Within this version of the JBossESB, there is only a single implementation, the
org.jboss.soa.esb.parameters.ParamFileRepository, which expects to be able
to load the parameters from a file. The implementation to use may be overridden using the
org.jboss.soa.esb.paramsRepository.class property.

Note
We recommend that you construct your ESB configuration file using Eclipse or
some other XML editor. The JBossESB configuration information is supported by an
annotated XSD which should help if using a basic editor.

Chapter 10.

85

Web Services Support

10.1. JBossWS
JBossESB has a number of Webservice based components for exposing and invoking Webservice
endpoints (i.e. SOAP onto the bus and SOAP off the bus) :

SOAPProcessor
The SOAPProcessor action allows you to expose JBossWS 2.x and higher Webservice Endpoints
through endpoints (listeners) running on the ESB (“SOAP onto the bus”). This allows you to use
JBossESB to expose Webservice Endpoints (wrapper Webservices) for services that don't expose
a Webservice Interface. JBossWS Webservice Endpoints exposed via this JBossESB action
are “ESB Message Aware” and can be used to invoke Webservice Endpoints over any transport
channel supported by the ESB.

SOAPClient
The SOAPClient action allows you to make invocations on Webservice endpoints (“SOAP off the
bus”).

For more details on these components and how to configure and use them, see the Message Action
Guide.

You can also find more information within the wiki pages shipped with the JBossESB documentation.

86

Chapter 11.

87

Out-of-the-box Actions
This section provides a catalog of all Actions that are included by default in the JBoss ESB.

11.1. Transformers & Converters
Converters/Transformers are a classification of Action Processor responsible for transforming a
message payload from to another.

Note that, unless stated otherwise, all of these Actions use the MessagePayloadProxy for getting and
setting the message payload.

ByteArrayToString
Takes a byte[] based message payload and converts it into a java.lang.String object instance.

Input Type byte[]

Class org.jboss.soa.esb.actions.converters.ByteArrayToString

Properties 1. “encoding”: The binary data encoding on the message byte array. Defaults to
“UTF-8” when not specified .

Sample
Configuration

<action name="transform"

class="org.jboss.soa.esb.actions.converters.ByteArrayToString">

<property name="encoding" value="UTF-8" />

</action>

LongToDateConverter
Takes a long based message payload and converts it into a java.util.Date object instance.

Input Type java.lang.Long/long

Output Type java.util.Date

Class org.jboss.soa.esb.actions.converters.LongToDateConverter

Properties None

Sample
Configuration

<action name="transform"

class="org.jboss.soa.esb.actions.converters.LongToDateConverter"/>

ObjectInvoke
Takes the Object bound as the message payload and supplies it to a configured “processor” for
processing. The processing result is bound back into the message as the new payload.

Input Type User Object

Output Type User Object

Class org.jboss.soa.esb.actions.converters.ObjectInvoke

Properties 1. "class-processor": The runtime class name of the processor class used to
process the message payload.

Chapter 11. Out-of-the-box Actions

88

2. "class-method": The name of the method on the processor class used to
process the method.

Sample
Configuration

<action name="invoke"

class="org.jboss.soa.esb.actions.converters.ObjectInvoke">

<property name="class-processor"

value="org.jboss.MyXXXProcessor"/>

<property name="class-method" value="processXXX" />

</action>

ObjectToCSVString
Takes the Object bound as the message payload and converts it into a Comma Separated Value
(CSV) String based on the supplied message object and a comma-separated "bean-properties” list
property.

Input Type User Object

Output Type java.lang.String

Class org.jboss.soa.esb.actions.converters.ObjectToCSVString

Properties 1. "bean-properties": List of Object bean property names used to get CSV values
for the output CSV String. The Object should support a getter method for each
of listed properties.

2. "fail-on-missing-property": Flag indicating whether or not the action should fail if
a property is missing from the Object i.e., if the Object does not support a getter
method for the property. Default value is “false”.

Sample
Configuration

<action name="transform"

class="org.jboss.soa.esb.actions.converters.ObjectToCSVString">

<property name="bean-properties"

value="name,address,phoneNumber"/>

<property name="fail-on-missing-property"

value="true" />

</action>

ObjectToXStream
Takes the Object bound as the Message payload and converts it into XML using the XStream1

processor.

Input Type User Object

Output Type java.lang.String

1 http://xstream.codehaus.org/

http://xstream.codehaus.org/
http://xstream.codehaus.org/

Transformers & Converters

89

Class org.jboss.soa.esb.actions.converters.ObjectToXStream

Properties 1. "class-alias": Class alias used in call to XStream.alias(String, Class)2 prior to
serialisation. Defaults to the input Object's class name.

2. "exclude-package": Exclude the package name from the generated XML.
Default is "true". Not applicable if a "class-alias" is specified.

3. "aliases": Optional. Specify additional aliases to help XStream to convert the
xml elements to Objects

4. "namespaces": Optional. Specify namespaces that should be added to the xml
generated by XStream. Each namespace-uri is associated with a local-part
which is the element that this namespace should appear on.

5. “xstream-mode”: Optional. Specify the XStream mode to use.
Possible values are XPATH_RELATIVE_REFERENCS (the default),
XPATH_ABSOLUTE_REFERENCS, ID_REFERENCES or NO_REFERENCES.

Sample
Config

<action name="transform"

class="org.jboss.soa.esb.actions.converters.ObjectToXStream">

<property name="class-alias" value="MyAlias" />

<property name="exclude-package" value="true" />

<property name="aliases">

<alias name=”alias1” value=”com.acme.MyXXXClass1/>

<alias name=”alias2” value=”com.acme.MyXXXClass2/>

<alias name=”xyz” value=”com.acme.XyzValueObject”/>

<alias name=”x” value=”com.acme.XValueObject”/>

...

</property>

<property name="namespaces">

<namespace namespace-uri=”http://www.xyz.com” local-part=”xyz”/>

<namespace namespace-uri=”http://www.xyz.com/x” local-part=”x”/>

...

</property>

</action>

Input Type User Object

Output Type java.lang.String

Class org.jboss.soa.esb.actions.converters.ObjectToXStream

http://xstream.codehaus.org/javadoc/com/thoughtworks/xstream/XStream.html

Chapter 11. Out-of-the-box Actions

90

Properties 1. "class-alias": Class alias used in call to XStream.alias(String, Class)3 prior to
serialization. Defaults to the input Object's class name.

2. "exclude-package": Exclude the package name from the generated XML.
Default is "true". Not applicable if a "class-alias" is specified.

Sample
Configuration

<action name="transform"

class="org.jboss.soa.esb.actions.converters.ObjectToXStream">

<property name="class-alias" value="MyAlias" />

<property name="exclude-package" value="true" />

</action>

XStreamToObject
Takes the XML bound as the Message payload and converts it into an Object using the XStream
processor.

Input Type java.lang.String

Output Type User Object (specified by “incoming-type” property)

Class org.jboss.soa.esb.actions.converters.XStreamToObject

Properties 1. "class-alias": Class alias used during serialisation. Defaults to the input Object's
class name.

2. "exclude-package": Flag indicating whether or not the XML includes a package
name.

3. "incoming-type": Class type.

1. "root-node": Optional. Specify a different root node then the actual root node in
the XML. Takes an XPath expression.

2. "aliases": Optional. Specify additional aliases to help Xstream to convert the xml
elements to Objects

3. "attribute-aliases": Optional. Specify additional attribute aliases to help Xstream
to convert the xml attributes to Objects

4. "converters": Optional. Specify converters to help Xstream to convert the xml
elements and attributes to Objects. For more information about converters see
http://xstream.codehaus.org/converters.html

Sample
Config

<action name="transform"

class="org.jboss.soa.esb.actions.converters.XStreamToObject">

<property name="class-alias" value="MyAlias" />

<property name="exclude-package" value="true" />

<property name="incoming-type" value="com.acme.MyXXXClass" />

http://xstream.codehaus.org/javadoc/com/thoughtworks/xstream/XStream.html

Transformers & Converters

91

<property name="root-node" value="/rootNode/MyAlias" />

<property name="aliases">

<alias name=”alias1” value=”com.acme.MyXXXClass1/>

<alias name=”alias2” value=”com.acme.MyXXXClass2/>

...

</property>

<property name="attribute-aliases">

<attribute-alias name=”alias1” value=”com.acme.MyXXXClass1”/>

<attribute-alias name=”alias2” value=”com.acme.MyXXXClass2”/>

...

</property>

<property name="converters">

<converter class=”com.acme.MyXXXConverter1”/>

<converter class=”com.acme.MyXXXConverter2”/>

...

</property>

</action>

SmooksTransformer
Message Transformation on the JBoss ESB is supported by the SmooksTransformer component. This
is an ESB Action component that allows the Smooks Data Transformation/Processing Framework to
be plugged into an ESB Action Processing Pipeline.

A wide range of source (XML, CSV, EDI etc.) and target (XML, Java, CSV, EDI etc.) data formats are
supported by the SmooksTransformer component. A wide range of Transformation Technologies are
also supported, all within a single framework.

Class org.jboss.soa.esb.actions.converters.SmooksTransformer

Properties Smooks Resource Configuration:

1. "resource-config": The Smooks resource configuration file.

Message Profile Properties (Optional):

1. "from": Message Exchange Participant name. Message Producer.

2. "from-type": Message type/format produced by the “from” message exchange
participant.

Chapter 11. Out-of-the-box Actions

92

3. "to": Message Exchange Participant name. Message Consumer.

4. "to-type": Message type/format consumed by the “to” message exchange
participant.

Note: All the above properties can be overridden by supplying them as properties to
the message (Message.Properties).

Sample
Configuration

Default Input/Output:

<action name="transform"
class="org.jboss.soa.esb.actions.converters.SmooksTransformer">

<property name="resource-config" value="/smooks/config-01.xml" />

</action>

Named Input/Output:

<action name="transform"
class="org.jboss.soa.esb.actions.converters.SmooksTransformer">

<property name="resource-config" value="/smooks/config-01.xml" /> <property
name="get-payload-location" value="get-order-params" />

<property name="set-payload-location" value="get-order-response" />

</action>

Using Message Profiles:

<action name="transform"
class="org.jboss.soa.esb.actions.converters.SmooksTransformer">

<property name="resource-config" value="/smooks/config-01.xml" />

<property name="from" value="DVDStore:OrderDispatchService" />

<property name="from-type" value="text/xml:fullFillOrder" />

<property name="to" value="DVDWarehouse_1:OrderHandlingService" />

<property name="to-type" value="text/xml:shipOrder" />

</action>

Java Objects are bound to the Message.Body under their beanId.

SmooksAction
The SmooksAction class (org.jboss.soa.esb.smooks.SmooksAction) is the second generation ESB
action class for executing Smooks “processes” (it can do more than just transform messages –
splitting etc). The SmooksTransformer action will be deprecated (and eventually removed) in a future
release of the ESB.

The SmooksAction class can process (using Smooks PayloadProcessor) a wider range of ESB
Message payloads e.g. Strings, byte arrays, InputStreams, Readers, POJOs and more. As such, it can

Transformers & Converters

93

perform a wide range of transformations including Java to Java transforms. It can also perform other
types of operations on a Source messages stream, including content based payload Splitting and
Routing (not ESB Message routing). The SmooksAction enables the full range of Smooks capabilities
from within JBoss ESB.

SmooksAction Configuration
The following illustrates the basic SmooksAction configuration:

<action name="transform" class="org.jboss.soa.esb.smooks.SmooksAction">
 <property name="smooksConfig" value="/smooks/order-to-java.xml" />
</action>

The optional configuration properties are:

Name Description Default

get-payload-location Message Body location containing the
message payload.

Default Payload
Location

set-payload-location Message Body location where result
payload is to be placed.

Default Payload
Location

excludeNonSerializables Exclude non Serializable Objects when
mapping the contents of the Smooks
ExecutionContext4 back onto the ESB
Message.

true

resultType The type of Result to be set as the
result Message payload.

STRING

javaResultBeanId Note: Only relevant when
resultType=JAVA

The Smooks bean context beanId to
be mapped as the result when the
resultType is "JAVA". If not specified,
the whole bean context bean Map is
mapped as the JAVA result.

reportPath The path and file name for generating
a Smooks Execution Report5. This is a
development aid i.e. not to be used in
production.

Message Input Payload
The SmooksAction uses the ESB MessagePayloadProxy class for getting and setting the message
payload on the ESB Message. Therefore, unless otherwise configured via the “get-payload-location”
and “set-payload-location” action properties, the SmooksAction gets and sets the Message payload on
the default message location (i.e. using Message.getBody().get() and Message.getBody().set(Object)).

As stated above, the SmooksAction automatically supports a wide range of Message payload types.
This means that the SmooksAction itself can handle most payload types without requiring “fixup”
actions before it in the action chain.

http://milyn.codehaus.org/javadoc/v1.0/smooks/org/milyn/container/ExecutionContext.html
http://milyn.codehaus.org/Smooks+User+Guide#SmooksUserGuide-CheckingtheSmooksExecutionProcess

Chapter 11. Out-of-the-box Actions

94

XML, EDI, CSV etc Input Payloads
To process these message types using the SmooksAction, simply supply the Source message as a:

1. String

2. InputStream6

3. Reader7

4. byte array

Apart from that, you just need to perform the standard Smooks configurations (in the Smooks config,
not the ESB config) for processing the message type in question e.g. configure a parser if it's not an
XML Source (e.g. EDI, CSV etc).

Java Input Payload
If the supplied Message payload is not one of type String, InputStream, Reader or byte[], the
SmooksAction processes the payload as a JavaSource, allowing you to perform Java to XML, Java to
Java etc transforms.

Specifying the Result Type
Because the Smooks Action can produce a number of different Result types, you need to be able to
specify which type of Result you want. This effects the result that's bound back into the ESB Message
payload location.

By default the ResultType is “STRING”, but can also be “BYTES”, “JAVA” or “NORESULT” by setting
the “resultType” configuration property.

Specifying a resultType of “JAVA” allows you to select one or more Java Objects from the Smooks
ExecutionContext (specifically, the bean context). The javaResultBeanId configuration property
complements the resultType property by allowing you to specify a specific bean to be bound from the
bean context to the ESB Message payload location. The following is an example that binds the “order”
bean from the Smooks bean context onto the ESB Message as the Message payload.

<action name="transform" class="org.jboss.soa.esb.smooks.SmooksAction">

<property name="smooksConfig" value="/smooks/order-to-java.xml" />

<property name="resultType" value="JAVA" />

<property name="javaResultBeanId" value="order" />

</action>

PersistAction
This is used to interact with the MessageStore, where necessary.

Input Type Message

Output Type The input Message

Class org.jboss.soa.esb.actions.MessagePersister

Properties 1. classification: used to classify where the Message will be stored. If the Message
Property org.jboss.soa.esb.messagestore.classification is defined on the

http://java.sun.com/j2se/1.5.0/docs/api/java/io/InputStream.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Reader.html

Business Process Management

95

Message then that will be used instead. Otherwise a default may be provided at
instantiation time.

1. message-store-class: the implementation of the MessageStore.

2. terminal: if the Action is to be used to terminate a pipeline then this should be
true (the default). If not, then set this to false and the input message will be
returned from processing.

Sample
Configuration

<action name="PersistAction" class="org.jboss.soa.esb.actions.MessagePersister"
>

<property name="classification" value="test"/>

<property name="message-store-class"
value="org.jboss.internal.soa.esb.persistence.format.db.DBMessageStoreImpl"/>

</action>

11.2. Business Process Management

jBPM - BpmProcessor
JBossESB can make calls into jBPM using the BpmProcessor action. Please also read the
jBPIntegrationGuide to learn how to call JBossESB from jBPM. The BpmProcessor action uses the
jBPM command API to make calls into jBPM. The following jBPM commands have been implemented:

• NewProcessInstanceCommand

• StartProcessCOmmand

• SignalCommand

• CancelProcessInstanceCommand

• setProcessInstanceVariables

Input Type org.jboss.soa.esb.message.Message generated by
AbstractCommandVehicle.toCommandMessage()

Output Type Message – same as the input message

Class org.jboss.soa.esb.services.jbpm.actions.BpmProcessor

Properties 1. command - required property. Needs to be one of: NewProcessInstance-
Command, StartProcessInstanceCommand, SignalCommand or Cancel-
ProcessInstanceCommand

2. processdefinition – required property for the New- and Start-
ProcessInstanceCommands if the process-definition-id property is not used.
The value of this property should reference a process definition that is already
deployed to jBPM and of which you want to create a new instance. This
property does not apply to the Signal- and CancelProcessInstance-Commands.

1. process-definition-id – required property for the New- and Start-
ProcessInstanceCommands if the processdefinition property is not used. The

Chapter 11. Out-of-the-box Actions

96

value of this property should reference a processdefintion id in jBPM of which
you want to create a new instance. This property does not apply to the Signal-
and CancelProcessInstanceCommands.

2. actor – optional property to specify the jBPM actor id, which applies to the New-
and StartProcessInstanceCommands only.

Properties 1. key - optional property to specify the value of the jBPM key. For example one
can pass a unique invoice id as the value for this key. On the jBPM side this key
is as the “business” key id field. The key is a string based business key property
on the process instance. The combination of business key + process definition
must be unique if a business key is supplied. The key value can hold an MVEL
expression to extract the desired value from the EsbMessage. For example if
you have a named parameter called “businessKey” in the body of your message
you would use “body.businessKey”. Note that this property is used for the New-
and StartProcessInstanceCommands only.

2. transition-name – optional property. This property only applies to the
StartProcessInstance- and Signal Commands, and is of use only if there
are more then one transition out of the current node. If this property is not
specified the default transition out of the node is taken. The default transition
is the first transition in the list of transition defined for that node in the jBPM
processdefinition.xml.

1. esbToBpmVars - optional property for the New- and
StartProcessInstanceCommands and the SignalCommand. This property
defines a list of variables that need to be extracted from the EsbMessage and
set into jBPM context for the particular process instance. The list consists of
mapping elements. Each mapping element can have the following attributes:

2. esb – required attribute which can contain an MVEL expression to extract a
value anywhere from the EsbMessage.

3. bpm – optional attribute containing the name which be used on the jBPM side. If
omitted the esb name is used.

4. default – optional attribute which can hold a default value if the esb MVEL
expression does not find a value set in the EsbMessage.

Message
variables

Finally some variables can be set on the body of the EsbMessage:

1. jbpmProcessInstId – required parameter which applies to the Cancel-
ProcessInstanceCommand only. It is up to the user make sure this value is set
as a named parameter on the EsbMessage body.

2. jbpmTokenId or jbpmProcessInstId – either one is a required parameter and
applies to the SignalCommand only. The SignalCommand first looks for the
value of the token id to which it will send a signal. If this is not set it will try to
obtain the process instance id and get the root token It is up to the user make
sure either the jbpmTokenId or the jbpmProcessInstId is set on the EsbMessage
body.

Sample
Configuration

<action name="create_new_process_instance"

class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

Scripting

97

<property name="command" value="StartProcessInstanceCommand" />

<property name="process-definition-name"

value="processDefinition2"/>

<property name="actor" value="FrankSinatra"/>

<property name="esbToBpmVars">

<!## esb-name maps to getBody().get("eVar1") ##>

<mapping esb="eVar1" bpm="counter" default="45" />

<mapping esb="BODY_CONTENT" bpm="theBody" />

</property>

</action>

11.3. Scripting
Scripting Action Processors support definition of action processing logic via Scripting languages.

GroovyActionProcessor
Executes a Groovy8 action processing script, receiving the message, payloadProxy, action
configuration and logger as variable input.

Script Variable
Bindings

1. “message”: The message.

2. “payloadProxy”: Utility for message payload (MessagePayloadProxy).

3. “config”: The action configuration (ConfigTree).

4. “logger”: The GroovyActionProcessor's static Log4J Logger (Logger).

Class org.jboss.soa.esb.actions.scripting.GroovyActionProcessor

Properties 1. “script”: Path (on classpath) to Groovy9 script.

2. “supportMessageBasedScripting”: Allow scripts within the message.

3. “cacheScript”: Should the script be cached. Default “true”.

Sample
Configuration

<action name="process"

class="org.jboss.soa.esb.scripting.GroovyActionProcessor">

<property name="script" value="/scripts/myscript.groovy"/>

</action>

8 http://groovy.codehaus.org/

http://groovy.codehaus.org/
http://groovy.codehaus.org/
http://groovy.codehaus.org/

Chapter 11. Out-of-the-box Actions

98

ScriptingAction
Executes a script using the Bean Scripting Framework (BSF10), receiving the message, payloadProxy,
action configuration and logger as variable input. Some notes:

1. JBoss ESB 4.4 contains BSF11 2.3.0, which has less language support than BSF12 2.4.0 (for
example: no Groovy13, and non-functioning Rhino14). A future version will contain BSF15 2.4.0,
which will support Groovy16 and Rhino17.

2. BSF18 does not provide an API to precompile, cache and reuse scripts. Because of this, each
execution of the ScriptingAction will go through the compile step again. Please keep this in mind
while evaluating your performance requirements.

3. When including BeanShell19 scripts in your application, it is advised to use a .beanshell extension
instead of .bsh, otherwise the JBoss BSHDeployer20 might pick it up.

Script Variable
Bindings

1. “message”: The message.

2. “payloadProxy”: Utility for message payload (MessagePayloadProxy).

3. “config”: The action configuration (ConfigTree).

4. “logger”: The ScriptingAction's static Log4J Logger (Logger).

Class org.jboss.soa.esb.actions.scripting.ScriptingAction

Properties 1. “script”: Path (on classpath) to script.

2. “supportMessageBasedScripting”: Allow scripts within the message.

3. “language”: Optional script language (overrides extension deduction).

Sample
Configuration

<action name="process"

class="org.jboss.soa.esb.scripting.ScriptingAction">

<property name="script" value="/scripts/myscript.beanshell"/>

</action>

11.4. Services
Actions defined within the ESB Services.

EJBProcessor
Takes an input Message and uses the contents to invoke a Stateless Session Bean. This action
support EJB2.x and EJB3.x.

Input Type EJB method name and parameters.

Output Type EJB specific Object.

Class org.jboss.soa.esb.actions.EJBProcessor

Properties 1. "ejb3": if this is a call to an EJB3.x Session Bean

2. "ejb-name": The identity of the EJB. Optional when ejb3 is true

10 http://jakarta.apache.org/bsf/

http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/
http://groovy.codehaus.org/
http://www.mozilla.org/rhino/
http://jakarta.apache.org/bsf/
http://groovy.codehaus.org/
http://www.mozilla.org/rhino/
http://jakarta.apache.org/bsf/
http://www.beanshell.org/
http://wiki.jboss.org/wiki/BSHDeployer
http://jakarta.apache.org/bsf/

Services

99

3. "jndi-name": Relevant JNDI lookup.

4. “initial-context-factory”: JNDI lookup mechanism.

5. “provider-url”: Relevant provider.

6. “method”: EJB method name to call.

7. “ejb-params”: list of parameters to use when calling the method and where in
the input Message they reside.

8. “esb-out-var”: the location of the output (default value is DEFAULT_EJB_OUT).

Sample
Configuration
EJB2.x

<action name="EJBTest" class="org.jboss.soa.esb.actions.EJBProcessor">

<property name="ejb-name" value="MyBean" />

<property name="jndi-name" value="ejb/MyBean" />

<property name="initial-context-factory"
value="org.jnp.interfaces.NamingContextFactory" />

<property name="provider-url" value="localhost:1099" />

<property name="method" value="login" />

<!-- Optional output location, defaults to "DEFAULT_EJB_OUT"

<property name="esb-out-var" value="MY_OUT_LOCATION"/> -->

<property name="ejb-params">

<!-- arguments of the operation and where to find them in the message -->

<arg0 type="java.lang.String">username</arg0>

<arg1 type="java.lang.String">password</arg1>

</property>

</action>
Sample
Configuration
EJB3.x

action name="EJBTest" class="org.jboss.soa.esb.actions.EJBProcessor">

<property name="ejb3" value="true" />

<property name="jndi-name" value="ejb/MyBean" />

<property name="initial-context-factory"
value="org.jnp.interfaces.NamingContextFactory" />

<property name="provider-url" value="localhost:1099" />

<property name="method" value="login" />

<!-- Optional output location, defaults to "DEFAULT_EJB_OUT"

<property name="esb-out-var" value="MY_OUT_LOCATION"/> -->

Chapter 11. Out-of-the-box Actions

100

<property name="ejb-params">

<!-- arguments of the operation and where to find them in the message -->

<arg0 type="java.lang.String">username</arg0>

<arg1 type="java.lang.String">password</arg1>

</property>

</action>

11.5. Routing
Routing Actions support conditional routing of messages between two or more message exchange
participants.

Aggregator
Message aggregation action. An implementation of the Aggregator Enterprise Integration Pattern21.

Class org.jboss.soa.esb.actions.Aggregator

Properties 1. “timeoutInMillies”: OPTIONAL, timeout time in milliseconds before the
aggregation process times out.

Sample
Configuration

<action class="org.jboss.soa.esb.actions.Aggregator"

name="Aggregator">

<property name="timeoutInMillies" value="60000"/>

</action>

This action relies on all messages having the correct correlation data. This data is set on the message
as a property called “aggregatorTag” (Message.Properties). See the ContentBasedRouter and
StaticRouter actions.

The data has the following format:

[UUID] “:” [message-number] “:” [message-count]

If all the messages have been received by the aggregator, it returns a new Message containing all the
messages as part of the Message.Attachment list (unnamed), otherwise the action returns null.

EchoRouter
Simply echos the incoming message payload to the info log stream and returns the input Message
from the process method

HttpRouter
This instance will forward the incoming message to a URL for further processing.

21 http://www.enterpriseintegrationpatterns.com/Aggregator.html

http://www.enterpriseintegrationpatterns.com/Aggregator.html
http://www.enterpriseintegrationpatterns.com/Aggregator.html

Routing

101

Class org.jboss.soa.esb.actions.routing.HttpRouter

Properties 1. “routeUrl” the endpoint to forward the message. If not set then localhost:5400
will be used.

JMSRouter
Routes the incoming message on to JMS.

Class org.jboss.soa.esb.actions.routing.JMSRouter

Properties 1. “unwrap”: true will extract the message payload from the Message object before
sending. false (the default) will send the serialized Message object.

2. jndi-context-factory: the JNDI context factory to use. The default is
“org.jnp.interfaces.NamingContextFactory”.

3. jndi-URL: the JNDI URL to use. The default is 127.0.0.1:1099.

4. jndi-pkg-prefix: the JNDI naming package prefixes to use. The default is
org.jboss.naming:org.jnp.interfaces

5. connection-factory: the name of the ConnectionFactory to use. Default is
“ConnectionFactory”.

6. persistent: the JMS DeliveryMody, true (default) or false.

7. priority: the JMS priority to be used. Default is
javax.jms.Message.DEFAULT_PRIORITY.

8. time-to-live: the JMS Time-To-Live to be used. The default is
javax.jms.Message.DEFAULT_TIME_TO_LIVE.

9. security-principal: the security principal to use when creating the JMS
connection.

10. security-credentials: the security credentials to use when creating the JMS
connection.

11. property-strategy: the implementation of the JMSPropertiesSetter interface, if
overriding the default.

12. message-prop: properties to be set on the message are prefixed with
“message-prop'”.

ContentBasedRouter
Content (plus rules) based message routing action.

Class org.jboss.soa.esb.actions.ContentBasedRouter

Properties 1. “ruleSet”: JBoss Rules ruleset.

2. “ruleLanguage”: CBR evaluation Domain Specific Language (DSL) file.

3. “ruleReload”: Flag indicating whether or not the rules file should be reloaded
each time. Default is “false”.

Chapter 11. Out-of-the-box Actions

102

4. “destinations”: Container property for the <route-to> configurations.

1. <route-to destination-name="express" service-category="ExpressShipping"
service-name="ExpressShippingService"/>

“process”
methods

1. “process”: Do not append aggregation data to the message.

2. “split”: Append aggregation data to the message.

See the Aggregator action.

Sample
Configuration

<action process=”split” name="ContentBasedRouter”

class="org.jboss.soa.esb.actions.ContentBasedRouter">

<property name="ruleSet" value="MyESBRules-XPath.drl"/>

<property name="ruleLanguage" value="XPathLanguage.dsl"/>

<property name="ruleReload" value="true"/>

<property name="destinations">

<route-to destination-name="express"

service-category="ExpressShipping"

service-name="ExpressShippingService"/>

<route-to destination-name="normal"

service-category="NormalShipping"

service-name="NormalShippingService"/>

</property>

</action>

StaticRouter
Static message routing action. This is basically a simplified version of the Content Based Router,
except it does not support content based routing rules.

Class org.jboss.soa.esb.actions.StaticRouter

Properties 1. “destinations”: Container property for the <route-to> configurations.

1. <route-to destination-name="express" service-category="ExpressShipping"
service-name="ExpressShippingService"/>

“process”
methods

1. “process”: Don't append aggregation data to message.

2. “split”: Append aggregation data to message.

See the Aggregator action.

Sample
Configuration

<action name="routeAction”

class="org.jboss.soa.esb.actions.StaticRouter">

Notifier

103

<property name="destinations">

<route-to service-category="ExpressShipping"

service-name="ExpressShippingService"/>

<route-to service-category="NormalShipping"

service-name="NormalShippingService"/>

</property>

</action>

StaticWiretap
Static message wiretapping action. The StaticWiretap differs from the StaticRouter in that the
StaticWiretap “listens in” on the action chain and allows the message to continue in the chain to
subsequent actions, while the StaticRouter action only pushes the message to destinations that are
defined in its route-to chain.

Class org.jboss.soa.esb.actions.StaticWiretap

Properties 1. “destinations”: Container property for the <route-to> configurations.

1. <route-to destination-name="express" service-category="ExpressShipping"
service-name="ExpressShippingService"/>

“process”
methods

1. “process”: Don't append aggregation data to message.

See the Aggregator action.

Sample
Configuration

<action name="routeAction”

class="org.jboss.soa.esb.actions.StaticWiretap">

<property name="destinations">

<route-to service-category="ExpressShipping"

service-name="ExpressShippingService"/>

<route-to service-category="NormalShipping"

service-name="NormalShippingService"/>

</property>

</action>

11.6. Notifier
Sends a notification to a list of notification targets specified in configuration, based on the result of
action pipeline processing.

The action pipeline works in two stages, normal processing followed by outcome processing. In the
first stage, the pipeline calls the process method(s) on each action (by default it is called process) in

Chapter 11. Out-of-the-box Actions

104

sequence until the end of the pipeline has been reached or an error occurs. At this point the pipeline
reverses (the second stage) and calls the outcome method on each preceding action (by default it is
processException or processSuccess). It starts with the current action (the final one on success or the
one which raised the exception) and travels backwards until it has reached the start of the pipeline.
The Notifier is an action which does no processing of the message during the first stage (it is a no-op)
but sends the specified notifications during the second stage.

The Notifier class configuration is used to define NotificationList elements, which can be used to
specify a list of NotificationTargets. A NotificationList of type “ok” specifies targets which should
receive notification upon successful action pipeline processsing; a NotificationList of type “err”
specifies targets to receive notifications upon exceptional action pipeline processing, according to the
action pipeline processing semantics mentioned earlier. Both “err” and “ok” are case insensitive.

The notification sent to the NotificationTarget is target-specific, but essentially consists of a copy of
the ESB message undergoing action pipeline processing. A list of notification target types and their
parameters appears at the end of this section.

If you wish the ability to notify of success or failure at each step of the action processing pipeline,
use the “okMethod” and “exceptionMethod” attributes in each <action> element instead of having an
<action> that uses the Notifier class.

Class org.jboss.soa.esb.actions.Notifier

Properties NotificationList subtree indicating targets

Sample
Configuration

<action class="org.jboss.soa.esb.actions.Notifier" okMethod="notifyOK">

<property name="destinations">

<NotificationList type="OK">

<target class="NotifyConsole" />

<target class="NotifyFiles" >

<file name=”@results.dir@/goodresult.log” />

</target>

</NotificationList>

<NotificationList type="err">

<target class="NotifyConsole" />

<target class="NotifyFiles" >

<file name=”@results.dir@/badresult.log” />

</target>

</NotificationList>

</property>

</action>

Notifier

105

Notifications can be sent to targets of various types. The table below provides a list of the
NotificationTarget types and their parameters.

Class NotifyConsole

Purpose Performs a notification by printing out the contents of the ESB message on the
console.

Attributes none

Child none

Child
Attributes

none

Sample
Configuration

<target class="NotifyConsole" />

Class NotifyFiles

Purpose Performs a notification by writing the contents of the ESB message to a specified
set of files.

Attributes none

Child file

Child
Attributes

1. append – if value is true, append the notification to an existing file

2. URI – any valid URI specifying a file

Sample
Configuration

<target class="NotifyFiles" >

<file append=”true” URI=”anyValidURI”/>

<file URI=”anotherValidURI”/>

</target>

Class NotifySQLTable

Purpose Performs a notification by inserting a record into an existing

database table. The database record contains the ESB message contents and,
optionally, other values specified using nested <column> elements.

Attributes 1. driver-class

2. connection-url

3. user-name

4. password

5. table – table in which notification record is stored

6. dataColumn – name of table column in which ESB message contents are stored

Child column

Child
Attributes

1. name – name of table column in which to store additional value

2. value – value to be stored

Chapter 11. Out-of-the-box Actions

106

Sample
Configuration

<target class="NotifySQLTable"

driver-class=”com.mysql.jdbc.Driver”

connection-url=”jdbc:mysql://localhost/db”

user-name=”user”

password=”password”

table=”table”

dataColumn=”messageData”>

<column name=”aColumnlName” value=”aColumnValue”/>

</target>

Class NotifyFTP

Purpose Performs a notification by creating a file containing the ESB message content and
transferring it via FTP to a remote file system.

Attributes none

Child ftp

Child
Attributes

1. URL – a valid FTP URL

2. filename – the name of the file to contain the ESB message content on the
remote system

Sample
Configuration

<target class="NotifyFTP" >

<ftp URL=”ftp://username:pwd@server.com/remote/dir”

filename=”someFile.txt” />

</target>

Class NotifyQueues

Purpose Performs a notification by translating the ESB message (including its attached
properties) into a JMS message and sending the JMS message to a list of Queues.
Additional properties may be attached using the <messageProp> element.

Attributes none

Child queue

Child
Attributes

1. jndiName – the JNDI name of the Queue

2. jndi-URL – the JNDI provider URL (optional)

3. jndi-context-factory – the JNDI initial context factory (optional)

4. jndi-pkg-prefix – the JNDI package prefixes (optional)

5. connection-factory – the JNDI name of the JMS connection factory (by default,
“ConnectionFactory”)

Child messageProp

Notifier

107

Child
Attributes

1. name – name of the new property to be added

2. value – value of the new property

Sample
Configuration

<target class="NotifyQueues" >

<messageProp name=”aNewProperty” value=”theValue”/>

<queue jndiName=”queue/quickstarts_notifications_queue” />

</target>

Class NotifyTopics

Purpose Performs a notification by translating the ESB message (including its attached
properties) into a JMS message and publishing the JMS message to a list of Topics.
Additional properties may be attached using the <messageProp> element.

Attributes none

Child topic

Child
Attributes

1. jndiName – the JNDI name of the Queue

2. jndi-URL – the JNDI provider URL (optional)

3. jndi-context-factory – the JNDI initial context factory (optional)

4. jndi-pkg-prefix – the JNDI package prefixes (optional)

5. connection-factory – the JNDI name of the JMS connection factory (by default,
“ConnectionFactory”)

Child messageProp

Child
Attributes

1. name – name of the new property to be added

2. value – value of the new property

Sample
Configuration

<target class="NotifyTopics" >

<messageProp name=”aNewProperty” value=”theValue”/>

<queue jndiName=”topic/quickstarts_notifications_topic” />

</target>

Class NotifyEmail

Purpose Performs a notification by sending an email containing the ESB message content
and, optionally, any file attachments.

Attributes 1. from – email address (javax.email.InternetAddress)

2. sendTo – comma-separated list of email addresses

3. ccTo – comma-separated list of email addresses (optional)

4. subject – email subject

5. message – a string to be prepended to the ESB message contents which make
up the e-mail message (optional)

Chapter 11. Out-of-the-box Actions

108

6. msgAttachmentName - filename of an attachment containing the message
payload (optional). If not specified the message payload will be included in the
message body.

Child Attachment (optional)

Child Text the name of the file to be attached

Sample
Configuration

<target class="NotifyEmail"

from=”person@somewhere.com”

sendTo=”person@elsewhere.com”

subject=”theSubject”>

<attachment>attachThisFile.txt</attachment>

</target>

Class NotifyFTP

Purpose Performs a notification by creating a file containing the ESB message content and
transferring it via FTP to a remote file system.

Attributes none

Child ftp

Child
Attributes

1. URL – a valid FTP URL

2. filename – the name of the file to contain the ESB message content on the
remote system

Sample
Configuration

<target class="NotifyFTP" >

<ftp URL=”ftp://username:pwd@server.com/remote/dir”

filename=”someFile.txt” />

</target>

11.7. Webservices/SOAP

SOAPProcessor
JBoss Webservices SOAP Processor.

This action supports invocation of a JBossWS hosted webservice endpoint through any JBossESB
hosted listener. This means the ESB can be used to expose Webservice endpoints for Services
that don't already expose a Webservice endpoint. You can do this by writing a thin Service Wrapper
Webservice (e.g. a JSR 181 implementation) that wraps calls to the target Service (that doesn't have
a Webservice endpoint), exposing that Service via endpoints (listeners) running on the ESB. This also
means that these Services are invocable over any transport channel supported by the ESB (http, ftp,
jms etc.).

Dependencies
1. JBoss Application Server

Webservices/SOAP

109

2. The soap.esb Service. This is available in the lib folder of the distribution.

"ESB Message Aware" Webservice Endpoints
Note that Webservice endpoints exposed via this action have direct access to the current JBossESB
Message instance used to invoke this action's process (Message) method. It can access the current
Message instance via the SOAPProcessor.getMessage() method and can change the Message
instance via the SOAPProcessor.setMessage(Message) method. This means that Webservice
endpoints exposed via this action are "ESB Message Aware".

Webservice Endpoint Deployment
Any JBossWS Webservice endpoint can be exposed via ESB listeners using this action. That includes
endpoints that are deployed from inside (i.e. the Webservice .war is bundled inside the .esb) and
outside (e.g. standalone Webservice .war deployments, Webservice .war deployments bundled inside
a .ear) a .esb deployment. This however means that this action can only be used when your .esb
deployment is installed on the JBoss Application Server i.e. It is not supported on the JBossESB
Server.

SOAPClient
The SOAPClient action uses the Wise Client Service to generate a JAXWS client class and call the
target service.

Example configuration:

<action name="soap-wise-client-action"
 class="org.jboss.soa.esb.actions.soap.wise.SOAPClient">
 <property name="wsdl" value="http://host:8080/OrderManagement?wsdl"/>
 <property name="SOAPAction" value="http://host/OrderMgmt/SalesOrder"/>
</action>

Optional Properties

Property Name Description

wsdl The WSDL to be used.

SOAPAction The endpoint operation.

EndPointName The EndPoint invoked. Webservices can have multiple endpoint. If
it's not specified the first specified in wsdl will be used.

SmooksRequestMapper Specifies a smooks config file to define the java-to-java mapping
defined for the request.

SmooksResponseMapper Specifies a smooks config file to define the java-to-java mapping
defined for the response

ServiceName A symbolic service name used by wise to cache object generation
and/or use already generated object. If it isn't provided wise uses
the servlet name of wsdl.

UserName Username used if the webservice is protected by BASIC
Authentication HTTP.

Password Password used if the webservice is protected by BASIC
Authentication HTTP.

Chapter 11. Out-of-the-box Actions

110

smooksTransform It's often necessary to be able to transform the SOAP request or
response, especially in header. This may be to simply add some
standard SOAP handlers. Wise support JAXWS Soap Handler,
both custom or a predefined one based on smooks.

Transformation of the SOAP request (before sending) is
supported by configuring the SOAPClient action with a Smooks
transformation configuration property.

custom-handlers It's also possible to provide a set of custom standard JAXWS Soap
Handler. The parameter accept a list of classes implementing
SoapHandler interface. Classes have to provide full qualified name
and be separated by semi-columns.

LoggingMessages It's useful for debug purpose to view soap Message sent and
response received. Wise achieve this goal using a JAX-WS
handler printing all messages exchanged on System.out. Boolean
value.

SOAP Operation Parameters
The SOAP operation parameters are supplied in one of 2 ways:

• As a Map instance set on the default body location (Message.getBody().add(Map))

• As a Map instance set on in a named body location (Message.getBody().add(String, Map)), where
the name of that body location is specified as the value of the "paramsLocation" action property.

The parameter Map itself can also be populated in one of 2 ways:

1. With a set of Objects of any type. In this case a Smooks config has to be specified in action
attribute SmooksRequestMapper and Smooks is used to make the java-to-java conversion

2. With a set of String based key-value pairs(<String, Object>), where the key is the name of the
SOAP parameter as specified in wsdls (or in generated class) to be populated with the key's
value. SOAP Response Message Consumption

The SOAP response object instance can be is attached to the ESB Message instance in one of the
following ways:

1. On the default body location (Message.getBody().add(Map))

2. On in a named body location (Message.getBody().add(String, Map)), where the name of that body
location is specified as the value of the "responseLocation" action property.

The response object instance can also be populated (from the SOAP response) in one of 2 ways:

1. With a set of Objects of any type. In this case a smooks config have to be specified in action
attribute SmooksResponseMapper and smooks is used to make the java-to-java conversion

2. With a set of String based key-value pairs(<String, Object>), where the key is the name of the
SOAP answer as specified in wsdls (or in generated class) to be populated with the key's value.
JAX-WS Handler for the SOAP Request/Response

For examples of using the SOAPClient please refer to the following quickstarts:

1. webservice_consumer_wise, shows basic usage.

Webservices/SOAP

111

2. webservice_consumer_wise2, shows how to use'SmooksRequestMapper' and
'SmooksResponseMapper'.

3. webservice_consumer_wise3, shows how to use 'smooks-handler-config'.

4. webservice_consomer_wise4, shows usage of 'custom-handlers'.

More information about Wise can be found on their website http://www.javalinuxlabs.org/wise22.

JAXB Annotation Introductions
The native JBossWS SOAP stack uses JAXB to bind to and from SOAP. This means that an
unannotated typeset cannot be used to build a JBossWS endpoint. To overcome this we provide a
JBossESB and JBossWS feature called "JAXB Annotation Introductions" which basically means you
can define an XML configuration to "Introduce" the JAXB Annotations.

This XML configuration must be packaged in a file called “jaxb-intros.xml” in the “META-INF” directory
of the endpoint deployment.

Action Configuration
The <action ... /> configuration for this action is very straightforward. The action requires only one
mandatory property value, which is the "jbossws-endpoint" property. This property names the
JBossWS endpoint that the SOAPProcessor is exposing (invoking).

<action name="PrintAMessage" class="test.PrintMessage">
 <property name="information" value="Hello World!" />
 <property name="repeatCount" value="5" />
</action>

The optional "rewrite-endpoint-url" property is there to support load balancing on HTTP endpoints, in
which case the Webservice endpoint container will have been configured to set the HTTP(S) endpoint
address in the WSDL to that of the Load Balancer. The "rewrite-endpoint-url" property can be used
to turn off HTTP endpoint address rewriting in situations such as this. It has no effect for non-HTTP
protocols.

Quickstarts
A number of quickstarts demonstrating how to use this action are available in the JBossESB
distribution (samples/quickstarts). See the "webservice_jbossws_adapter_01" and "webservice_bpel"
quickstarts.

SOAPClient
SOAP Client action processor.

Uses the soapUI23 Client Service to construct and populate a message for the target service. This
action then routes that message to that service.

22 http://www.javalinuxlabs.org/wise/index.html
23 http://www.soapui.org/

http://www.javalinuxlabs.org/wise/index.html
http://www.soapui.org/
http://www.javalinuxlabs.org/wise/index.html
http://www.soapui.org/

Chapter 11. Out-of-the-box Actions

112

Endpoint Operation Specification
Specifying the endpoint operation is a straightforward task. Simply specify the "wsdl" and "operation"
properties on the SOAPClient action as follows:

<action name="soapui-client-action"
 class="org.jboss.soa.esb.actions.soap.SOAPClient">
 <property name="wsdl"
 value="http://localhost:18080/acme/services/RetailerCallback?wsdl"/>
 <property name="operation"
 value="SendSalesOrderNotification"/>
</action>

SOAP Request Message Construction
The SOAP operation parameters are supplied in one of 2 ways:

1. As a Map instance set on the default body location (Message.getBody().add(Map))

2. As a Map instance set on in a named body location (Message.getBody().add(String, Map)),
where the name of that body location is specified as the value of the "get-payload-location" action
property.

The parameter Map itself can also be populated in one of 2 ways:

1. Option 1: With a set of Objects that are accessed (for SOAP message parameters) using the
OGNL24 framework. More on the use of OGNL below.

2. Option 2: With a set of String based key-value pairs(<String, Object>), where the key is an OGNL
expression identifying the SOAP parameter to be populated with the key's value. More on the use
of OGNL below.

As stated above, OGNL25 is the mechanism we use for selecting the SOAP parameter values to
be injected into the SOAP message from the supplied parameter Map. The OGNL expression for a
specific parameter within the SOAP message depends on the position of that parameter within the
SOAP body. In the following message:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:cus="http://schemas.acme.com">
 <soapenv:Header/>
 <soapenv:Body>
 <cus:customerOrder>
 <cus:header>
 <cus:customerNumber>123456</cus:customerNumber>
 </cus:header>
 </cus:customerOrder>
 </soapenv:Body>
</soapenv:Envelope>

25 http://www.ognl.org/

http://www.ognl.org/
http://www.ognl.org/
http://www.ognl.org/

Webservices/SOAP

113

The OGNL expression representing the customerNumber parameter is
"customerOrder.header.customerNumber".

Once the OGNL expression has been calculated for a parameter, this class will check the supplied
parameter map for an Object keyed off the full OGNL expression (Option 1 above). If no such
parameter Object is present on the map, this class will then attempt to load the parameter by
supplying the map and OGNL expression instances to the OGNL toolkit (Option 2 above). If this
doesn't yield a value, this parameter location within the SOAP message will remain blank.

Taking the sample message above and using the "Option 1" approach to populating the
"customerNumber" requires an object instance (e.g. an "Order" object instance) to be set on the
parameters map under the key "customerOrder". The "customerOrder" object instance needs to
contain a "header" property (e.g. a "Header" object instance). The object instance behind the "header"
property (e.g. a "Header" object instance) should have a "customerNumber" property.

OGNL expressions associated with Collections are constructed in a slightly different way. This is
easiest explained through an example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/"
 xmlns:cus="http://schemas.active-endpoints.com/sample/
customerorder/2006/04/CustomerOrder.xsd"
 xmlns:stan="http://schemas.active-endpoints.com/sample/
standardtypes/2006/04/StandardTypes.xsd">

 <soapenv:Header/>
 <soapenv:Body>
 <cus:customerOrder>
 <cus:items>
 <cus:item>
 <cus:partNumber>FLT16100</cus:partNumber>
 <cus:description>Flat 16 feet 100 count</cus:description>
 <cus:quantity>50</cus:quantity>
 <cus:price>490.00</cus:price>
 <cus:extensionAmount>24500.00</cus:extensionAmount>
 </cus:item>
 <cus:item>
 <cus:partNumber>RND08065</cus:partNumber>
 <cus:description>Round 8 feet 65 count</cus:description>
 <cus:quantity>9</cus:quantity>
 <cus:price>178.00</cus:price>
 <cus:extensionAmount>7852.00</cus:extensionAmount>
 </cus:item>
 </cus:items>
 </cus:customerOrder>
 </soapenv:Body>
</soapenv:Envelope>

The above order message contains a collection of order "items". Each entry in the collection is
represented by an "item" element. The OGNL expressions for the order item "partNumber" is
constructed as "customerOrder.items[0].partnumber" and "customerOrder.items[1].partnumber". As
you can see from this, the collection entry element (the "item" element) makes no explicit appearance

Chapter 11. Out-of-the-box Actions

114

in the OGNL expression. It is represented implicitly by the indexing notation. In terms of an Object
Graph (Option 1 above), this could be represented by an Order object instance (keyed on the map
as "customerOrder") containing an "items" list (List or array), with the list entries being "OrderItem"
instances, which in turn contains "partNumber" etc properties.

Option 2 (above) provides a quick-and-dirty way to populate a SOAP message without having
to create an Object model ala Option 1. The OGNL expressions that correspond with the SOAP
operation parameters are exactly the same as for Option 1, except that there's not Object Graph
Navigation involved. The OGNL expression is simply used as the key into the Map, with the
corresponding key-value being the parameter.

To see the SOAP message template as it's being constructed and populated, add the “dumpSOAP”
parameter to the parameter Map. This can be a very useful developer aid, but should not be left on
outside of development.

SOAP Response Message Consumption
The SOAP response object instance can be attached to the ESB Message instance in one of the
following ways:

1. On the default body location (Message.getBody().add(Map))

2. On in a named body location (Message.getBody().add(String, Map)), where the name of that body
location is specified as the value of the "set-payload-location" action property.

The response object instance can also be populated (from the SOAP response) in one of 3 ways:

1. Option 1: As an Object Graph created and populated by the XStream26 toolkit27.

2. Option 2: As a set of String based key-value pairs(<String, String>), where the key is an OGNL
expression identifying the SOAP response element and the value is a String representing the
value from the SOAP message.

3. Option 3: If Options 1 or 2 are not specified in the action configuration, the raw SOAP response
message (String) is attached to the message.

Using XStream28 as a mechanism for populating an Object Graph (Option 1 above) is straightforward
and works well, as long as the XML and Java object models are in line with each other.

The XStream approach (Option 1) is configured on the action as follows:

<action name="soapui-client-
action" class="org.jboss.soa.esb.actions.soap.SOAPClient">
 <property name="wsdl" value="http://localhost:18080/acme/services/
RetailerService?wsdl"/>
 <property name="operation" value="GetOrder"/>
 <property name="get-payload-location" value="get-order-params" />
 <property name="set-payload-location" value="get-order-response" />
 <property name="responseXStreamConfig">
 <alias name="customerOrder" class="com.acme.order.Order"
 namespace="http://schemas.acme.com/services/CustomerOrder.xsd" /
>

28 http://xstream.codehaus.org/

http://xstream.codehaus.org/
http://xstream.codehaus.org/
http://xstream.codehaus.org/

Miscellaneous

115

 <alias name="orderheader" class="com.acme.order.Header"
 namespace="http://schemas.acme.com/services/CustomerOrder.xsd" /
>
 <alias name="item" class="com.acme.order.OrderItem"
 namespace="http://schemas.acme.com/services/CustomerOrder.xsd"
 />
 </property>
</action>

In the above example, we also include an example of how to specify non-default named locations for
the request parameters Map and response object instance.

We also provide, in addition to the above XStream configuration options, the ability to specify field
name mappings and XStream annotated classes.

<property name="responseXStreamConfig">
 <fieldAlias name="header" class="com.acme.order.Order"
 fieldName="headerFieldName" />
 <annotation class="com.acme.order.Order" />
 </property>

Field mappings can be used to map XML elements onto Java fields on those occasions when the local
name of the element does not correspond to the field name in the Java class.

To have the SOAP response data extracted into an OGNL keyed map (Option 2 above) and
attached to the ESB Message, simply replace the "responseXStreamConfig" property with the
"responseAsOgnlMap" property having a value of "true" as follows:

<action name="soapui-client-
action" class="org.jboss.soa.esb.actions.soap.SOAPClient">
 <property name="wsdl" value="http://localhost:18080/acme/
services/RetailerService?wsdl"/>
 <property name="operation" value="GetOrder"/>
 <property name="get-payload-location" value="get-order-params" />
 <property name="set-payload-location" value="get-order-response" />
 <property name="responseAsOgnlMap" value="true" />
 </action>

To return the raw SOAP message as a String (Option 3), simply omit both the
"responseXStreamConfig" and "responseAsOgnlMap" properties.

11.8. Miscellaneous
Miscellaneous Action Processors.

SystemPrintln
Simple action for printing out the contents of a message (ala System.out.println).

Will attempt to format the message contents as XML.

Input Type java.lang.String

Chapter 11. Out-of-the-box Actions

116

Class org.jboss.soa.esb.actions.SystemPrintln

Properties 1. “message”: A message prefix.

1. “printfull”: If true then the entire message is printed, otherwise just the byte array
and attachments.

2. “outputstream”: if true then System.out is used, otherwise System.err.

Sample
Configuration

<action name="print-before" class="org.jboss.soa.esb.actions.SystemPrintln">

<property name="message" value="Message before action XXX" />

</action>

Chapter 12.

117

Developing Custom Actions
To implement a custom Action Processor, simply implement the
org.jboss.soa.esb.actions.ActionPipelineProcessor interface.

This interface supports implementation of stateless actions that have a managed lifecycle. A single
instance of a class implementing this interface is instantiated on a per pipeline basis (i.e. per action
configuration). This means you can cache resources needed by the action in the initialise method, and
clean them up in the destroy method.

The implementing class should process the message from within the process method implementation.

As a convenience, you should simple extend the
org.jboss.soa.esb.actions.AbstractActionPipelineProcessor.

Example:

public class ActionXXXProcessor extends AbstractActionPipelineProcessor {

 public void initialise() throws ActionLifecycleException {
 // Initialise resources...
 }

 public Message process(final Message message) throws
 ActionProcessingException {
 // Process messages in a stateless fashion...
 }

 public void destroy() throws ActionLifecycleException {
 // Cleanup resources...
 }
}

12.1. Configuring Actions Using Properties
Actions generally act as templates that require external configuration to perform their tasks. For
example, a PrintMessage action might take a property named 'message' to indicate what to print and a
property 'repeatCount' to indicate the number of times to print it. The action configuration in the jboss-
esb.xml file might look like this:

<action name="PrintAMessage" class="test.PrintMessage">
 <property name="information" value="Hello World!" />
 <property name="repeatCount" value="5" />
</action>

The default method for loading property values in an action implementation is the use of a ConfigTree
instance. The ConfigTree provides a DOM-like view of the action XML. By default, actions are
expected to have a public constructor that takes a ConfigTree as a parameter. For example:

public class PrintMessage extends AbstractActionPipelineProcessor {

Chapter 12. Developing Custom Actions

118

 private String information;

 private Integer repeatCount;

 public PrintMessage(ConfigTree config) {
 information = config.getAttribute("information");
 repeatCount = new Integer(config.getAttribute("repeatCount"));
 }

 public Message process(Message message) throws
 ActionProcessingException {
 for (int i=
<xslthl:number>0</xslthl:number>
; i < repeatCount; i++) {
 System.out.println(information);
 }
 }
}

Another approach to setting action properties is to add setters on the action that correspond
to the property names and allow the framework to populate them automatically. In
order to have the action bean auto-populated, the action class must implement the
org.jboss.soa.esb.actions.BeanConfiguredAction marker interface. For example, the
following class has the same behavior as the one above.

public class PrintMessage extends AbstractActionPipelineProcessor
 implements BeanConfiguredAction {

 private String information;

 private Integer repeatCount;

 public setInformation(String information) {
 this.information = information;
 }

 public setRepeatCount(Integer repeatCount) {
 this.repeatCount = repeatCount;
 }

 public Message process(Message message) {
 for (int i=
<xslthl:number>0</xslthl:number>
; i < repeatCount; i++) {
 System.out.println(information);
 }
 }
}

Configuring Actions Using Properties

119

Note
The Integer parameter in setRepeatCount() is automatically converted from the
String representation specified in the XML.

The BeanConfiguredAction method of loading properties is a good choice for actions that take
simple arguments, while the ConfigTree method is better when you need to deal with the XML
representation directly.

120

Chapter 13.

121

Connectors and Adapters

13.1. Introduction
Not all clients and services of JBossESB will be able to understand the protocols and Message
formats it uses natively. As such there is a need to be able to bridge between ESB-aware endpoints
(those that understand JBossESB) and ESB-unaware endpoints (those that do not understand
JBossESB). Such bridging technologies have existed for many years in a variety of distributed
systems and are often referred to as Connectors, Gateways or Adapters.

One of the aims of JBossESB is to allow a wide variety of clients and services to interact. JBossESB
does not require that all such clients and services be written using JBossESB or any ESB for that
matter. There is an abstract notion of an Interoperability Bus within JBossESB, such that endpoints
that may not be JBossESB-aware can still be “plugged in to” the bus.

Note
In what follows, the terms “within the ESB” or “inside the ESB” refer to ESB-aware
endpoints.

All JBossESB-aware clients and services communicate with one another using Messages, to be
described later. A Message is simply a standardized format for information exchange, containing a
header, body (payload), attachments and other data. Furthemore, all JBossESB-aware services are
identified using Endpoint References (EPRs), to be described later.

It is important for legacy interoperability scenarios that a SOA infrastructure such as JBossESB allow
ESB-unaware clients to use ESB-aware services, or ESB-aware clients to use ESB-unaware services.
The concept that JBossESB uses to facilitate this interoperability is through Gateways. A gateway
is a service that can bridge between the ESB-aware and ESB-unaware worlds and translate to/from
Message formats and to/from EPRs.

JBossESB currently supports Gateways and Connectors. In the following sections we shall examine
both concepts and illustrate how they can be used.

13.2. The Gateway
Not all users of JBossESB will be ESB-aware. In order to facilitate those users interacting with
services provided by the ESB, JBossESB has the concept of a Gateway: specialised servers that can
accept messages from non-ESB clients and services and route them to the required destination.

A Gateway is a specialised listener process, that behaves very similarly to an ESB aware listener.
There are some important differences however:

• Gateway classes can pick up arbitrary objects contained in files, JMS messages, SQL tables etc
(each 'gateway class' is specialized for a specific transport), whereas JBossESB listeners can only
process JBossESB normalized Messages as described in “The Message” section of this document.
However, those Messages can contain arbitrary data.

• Only one action class is invoked to perform the 'message composing' action. ESB listeners are able
to execute an action processing pipeline.

Chapter 13. Connectors and Adapters

122

• Objects that are 'picked up' will be used to invoke a single 'composer class' (the action) that will
return an ESB Message object, which will be delivered to a target service that must be an ESB
aware service. The target service defined at configuration time, will be translated at runtime into
an EPR (or a list of EPRs) by the Registry. The underlying concept is that the EPR returned by
the Registry is analogous to the 'toEPR' contained in the header of ESB Messages, but because
incoming objects are 'ESB unaware' and there is thus no dynamic way to determine the toEPR, this
value is provided to the gateway at configuration time and included in all outgoing messages.

There are a few off the shelf composer classes: the default 'file' composer class will just package
the file contents into the Message body; same idea for JMS messages. Default message composing
class for a SQL table row is to package contents of all columns specified in configuration, into a
java.util.Map.

Although these default composer classes will be enough for most use cases, it is relatively
straightforward for users to provide their own message composing classes. The only requirements are
a) they must have a constructor that takes a single ConfigTree argument, and b) they must provide a
'Message composing' method (default name is 'process' but this can be configured differently in the
'process' attribute of the <action> element within the ConfigTree provided at constructor time. The
processing method must take a single argument of type Object, and return a Message value.

13.2.1. Gateway Data Mappings
When a non-JBossESB message is received by a Gateway it must be converted to a Message. How
this is done and where in the Message the received data resides, depends upon the type of Gateway.
How this conversion occurs depends upon the type of Gateway; the default conversion approach is
described below:

JMS Gateway
If the input message is a JMS TextMessage, then the associated String will be placed in the
default named Body location; if it is an ObjectMessage or a BytesMessage then the contents are
placed within the BytesBody.BYTES_LOCATION named Body location.

Local File Gateway
The contents are placed within the BytesBody.BYTES_LOCATION named Body location.

Hibernate Gateway
The contents are placed within the ListenerTagNames.HIBERNATE_OBJECT_DATA_TAG
named Body location.

Remote File Gateway
The contents are placed within the BytesBody.BYTES_LOCATION named Body location.

Note
With the introduction of the InVM transport, it is now possible to deploy services within
the same address space (VM) as a gateway, improving the efficiency of gateway-to-
listener interactions.

13.2.2. How to change the Gateway Data Mappings
If you want to change how this mapping occurs then it will depend upon the type of Gateway:

Connecting via JCA

123

File Gateways
Instances of the org.jboss.soa.esb.listeners.message.MessageComposer interface
are responsible for performing the conversion. To change the default behavior, provide an
appropriate implementation that defines your own compose and decompose methods. The
new MessageComposer implementation should be provided in the configuration file using the
composer-class attribute name.

JMS and Hibernate Gateways
These implementations use a reflective approach for defining composition classes. Provide your
own Message composer class and use the composer-class attribute name in the configuration
file to inform the Gateway which instance to use. You can use the composer-process attribute to
inform the Gateway which operation of the class to call when it needs a Message; this method
must take an Object and return a Message. If not specified, a default name of process is assumed.

Note
Whichever of the methods you use to redefine the Message composition, it is worth
noting that you have complete control over what is in the Message and not just the
Body. For example, if you want to define ReplyTo or FaultTo EPRs for the newly
created Message, based on the original content, sender etc., then you should consider
modifying the header too.

13.3. Connecting via JCA
You can use JCA Message Inflow as an ESB Gateway. This integration does not use MDBs,
but rather ESB's lightweight inflow integration. To enable a gateway for a service, you
must first implement an endpoint class. This class is a Java class that must implement the
org.jboss.soa.esb.listeners.jca.InflowGateway class:

public interface InflowGateway
{
 public void setServiceInvoker(ServiceInvoker invoker);
}

The endpoint class must either have a default constructor, or a constructor that takes a ConfigTree
parameter. This Java class must also implement the messaging type of the JCA adapter you are
binding to. Here's a simple endpoint class example that hooks up to a JMS adapter:

public class JmsEndpoint implements InflowGateway, MessageListener
{
 private ServiceInvoker service;
 private PackageJmsMessageContents transformer = new
 PackageJmsMessageContents();

 public void setServiceInvoker(ServiceInvoker invoker)
 {
 this.service = invoker;
 }

 public void onMessage(Message message)

Chapter 13. Connectors and Adapters

124

 {
 try
 {
 org.jboss.soa.esb.message.Message esbMessage =
 transformer.process(message);

 service.postMessage(esbMessage);
 }
 catch (Exception e)
 {
 throw new RuntimeException(e);
 }
 }
}

One instance of the JmsEndpoint class will be created per gateway defined for this class. This is
not like an MDB that is pooled. Only one instance of the class will service each and every incoming
message, so you must write threadsafe code.

At configuration time, the ESB creates a ServiceInvoker and invokes the setServiceInvoker
method on the endpoint class. The ESB then activates the JCA endpoint and the endpoint class
instance is ready to receive messages. In the JmsEndpoint example, the instance receives a JMS
message and converts it to an ESB message type. Then it uses the ServiceInvoker instance to invoke
on the target service.

Note
The JMS Endpoint class is provided for you with the ESB distribution under
org.jboss.soa.esb.listeners.jca.JmsEndpoint It is quite possible that this
class would be used over and over again with any JMS JCA inflow adapters.

13.3.1. Configuration
A JCA inflow gateway is configured in a jboss-esb.xml file. Here's an example:

<service category="HelloWorld_ActionESB"
 name="SimpleListener"
 description="Hello World">
 <listeners>
 <jca-gateway name="JMS-JCA-Gateway"
 adapter="jms-ra.rar"
 endpointClass="org.jboss.soa.esb.listeners.jca.JmsEndpoint">
 <activation-config>
 <property name="destinationType" value="javax.jms.Queue"/>
 <property name="destination" value="queue/esb_gateway_channel"/>
 </activation-config>
 </jca-gateway>
...
 </service>

Configuration

125

JCA gateways are defined in <jca-gateway> elements. These are the configurable attributes of this
XML element.

Attribute Required Description

name yes The name of the gateway

adapter yes The name of the adapter you are
using. In JBoss it is the filename
of the RAR you deployed, e.g.,
jms-ra.rar

endpointClass yes The name of your endpoint class

messagingType no The message interface for the
adapter. If you do not specify
one, ESB will guess based on
the endpoint class.

transacted no Default to true. Whether or not
you want to invoke the message
within a JTA transaction.

Table 13.1. jca-gateway Configuration Attributes

You must define an <activation-config> element within <jca-gateway>. This element takes one or
more <property> elements which have the same syntax as action properties. The properties under
<activation-config> are used to create an activation for the JCA adapter that will be used to send
messages to your endpoint class. This is really no different than using JCA with MDBs.

You may also have as many <property> elements as you want within <jca-gateway>. This option is
provided so that you can pass additional configuration to your endpoint class. You can read these
through the ConfigTree passed to your constructor.

126

127

Appendix A. Writing JAXB Annotation
Introduction Configurations
JAXB Annotation Introduction configurations are very easy to write. If you're already familiar with the
JAXB Annotations, you'll have no problem writing a JAXB Annotation Introduction configuration.

The XSD for the configuration is available online at http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/
product/extras/jaxbintros/src/main/resources/jaxb-intros.xsd. In your IDE, register this XSD against the
http://www.jboss.org/xsd/jaxb/intros namespace.

Only 3 annotations are currently supported:

@XmlType1

On the Class element.

@XmlElement2

On the Field and Method elements.

@XmlAttribute3

On the Field and Method elements.

The basic structure of the configuration file follows the basic structure of a Java class i.e. a “Class”
containing “Fields” and “Methods”. The <Class>, <Field> and <Method> elements all require a “name”
attribute for the name of the Class, Field or Method. The value of this name attribute supports regular
expressions. This allows a single Annotation Introduction configuration to be targeted at more than
one Class, Field or Member e.g. setting the namespace for a fields in a Class, or for all Classes in a
package etc.

The Annotation Introduction configurations match exactly with the Annotation definitions themselves,
with each annotation “element-value pair” represented by an attribute on the annotations introduction
configuration. Use the XSD and your IDE to editing the configuration.

So here is an example:

<?xml version = "1.0" encoding = "UTF-8"?>
<jaxb-intros xmlns="http://www.jboss.org/xsd/jaxb/intros">

 <!--
 The type namespaces on the customerOrder are different from the rest
 of the message...
 -->
 <Class name="com.activebpel.ordermanagement.CustomerOrder">
 <XmlType propOrder="orderDate,name,address,items" />
 <Field name="orderDate">
 <XmlAttribute name="date" required="true" />
 </Field>
 <Method name="getXYZ">

1 https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlType.html
2 https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlElement.html
3 https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlAttribute.html

http://www.jboss.org/xsd/jaxb/intros
https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlType.html
https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlElement.html
https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlAttribute.html
https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlType.html
https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlElement.html
https://jaxb.dev.java.net/nonav/2.1.3/docs/api/javax/xml/bind/annotation/XmlAttribute.html

Appendix A. Writing JAXB Annotation Introduction Configurations

128

 <XmlElement namespace="http://org.jboss.esb/quickstarts/bpel/
ABI_OrderManager"
 nillable="true" />
 </Method>
 </Class>
 <!--
 More general namespace config for the rest of the message...
 -->
 <Class name="com.activebpel.ordermanagement.*">
 <Method name="get.*">
 <XmlElement namespace="http://ordermanagement.activebpel.com/
jaws" />
 </Method>
 </Class>

</jaxb-intros>

129

Appendix B. Service Orientated
Architecture Overview
JBossESB is a Service Oriented Architecture (SOA) infrastructure. SOA represents a popular
architectural paradigm 1 for applications, with Web Services as probably the most visible way of
achieving an SOA 2 . Web Services implement capabilities that are available to other applications (or
even other Web Services) via industry standard network and application interfaces and protocols. SOA
advocates an approach in which a software component provides its functionality as a service that can
be leveraged by other software components. Components (or services) represent reusable software
building blocks.

SOA allows the integration of existing systems, applications and users into a flexible architecture that
can easily accommodate changing needs. Integrated design, reuse of existing IT investments and
above all, industry standards are the elements needed to create a robust SOA.

As enterprises slowly emerge from the mad rush of cost reduction into a more stable period of cost
management, many of them find themselves in unfamiliar territory. Prior to the economic slow down,
most firms understood the options they had for IT investment. Many embarked on major package
implementations (e.g., Siebel, Peoplesoft and so on), while others built on the legacy systems
they have trusted for years. Either way, most firms recognized the return promised and made the
investment. Today, the appetite for such large investment is gone.

However, enterprises still need to make forward progress and keep ahead of the competition. SOA
(and typically Web Services as a concrete implementation of those principles) make this possible.
The result is dramatic improvements in collaboration between users, applications and technology
components, generating significant value for any business creating competitive advantage.

Imagine a company that has existing software from a variety of different vendors, e.g., SAP,
PeopleSoft. Some of these software packages may be useful to conduct business with other
companies (customers, suppliers, etc.) and therefore what the company would like to do is to take
those existing systems and make them available to other companies, by exposing them as services.
A service here is some software component with a stable, published interface that can be invoked
by clients (other software components). So, requesting and executing services involves software
components owned by one company talking to components owned by another company, i.e.,
business-to-business (B2B) transactions.

Conventional distributed system infrastructures (middleware) are not sufficient for these cross-
organizational exchanges. For instance

• You would need agreement between the parties involved on the middleware platform.

• There is an implicit (and sometimes explicit) lack of trust between the parties involved.

• Business data is confidential and should only to be seen by the intended recipient.

• Many assumptions of conventional middleware are invalid in cross-organizational interactions.
Transactions, for instance, last longer - possibly for hours or days so conventional transaction
protocols such as two phase commit are not applicable.

1 The principles behind SOA have been around for many years, but Web Services have popularised it.
2 It is possible to build non-SOA applications using Web Services.

Appendix B. Service Orientated Architecture Overview

130

So, in B2B exchanges the lack of standardization across middleware platforms makes point-to-point
solutions costly to realize in practice. The Internet alleviated some of these problems by providing
standard interaction protocols (HTTP) and data formats (XML) but by themselves these standards are
not enough to support application integration. They don't define interface definition languages, name
and directory services, transaction protocols, etc,. It is the gap between what the Web provides and
what application integration requires that Web services are trying to fill.

However, whilst the challenge and ultimate goal of SOA is inter-company interactions, services do not
need to be accessed through the Internet. They can be made available to clients residing on a local
LAN. Indeed, at this current moment in time, many Web services are being used in this context - intra-
company integration rather than inter-company exchanges.

An example of how Web services can connect applications both intra-company and inter-company
can be understood by considering a stand-alone inventory system. If you don't connect it to anything
else, it's not as valuable as it could be. The system can track inventory, but not much more.
Inventory information may have to be entered separately in the accounting and customer relationship
management systems. The inventory system may be unable to automatically place orders to suppliers.
The benefits of such an inventory system are diminished by high overhead costs.

However, if you connect your inventory system to your accounting system with XML, it gets more
interesting. Now, whenever you buy or sell something, the implications for your inventory and your
cash flow can be tracked in one step. If you go further, and connect your warehouse management
system, customer ordering system, supplier ordering systems, and your shipping company with XML,
suddenly that inventory management system is worth a lot. You can do end-to-end management
of your business while dealing with each transaction only once, instead of once for every system it
affects. A lot less work and a lot less opportunity for errors. These connections can be made easily
using Web services.

Businesses are waking up to the benefits of SOA. These include:

• opening the door to new business opportunities by making it easy to connect with partners;

• saving time and money by cutting software development time and consuming a service created by
others;

• increasing revenue streams by easily making your own services available.

B.1. Why SOA?
The problem space can be categorized by past IT investments in the area of eProcurement,
eSourcing, Supply Chain Management, Customer Relationship Management (CRM) and Internet
computing in general. All of these investments were made in a silo. Along with the incremental growth
in these systems to meet short-term (tactical) requirements, the decisions made in this space hurt the
long-term viability of the applications and infrastructure.

The three key drivers for implementing an SOA approach are:

Cost Reduction
Achieved by the ways services talk to each other. The direct cost effect is delivered through
enhanced operations productivity, effective sourcing options, and a significantly enhanced ability to
shift ongoing costs to a variable model.

Why SOA?

131

Delivering IT solutions faster and smarter
A standards based approach will allow organizations to connect and share information and
business processes much faster and easier than before. IT delivery productivity is markedly
improved through simplification of the developer’s role by providing standard frameworks and
interfaces. Delivery timescales have been drastically reduced by easing the integration load of
individual functionality, and applying accelerated delivery techniques within the environment.

Maximizing return on investment
Web Services opens the way for new business opportunities by enabling new business models.
Web Services present the ability to measure value and discrete return much differently than
traditional functional-benefit methods. Typical Total Cost of Ownership (TCO) models do not
take into account the lifetime value generated by historical investment. This cost centric view
destroys many opportunities to exploit these past investments and most enterprises end up
building redundancy into their architecture, not out of necessity, but of perceived need. These
same organizations focus the value proposition of their IT investment on a portfolio of applications,
balanced by the overhead of infrastructure. An approach based on Web Services takes into
account the lifetime contribution of legacy IT investment and promotes an evolution of these
investments rather than a planned replacement.

SOA/Web Services fundamentally changes the way enterprise software is developed and deployed.
SOA has evolved where new applications will not be developed using monolithic approaches, but
instead become a virtualized on-demand execution model that breaks the current economic and
technological bottleneck caused by traditional approaches.

Software as a service has become pervasive as a model for forward looking enterprises to streamline
operations, lower cost of ownership and provides competitive differentiation in the marketplace.
Web Services offers a viable opportunity for enterprises to drive significant costs out of software
acquisitions, react to rapidly changing market conditions and conduct transactions with business
partners at will. Loosely coupled, standards-based architectures are one approach to distributed
computing that will allow software resources available on the network to be leveraged. Applications
that separate business processes, presentation rules, business rules and data access into separate
loosely coupled layers will not only assist in the construction of better software but also make it more
adaptable to future change.

SOA will allow for combining existing functions with new development efforts, allowing the creation of
composite applications. Leveraging what works lowers the risks in software development projects. By
reusing existing functions, it leads to faster deliverables and better delivery quality.

Loose coupling helps preserve the future by allowing parts to change at their own pace without the
risks linked to costly migrations using monolithic approaches. SOA allows business users to focus
on business problems at hand without worrying about technical constraints. For the individuals who
develop solutions, SOA helps in the following manner:

• Business analysts focus on higher order responsibilities in the development lifecycle while
increasing their own knowledge of the business domain.

• Separating functionality into component-based services that can be tackled by multiple teams
enables parallel development.

• Quality assurance and unit testing become more efficient; errors can be detected earlier in the
development lifecycle

• Development teams can deviate from initial requirements without incurring additional risk

Appendix B. Service Orientated Architecture Overview

132

• Components within architecture can aid in becoming reusable assets in order to avoid reinventing
the wheel

• Functional decomposition of services and their underlying components with respect to the business
process helps preserve the flexibility, future maintainability and eases integration efforts

• Security rules are implemented at the service level and can solve many security considerations
within the enterprise

B.2. Basics of SOA
Traditional distributed computing environments have been tightly coupled in that they do not deal with
a changing environment well. For instance, if an application is interacting with another application, how
do they handle data types or data encoding if data types in one system change? How are incompatible
data-types handled?

The service-oriented architecture (SOA) consists of three roles: requester, provider, and broker.

Service Provider
A service provider allows access to services, creates a description of a service and publishes it to
the service broker.

Service Requestor
A service requester is responsible for discovering a service by searching through the service
descriptions given by the service broker. A requester is also responsible for binding to services
provided by the service provider.

Service Broker
A service broker hosts a registry of service descriptions. It is responsible for linking a requestor to
a service provider.

B.3. Advantages of SOA
SOA provide several significant benefits for distributed enterprise systems. Some of the most notable
benefits include: interoperability, efficiency, and standardization. We will briefly explore each of these
in this section.

B.3.1. Interoperability
Interoperability is the ability of software on different systems to communicate by sharing data and
functionality. SOA/Web Services are as much about interoperability as they are about the Web and
Internet scale computing. Most companies will have numerous business partners throughout the
life of the company. Instead of writing a new addition to your applications every time you gain a new
partner, you can write one interface using Web service technologies like SOAP. So now your partners
can dynamically find the services they need using UDDI and bind to them using SOAP. You can
also extend the interoperability of your systems by implementing Web services within your corporate
intranet. With the addition of Web services to your intranet systems and to your extranet, you can
reduce the cost integration, increase communication and increase your customer base.

It is also important to note that the industry has even established the Web Services Interoperability
Organization.

Efficiency

133

“The Web Services Interoperability Organization is an open industry effort chartered to promote Web
Services interoperability across platforms, applications, and programming languages. The organization
brings together a diverse community of Web services leaders to respond to customer needs by
providing guidance, recommended practices, and supporting resources for developing interoperable
Web services.” (www.ws-i.org)

The WS-I will actually determine whether a Web service conforms to WS-I standards as well as
industry standards. In order to establish integrity and acceptance, companies will seek to build their
Web services in compliance with the WS-I standards.

B.3.2. Efficiency
SOA will enable you to reuse your existing applications. Instead of creating totally new applications,
you can create them using various combinations of services exposed by your existing applications.
Developers can be more efficient because they can focus on learning industry standard technology.
They will not have to spend a lot of time learning every new technology that arises. For a manager
this means a reduction in the cost of buying new software and having to hire new developers with new
skill sets. This approach will allow developers to meet changing business requirements and reduce
the length of development cycles for projects. Overall, SOA provides for an increase in efficiency by
allowing applications to be reused, decreasing the learning curve for developers and speeding up the
total development process.

B.3.3. Standardization
For something to be a true standard, it must be accepted and used by the majority of the industry. One
vendor or small group of vendors must not control the evolution of the technology or specification.
Most if not all of the industry leaders are involved in the development of Web service specifications.
Almost all businesses use the Internet and World Wide Web in one form or another. The underlying
protocol for the WWW is of course HTTP. The foundation of Web services is built upon HTTP and
XML. Although SOA does not mandate a particular implementation framework, interoperability is
important and SOAP is one of the few protocols that all good SOA implementations can agree on.

B.3.4. Statefull and Stateless Services
Most proponents of Web Services agree that it is important that its architecture is as scalable and
flexible as the Web. As a result, the current interaction pattern for Web Services is based on coarse-
grained services or components. The architecture is deliberately not prescriptive about what happens
behind service endpoints: Web Services are ultimately only concerned with the transfer of structured
data between parties, plus any meta-level information to safeguard such transfers (e.g., by encrypting
or digitally signing messages). This gives flexibility of implementation, allowing systems to adapt
to changes in requirements, technology etc. without directly affecting users. Furthermore, most
businesses will not want to expose their back-end implementation decisions and strategies to users for
a variety of reasons.

In distributed systems such as CORBA, J2EE and DCOM, interactions are typically between statefull
objects that resided within containers. In these architectures, objects are exposed as individually
referenceable entities, tied to specific containers and therefore often to specific machines. Because
most Web Services applications are written using object-oriented languages, it is natural to think about
extending that architecture to Web Services. Therefore a service exposes Web Services resources
that represent specific states. The result is that such architectures produce tight coupling between
clients and services, making it difficult for them to scale to the level of the World Wide Web.

Appendix B. Service Orientated Architecture Overview

134

Right now there are two primary models for the session concept that are being defined by
companies participating in defining Web services: the WS-Addressing EndpointReference with
ReferenceProperties/ReferenceParameters and the WS-Context explicit context structure, both of
which are supported within JBossESB. The WS-Addressing session model provides coupling between
the web service endpoint information and the session data, which is analogous to object references in
distributed object systems.

WS-Context provides a session model that is an evolution of the session models found in HTTP
servers, transaction, and MOM systems. On the other hand, WS-Context allows a service client
to more naturally bind the relationship to the service dynamically and temporarily. The client’s
communication channel to the service is not impacted by a specific session relationship.

This has important implications as we consider scaling Web services from intra-domain deployments
to general services offered on the Internet. The current interaction pattern for Web Services is based
on coarse-grained services or components. The architecture is deliberately not prescriptive about what
happens behind service endpoints: Web Services are ultimately only concerned with the transfer of
structured data between parties, plus any meta-level information to safeguard such transfers (e.g., by
encrypting or digitally signing messages). This gives flexibility of implementation, allowing systems
to adapt to changes in requirements, technology etc. without directly affecting users. It also means
that issues such as whether or not a service maintains state on behalf of users or their (temporally
bounded) interactions, has been an implementation choice not typically exposed to users.

If a session-like model based on WS-Addressing were to be used when interacting with statefull
services, then the tight coupling between state and service would impact on clients. As in other
distribution environments where this model is used (e.g., CORBA or J2EE), the remote reference
(address) that the client has to the service endpoint must be remembered by the client for subsequent
invocations. If the client application interacts with multiple services within the same logical session,
then it is often the case that the state of a service has relevance to the client only when used in
conjunction with the associated states of the other services. This necessarily means that the client
must remember each service reference and somehow associate them with a specific interaction;
multiple interactions will obviously result in different reference sets that may be combined to represent
each sessions.

For example, if there are N services used within the same application session, each maintaining
m different states, the client application will have to maintain N*m reference endpoints. It is worth
remembering that the initial service endpoint references will often be obtained from some bootstrap
process such as UDDI. But in this model, these references are stateless and of no use beyond starting
the application interactions. Subsequent visits to these sites that require access to specific states must
use different references in the WS-Addressing model.

This obviously does not scale to an environment the size of the Web. However, an alternative
approach is to use WS-Context and continue to embrace the inherently loosely-coupled nature of Web
Services. As we have shown, each interaction with a set of services can be modeled as a session, and
this in turn can be modeled as a WS-Context activity with an associated context. Whenever a client
application interacts with a set of services within the same session, the context is propagated to the
services and they map this context to the necessary states that the client interaction requires.

How this mapping occurs is an implementation specific choice that need not be exposed to the client.
Furthermore, since each service within a specific session gets the same context, upon later revisiting
these services and providing the same context again, the client application can be sure to return to a
consistent set of states. So for the N services and m states in our previous example, the client need
only maintain N endpoint references and as we mentioned earlier, typically these will be obtained from
the bootstrap process anyway. Thus, this model scales much better.

JBossESB and its Relationship with SOA

135

B.4. JBossESB and its Relationship with SOA
SOA is more than technology: it does not come in a shrink-wrapped box and requires changes to
the way in which people work and interact as much as assistance from underlying infrastructures,
such as JBossESB. With JBossESB 4.3 GA, Red Hat is providing a base SOA infrastructure upon
which SOA applications can be developed. With the 4.2.1 release, most of the necessary hooks for
SOA development are in place and Red Hat is working with its partners to ensure that their higher
level platforms leverage these hooks appropriately. However, the baseline platform (JBossESB) will
continue to evolve, with out-of-the-box improvements around tooling, runtime management, service
life-cycle etc. In JBossESB 4.3 GA, it may be necessary for developers to leverage these hooks
themselves, using low-level API and patterns.

136

137

Glossary
Access Control List A mean of determining the appropriate access rights to a given

object depending on certain aspects of the process that is making the
request.

Action Classes A component that is responsible for doing a certain type of work after
a receipt of a message inside the ESB.

Bus A subsystem that transfers data between computer components
inside a computer or between computers. Unlike a point-to-point
connection, a bus can logically connect several components over the
same structure.

Content Based Router A pluggable service inside the ESB that provides capabilities for
message routing based on the content of the message.

CORBA Common Object Request Broker Architecture. A standard defined by
the Object Management Group that enables software components
written in multiple computer languages and running on multiple
computers to interoperate.

CORBA IDL CORBA Interface Definition Language. A computer language used to
describe a software component's interface. It describes an interface
in a language-neutral way, enabling communication between software
components written in different languages.

EAI Enterprise Application Integration. A practice that makes use of
software and computer systems architectural principles to integrate a
set of different enterprise computer applications.

Endpoint Reference (EPR) A standard XML structure used to identify and address services
inside the ESB. This includes the destination address of the message,
any additional parameters (reference properties) necessary to route
the message to the destination, and optional metadata (reference
parameters) about the service.

ESB Enterprise Service Bus. An abstraction layer on top of an
implementation of an enterprise messaging system that provides
the features with which Service Oriented Architectures may be
implemented.

Fault A type of message that express an error condition inside a Web
Service. Similar to the Exception object in some programming
languages.

Gateway A specialized ESB listener process that can accept messages
from non-ESB clients and services and route them to the required
destination inside the ESB, taking care of the appropriate bridging of
message types and EPRs.

J2EE/JEE Java Platform Enterprise Edition (formerly known as Java 2 Platform
Enterprise Edition). A programming platform, based on the Java
language, for developing and running distributed multi-tier Java

Glossary

138

applications. It is based largely on modular software components
running on an application server.

JBI Java Business Integration. An API that provides a standard pluggable
architecture to build integration systems that hosts service producers
and consumers components. Components interoperate through
mediated normalized message exchanges.

JMS Java Message Service. An API for sending messages between two or
more systems.

JTA Java Transaction API. An API that allows distributed transactions to
be done across multiple XA resources

Listener Classes A component that encapsulates the endpoints for message reception
on the ESB.

Message A data item that is sent (usually asynchronously) to a communication
endpoint. This concept is the higher-level version of a datagram
except that messages can be larger than a packet and can optionally
be made reliable, durable, secure, and/or transacted.

Message Factory A service inside the ESB that can build specific types of messages
according to their serialization capabilities.

Message Store A pluggable service inside the ESB that persists messages for
auditing and tracking purposes.

MOM Message Oriented Middleware. A software component that makes
possible inter-application communication relying on asynchronous
message-passing.

Quality of Service A term that refers to control mechanisms that can provide different
priority to different users or data flows, or guarantee a certain level
of performance to a data flow in accordance with requests from the
application program.

RPC Remote Procedure Call. A protocol that allows a computer program
running on one computer to call a subroutine on another computer
without the programmer explicitly coding the details for this
interaction.

SCA Service Component Architecture. A set of specifications that describe
a model for building applications and systems using Service-Oriented
Architecture. It encourages an SOA organization of applications
based on components that offer their capabilities through service-
oriented interfaces and which consume functions offered by other
components through service-oriented interfaces, called service
references.

Service Registry A persistent repository of Service information. Used by ESB
components to publish, discover and consume services.

SOA Service Oriented Architecture. A perspective of software architecture
that defines the use of loosely coupled software services to support

139

the requirements of the business processes and software users. In
an SOA environment, resources on a network are made available
as independent services that can be accessed without knowledge of
their underlying platform implementation.

SOAP A protocol for exchanging XML-based messages over computer
network, normally using HTTP. SOAP forms the foundation layer of
the Web services stack, providing the basic messaging framework.

Transformation Service A pluggable service inside the ESB that provides capabilities for
transforming messages from one data format to another.

UDDI Universal Description, Discovery, and Integration. A platform-
independent, XML-based registry and core Web Services standard.
It is designed to be interrogated by SOAP messages and to provide
access to Web Services Description Language documents describing
the protocol bindings and message formats required to interact with
the web services listed in its directory.

WS-Addressing A Web Service specification for addressing web services and
messages in a transport-neutral manner. This specification enables
messaging systems to support message transmission through
networks that include processing nodes such as endpoint managers,
firewalls, and gateways.

WS-BPEL Web Services Business Process Execution Language. A
choreography language for the formal specification of business
processes and business interaction protocols using Web Services.
Thus BPEL's messaging facilities depend on the use of Web Services
Description Language (WSDL) 1.1 to describe incoming and outgoing
messages.

WS-Context A Web Service specification that provides a definition, a structuring
mechanism, and a software service definition for organizing and
sharing context across multiple Web Services endpoints. The context
contains information (such as a unique identifier) that allows a series
of operations to share a common outcome.

WSDL Web Services Description Language. An XML format for describing
the public interface to a Web services based on how to communicate
using the web service; namely, the protocol bindings and message
formats required to interact with it.

WS-Policy A Web Service specification that allows web services to advertise
their policies (on security, Quality of Service, etc.) and for web service
consumers to specify their policy requirements.

WS-Security A Web Service specification that provides a set of mechanisms
to secure SOAP message exchanges. Specifically, it describes
enhancements to provide quality of protection through the application
of message integrity, message confidentiality, and single message
authentication to SOAP messages.

WS-Trust A Web Service specification that uses the secure messaging
mechanisms of WS-Security to define additional primitives and

Glossary

140

extensions for the issuance, exchange and validation of security
tokens.

XA An X/Open specification for distributed transaction processing. It
describes the interface between the global transaction manager and
the local resource manager to support a two-phase commit protocol.

XML Extensible Markup Language. A general-purpose markup language
that supports a wide variety of applications. Its primary purpose is to
facilitate the sharing of data across different information systems.

141

Appendix C. Revision History
Revision History
Revision 1.0 Tue 9 Sep 2008 DarrinMisondmison@redhat.com
Created

mailto:dmison@redhat.com

142

	Programmers Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. The Enterprise Service Bus
	1.1. What is an ESB?
	1.2. When would you use an ESB?

	Chapter 2. JBoss ESB
	2.1. Rosetta
	2.2. The core of JBossESB summarized

	Chapter 3. Services and Messages
	3.1. The Service
	3.2. The Message
	3.2.1. The Header
	3.2.2. The Context
	3.2.3. The Fault
	3.2.4. The Body
	3.2.5. Extensions to Body
	3.2.6. Attachments
	3.2.7. Properties
	3.2.8. The MessageFactory
	3.2.8.1. MessageType.JAVA_SERIALIZED
	3.2.8.2. MessageType.JBOSS_XML

	Chapter 4. Building and Using Services
	4.1. Listeners, Notifiers/Routers and Actions
	4.1.1. Listeners
	4.1.2. Notifiers
	4.1.3. Actions and Messages
	4.1.4. Handling responses
	4.1.5. Error handling when processing actions

	4.2. Meta-Data and Filters
	4.3. What is a Service
	4.3.1. ServiceInvoker
	4.3.2. Services and ServiceInvoker
	4.3.3. InVM Transport

	4.4. Service Contract Definition

	Chapter 5. Other Components
	5.1. The Message Store
	5.2. Data Transformation
	5.3. Content-based Routing
	5.4. The Registry

	Chapter 6. Example
	6.1. How to use the Message
	6.1.1. The Message Structure
	6.1.2. The Service
	6.1.3. Unpacking the payload
	6.1.4. The Client
	6.1.5. Hints and Tips

	Chapter 7. Advanced Topics
	7.1. Fail-over and Load-balancing Support
	7.1.1. Services, EPRs, listeners and actions
	7.1.2. Replicated Services
	7.1.3. Protocol Clustering
	7.1.4. Clustering
	7.1.5. Channel Fail-over and Load Balancing
	7.1.6. Message Redelivery

	7.2. Scheduling of Services
	7.2.1. Simple Schedule
	7.2.2. Cron Schedule
	7.2.3. Scheduled Listener
	7.2.4. Example Configurations
	7.2.5. Quartz Scheduler Property Configuration

	Chapter 8. Fault-tolerance and Reliability
	8.1. Failure classification
	8.1.1. JBossESB and the Fault Models
	8.1.2. Failure Detectors and Failure Suspectors

	8.2. Reliability Guarantees
	8.2.1. Message Loss
	8.2.2. Suspecting Endpoint Failures
	8.2.3. Supported Crash Failure Modes
	8.2.4. Component Specifics
	8.2.5. Gateways
	8.2.6. ServiceInvoker
	8.2.7. JMS Broker
	8.2.8. Action Pipelining

	8.3. Recommendations

	Chapter 9. Configuration
	9.1. Overview
	9.2. Providers
	9.3. Services
	9.4. Transport Specific Type Implementations
	9.5. FTP Provider Configuration
	9.6. FTP Listener Configuration
	9.6.1. Read-only FTP Listener

	9.7. Transitioning from the Old Configuration Model
	9.8. Configuration

	Chapter 10. Web Services Support
	10.1. JBossWS

	Chapter 11. Out-of-the-box Actions
	11.1. Transformers & Converters
	11.2. Business Process Management
	11.3. Scripting
	11.4. Services
	11.5. Routing
	11.6. Notifier
	11.7. Webservices/SOAP
	11.8. Miscellaneous

	Chapter 12. Developing Custom Actions
	12.1. Configuring Actions Using Properties

	Chapter 13. Connectors and Adapters
	13.1. Introduction
	13.2. The Gateway
	13.2.1. Gateway Data Mappings
	13.2.2. How to change the Gateway Data Mappings

	13.3. Connecting via JCA
	13.3.1. Configuration

	Appendix A. Writing JAXB Annotation Introduction Configurations
	Appendix B. Service Orientated Architecture Overview
	B.1. Why SOA?
	B.2. Basics of SOA
	B.3. Advantages of SOA
	B.3.1. Interoperability
	B.3.2. Efficiency
	B.3.3. Standardization
	B.3.4. Statefull and Stateless Services

	B.4. JBossESB and its Relationship with SOA

	Glossary
	Appendix C. Revision History

