
JBoss Messaging User Guide

JBoss Enterprise
Application Platform

4.3

Contributors: Tim Fox, Clebert Suconic, Andy Taylor, Ovidiu
Feodorov, Sergey Koshcheyev, Ron Sigal, Madhu Konda, Jay

Howell, Tyronne Wickramarathne, Aaron Walker, Adrian Brock,
Rajdeep Dua, Tom Elrod, Alex Fu, Juha Lindfors, Alexey

Loubyansky, Luc Texier, Scott Stark, Jay Howell, David Boeren,

Mike Clark, Tyronne Wickramarathne, Mark Little, Pete Bennett.
ISBN: N/A

Publication date: Oct, 2007

JBoss Messaging User Guide

This User Guide documents relevant information regarding the usage of JBoss Messaging 1.4
for JBoss Enteprise Application Platform 4.3

JBoss Messaging User Guide: JBoss Enterprise Application
Platform
Author Contributors: Tim Fox, Clebert

Suconic, Andy Taylor, Ovidiu
Feodorov, Sergey Koshcheyev,
Ron Sigal, Madhu Konda, Jay
Howell, Tyronne
Wickramarathne, Aaron Walker,
Adrian Brock, Rajdeep Dua,
Tom Elrod, Alex Fu, Juha
Lindfors, Alexey Loubyansky,
Luc Texier, Scott Stark, Jay
Howell, David Boeren, Mike
Clark, Tyronne
Wickramarathne, Mark Little,
Pete Bennett.

Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

JBoss Messaging User Guide

http://creativecommons.org/licenses/by-nc-sa/3.0/

1. About this book .. 1
2. Introduction ... 3

1. Feedback .. 3
2. Other Manuals ... 3

3. JBoss Messaging - A Quick Tour .. 5
1. Limitations of JBossMQ .. 5
2. JBoss Messaging Features ... 5
3. Clustering Features .. 6
4. Compatibility with JBossMQ .. 7

4. JBoss Messaging Examples ... 9
1. About the Examples ... 9
2. Running the Examples ..10

2.1. Install Ant ..10
2.2. Set JBOSS_HOME Environment Variable ..11
2.3. Run the Example ..11

5. Configuration ..13
1. Configuring the ServerPeer ...13

1.1. ServerPeer attributes ..16
2. Changing the Database ...21
3. Configuring the Post office ...22

3.1. The post office has the following attributes ...26
4. Configuring the Persistence Manager ...28

4.1. MBean attributes of the PersistenceManager MBean32
5. Configuring the JMS user manager ..33

5.1. MBean attributes of the JMSUserManager MBean34
6. Configuring Destinations ..34

6.1. Pre-configured destinations ...34
6.2. Configuring queues ..37
6.3. Configuring topics ..41

7. Configuring Connection Factories ..45
7.1. MBean attributes of the ConnectionFactory MBean46

8. Configuring the remoting connector ..49
9. ServiceBindingManager ..52

6. JBoss Messaging Clustering Configuration ...53
1. Unique server peer id ..54
2. Clustered destinations ...55
3. Clustered durable subs ..55
4. Clustered temporary destinations ...55
5. Non clustered servers ...55
6. Message ordering in the cluster ...55
7. Idempotent operations ...56
8. Clustered connection factories ...56

7. JBoss Messaging XA Recovery Configuration ...57
8. JBoss Messaging Message Bridge Configuration ..59

1. Message bridge overview ..59
2. Bridge deployment ..60

vii

3. Bridge configuration ..60
3.1. SourceProviderLoader ..62
3.2. TargetProviderLoader ...63
3.3. SourceDestinationLookup ...63
3.4. TargetDestinationLookup ..63
3.5. SourceUsername ...63
3.6. SourcePassword ..63
3.7. TargetUsername ..63
3.8. TargetPassword ...64
3.9. QualityOfServiceMode ..64
3.10. Selector ...64
3.11. MaxBatchSize ..64
3.12. MaxBatchTime ...64
3.13. SubName ..64
3.14. ClientID ...65
3.15. FailureRetryInterval ..65
3.16. MaxRetries ..65
3.17. AddMessageIDInHeader ...65

JBoss Messaging User Guide

viii

About this book
The goal of this book is to give you an overview of JBoss Messaging. It explains the important
features of JBoss Messaging and its capability to provide a high-performance and robust
messaging system for Enterprise Java Applications.

JBoss Messaging is the new state-of-the-art enterprise messaging system from JBoss,
providing superior performance, reliability and scalability with high throughput and low latency.
JBoss Messaging has replaced JBossMQ as the default JMS provider in JBoss Enterprise
Application Platform 4.3. The version used is JBoss Messaging 1.4. You should use this version
or later with the examples demonstrating JBoss Messaging. The book is not intended to teach
you the basics of Enterprise Messaging. Use it to familiarize with JBoss Messaging features and
various configurations.

Chapter 1.

1

2

1 http://jira.jboss.com/jira/browse/JBPAPP

Introduction
JBoss Messaging provides an open source and standards-based messaging platform and is an
integral part of Red Hat's strategy for enterprise messaging. It is a complete rewrite of
JBossMQ, the legacy JBoss JMS provider, and offers improved performance in both single
node and clustered environments. It also features a much better modular architecture that
allows easy adding of new features in the future.

Note

JBoss Messaging 1.4 is the default JMS provider in JBoss Enterprise Application
Platform 4.3.

1. Feedback

If you spot a typo in this guide, or if you have thought of a way to make this manual better, we
would love to hear from you! Submit a report in JIRA1 against the Product: JBoss Enterprise
Application Platform, Version: <version>, Component: Doc. If you have a suggestion for
improving the documentation, try to be as specific as possible. If you have found an error,
include the section number and some of the surrounding text so we can find it easily.

2. Other Manuals

If you are looking for detailed product information refer to the manuals available online at
http://www.redhat.com/docs/manuals/jboss.

Chapter 2.

3

http://jira.jboss.com/jira/browse/JBPAPP
http://jira.jboss.com/jira/browse/JBPAPP
http://www.redhat.com/docs/manuals/jboss

4

JBoss Messaging - A Quick Tour

1. Limitations of JBossMQ

JBossMQ has two fundamental limitations:

• JBossMQ is based on SpyderMQ (the open source project) which is a non-clustered broker.

• The threading model and the overall design of the non-clustered broker leads to performance
limitations in certain high load usage scenarios.

2. JBoss Messaging Features

JBoss Messaging implements a high-performance and robust messaging core that is designed
to support the largest and most heavily utilized Service Oriented Architectures(SOAs),
Enterprise Service Buses (ESBs) and other integration needs ranging from the simplest to the
highest demand networks.

It will allow you to smoothly distribute your application load across your cluster, intelligently
balancing and utilizing each node's CPU cycles. It comes with no single point of failure and no
single point of bottleneck, sophisticated and fully configurable message expiration handling and
XA transaction recovery. Thus providing a highly scalable and performant clustering
implementation. It includes a JMS front-end to deliver messaging in a standards-based format
as well as being designed to be able to support other messaging protocols in the future.

Note

JMS compliance: A fully compatible and Sun certified JMS 1.1 implementation,
that currently works with JBoss Enterprise Application Platform 4.3 or JBoss
Application Server version 4.2 or later.

JBoss Messaging contains a host of other features, including:

• Publish-subscribe and point-to-point messaging models

• Persistent and non-persistent messages

• Guaranteed message delivery that ensures that messages arrive once and only once where
required

• Transactional and reliable - supporting ACID semantics

• Customizable security framework based on JAAS

Chapter 3.

5

• Fully integrated with JBoss Transactions (formerly known as Arjuna JTA) for full transaction
recoverability.

• Extensive JMX management interface

• Support for most major databases including Oracle, Sybase, MS SQL Server, PostgreSQL
and MySQL

• HTTP transport to allow use through firewalls that only allow HTTP traffic

• SSL transport

• Configurable DLQs (Dead Letter Queues) and Expiry Queues

• Message statistics: Gives you a rolling historical view of what messages were delivered to
what queues and subscriptions

• Automatic paging of messages to storage. Allows the use of very large queues - too large to
fit in memory at once

3. Clustering Features

Fully clustered queues and topics.
"Logical" queues and topics are distributed across the cluster. You can send to a queue or a
topic from any node, and receive from any other.

Fully clustered durable subscriptions.
A particular durable subscription can be accessed from any node of the cluster - allowing you to
spread processing load from that subscription across the cluster.

Fully clustered temporary queues.
Send a message with a replyTo of a temp queue and it can be sent back on any node of the
cluster.

Intelligent message redistribution.
Messages are automatically moved between different nodes of the cluster if consumers are
faster on one node than another. This can help prevent starvation or build up of messages on
particular nodes.

Message order protection.
If you want to ensure that the order of messages produced by a producer is the same as is
consumed by a consumer then you can set this to true. This works even in the presence of
message redistribution.

Chapter 3. JBoss Messaging - A Quick Tour

6

Fully transparent failover.
When a server fails, your sessions continue without exceptions on a new node as if nothing
happened. (Fully configurable - If you don't want this you can fall back to exceptions being
thrown and manually recreation of connections on another node)

High availability and seamless fail-over.
If the node you are connected to fails, you will automatically fail over to another node and will
not lose any persistent messages. You can carry on with your session seamlessly where you
left off. Once and only once delivery of persistent messages is respected at all times.

Message bridge.
JBoss Messaging contains a message bridge component which enables you to bridge
messages between any two JMS1.1 destinations on the same or physical separate locations.
(E.g. separated by a WAN). This allows you to connect geographically separate clusters,
forming huge globally distributed logical queues and topics.

4. Compatibility with JBossMQ

Since JBoss Messaging is JMS 1.1 and JMS 1.0.2b compatible, the JMS code written against
JBossMQ will run with JBoss Messaging without any changes.

JBoss Messaging does not have wire format compatibility with JBossMQ so it would be
necessary to upgrade JBoss MQ clients with JBoss Messaging client jars.

Important

Even if JBoss Messaging deployment descriptors are very similar to JBoss MQ
deployment descriptors, they are not identical, so they will require some simple
adjustments to get them to work with JBoss Messaging. Also, the database data
model is completely different, so don't attempt to use JBoss Messaging with a
JBoss MQ data schema and vice-versa.

Note

JBoss Messaging is built against the JBoss AS 4.2 libraries which are built using
Java 5. Therefore JBoss Messaging only runs with Java 5 or later.

Compatibility with JBossMQ

7

8

JBoss Messaging Examples

1. About the Examples

In the installation directory of your JBoss Enterprise Application Platform you will find a set of
JBoss Messaging examples located in
JBOSS_DIST/doc/examples/jboss-messaging-examples. These examples demonstrate
JBoss Messaging in action. Within the
JBOSS_DIST/doc/examples/jboss-messaging-examples directory, you will find the following
sub-directories:

• docs/examples/jboss-messaging-examples/queue

This example demonstrates a simple 'send' and 'receive' to a remote queue using a JMS
client.

• docs/examples/jboss-messaging-examples/topic

This example demonstrates a simple 'send' and 'receive' to a remote topic using a JMS client.

• docs/examples/jboss-messaging-examples/mdb

This example demonstrates the usage of an EJB2.1 MDB with JBoss Messaging.

• docs/examples/jboss-messaging-examples/ejb3mdb

This example demonstrates the usage of an EJB3 MDB with JBoss Messaging.

• docs/examples/jboss-messaging-examples/stateless

This example demonstrates an EJB2.1 stateless session bean interacting with JBoss
Messaging.

• docs/examples/jboss-messaging-examples/mdb-failure

This example demonstrates rollback and redelivery occuring with an EJB2.1 MDB.

• docs/examples/jboss-messaging-examples/secure-socket

This example demonstrates a JMS client interacting with a JBoss Messaging server using
SSL encrypted transport.

• docs/examples/jboss-messaging-examples/http

This example demonstrates a JMS client interacting with a JBoss Messaging server tunneling
traffic over HTTP protocol.

• docs/examples/jboss-messaging-examples/web-service

This example demonstrates JBoss web-service interacting with JBoss Messaging.

Chapter 4.

9

• docs/examples/jboss-messaging-examples/distributed-queue

This example demonstrates a JMS client interacting with a JBoss Messaging distributed
queue - it requires two JBoss Application Server instances to be running.

• docs/examples/jboss-messaging-examples/distributed-topic

This example demonstrates a JMS client interacting with a JBoss Messaging distributed topic
- it requires two JBoss Application Server instances to be running.

• docs/examples/jboss-messaging-examples/stateless-clustered

This example demonstrates a JMS client interacting with a clustered EJB2.1 stateless session
bean, which in turn interacts with JBoss Messaging. The example uses HAJNDI to lookup the
connection factory. It requires two JBoss Application Server instances to be running.

• docs/examples/jboss-messaging-examples/bridge

This example demonstrates the usage of a message bridge. It deploys a message bridge in
JBoss Application Server which then proceeds to move messages from a source to a target
queue.

2. Running the Examples

2.1. Install Ant

To compile the examples, you must have Apache Ant 1.6+ installed in your machine. You can
download it from http://ant.apache.org and have it installed in few steps:

• Unzip the downloaded file to the directory of your choice.

• Create an environment variable called ANT_HOME pointing to the Ant installation directory. You
can do this by adding the following line to your .bashrc file (substituting with the actual
location of the ant directory on your system):

export ANT_HOME=/home/user/apache-ant-1.7.0

On Windows you do this by opening the Control Panel from the Start Menu, switching it to
classic view if necessary, then opening System/Advanced/Environment Variables. Create a
new variable, call it ANT_HOME and set it to be the ant directory.

• Add $ANT_HOME/bin to the system path to be able to run ant from the command line. You
can do this by adding the following line to your .bashrc file:

export PATH=$PATH:$ANT_HOME/bin

Chapter 4. JBoss Messaging Examples

10

http://ant.apache.org

On Windows you do this by opening the Control Panel from the Start Menu, switching it to
classic view if necessary, then editing the PATH environment variable found in
System/Advanced/Environment Variables/System Variables/Path. Add a semicolon and the
path to the ant bin directory.

• Verify your Ant installation. To do this type ant -version at the command prompt. Your
output should look something like this:

Apache Ant version 1.7.0 compiled on December 13 2006

2.2. Set JBOSS_HOME Environment Variable

On a Linux Platform .
Create an environment variable that points to the installation directory (JBOSS_DIST/jboss-as)
and call it JBOSS_HOME. Add $JBOSS_HOME/bin to the system path to be able to run the server
from the command line. You can do this by adding the following lines to the .bashrc file in your
home directory.

#In this example /home/vrenish/EnterprisePlatform-4.3/jboss-as is the
installation directory.
export JBOSS_HOME=/home/vrenish/EnterprisePlatform-4.3/jboss-as
export PATH=$PATH:$JBOSS_HOME/bin

On Microsoft Windows .
Create an environment variable called JBOSS_HOME that points to the installation directory, for
example: C:\Program Files\EnterprisePlatform-4.3\jboss-as\. In order to run the server from the
command line add the bin directory to your path, for example: C:\Program
Files\EnterprisePlatform-4.3\jboss-as\bin. To do this, open the Control Panel from the Start
Menu, switch to Classic View if necessary, open the System Control Panel applet, select the
Advanced Tab, and click on the Environment Variables button.

2.3. Run the Example

Make sure you start the JBoss Application server before trying to run the examples. The non
clustered examples expect a single JBoss Application Server instance to be running with all the
default settings. The clustered examples expect two JBoss Application Server instances to be

Set JBOSS_HOME Environment Variable

11

running with ports settings as per ports-01 and ports-02. For each example, you can always
override the default ports it will try to connect to by editing jndi.properties in the particular
example's directory.

To run any of the examples inside the
JBOSS_DIST/doc/examples/jboss-messaging-examples directory, navigate to the example's
folder in a command line prompt, and type ant.

Chapter 4. JBoss Messaging Examples

12

Configuration
The JMS API specifies how a messaging client interacts with a messaging server. The exact
definition and implementation of messaging services, such as message destinations and
connection factories, are specific to JMS providers. JBoss Messaging has its own configuration
files to configure services. If you are migrating services from JBossMQ (or other JMS provider)
to JBoss Messaging, you will need to understand these configuration files. In this chapter, we
will discuss how to configure various services inside JBoss Messaging, which work together to
provide JMS API level services to client applications.

The JBoss Messaging service configuration is spread among several configuration files.
Depending on the functionality provided by the services it configures, the configuration data is
distributed between messaging-service.xml, remoting-bisocket-service.xml,
xxx-persistence-service.xml (where xxx is the name of your database),
connection-factories-service.xml and destinations-service.xml.

The AOP client-side and server-side interceptor stacks are configured in
aop-messaging-client.xml and aop-messaging-server.xml. Normally you will not want to
change them, but some of the interceptors can be removed to give a small performance
increase, if you don't need them. Be very careful you have considered the security implications
before removing the security interceptor.

1. Configuring the ServerPeer

The Server Peer is the heart of the JBoss Messaging JMS facade. The server's configuration,
resides in messaging-service.xml configuration file.

All JBoss Messaging services are rooted at the server peer.

An example of a Server Peer configuration is presented below. Note that not all values for the
server peer's attributes are specified in the example

<mbean code="org.jboss.jms.server.ServerPeer"
name="jboss.messaging:service=ServerPeer"
xmbean-dd="xmdesc/ServerPeer-xmbean.xml">

<!-- The unique id of the server peer - in a cluster each node MUST
have a unique value - must be an integer -->

<attribute name="ServerPeerID">0</attribute>

<!-- The default JNDI context to use for queues when they are deployed
without specifying one -->

<attribute name="DefaultQueueJNDIContext">/queue</attribute>

<!-- The default JNDI context to use for topics when they are deployed
without specifying one -->

<attribute name="DefaultTopicJNDIContext">/topic</attribute>

Chapter 5.

13

<attribute
name="PostOffice">jboss.messaging:service=PostOffice</attribute>

<!-- The JAAS security domain to use for JBoss Messaging -->

<attribute name="SecurityDomain">java:/jaas/messaging</attribute>

<!-- The default security configuration to apply to destinations -
this can be overridden on a per destination basis -->

<attribute name="DefaultSecurityConfig">
<security>

<role name="guest" read="true" write="true" create="true"/>
</security>

</attribute>

<!-- The default Dead Letter Queue (DLQ) to use for destinations.
This can be overridden on a per destinatin basis -->

<attribute
name="DefaultDLQ">jboss.messaging.destination:service=Queue,name=DLQ</attribute>

<!-- The default maximum number of times to attempt delivery of a
message before sending to the DLQ (if configured).

This can be overridden on a per destinatin basis -->

<attribute name="DefaultMaxDeliveryAttempts">10</attribute>

<!-- The default Expiry Queue to use for destinations. This can be
overridden on a per destinatin basis -->

<attribute
name="DefaultExpiryQueue">jboss.messaging.destination:service=Queue,name=ExpiryQueue</attribute>

<!-- The default redelivery delay to impose. This can be overridden on
a per destination basis -->

<attribute name="DefaultRedeliveryDelay">0</attribute>

<!-- The periodicity of the message counter manager enquiring on
queues for statistics -->

<attribute name="MessageCounterSamplePeriod">5000</attribute>

<!-- The maximum amount of time for a client to wait for failover to
start on the server side after

it has detected failure -->

<attribute name="FailoverStartTimeout">60000</attribute>

<!-- The maximum amount of time for a client to wait for failover to
complete on the server side after

it has detected failure -->

<attribute name="FailoverCompleteTimeout">300000</attribute>

Chapter 5. Configuration

14

<!-- The maximum number of days results to maintain in the message
counter history -->

<attribute name="DefaultMessageCounterHistoryDayLimit">-1</attribute>

<!-- The name of the connection factory to use for creating
connections between nodes to pull messages -->

<attribute
name="ClusterPullConnectionFactoryName">jboss.messaging.connectionfactory:service=ClusterPullConnectionFactory</attribute>

<!-- When redistributing messages in the cluster. Do we need to
preserve the order of messages received

by a particular consumer from a particular producer? -->

<attribute name="DefaultPreserveOrdering">false</attribute>

<!-- Max. time to hold previously delivered messages back waiting for
clients to reconnect after failover -->

<attribute name="RecoverDeliveriesTimeout">300000</attribute>

<attribute name="EnableMessageCounters">false</attribute>

<!-- The password used by the message sucker connections to create
connections.

THIS SHOULD ALWAYS BE CHANGED AT INSTALL TIME TO SECURE SYSTEM
<attribute name="SuckerPassword"></attribute>
-->

<depends
optional-attribute-name="PersistenceManager">jboss.messaging:service=PersistenceManager</depends>

<depends
optional-attribute-name="JMSUserManager">jboss.messaging:service=JMSUserManager</depends>

<depends>jboss.messaging:service=Connector,transport=bisocket</depends>

</mbean>

Warning

SECURITY RISK! To avoid a security risk, you MUST specify the value of the
attribute SuckerPassword in the Server Peer config (messaging-service.xml). If
you do not specify a value, the default value will be used. Any person that knows
the default value will be able to access to all destinations on the server. The
password chosen should only be exposed to administrators

ServerPeer attributes

15

1.1. ServerPeer attributes

We will now discuss the MBean attributes of the ServerPeer MBean.

1.1.1. ServerPeerID

The unique id of the server peer. Every node you deploy MUST have a unique id. This applies
to different nodes that form a cluster as well as nodes that are only linked via a message bridge.
The id must be a valid integer.

1.1.2. DefaultQueueJNDIContext

The default JNDI context to use when binding queues. Defaults to /queue.

1.1.3. DefaultTopicJNDIContext

The default JNDI context to use when binding topics. Defaults to /topic.

1.1.4. PostOffice

This is the post office that the ServerPeer uses. Normally, you wouldn't have to change this
attribute. The post office is responsible for routing messages to queues and maintaining the
mapping between addresses and queues.

1.1.5. SecurityDomain

The JAAS security domain to be used by this server peer.

1.1.6. DefaultSecurityConfig

Default security configuration is used when the security configuration for a specific queue or
topic has not been overridden in the destination's deployment descriptor. It has exactly the
same syntax and semantics as in JBossMQ.

The DefaultSecurityConfig attribute element should contain one <security> element. The
<security> element can contain multiple <role> elements. Each <role> element defines the
default access for that particular role.

If the read attribute is true then that role will be able to read (create consumers, receive
messaages or browse) destinations by default.

If the write attribute is true then that role will be able to write (create producers or send
messages) to destinations by default.

If the create attribute is true then that role will be able to create durable subscriptions on
topics by default.

1.1.7. DefaultDLQ

This is the name of the default DLQ (Dead Letter Queue) the server peer will use for

Chapter 5. Configuration

16

destinations. The DLQ can be overridden on a per destination basis - see the destination
MBean configuration for more details. A DLQ is a special destination where messages are sent
when the server has attempted to deliver them unsuccessfully more than a certain number of
times. If the DLQ is not specified at all then the message will be removed after the maximum
number of delivery attempts. The maximum number of delivery attempts can be specified using
the attribute DefaultMaxDeliveryAttempts for a global default or individually on a per destination
basis.

1.1.8. DefaultMaxDeliveryAttempts

The default for the maximum number of times delivery of a message will be attempted before
sending the message to the DLQ, if configured.

The default value is 10.

This value can also be overridden on a per destination basis.

1.1.9. DefaultExpiryQueue

This is the name of the default expiry queue the server peer will use for destinations. The expiry
can be overridden on a per destination basis - see the destination MBean configuration for more
details. An expiry queue is a special destination where messages are sent when they have
expired. Message expiry is determined by the value of Message::getJMSExpiration() If the
expiry queue is not specified at all then the message will be removed after it is expired.

1.1.10. DefaultRedeliveryDelay

When redelivering a message after failure of previous delivery it is often beneficial to introduce a
delay perform redelivery in order to prevent thrashing of delivery-failure, delivery-failure etc

The default value is 0 which means there will be no delay.

Change this if your application could benefit with a delay before redelivery. This value can also
be overridden on a per destination basis.

1.1.11. MessageCounterSamplePeriod

Periodically the server will query each queue to gets its statistics. This is the period.

The default value is 10000 milliseconds.

1.1.12. FailoverStartTimeout

The maximum number of milliseconds the client will wait for failover to start on the server side
when a problem is detected.

The default value is 60000 (one minute).

1.1.13. FailoverCompleteTimeout

ServerPeer attributes

17

The maximum number of milliseconds the client will wait for failover to complete on the server
side after it has started.

The default value is 300000 (five minutes).

1.1.14. DefaultMessageCounterHistoryDayLimit

JBoss Messaging provides a message counter history which shows the number of messages
arriving on each queue of a certain number of days. This attribute represents the maximum
number of days for which to store message counter history. It can be overridden on a per
destination basis.

1.1.15. ClusterPullConnectionFactory

The name of the connection factory to use for pulling messages between nodes.

If you wish to turn off message sucking between queues altogether, but retain failover, then you
can ommit this attribute altogether.

1.1.16. DefaultPreserveOrdering

If true, then strict JMS ordering is preserved in the cluster. See the cluster configurations section
for more details. Default is false.

1.1.17. RecoverDeliveriesTimeout

When failover occurs, already delivered messages will be kept aside, waiting for clients to
reconnect. In the case that clients never reconnect (e.g. the client is dead) then eventually these
messages will timeout and be added back to the queue. The value is in ms. The default is 5
mins.

1.1.18. EnableMessageCounters

Set this to true to enable message counters when the server starts

1.1.19. SuckerPassword

JBoss Messaging internally makes connections between nodes in order to redistribute
messages between clustered destinations. These connections are made with the user name of
a special reserved user. The password used by that user is specified by this parameter.

Warning

This must be specified at install time, or the default password will be used. Any
one who then knows the default password will be able to gain access to any
destinations on the server. This value MUST be changed at install time.

Chapter 5. Configuration

18

1.1.20. StrictTCK

Set to true if you want strict JMS TCK semantiocs

1.1.21. Destinations

Returns a list of the destinations (queues and topics) currently deployed.

1.1.22. MessageCounters

JBoss Messaging provides a message counter for each queue.

1.1.23. MessageCountersStatistics

JBoss Messaging provides statistics for each message counter for each queue.

1.1.24. SupportsFailover

Set to false to prevent server side failover occurring in a cluster when a node crashes.

1.1.25. PersistenceManager

This is the persistence manager that the ServerPeer uses. You will not normally need to change
this attribute.

1.1.26. JMSUserManager

This is the JMS user manager that the ServerPeer uses. You will not normally need to change
this attribute.

1.1.27. MBean operations of the ServerPeer MBean.

1.1.27.1. DeployQueue

This operation lets you programmatically deploy a queue.

There are two overloaded versions of this operation

If the queue already exists but is undeployed it is deployed. Otherwise it is created and
deployed.

The name parameter represents the name of the destination to deploy.

The jndiName parameter (optional) represents the full jndi name where to bind the destination.
If this is not specified then the destination will be bound in
<DefaultQueueJNDIContext>/<name>.

The first version of this operation deploys the destination with the default paging parameters.
The second overloaded version deploys the destination with the specified paging parameters.
See the section on configuring destinations for a discussion of what the paging parameters

ServerPeer attributes

19

mean.

1.1.27.2. UndeployQueue

This operation lets you programmatically undeploy a queue.

The queue is undeployed but is NOT removed from persistent storage.

This operation returns true if the queue was successfull undeployed, otherwise it returns
false.

1.1.27.3. DestroyQueue

This operation lets you programmatically destroy a queue.

The queue is undeployed and then all its data is destroyed from the database.

Warning

Be careful when using this method since it will delete all data for the queue.

This operation returns true if the queue was successfully destroyed. otherwise it returns false.

1.1.27.4. DeployTopic

This operation lets you programmatically deploy a topic.

There are two overloaded versions of this operation.

If the topic already exists but is undeployed it is deployed. Otherwise it is created and deployed.

The name parameter represents the name of the destination to deploy.

The jndiName parameter (optional) represents the full jndi name where to bind the destination.
If this is not specified then the destination will be bound in <DefaultTopicJNDIContext>/<name>.

The first version of this operation deploys the destination with the default paging parameters.
The second overloaded version deploys the destination with the specified paging parameters.
See the section on configuring destinations for a discussion of what the paging parameters
mean.

1.1.27.5. UndeployTopic

This operation lets you programmatically undeploy a topic.

The queue is undeployed but is NOT removed from persistent storage.

This operation returns true if the topic was successfully undeployed. otherwise it returns false.

Chapter 5. Configuration

20

1.1.27.6. DestroyTopic

This operation lets you programmatically destroy a topic.

The topic is undeployed and then all its data is destroyed from the database.

Warning

Be careful when using this method since it will delete all data for the topic.

This operation returns true if the topic was successfully destroyed. otherwise it returns false.

1.1.27.7. ListMessageCountersHTML

This operation returns message counters in an easy to display HTML format.

1.1.27.8. ResetAllMesageCounters

This operation resets all message counters to zero.

1.1.27.9. ResetAllMesageCounters

This operation resets all message counter histories to zero.

1.1.27.10. EnableMessageCounters

This operation enables all message counters for all destinations. Message counters are
disabled by default.

1.1.27.11. DisableMessageCounters

This operation disables all message counters for all destinations. Message counters are
disabled by default.

1.1.27.12. RetrievePreparedTransactions

Retrieves a list of the Xids for all transactions currently in a prepared state on the node.

1.1.27.13. ShowPreparedTransactions

Retrieves a list of the Xids for all transactions currently in a prepared state on the node in an
easy to display HTML format.

2. Changing the Database

The JMS service in the JBoss AS uses relational databases to persist its messages. For
improved performance, you should change the JMS service to take advantage of the external

Changing the Database

21

database. To do that, you need to replace the file
jboss-as/server/production/deploy/jboss-messaging.sar/clustered-hsqldb-persistence-service.xml

with a file in jboss-as/docs/examples/jms/ depending on your external database and restart
your server.

• MySQL: mysql-persistence-service.xml

• PostgreSQL: postgresql-persistence-service.xml

• Oracle: oracle-persistence-service.xml

• Sybase: sybase-persistence-service.xml

• MS SQL Server: mssql-persistence-service.xml

For the default and all configurations, replace the files
jboss-as/server/default/deploy/jboss-messaging.sar/hsqldb-persistence-service.xml

and
jboss-as/server/all/deploy/jboss-messaging.sar/clustered-hsqldb-persistence-service.xml

respectively.

Also, be aware that by default, the Messaging services relying on a datastore are referencing
"java:/DefaultDS" for the datasource. If you are deploying a datasource with a different JNDI
name, you need to update all the DataSource attribute in the persistence configuration file.
Example data source configurations for each of the popular databases are available in the
distribution.

You can configure a JCA datasource using an example from jboss-as/docs/examples/jca

and copying to jboss-as/server/<config-name>/deploy. By default JBoss Messaging uses
DefaultDS.

3. Configuring the Post office

It is the job of the post office to route messages to their destination(s).

The post office maintains the mappings between addresses to which messages can be sent
and their final queues.

For example when sending a message with an address that represents a JMS queue name, the
post office will route this to a single queue - the JMS queue. When sending a message with an
address that repesents a JMS topic name, the post office will route this to a set of queues - one
for each JMS subscription.

The post office also handles the persistence for the mapping of addresses.

JBoss Messaging post-offices are also cluster aware. In a cluster they will automatically route
and pull messages between them in order to provide fully distributed JMS queues and topics.

The post office configuration is found in the xxx-persistence-service.xml file (where xxx is the

Chapter 5. Configuration

22

name of your database).

Here is an example of a post office configuration:

<mbean code="org.jboss.messaging.core.jmx.MessagingPostOfficeService"
name="jboss.messaging:service=PostOffice"
xmbean-dd="xmdesc/MessagingPostOffice-xmbean.xml">

<depends
optional-attribute-name="ServerPeer">jboss.messaging:service=ServerPeer</depends>

<depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>

<depends
optional-attribute-name="TransactionManager">jboss:service=TransactionManager</depends>

<!-- The name of the post office -->

<attribute name="PostOfficeName">JMS post office</attribute>

<!-- The datasource used by the post office to access it's binding
information -->

<attribute name="DataSource">java:/DefaultDS</attribute>

<!-- If true will attempt to create tables and indexes on every
start-up -->

<attribute name="CreateTablesOnStartup">true</attribute>

<!-- If true then we will automatically detect and reject duplicate
messages sent during failover -->

<attribute name="DetectDuplicates">true</attribute>

<!-- The size of the id cache to use when detecting duplicate messages
-->

<attribute name="IDCacheSize">500</attribute>

<attribute name="SqlProperties"><![CDATA[
CREATE_POSTOFFICE_TABLE=CREATE TABLE JBM_POSTOFFICE (POSTOFFICE_NAME
VARCHAR(255), NODE_ID INTEGER, QUEUE_NAME VARCHAR(255), COND VARCHAR(1023),
SELECTOR VARCHAR(1023), CHANNEL_ID BIGINT, CLUSTERED CHAR(1), ALL_NODES
CHAR(1), PRIMARY KEY(POSTOFFICE_NAME, NODE_ID, QUEUE_NAME)) ENGINE = INNODB
INSERT_BINDING=INSERT INTO JBM_POSTOFFICE (POSTOFFICE_NAME, NODE_ID,
QUEUE_NAME, COND, SELECTOR, CHANNEL_ID, CLUSTERED, ALL_NODES) VALUES (?, ?,
?, ?, ?, ?, ?, ?)
DELETE_BINDING=DELETE FROM JBM_POSTOFFICE WHERE POSTOFFICE_NAME=? AND
NODE_ID=? AND QUEUE_NAME=?
LOAD_BINDINGS=SELECT QUEUE_NAME, COND, SELECTOR, CHANNEL_ID, CLUSTERED,
ALL_NODES FROM JBM_POSTOFFICE WHERE POSTOFFICE_NAME=? AND NODE_ID=?

]]></attribute>

<!-- This post office is clustered. If you don't want a clustered post

Configuring the Post office

23

office then set to false -->

<attribute name="Clustered">true</attribute>

<!-- All the remaining properties only have to be specified if the
post office is clustered.

You can safely comment them out if your post office is non
clustered -->

<!-- The JGroups group name that the post office will use -->

<attribute
name="GroupName">${jboss.messaging.groupname:MessagingPostOffice}</attribute>

<!-- Max time to wait for state to arrive when the post office joins
the cluster -->

<attribute name="StateTimeout">5000</attribute>

<!-- Max time to wait for a synchronous call to node members using the
MessageDispatcher -->

<attribute name="CastTimeout">50000</attribute>

<!-- Set this to true if you want failover of connections to occur
when a node is shut down -->

<attribute name="FailoverOnNodeLeave">false</attribute>

<!-- JGroups stack configuration for the data channel - used for
sending data across the cluster -->

<!-- By default we use the TCP stack for data -->
<attribute name="DataChannelConfig">

<config>
<TCP start_port="7900"

loopback="true"
recv_buf_size="20000000"
send_buf_size="640000"
discard_incompatible_packets="true"
max_bundle_size="64000"
max_bundle_timeout="30"
use_incoming_packet_handler="true"
use_outgoing_packet_handler="false"
down_thread="false" up_thread="false"
enable_bundling="false"
use_send_queues="false"
sock_conn_timeout="300"
skip_suspected_members="true"/>

<MPING timeout="4000"
bind_to_all_interfaces="true"

mcast_addr="${jboss.messaging.datachanneludpaddress:228.6.6.6}"
mcast_port="${jboss.messaging.datachanneludpport:45567}"

ip_ttl="8"
num_initial_members="2"
num_ping_requests="1"/>

Chapter 5. Configuration

24

<MERGE2 max_interval="100000"
down_thread="false" up_thread="false"

min_interval="20000"/>
<FD_SOCK down_thread="false" up_thread="false"/>
<VERIFY_SUSPECT timeout="1500" down_thread="false"

up_thread="false"/>
<pbcast.NAKACK max_xmit_size="60000"

use_mcast_xmit="false" gc_lag="0"
retransmit_timeout="300,600,1200,2400,4800"
down_thread="false" up_thread="false"
discard_delivered_msgs="true"/>

<pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
down_thread="false" up_thread="false"
max_bytes="400000"/>

<pbcast.GMS print_local_addr="true" join_timeout="3000"
down_thread="false" up_thread="false"
join_retry_timeout="2000" shun="false"
view_bundling="true"/>

</config>
</attribute>

<!-- JGroups stack configuration to use for the control channel - used
for control messages -->

<!-- We use udp stack for the control channel -->
<attribute name="ControlChannelConfig">

<config>
<UDP

mcast_addr="${jboss.messaging.controlchanneludpaddress:228.7.7.7}"
mcast_port="${jboss.messaging.controlchanneludpport:45568}"
tos="8"
ucast_recv_buf_size="20000000"
ucast_send_buf_size="640000"
mcast_recv_buf_size="25000000"
mcast_send_buf_size="640000"
loopback="false"
discard_incompatible_packets="true"
max_bundle_size="64000"
max_bundle_timeout="30"
use_incoming_packet_handler="true"
use_outgoing_packet_handler="false"
ip_ttl="2"
down_thread="false" up_thread="false"
enable_bundling="false"/>

<PING timeout="2000"
down_thread="false" up_thread="false"

num_initial_members="3"/>
<MERGE2 max_interval="100000"

down_thread="false" up_thread="false"
min_interval="20000"/>

<FD_SOCK down_thread="false" up_thread="false"/>
<FD timeout="10000" max_tries="5" down_thread="false"

up_thread="false" shun="true"/>
<VERIFY_SUSPECT timeout="1500" down_thread="false"

up_thread="false"/>
<pbcast.NAKACK max_xmit_size="60000"

use_mcast_xmit="false" gc_lag="0"

Configuring the Post office

25

retransmit_timeout="300,600,1200,2400,4800"
down_thread="false" up_thread="false"
discard_delivered_msgs="true"/>

<UNICAST timeout="300,600,1200,2400,3600"
down_thread="false" up_thread="false"/>

<pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
down_thread="false" up_thread="false"
max_bytes="400000"/>

<pbcast.GMS print_local_addr="true" join_timeout="3000"
use_flush="true" flush_timeout="3000"

down_thread="false" up_thread="false"
join_retry_timeout="2000" shun="false"
view_bundling="true"/>

<FRAG2 frag_size="60000" down_thread="false" up_thread="false"/>
<pbcast.STATE_TRANSFER down_thread="false" up_thread="false"

use_flush="true" flush_timeout="3000"/>
<pbcast.FLUSH down_thread="false" up_thread="false"

timeout="20000" auto_flush_conf="false"/>
</config>

</attribute>

</mbean>

3.1. The post office has the following attributes

3.1.1. DataSource

The datasource the postoffice should use for persisting its mapping data.

3.1.2. SQLProperties

This is where the DDL and DML for the particular database is specified. If a particular DDL or
DML statement is not overridden, the default Hypersonic configuration will be used for that
statement.

3.1.3. CreateTablesOnStartup

Set this to true if you wish the post office to attempt to create the tables (and indexes) when it
starts. If the tables (or indexes) already exist a SQLException will be thrown by the JDBC driver
and ignored by the Persistence Manager, allowing it to continue.

By default the value of CreateTablesOnStartup attribute is set to true

3.1.4. DetectDuplicates

Set this to true if you wish the post office to detect duplicate messages, that may be sent, when
a send is retried on a different node after a server failure.

By default the value of the DetectDuplicates attribute is set to true.

Chapter 5. Configuration

26

3.1.5. IDCacheSize

If duplicate detection (See DetectDuplicates) is enabled, then the server will remember the
last n message ids sent. This will prevent sending duplicate messages after a failover has
occurred. The value of n is determined by this attribute.

By default the value of the IDCacheSize attribute is set to 500.

3.1.6. PostOfficeName

The name of the post office.

3.1.7. NodeIDView

This returns set containing the node ids of all the nodes in the cluster.

3.1.8. GroupName

All post offices in the cluster with the same group name will form a cluster together. Make sure
the group name matches with all the nodes in the cluster you want to form a cluster with.

3.1.9. Clustered

If true the post office will take part in a cluster to form distributed queues and topics. If false then
it will not participate in the cluster. If false, then all the cluster related attributes will be ignored.

3.1.10. StateTimeout

The maximum time to wait when waiting for the group state to arrive when a node joins a
pre-existing cluster.

The default value is 5000 milliseconds.

3.1.11. CastTimeout

The maximum time to wait for a reply casting message synchronously.

The default value is 5000 milliseconds.

3.1.12. FailoverOnNodeLeave

If this attribute is set to true, when a server node is shut down cleanly, any connections on the
node that is shut down, will failover onto another node.

The default value for this is attribute is false.

3.1.13. MaxConcurrentReplications

The maximum number of concurrent replication requests to make before blocking for replies to

The post office has the following attributes

27

come back. This prevents us overwhelming JGroups. This is rarely a good reason to change
this.

The default value is 50

3.1.14. ControlChannelConfig

JBoss Messaging uses JGroups for all group management. This contains the JGroups stack
configuration for the control channel.

The control channel is used for sending request/receiving responses from other nodes in the
cluster

The details of the JGroups configuration won't be discussed here since it is standard JGroups
configuration. Detailed information on JGroups can be found in JGroups release documentation
or on-line at http://www.jgroups.org or http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups.

3.1.15. DataChannelConfig

JBoss Messaging uses JGroups for all group management. This contains the JGroups stack
configuration for the data channel.

The data channel is used for sending sending/receiving messages from other nodes in the
cluster and for replicating session data.

The details of the JGroups configuration won't be discussed here since it is standard JGroups
configuration. Detailed information on JGroups can be found in JGroups release documentation
or on-line at http://www.jgroups.org or http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups.

4. Configuring the Persistence Manager

It is the job of the persistence manager to manage all message related persistence.

JBoss Messaging ships with a JDBC Persistence Manager used for handling persistence of
message data in a relational database accessed via JDBC. The Persistence Manager
implementation is pluggable (the Persistence Manager is a Messaging server plug-in), this
making possible to provide other implementations for persisting message data in non relational
stores, file stores etc.

The configuration of "persistent" services is grouped in a xxx-persistence-service.xml file,
where xxx corresponds to the database name. By default, Messaging ships with a
hsqldb-persistence-service.xml, which configures the Messaging server to use the in-VM
Hypersonic database instance that comes by default with any JBossAS instance.

Warning

The default Persistence Manager works out of the box with Hypersonic.

Chapter 5. Configuration

28

http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

1 http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfigJBossMQDB

However, it must be stressed that Hypersonic should not be used in a production
environment, mainly due to its limited support for transaction isolation, and its
propensity to behave erratically under high load.

Warning

The Critique of Hypersonic1 wiki page outlines some of the well-known issues
occuring when using this database.

JBoss Messaging also ships with pre-made Persistence Manager configurations for MySQL,
Oracle, PostgreSQL, Sybase and MS SQL Server. The example
mysql-persistence-service.xml, ndb-persistence-service.xml,
oracle-persistence-service.xml, postgres-persistence-service.xml and
sybase-persistence-service.xml and mssql-persistence-service.xml configuration files
are available in the examples/config directory of the release bundle.

Users are encouraged to contribute their own configuration files where we will thoroughly test
them before certifying them for suppported use with JBoss Messaging. The JDBC Persistence
Manager has been designed to use standard SQL for the DML so writing a JDBC Persistence
Manager configuration for another database is usually only a fairly simple matter of changing
DDL in the configuration which is likely to be different for different databases.

JBoss Messaging also ships with a 'Null Persistence Manager' config - this can be used when
you don't want any persistence at all.

The default Hypersonic persistence configuration file is listed below:

<mbean
code="org.jboss.messaging.core.jmx.JDBCPersistenceManagerService"

name="jboss.messaging:service=PersistenceManager"
xmbean-dd="xmdesc/JDBCPersistenceManager-xmbean.xml">

<depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>

<depends
optional-attribute-name="TransactionManager">jboss:service=TransactionManager</depends>

<!-- The datasource to use for the persistence manager -->

<attribute name="DataSource">java:/DefaultDS</attribute>

<!-- If true will attempt to create tables and indexes on every
start-up -->

<attribute name="CreateTablesOnStartup">true</attribute>

Configuring the Persistence Manager

29

http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfigJBossMQDB
http://wiki.jboss.org/wiki/Wiki.jsp?page=ConfigJBossMQDB

<!-- If true then will use JDBC batch updates -->

<attribute name="UsingBatchUpdates">true</attribute>

<attribute name="SqlProperties"><![CDATA[
CREATE_DUAL=CREATE TABLE JBM_DUAL (DUMMY INTEGER, PRIMARY KEY (DUMMY))

ENGINE = INNODB
CREATE_MESSAGE_REFERENCE=CREATE TABLE JBM_MSG_REF (CHANNEL_ID BIGINT,

MESSAGE_ID BIGINT, TRANSACTION_ID BIGINT, STATE CHAR(1), ORD BIGINT,
PAGE_ORD BIGINT, DELIVERY_COUNT INTEGER, SCHED_DELIVERY BIGINT, PRIMARY
KEY(CHANNEL_ID, MESSAGE_ID)) ENGINE = INNODB

CREATE_IDX_MESSAGE_REF_TX=CREATE INDEX JBM_MSG_REF_TX ON JBM_MSG_REF
(TRANSACTION_ID)

CREATE_IDX_MESSAGE_REF_ORD=CREATE INDEX JBM_MSG_REF_ORD ON JBM_MSG_REF
(ORD)

CREATE_IDX_MESSAGE_REF_PAGE_ORD=CREATE INDEX JBM_MSG_REF_PAGE_ORD ON
JBM_MSG_REF (PAGE_ORD)

CREATE_IDX_MESSAGE_REF_MESSAGE_ID=CREATE INDEX JBM_MSG_REF_MESSAGE_ID ON
JBM_MSG_REF (MESSAGE_ID)

CREATE_IDX_MESSAGE_REF_SCHED_DELIVERY=CREATE INDEX
JBM_MSG_REF_SCHED_DELIVERY ON JBM_MSG_REF (SCHED_DELIVERY)

CREATE_MESSAGE=CREATE TABLE JBM_MSG (MESSAGE_ID BIGINT, RELIABLE CHAR(1),
EXPIRATION BIGINT, TIMESTAMP BIGINT, PRIORITY TINYINT, TYPE TINYINT, HEADERS
MEDIUMBLOB, PAYLOAD LONGBLOB, PRIMARY KEY (MESSAGE_ID)) ENGINE = INNODB

CREATE_IDX_MESSAGE_TIMESTAMP=CREATE INDEX JBM_MSG_REF_TIMESTAMP ON
JBM_MSG (TIMESTAMP)

CREATE_TRANSACTION=CREATE TABLE JBM_TX (NODE_ID INTEGER, TRANSACTION_ID
BIGINT, BRANCH_QUAL VARBINARY(254), FORMAT_ID INTEGER, GLOBAL_TXID
VARBINARY(254), PRIMARY KEY (TRANSACTION_ID)) ENGINE = INNODB

CREATE_COUNTER=CREATE TABLE JBM_COUNTER (NAME VARCHAR(255), NEXT_ID
BIGINT, PRIMARY KEY(NAME)) ENGINE = INNODB

INSERT_DUAL=INSERT INTO JBM_DUAL VALUES (1)
CHECK_DUAL=SELECT 1 FROM JBM_DUAL
INSERT_MESSAGE_REF=INSERT INTO JBM_MSG_REF (CHANNEL_ID, MESSAGE_ID,

TRANSACTION_ID, STATE, ORD, PAGE_ORD, DELIVERY_COUNT, SCHED_DELIVERY) VALUES
(?, ?, ?, ?, ?, ?, ?, ?)

DELETE_MESSAGE_REF=DELETE FROM JBM_MSG_REF WHERE MESSAGE_ID=? AND
CHANNEL_ID=? AND STATE='C'

UPDATE_MESSAGE_REF=UPDATE JBM_MSG_REF SET TRANSACTION_ID=?, STATE='-'
WHERE MESSAGE_ID=? AND CHANNEL_ID=? AND STATE='C'

UPDATE_PAGE_ORDER=UPDATE JBM_MSG_REF SET PAGE_ORD = ? WHERE MESSAGE_ID=?
AND CHANNEL_ID=?

COMMIT_MESSAGE_REF1=UPDATE JBM_MSG_REF SET STATE='C', TRANSACTION_ID =
NULL WHERE TRANSACTION_ID=? AND STATE='+'

COMMIT_MESSAGE_REF2=DELETE FROM JBM_MSG_REF WHERE TRANSACTION_ID=? AND
STATE='-'

ROLLBACK_MESSAGE_REF1=DELETE FROM JBM_MSG_REF WHERE TRANSACTION_ID=? AND
STATE='+'

ROLLBACK_MESSAGE_REF2=UPDATE JBM_MSG_REF SET STATE='C', TRANSACTION_ID =
NULL WHERE TRANSACTION_ID=? AND STATE='-'

LOAD_PAGED_REFS=SELECT MESSAGE_ID, DELIVERY_COUNT, PAGE_ORD,
SCHED_DELIVERY FROM JBM_MSG_REF WHERE CHANNEL_ID = ? AND PAGE_ORD BETWEEN ?
AND ? ORDER BY PAGE_ORD

LOAD_UNPAGED_REFS=SELECT MESSAGE_ID, DELIVERY_COUNT, SCHED_DELIVERY FROM
JBM_MSG_REF WHERE STATE = 'C' AND CHANNEL_ID = ? AND PAGE_ORD IS NULL ORDER
BY ORD

Chapter 5. Configuration

30

LOAD_REFS=SELECT MESSAGE_ID, DELIVERY_COUNT, SCHED_DELIVERY FROM
JBM_MSG_REF WHERE STATE = 'C' AND CHANNEL_ID = ? ORDER BY ORD

UPDATE_REFS_NOT_PAGED=UPDATE JBM_MSG_REF SET PAGE_ORD = NULL WHERE
PAGE_ORD BETWEEN ? AND ? AND CHANNEL_ID=?

SELECT_MIN_MAX_PAGE_ORD=SELECT MIN(PAGE_ORD), MAX(PAGE_ORD) FROM
JBM_MSG_REF WHERE CHANNEL_ID = ?

SELECT_EXISTS_REF_MESSAGE_ID=SELECT MESSAGE_ID FROM JBM_MSG_REF WHERE
MESSAGE_ID = ?

UPDATE_DELIVERY_COUNT=UPDATE JBM_MSG_REF SET DELIVERY_COUNT = ? WHERE
CHANNEL_ID = ? AND MESSAGE_ID = ?

UPDATE_CHANNEL_ID=UPDATE JBM_MSG_REF SET CHANNEL_ID = ? WHERE CHANNEL_ID
= ?

LOAD_MESSAGES=SELECT MESSAGE_ID, RELIABLE, EXPIRATION, TIMESTAMP,
PRIORITY, HEADERS, PAYLOAD, TYPE FROM JBM_MSG

INSERT_MESSAGE=INSERT INTO JBM_MSG (MESSAGE_ID, RELIABLE, EXPIRATION,
TIMESTAMP, PRIORITY, TYPE, HEADERS, PAYLOAD) VALUES (?, ?, ?, ?, ?, ?, ?, ?)

INSERT_MESSAGE_CONDITIONAL=INSERT INTO JBM_MSG (MESSAGE_ID, RELIABLE,
EXPIRATION, TIMESTAMP, PRIORITY, TYPE, INST_TIME) SELECT ?, ?, ?, ?, ?, ?, ?
FROM JBM_DUAL WHERE NOT EXISTS (SELECT MESSAGE_ID FROM JBM_MSG WHERE
MESSAGE_ID = ?)

UPDATE_MESSAGE_4CONDITIONAL=UPDATE JBM_MSG SET HEADERS=?, PAYLOAD=? WHERE
MESSAGE_ID=?

INSERT_MESSAGE_CONDITIONAL_FULL=INSERT INTO JBM_MSG (MESSAGE_ID,
RELIABLE, EXPIRATION, TIMESTAMP, PRIORITY, TYPE, HEADERS, PAYLOAD) SELECT ?,
?, ?, ?, ?, ?, ?, ? FROM JBM_DUAL WHERE NOT EXISTS (SELECT MESSAGE_ID FROM
JBM_MSG WHERE MESSAGE_ID = ?)

MESSAGE_ID_COLUMN=MESSAGE_ID
DELETE_MESSAGE=DELETE FROM JBM_MSG WHERE MESSAGE_ID = ? AND NOT EXISTS

(SELECT * FROM JBM_MSG_REF WHERE JBM_MSG_REF.MESSAGE_ID = ?)
INSERT_TRANSACTION=INSERT INTO JBM_TX (NODE_ID, TRANSACTION_ID,

BRANCH_QUAL, FORMAT_ID, GLOBAL_TXID) VALUES(?, ?, ?, ?, ?)
DELETE_TRANSACTION=DELETE FROM JBM_TX WHERE NODE_ID = ? AND

TRANSACTION_ID = ?
SELECT_PREPARED_TRANSACTIONS=SELECT TRANSACTION_ID, BRANCH_QUAL,

FORMAT_ID, GLOBAL_TXID FROM JBM_TX WHERE NODE_ID = ?
SELECT_MESSAGE_ID_FOR_REF=SELECT MESSAGE_ID, CHANNEL_ID FROM JBM_MSG_REF

WHERE TRANSACTION_ID = ? AND STATE = '+' ORDER BY ORD
SELECT_MESSAGE_ID_FOR_ACK=SELECT MESSAGE_ID, CHANNEL_ID FROM JBM_MSG_REF

WHERE TRANSACTION_ID = ? AND STATE = '-' ORDER BY ORD
UPDATE_COUNTER=UPDATE JBM_COUNTER SET NEXT_ID = ? WHERE NAME=?
SELECT_COUNTER=SELECT NEXT_ID FROM JBM_COUNTER WHERE NAME=? FOR UPDATE
INSERT_COUNTER=INSERT INTO JBM_COUNTER (NAME, NEXT_ID) VALUES (?, ?)
SELECT_ALL_CHANNELS=SELECT DISTINCT(CHANNEL_ID) FROM JBM_MSG_REF
UPDATE_TX=UPDATE JBM_TX SET NODE_ID=? WHERE NODE_ID=?

]]></attribute>

<!-- The maximum number of parameters to include in a prepared
statement -->

<attribute name="MaxParams">500</attribute>

<attribute name="UseNDBFailoverStrategy">true</attribute>

</mbean>

MBean attributes of the PersistenceManager

31

4.1. MBean attributes of the PersistenceManager MBean

4.1.1. CreateTablesOnStartup

Set this to true if you wish the Persistence Manager to attempt to create the tables (and
indexes) when it starts. If the tables (or indexes) already exist a SQLException will be thrown by
the JDBC driver and ignored by the Persistence Manager, allowing it to continue.

By default the value of CreateTablesOnStartup attribute is set to true

4.1.2. UsingBatchUpdates

Set this to true if the database supports JDBC batch updates. The JDBC Persistence Manager
will then group multiple database updates in batches to aid performance.

By default the value of UsingBatchUpdates attribute is set to false

4.1.3. UsingBinaryStream

Set this to true if you want messages to be store and read using a JDBC binary stream rather
than using getBytes(), setBytes(). Some database has limits on the maximum number of bytes
that can be get/set using getBytes()/setBytes().

By default the value of UsingBinaryStream attribute is set to true

4.1.4. UsingTrailingByte

Certain version of Sybase are known to truncate blobs if they have trailing zeros. To prevent this
if this attribute is set to true then a trailing non zero byte will be added and removed to each
blob before and after persistence to prevent the database from truncating it. Currently this is
only known to be necessary for Sybase.

By default the value of UsingTrailingByte attribute is set to false

4.1.5. SupportsBlobOnSelect

Oracle (and possibly other databases) is known to not allow BLOBs to be inserted using a
INSERT INTO ... SELECT FROM statement, and requires a two stage conditional insert of
messages. If this value is false then such a two stage insert will be used.

By default the value of SupportsBlobOnSelect attribute is set to true

4.1.6. SQLProperties

This is where the DDL and DML for the particular database is specified. If a particular DDL or
DML statement is not overridden, the default Hypersonic configuration will be used for that
statement.

4.1.7. MaxParams

Chapter 5. Configuration

32

When loading messages the persistence manager will generate prepared statements with many
parameters. This value tells the persistence manager what the absolute maximum number of
parameters are allowable per prepared statement.

By default the value of MaxParams attribute is set to 100

4.1.8. UseNDBFailoverStrategy

When running in a clustered database environment it is possible that some databases, MySQL
for instance, can fail during the commit of a database transaction. If the database node dies
while committing then the final state of the transaction is unknown. If the attribute
UseNDBFailoverStrategy is set to true and the above happens then the SQL statement will be
re-executed. However any further error is ignored because an assumption is made that the error
is due to the previous transaction being committed successfully.

By default the value of the attribute UseNDBFailoverStrategy is set to false.

5. Configuring the JMS user manager

The JMS user manager handles the mapping of pre-configured client IDs to users and also
managers the user and role tables which may or may not be used depending on which login
module you have configured

Here is an example JMSUserManager configuration

<mbean code="org.jboss.jms.server.plugin.JDBCJMSUserManagerService"
name="jboss.messaging:service=JMSUserManager"
xmbean-dd="xmdesc/JMSUserManager-xmbean.xml">
<depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>
<depends optional-attribute-name="TransactionManager">

jboss:service=TransactionManager
</depends>
<attribute name="DataSource">java:/DefaultDS</attribute>
<attribute name="CreateTablesOnStartup">true</attribute>
<attribute name="SqlProperties"><![CDATA[

CREATE_USER_TABLE=CREATE TABLE JBM_USER (USER_ID VARCHAR(32)
NOT NULL,

PASSWD VARCHAR(32) NOT NULL, CLIENTID VARCHAR(128),
PRIMARY KEY(USER_ID)) ENGINE = INNODB
CREATE_ROLE_TABLE=CREATE TABLE JBM_ROLE (ROLE_ID VARCHAR(32)

NOT NULL,
USER_ID VARCHAR(32) NOT NULL, PRIMARY KEY(USER_ID, ROLE_ID))
ENGINE = INNODB
SELECT_PRECONF_CLIENTID=SELECT CLIENTID FROM JBM_USER WHERE

USER_ID=?
POPULATE.TABLES.1=INSERT INTO JBM_USER

(USER_ID,PASSWD,CLIENTID)
VALUES ('dilbert','dogbert','dilbert-id')

]]></attribute>
</mbean>

MBean

33

5.1. MBean attributes of the JMSUserManager MBean

5.1.1. CreateTablesOnStartup

Set this to true if you wish the JMS user manager to attempt to create the tables (and indexes)
when it starts. If the tables (or indexes) already exist a SQLException will be thrown by the
JDBC driver and ignored by the Persistence Manager, allowing it to continue.

By default the value of CreateTablesOnStartup attribute is set to true

5.1.2. UsingBatchUpdates

Set this to true if the database supports JDBC batch updates. The JDBC Persistence Manager
will then group multiple database updates in batches to aid performance.

By default the value of UsingBatchUpdates attribute is set to false

5.1.3. SQLProperties

This is where the DDL and DML for the particular database is specified. If a particular DDL or
DML statement is not overridden, the default Hypersonic configuration will be used for that
statement.

Default user and role data can also be specified here. Any data to be inserted must be specified
with property names starting with POPULATE.TABLES as in the above example.

6. Configuring Destinations

6.1. Pre-configured destinations

JBoss Messaging ships with a default set of pre-configured destinations that will be deployed
during the server start up. The file that contains configuration for these destinations is
destinations-service.xml. A section of this file is listed below:

<!--
The Default Dead Letter Queue. This destination is a dependency of an

EJB MDB container.
-->

<mbean code="org.jboss.jms.server.destination.QueueService"
name="jboss.messaging.destination:service=Queue,name=DLQ"
xmbean-dd="xmdesc/Queue-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>

</mbean>

<mbean code="org.jboss.jms.server.destination.TopicService"
name="jboss.messaging.destination:service=Topic,name=testTopic"

Chapter 5. Configuration

34

xmbean-dd="xmdesc/Topic-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>
<attribute name="SecurityConfig">

<security>
<role name="guest" read="true" write="true"/>
<role name="publisher" read="true" write="true" create="false"/>
<role name="durpublisher" read="true" write="true"

create="true"/>
</security>

</attribute>
</mbean>

<mbean code="org.jboss.jms.server.destination.TopicService"
name="jboss.messaging.destination:service=Topic,name=securedTopic"
xmbean-dd="xmdesc/Topic-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>
<attribute name="SecurityConfig">

<security>
<role name="publisher" read="true" write="true" create="false"/>

</security>
</attribute>

</mbean>

<mbean code="org.jboss.jms.server.destination.QueueService"
name="jboss.messaging.destination:service=Queue,name=testQueue"
xmbean-dd="xmdesc/Queue-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>
<attribute name="SecurityConfig">

<security>
<role name="guest" read="true" write="true"/>
<role name="publisher" read="true" write="true" create="false"/>
<role name="noacc" read="false" write="false" create="false"/>

</security>
</attribute>

</mbean>

<mbean code="org.jboss.jms.server.destination.QueueService"
name="jboss.messaging.destination:service=Queue,name=A"
xmbean-dd="xmdesc/Queue-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>

</mbean>

<!-- It's possible for indiviual queues and topics to use a specific

Pre-configured destinations

35

queue for
an expiry or DLQ -->

<mbean code="org.jboss.jms.server.destination.QueueService"
name="jboss.messaging.destination:service=Queue,name=PrivateDLQ"
xmbean-dd="xmdesc/Queue-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>

</mbean>

<mbean code="org.jboss.jms.server.destination.QueueService"
name="jboss.messaging.destination:service=Queue,name=PrivateExpiryQueue"

xmbean-dd="xmdesc/Queue-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>

</mbean>

<mbean code="org.jboss.jms.server.destination.QueueService"
name="jboss.messaging.destination:service=Queue,name=QueueWithOwnDLQAndExpiryQueue"

xmbean-dd="xmdesc/Queue-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>
<attribute name="DLQ">

jboss.messaging.destination:service=Queue,name=PrivateDLQ
</attribute>
<attribute name="ExpiryQueue">

jboss.messaging.destination:service=Queue,name=PrivateExpiryQueue
</attribute>

</mbean>

<mbean code="org.jboss.jms.server.destination.TopicService"
name="jboss.messaging.destination:service=Topic,name=TopicWithOwnDLQAndExpiryQueue"

xmbean-dd="xmdesc/Topic-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>
<attribute name="DLQ">

jboss.messaging.destination:service=Queue,name=PrivateDLQ
</attribute>
<attribute name="ExpiryQueue">

jboss.messaging.destination:service=Queue,name=PrivateExpiryQueue
</attribute>

</mbean>

<mbean code="org.jboss.jms.server.destination.TopicService"
name="jboss.messaging.destination:service=Topic,name=TopicWithOwnRedeliveryDelay"

xmbean-dd="xmdesc/Topic-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer

Chapter 5. Configuration

36

</depends>
<depends>jboss.messaging:service=PostOffice</depends>
<attribute name="RedeliveryDelay">5000</attribute>

</mbean>

<mbean code="org.jboss.jms.server.destination.TopicService"
name="jboss.messaging.destination:service=Topic,name=testDistributedTopic"

xmbean-dd="xmdesc/Topic-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends>jboss.messaging:service=PostOffice</depends>
<attribute name="Clustered">true</attribute>

</mbean>
....

6.2. Configuring queues

6.2.1. Attributes of the Queue MBean

6.2.1.1. Name

The name of the queue

6.2.1.2. JNDIName

The JNDI name where the queue is bound

6.2.1.3. DLQ

The DLQ used for this queue. Overrides any value set on the ServerPeer config

6.2.1.4. ExpiryQueue

The Expiry queue used for this queue. Overrides any value set on the ServerPeer config

6.2.1.5. RedeliveryDelay

The redelivery delay to be used for this queue. Overrides any value set on the ServerPeer
config

6.2.1.6. MaxDeliveryAttempts

The maximum number of times delivery of a message will be attempted before sending the
message to the DLQ, if configured. If set to -1 (the default), the value from the ServerPeer
config is used. Any other setting overrides the value set on the ServerPeer config.

6.2.1.7. Destination Security Configuration

Configuring queues

37

SecurityConfig - allows you to determine which roles are allowed to read, write and create on
the destination. It has exactly the same syntax and semantics as the security configuration in
JBossMQ destinations.

The SecurityConfig element should contain one <security> element. The <security>

element can contain multiple <role> elements. Each <role> element defines the access for
that particular role.

If the read attribute is true then that role will be able to read (create consumers, receive
messaages or browse) this destination.

If the write attribute is true then that role will be able to write (create producers or send
messages) to this destination.

If the create attribute is true then that role will be able to create durable subscriptions on this
destination.

Note that the security configuration for a destination is optional. If a SecurityConfig element is
not specifed then the default security configuration from the Server Peer will be used.

6.2.1.8. Destination paging parameters

'Pageable Channels' are a sophisticated new feature available in JBoss Messaging.

If your application needs to support very large queues or subscriptions containing potentially
millions of messages, then it's not possible to store them all in memory at once.

JBoss Messaging solves this problem but letting you specify the maximum number of messages
that can be stored in memory at any one time, on a queue-by-queue, or topic-by-topic basis.
JBoss Messaging then pages messages to and from storage transparently in blocks, allowing
queues and subscriptions to grow to very large sizes without any performance degradation as
channel size increases.

This has been tested with in excess of 10 million 2K messages on very basic hardware and has
the potential to scale to much larger number of messages.

The individual parameters are:

FullSize - this is the maximum number of messages held by the queue or topic subscriptions
in memory at any one time. The actual queue or subscription can hold many more messages
than this but these are paged to and from storage as necessary as messages are added or
consumed.

PageSize - When loading messages from the queue or subscrition this is the maximum number
of messages to pre-load in one operation.

DownCacheSize - When paging messages to storage from the queue they first go into a "Down
Cache" before being written to storage. This enables the write to occur as a single operation
thus aiding performance. This setting determines the max number of messages that the Down
Cache will hold before they are flushed to storage.

Chapter 5. Configuration

38

If no values for FullSize, PageSize, or DownCacheSize are specified they will default to values
75000, 2000, 2000 respectively.

If you want to specify the paging parameters used for temporary queues then you need to
specify them on the appropriate connection factory. See connection factory configuration for
details.

6.2.1.9. CreatedProgrammatically

Returns true if the queue was created programmatically

6.2.1.10. MessageCount

Returns the total number of messages in the queue = number not being delivered + number
being delivered + number being scheduled

6.2.1.11. ScheduledMessageCount

Returns the number of scheduled messages in the queue. This is the number of messages
scheduled to be delivered at a later date.

Scheduled delivery is a feature of JBoss Messaging where you can send a message and
specify the earliest time at which it will be delivered. E.g. you can send a message now, but the
message won't actually be delivered until 2 hours time.

To do this, you just need to set the following header in the message before sending:

long now = System.currentTimeMillis();

Message msg = sess.createMessage();

msg.setLongProperty(JBossMessage.JMS_JBOSS_SCHEDULED_DELIVERY_PROP_NAME,
now + 1000 * 60 * 60 * 2);

prod.send(msg);

6.2.1.12. MaxSize

A maximum size (in number of messages) can be specified for a queue. Any messages that
arrive beyond this point will be dropped. The default is -1 which is unbounded.

6.2.1.13. Clustered

Clustered destinations must have this set to true.

6.2.1.14. MessageCounter

Configuring queues

39

Each queue maintains a message counter.

6.2.1.15. MessageCounterStatistics

The statistics for the message counter

6.2.1.16. MessageCounterHistoryDayLimit

The maximum number of days to hold message counter history for. Overrides any value set on
the ServerPeer.

6.2.1.17. ConsumerCount

The number of consumers currently consuming from the queue.

6.2.2. MBean operations of the Queue MBean

6.2.2.1. RemoveAllMessages

Remove (and delete) all messages from the queue.

Warning

Use this with caution. It will permanently delete all messages from the queue

.

6.2.2.2. ListAllMessages

List all messages currently in the queue

There are two overloaded versions of this operation: One takes a JMS selector as an argument,
the other does not. By using the selector you can retrieve a subset of the messages in the
queue that match the criteria

6.2.2.3. ListDurableMessages

As listAllMessages but only lists the durable messages

There are two overloaded versions of this operation: One takes a JMS selector as an argument,
the other does not. By using the selector you can retrieve a subset of the messages in the
queue that match the criteria

6.2.2.4. ListNonDurableMessages

As listAllMessages but only lists the non durable messages

There are two overloaded versions of this operation: One takes a JMS selector as an argument,

Chapter 5. Configuration

40

the other does not. By using the selector you can retrieve a subset of the messages in the
queue that match the criteria

6.2.2.5. ResetMessageCounter

Resets the message counter to zero.

6.2.2.6. ResetMessageCounterHistory

Resets the message counter history.

6.2.2.7. ListMessageCounterAsHTML

Lists the message counter in an easy to display HTML format

6.2.2.8. ListMessageCounterHistoryAsHTML

Lists the message counter history in an easy to display HTML format

6.3. Configuring topics

6.3.1. MBean attributes of the Topic MBean

6.3.1.1. Name

The name of the topic

6.3.1.2. JNDIName

The JNDI name where the topic is bound

6.3.1.3. DLQ

The DLQ used for this topic. Overrides any value set on the ServerPeer config

6.3.1.4. ExpiryQueue

The Expiry queue used for this topic. Overrides any value set on the ServerPeer config

6.3.1.5. RedeliveryDelay

The redelivery delay to be used for this topic. Overrides any value set on the ServerPeer config

6.3.1.6. MaxDeliveryAttempts

The maximum number of times delivery of a message will be attempted before sending the
message to the DLQ, if configured. If set to -1 (the default), the value from the ServerPeer
config is used. Any other setting overrides the value set on the ServerPeer config.

6.3.1.7. Destination Security Configuration

Configuring topics

41

SecurityConfig - allows you to determine which roles are allowed to read, write and create on
the destination. It has exactly the same syntax and semantics as the security configuration in
JBossMQ destinations.

The SecurityConfig element should contain one <security> element. The <security>

element can contain multiple <role> elements. Each <role> element defines the access for
that particular role.

If the read attribute is true then that role will be able to read (create consumers, receive
messaages or browse) this destination.

If the write attribute is true then that role will be able to write (create producers or send
messages) to this destination.

If the create attribute is true then that role will be able to create durable subscriptions on this
destination.

Note that the security configuration for a destination is optional. If a SecurityConfig element is
not specifed then the default security configuration from the Server Peer will be used.

6.3.1.8. Destination paging parameters

'Pageable Channels' are a sophisticated new feature available in JBoss Messaging.

If your application needs to support very large queues or subscriptions containing potentially
millions of messages, then it's not possible to store them all in memory at once.

JBoss Messaging solves this problem but letting you specify the maximum number of messages
that can be stored in memory at any one time, on a queue-by-queue, or topic-by-topic basis.
JBoss Messaging then pages messages to and from storage transparently in blocks, allowing
queues and subscriptions to grow to very large sizes without any performance degradation as
channel size increases.

This has been tested with in excess of 10 million 2K messages on very basic hardware and has
the potential to scale to much larger number of messages.

The individual parameters are:

FullSize - this is the maximum number of messages held by the queue or topic subscriptions
in memory at any one time. The actual queue or subscription can hold many more messages
than this but these are paged to and from storage as necessary as messages are added or
consumed.

PageSize - When loading messages from the queue or subscrition this is the maximum number
of messages to pre-load in one operation.

DownCacheSize - When paging messages to storage from the queue they first go into a "Down
Cache" before being written to storage. This enables the write to occur as a single operation
thus aiding performance. This setting determines the max number of messages that the Down
Cache will hold before they are flushed to storage.

Chapter 5. Configuration

42

If no values for FullSize, PageSize, or DownCacheSize are specified they will default to values
75000, 2000, 2000 respectively.

If you want to specify the paging parameters used for temporary queues then you need to
specify them on the appropriate connection factory. See connection factory configuration for
details.

6.3.1.9. CreatedProgrammatically

Returns true if the topic was created programmatically

6.3.1.10. MaxSize

A maximum size (in number of messages) can be specified for a topic subscription. Any
messages that arrive beyond this point will be dropped. The default is -1 which is unbounded.

6.3.1.11. Clustered

Clustered destinations must have this set to true

6.3.1.12. MessageCounterHistoryDayLimit

The maximum number of days to hold message counter history for. Overrides any value set on
the ServerPeer.

6.3.1.13. MessageCounters

Return a list of the message counters for the subscriptions of this topic.

6.3.1.14. AllMessageCount

Return the total number of messages in all subscriptions of this topic.

6.3.1.15. DurableMessageCount

Return the total number of durable messages in all subscriptions of this topic.

6.3.1.16. NonDurableMessageCount

Return the total number of non durable messages in all subscriptions of this topic.

6.3.1.17. AllSubscriptionsCount

The count of all subscriptions on this topic

6.3.1.18. DurableSubscriptionsCount

The count of all durable subscriptions on this topic

6.3.1.19. NonDurableSubscriptionsCount

Configuring topics

43

The count of all non durable subscriptions on this topic

6.3.2. MBean operations of the Topic MBean

6.3.2.1. RemoveAllMessages

Remove (and delete) all messages from the subscriptions of this topic.

Warning

Use this with caution. It will permanently delete all messages from the topic

6.3.2.2. ListAllSubscriptions

List all subscriptions of this topic

6.3.2.3. ListDurableSubscriptions

List all durable subscriptions of this topic

6.3.2.4. ListNonDurableSubscriptions

List all non durable subscriptions of this topic

6.3.2.5. ListAllSubscriptionsAsHTML

List all subscriptions of this topic in an easy to display HTML format

6.3.2.6. ListDurableSubscriptionsAsHTML

List all durable subscriptions of this topic in an easy to display HTML format

6.3.2.7. ListNonDurableSubscriptionsAsHTML

List all non durable subscriptions of this topic in an easy to display HTML format

6.3.2.8. ListAllMessages

Lists all messages for the specified subscription.

There are two overloaded versions of this operation. One that takes a selector and one that
does not. By specifyingthe selector you can limit the messages returned.

6.3.2.9. ListNonDurableMessages

Lists all non durable messages for the specified subscription.

There are two overloaded versions of this operation. One that takes a selector and one that

Chapter 5. Configuration

44

does not. By specifyingthe selector you can limit the messages returned.

6.3.2.10. ListDurableMessages

Lists all durable messages for the specified subscription.

There are two overloaded versions of this operation. One that takes a selector and one that
does not. By specifyingthe selector you can limit the messages returned.

7. Configuring Connection Factories

With the default configuration JBoss Messaging binds two connection factories in JNDI at
start-up.

The first connection factory is the default non-clustered connection factory and is bound into the
following JNDI contexts: /ConnectionFactory, /XAConnectionFactory,

java:/ConnectionFactory, java:/XAConnectionFactory. This connection factory is
provided to maintain compatibility with applications originally written against JBoss MQ which
has no automatic failover or load balancing. This connection factory should be used if you do
not require client side automatic failover or load balancing.

The second connection factory is the default clustered connection factory and is bound into the
following JNDI contexts /ClusteredConnectionFactory,

/ClusteredXAConnectionFactory, java:/ClusteredConnectionFactory,

java:/ClusteredXAConnectionFactory.

You may want to configure additional connection factories, for instance if you want to provide a
default client id for a connection factory, or if you want to bind it in different places in JNDI, if
you want different connection factories to use different transports, or if you want to selective
enable or disable load-balancing and/or automatic failover for a particular connection factory.
Deploying a new connection factory is equivalent with adding a new ConnectionFactory MBean
configuration to connection-factories-service.xml.

It is also possible to create an entirely new service deployment descriptor xxx-service.xml
altogether and deploy it in $JBOSS_HOME/server/messaging/deploy.

Connection factories can support automatic failover and/or load-balancing by setting the
corresponding attributes

An example connection factory configuration is presented below:

<mbean code="org.jboss.jms.server.connectionfactory.ConnectionFactory"
name="jboss.messaging.connectionfactory:service=MyConnectionFactory"
xmbean-dd="xmdesc/ConnectionFactory-xmbean.xml">
<depends optional-attribute-name="ServerPeer">

jboss.messaging:service=ServerPeer
</depends>
<depends optional-attribute-name="Connector">

jboss.messaging:service=Connector,transport=bisocket
</depends>

Configuring Connection Factories

45

<depends>jboss.messaging:service=PostOffice</depends>

<attribute name="JNDIBindings">
<bindings>

<binding>/MyConnectionFactory</binding>
<binding>/factories/cf</binding>

</bindings>
</attribute>

<attribute name="ClientID">myClientID</attribute>

<attribute name="SupportsFailover">true</attribute>

<attribute name="SupportsLoadBalancing">false</attribute>

<attribute
name="LoadBalancingFactory">org.acme.MyLoadBalancingFactory</attribute>

<attribute name="PrefetchSize">1000</attribute>

<attribute name="SlowConsumers">false</attribute>

<attribute name="StrictTck">true</attribute>

<attribute name="DefaultTempQueueFullSize">50000</attribute>

<attribute name="DefaultTempQueuePageSize">1000</attribute>

<attribute name="DefaultTempQueueDownCacheSize">1000</attribute>

<attribute name="DupsOKBatchSize">10000</attribute>
</mbean>

The above example would create a connection factory with pre-configured client ID myClientID

and bind the connection factory in two places in the JNDI tree: /MyConnectionFactory and
/factories/cf. The connection factory overrides the default values for PreFetchSize,
DefaultTempQueueFullSize, DefaultTempQueuePageSize, DefaultTempQueueDownCacheSize
and DupsOKBatchSize, SupportsFailover, SupportsLoadBalancing and LoadBalancingFactory.
The connection factory will use the default remoting connector. To use a different remoting
connector with the connection factory change the Connector attribute to specify the service
name of the connector you wish to use.

7.1. MBean attributes of the ConnectionFactory MBean

7.1.1. ClientID

Connection factories can be pre-configured with a client id. Any connections created using this
connection factory will obtain this client id

Chapter 5. Configuration

46

7.1.2. JNDIBindings

The list of the JNDI bindings for this connection factory

7.1.3. PrefetchSize

This parameter specifies the window size for consumer flow control. The window size
determines the number of messages a server can send to a consumer without blocking. Each
consumer maintains a buffer of messages from which it consumes. Please note that TCP also
implements its own flow control, so if you set this to too large a number, then the TCP window
size may be hit before the prefetchSize, which can cause writes to block.

7.1.4. SlowConsumers

If you have very slow consumers, then you probably want to make sure they don't buffer any
messages since this can prevent them from being consumed by faster consumers. Setting this
to true is equivalent to setting PrefetchSize to 1.

7.1.5. StrictTck

Set this to true if you want strict JMS behaviour as required by the TCK.

7.1.6. Temporary queue paging parameters

DefaultTempQueueFullSize, DefaultTempQueuePageSize, DefaultTempQueueDownCacheSize
are optional attributes that determine the default paging parameters to be used for any
temporary destinations scoped to connections created using this connection factory. See the
section on paging channels for more information on what these values mean. They will default
to values of 200000, 2000 and 2000 respectively if ommitted.

7.1.7. DupsOKBatchSize

When using a session with acknowledge mode of DUPS_OK_ACKNOWLEDGE this setting
determines how many acknowledgments it will buffer locally before sending. The default value is
2000

7.1.8. SupportsLoadBalancing

When using a connection factory with a clustered JBoss Messaging installation you can choose
whether to enable client side connection load-balancing. This is determined by setting the
attribute supportsLoadBalancing on the connection factory.

If load balancing is enabled on a connection factory then any connections created with that
connection factory will be load-balanced across the nodes of the cluster. Once a connection is
created on a particular node, it stays on that node.

The exact policy that determines how connections are load balanced is determined by the
LoadBalancingFactory attribute

MBean attributes of the ConnectionFactory

47

The default value is false

7.1.9. SupportsFailover

When using a connection factory with a clustered JBoss Messaging installation you can choose
whether to enable client side automatic failover. This is determined by setting the attribute
supportsFailover on the connection factory.

If automatic failover is enabled on a connection factory, then if a connection problem is detected
with the connection then JBoss Messaging will automatically and transparently failover to
another node in the cluster.

The failover is transparent meaning the user can carry on using the sessions, consumers,
producers and connection objects as before.

If automatic failover is not required, then this attribute can be set to false. With automatic
failover disabled it is up to the user code to catch connection exceptions in synchronous JMS
operations and install a JMS ExceptionListener to catch exceptions asynchronously. When a
connection is caught, the client side code should lookup a new connection factory using
HAJNDI and recreate the connection using that.

The default value is false

7.1.10. DisableRemotingChecks

By default, when deploying a connection factory, JBoss Messaging checks that the
corresponding JBoss Remoting Connector has "sensible" values. JBoss Messaging is very
sensitive to the values and for many of them there's rarely a good reason to change them. To
disable such sanity checking set this to false.

Warning

There is rarely a good reason to disable checking. Only do so if you are
absolutely sure in what you are doing

The default value is false

7.1.11. LoadBalancingFactory

If you are using a connection factory with client side load balancing then you can specify how
the load balancing is implemented by overriding this attribute. The value must correspond to the
name of a class which implements the interface
org.jboss.jms.client.plugin.LoadBalancingFactory

The default value is org.jboss.jms.client.plugin.RoundRobinLoadBalancingFactory, which load
balances connections across the cluster in a round-robin fashion

Chapter 5. Configuration

48

7.1.12. Connector

This specifies which remoting connector this connection factory uses. Different connection
factories can use different connectors.

For instance you could deploy one connection factory that creates connections that use the
HTTP transport to communicate to the server and another that creates connections that use the
bisocket transport to communicate.

8. Configuring the remoting connector

JBoss Messaging uses JBoss Remoting for all client to server communication. For full details of
what JBoss Remoting is capable of and how it is configured please consult the JBoss Remoting
documentation.

The default configuration includes a single remoting connector which is used by the single
default connection factory. Each connection factory can be configured to use its own connector.

The default connector is configured to use the remoting bisocket transport. The bisocket
transport is a TCP socket based transport which only listens and accepts connections on the
server side. I.e. connections are always initiated from the client side. This means it works well in
typical firewall scenarios where only inbound connections are allowed on the server. Or where
onlu outbound connections are allowed from the client.

The bisocket transport can be configured to use SSL where a higher level of security is
required.

The other supported transport is the HTTP transport. This uses the HTTP protocol to
communicate between client and server. Data is received on the client by the client periodically
polling the server for messages. This transport is well suited to situations where there is a
firewall between client and server which only allows incoming HTTP traffic on the server. Please
note this transport will not be as performant as the bisocket transport due to the nature of polling
and the HTTP protocl. Also please note it is not designed for high load situations.

No other remoting transports are currently supported by JBoss Messaging

You can look at remoting configuration under:

<JBoss>/server/<YourMessagingServer>/deploy/jboss-messaging.sar/remoting-bisocket-service.xml

Here is an example bisocket remoting configuration:

<config>
<invoker transport="bisocket">

<!-- There should be no reason to change these parameters -
warning!

Changing them may stop JBoss Messaging working correctly
-->

<attribute name="marshaller"

MBean

49

isParam="true">org.jboss.jms.wireformat.JMSWireFormat</attribute>
<attribute name="unmarshaller"

isParam="true">org.jboss.jms.wireformat.JMSWireFormat</attribute>
<attribute name="dataType" isParam="true">jms</attribute>
<attribute name="socket.check_connection"

isParam="true">false</attribute>
<attribute name="timeout" isParam="true">0</attribute>
<attribute

name="serverBindAddress">${jboss.bind.address}</attribute>
<attribute name="serverBindPort">4457</attribute>
<attribute name="clientSocketClass"

isParam="true">org.jboss.jms.client.remoting.ClientSocketWrapper</attribute>
<attribute name="serverSocketClass"

isParam="true">org.jboss.jms.server.remoting.ServerSocketWrapper</attribute>
<attribute name="numberOfCallRetries"

isParam="true">1</attribute>
<attribute name="pingFrequency"

isParam="true">214748364</attribute>
<attribute name="pingWindowFactor"

isParam="true">10</attribute>
<attribute

name="onewayThreadPool">org.jboss.jms.server.remoting.DirectThreadPool</attribute>

<!-- Periodicity of client pings. Server window by default is
twice this figure -->

<attribute name="clientLeasePeriod"
isParam="true">10000</attribute>

<!-- Number of seconds to wait for a connection in the client
pool to become free -->

<attribute name="numberOfRetries"
isParam="true">10</attribute>

<!-- Max Number of connections in client pool. This should be
significantly higher than

the max number of sessions/consumers you expect -->
<attribute name="clientMaxPoolSize"

isParam="true">200</attribute>

<!-- Use these parameters to specify values for binding and
connecting control connections to

work with your firewall/NAT configuration
<attribute name="secondaryBindPort">xyz</attribute>
<attribute name="secondaryConnectPort">abc</attribute>
-->

</invoker>
<handlers>

<handler
subsystem="JMS">org.jboss.jms.server.remoting.JMSServerInvocationHandler</handler>

</handlers>
</config>

Please note that some of the attributes should not be changed unless you know exactly what

Chapter 5. Configuration

50

you are doing. We will discuss the attributes that you may have a good reason to change:

• clientLeasePeriod - Clients periodically send heartbeats to the server to tell the server they
are still alive. If the server does not receive a heartbeat after a certain time it will close down
the connection and remove all resources on the server corresponding to the client's session.
The clientLeasePeriod determines the period of heartbeats. The server will (by default) close
a client if it does not receive a heartbeat in 2 * clientLeasePeriod ms. The actual factor gets
automatically resized according to system load. The value is in milliseconds. The defaut value
is 10000 ms.

• numberOfRetries - This effectively corresponds to the number of seconds JBoss Remoting
will block on the client connection pool waiting for a connection to become free. If you have a
very large number of sessions concurrently accessing the server from a client and you are
experiencing issues due to not being able to obtain connections from the pool, you may want
to consider increasing this value.

• clientMaxPoolSize - JBoss Remoting maintains a client side pool of TCP connections on
which to service requests. If you have a very large number of sessions concurrently
accessing the server from a client and you are experiencing issues due to not being able to
obtain connections from the pool in a timely manner, you may want to consider increasing this
value.

• secondaryBindPort - The bisocket transport uses control connections to pass control
messages between server and client. If you want to work behind a firewall you may want to
specify a particular value for this according to your firewall configuration. This is the address
the secondary ServerSocket binds to

• secondaryConnectPort - This is the port the client uses to connect. You may want to specify
this to allow clients to work with NAT routers.

• maxPoolSize - This is the number of threads used on the server side to service requests.

By default JBoss Messaging binds to ${jboss.bind.address} which can be defined by: ./run.sh -c
<yourconfig> -b yourIP.

You can change remoting-bisocket-service.xml if you want for example use a different
communication port.

Warning

There is rarely a good reason to change values in the the bisocket or sslbisocket
connector configuration apart from clientLeasePeriod, clientMaxPoolSize,
maxRetries, numberOfRetries, secondaryBindPort or secondaryConnectPort.
Changing them can cause JBoss Messaging to stop functioning correctly.

ServiceBindingManager

51

9. ServiceBindingManager

If you are using the JBoss AS ServiceBindingManager to provide different servers with different
port ranges, then you must make sure that the JBoss Messaging remoting configuration
specified in the JBoss Messaging section of the ServiceBindingManager xml file exactly
matches that in remoting-bisocket-service.xml.

If you are using a newer version of JBM in an older version of JBAS then the example bindings
in the AS distribution may well be out of date. It is therefore imperative that the relevant sections
are overwritten with the remoting configuration from the JBM distribution.

Chapter 5. Configuration

52

JBoss Messaging Clustering
Configuration
JBoss Messaging clustering should work out of the box in most cases with no configuration
changes. It is however crucial that every node is assigned a unique server id.

Warning

For a clustered installation it is mandatory that a shared database is available to
all nodes in the cluster. The default JBoss AS uses HSQLDB for its database
which is a local shared database. Therefore in order to use clustering you must
replace this with a different shared database. If the database is not replaced then
clustering will not work.

If you want to run multiple JBoss Messaging nodes on the same box using the same IP
address, e.g. for development purposes, then you can use the ServiceBindingManager to do
this as follows:

• Uncomment binding manager service from $JBOSS_CONFIG/conf/jboss-service.xml

• Specify the desired port range (e.g. ports-01, ports-02... etc)

• Look at $JBOSS_HOME/docs/examples/binding-manager/sample-bindings.xml. On each port
range, JBoss Remoting configuration should look like:

<service-config
name="jboss.messaging:service=Connector,transport=bisocket"
delegateClass="org.jboss.services.binding.AttributeMappingDelegate">

<delegate-config>
<attribute name="Configuration"><![CDATA[

<config>
<invoker transport="bisocket">

<attribute name="marshaller" isParam="true">
org.jboss.jms.wireformat.JMSWireFormat

</attribute>
<attribute name="unmarshaller" isParam="true">

org.jboss.jms.wireformat.JMSWireFormat
</attribute>
<attribute name="dataType" isParam="true">jms</attribute>
<attribute name="socket.check_connection"

isParam="true">false</attribute>
<attribute name="timeout" isParam="true">0</attribute>
<attribute

name="serverBindAddress">${jboss.bind.address}</attribute>
<attribute name="serverBindPort">4657</attribute>

Chapter 6.

53

<attribute name="leasePeriod">10000</attribute>
<attribute name="clientSocketClass" isParam="true">

org.jboss.jms.client.remoting.ClientSocketWrapper
</attribute>
<attribute name="serverSocketClass">

org.jboss.jms.server.remoting.ServerSocketWrapper
</attribute>
<attribute name="numberOfRetries"

isParam="true">1</attribute>
<attribute name="numberOfCallRetries"

isParam="true">1</attribute>
<attribute name="clientMaxPoolSize"

isParam="true">50</attribute>
</invoker>
<handlers>

<handler subsystem="JMS">
org.jboss.jms.server.remoting.JMSServerInvocationHandler

</handler>
</handlers>

</config>
]]></attribute>

</delegate-config>
<binding port="4657"/>

</service-config>

Warning

You must ensure that the config (like above) is identical to that in
remoting-bisocket-service.xml With the exception of the actual
serverBindPort which clearly must be different for each ports range. Please note
that the default JBoss Messaging service binding manager bindings in
sample-bindings.xml shipped with JBAS 4.2.0 is out of date and you will need
to copy the config from remoting-bisocket-service.xml

You should ensure that each node is configured to use a different ports range.

1. Unique server peer id

Every node deployed must have a unique id, including those in a particular LAN cluster, and
also those only linked by message bridges.

Chapter 6. JBoss Messaging Clustering Configuration

54

Note

Ensure the ServerPeerID MBean attribute value in messaging-service.xml is
unique for each node on the cluster. The ServerPeerID value must be a valid
integer.

2. Clustered destinations

JBoss Messaging clusters JMS queues and topics transparently across the cluster. Messages
sent to a distributed queue or topic on one node are consumable on other nodes. To designate
that a particular destination is clustered simply set the clustered attribute in the destination
deployment descriptor to true.

JBoss Messaging balances messages between nodes, catering for faster or slower consumers
to efficiently balance processing load across the cluster.

If you do not want message redistribution between nodes, but still want to retain the other
charactereristics of clustered destinations. You can do this by not specifying the attribute
ClusterPullConnectionFactoryName on the server peer

3. Clustered durable subs

JBoss Messaging durable subscriptions can also be clustered. This means multiple subscribers
can consume from the same durable subscription from different nodes of the cluster. A durable
subscription will be clustered if it's topic is clustered

4. Clustered temporary destinations

JBoss Messaging also supports clustered temporary topics and queues. All temporary topics
and queues will be clustered if the post office is clustered

5. Non clustered servers

If you don't want your nodes to participate in a cluster, or only have one non clustered server
you can set the clustered attribute on the postoffice to false

6. Message ordering in the cluster

If you wish to apply strict JMS ordering to messages, such that a particular JMS consumer
consumes messages in the same order as they were produced by a particular producer, you
can set the DefaultPreserveOrdering attribute in the server peer to true. By default this is false.
The sideeffect of setting this to true is that messages cannot be distributed as freely around the
cluster

Clustered destinations

55

7. Idempotent operations

If the call to send a persistent message to a persistent destination returns successfully with no
exception, then you can be sure that the message was persisted. However if the call doesn't
return successfully e.g. if an exception is thrown, then you *can't be sure the message wasn't
persisted*. Since the failure might have occurred after persisting the message but before writing
the response to the caller. This is a common attribute of any RPC type call: You can't tell by the
call not returning that the call didn't actually succeed. Whether it's a web services call, an HTTP
get request, an ejb invocation the same applies. The trick is to code your application so your
operations are *idempotent* i.e. they can be repeated without getting the system into an
inconsistent state. With a message system you can do this on the application level, by checking
for duplicate messages, and discarding them if they arrive. Duplicate checking is a very
powerful technique that can remove the need for XA transactions in many cases.

In the clustered case, JBM is by default configured to automatically detect duplicate messages.

8. Clustered connection factories

If the supportsLoadBalancing attribute of the connection factory is set to true then consecutive
create connection attempts will round robin between available servers. The first node to try is
chosen randomly

If the supportsFailover attribute of the connection factory is set to true then automatic failover is
enabled. This will automatically failover from one server to another, transparently to the user, in
case of failure.

If automatic failover is not required or you wish to do manual failover (JBoss MQ style) this can
be set to false, and you can supply a standard JMS ExceptionListener on the connection which
will be called in case of connection failure. You would then need to manually close the
connection, lookup a new connection factory from HA JNDI and recreate the connection.

Chapter 6. JBoss Messaging Clustering Configuration

56

JBoss Messaging XA Recovery
Configuration
This section describes how to configure JBoss Transactions in JBoss AS 4.2.0 to handle XA
recovery for JBoss Messaging resources.

JBoss Transactions recovery manager can easily be configured to continually poll for and
recover JBoss Messaging XA resources, this provides an extremely high level of durability of
transactions.

Enabling JBoss Transactions Recovery Manager to recover JBoss Messaging resources is a
very simple matter and involves adding a line to the file
${JBOSS_CONFIG}/conf/jbossjta-properties.xml

Here's an example section of a jbossjta-properties.xml file with the line added (note the whole
file is not shown)

<properties depends="arjuna" name="jta">
<!--
Support subtransactions in the JTA layer?
Default is NO.
-->
<property name="com.arjuna.ats.jta.supportSubtransactions"

value="NO"/>
<property name="com.arjuna.ats.jta.jtaTMImplementation"

value="com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple"/>
<property name="com.arjuna.ats.jta.jtaUTImplementation"

value="com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple"/>
<!--

*** Add this line to enable recovery for JMS resources using
DefaultJMSProvider ***

-->
<property

name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1"
value="org.jboss.jms.server.recovery.MessagingXAResourceRecovery;java:/DefaultJMSProvider"/>

</properties>

In the above example the recovery manager will attempt to recover JMS resources using the
JMSProviderLoader "DefaultJMSProvider"

DefaultJMSProvider is the default JMS provider loader that ships with JBoss AS and is defined
in jms-ds.xml (or hajndi-jms-ds.xml in a clustered configuration). If you want to recovery using a
different JMS provider loader - e.g. one corresponding to a remote JMS provider then just add
another line and instead of DefaultJMSProvider specify the name of the remote JMS provider as
specified in it's MBean configuration.

Chapter 7.

57

For each line you add, the name must be unique, so you could specify
"com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1",
"com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING2, ..." etc.

In actual fact, the recovery also should work with any JMS provider that implements recoverable
XAResources (i.e. it properly implements XAResource.recover()) , not just JBoss Messaging

Please note that to configure the recovery manager to recovery transactions from any node of
the cluster it will be necessary to specify a line in the configuration for every node of the cluster

Chapter 7. JBoss Messaging XA Recovery Configuration

58

JBoss Messaging Message Bridge
Configuration

1. Message bridge overview

JBoss Messaging includes a fully functional message bridge.

The function of the bridge is to consume messages from a source queue or topic, and send
them to a target queue or topic, typically on a different server.

The source and target servers do not have to be in the same cluster which makes bridging
suitable for reliably sending messages from one cluster to another, for instance across a WAN,
and where the connection may be unreliable.

A bridge is deployed inside a JBoss AS instance. The instance can be the same instance as
either the source or target server. Or could be on a third, separate JBoss AS instance.

A bridge is deployed as an MBean inside JBoss AS. Deployment is trivial - just drop the MBean
descriptor into the deploy directory of a JBoss configuration which contains JBoss Messaging.

An example in docs/example/bridge demonstrates a simple bridge being deployed in JBoss AS,
and moving messages from the source to the target destination

The bridge can also be used to bridge messages from other non JBoss Messaging JMS
servers, as long as they are JMS 1.1 compliant.

The bridge has built in resilience to failure so if the source or target server connetion is lost, e.g.
due to network failure, the bridge will retry connecting to the source and/or target until they
come back online. When it comes back online it will resume operation as normal.

The bridge can be configured with an optional JMS selector, so it will only consume messages
matching that JMS selector

It can be configured to consume from a queue or a topic. When it consumes from a topic it can
be configured to consume using a non durable or durable subscription

The bridge can be configured to bridge messages with one of three levels of quality of service,
they are:

• QOS_AT_MOST_ONCE

With this QoS mode messages will reach the destination from the source at most once. The
messages are consumed from the source and acknowledged before sending to the
destination. Therefore there is a possibility that if failure occurs between removing them from
the source and them arriving at the destination they could be lost. Hence delivery will occur at
most once. This mode is avilable for both persistent and non persistent messages.

Chapter 8.

59

• QOS_DUPLICATES_OK

With this QoS mode, the messages are consumed from the source and then acknowledged
after they have been successfully sent to the destination. Therefore there is a possibility that if
failure occurs after sending to the destination but before acknowledging them, they could be
sent again when the system recovers. I.e. the destination might receive duplicates after a
failure. This mode is available for both persistent and non persistent messages.

• QOS_ONCE_AND_ONLY_ONCE

This QoS mode ensures messages will reach the destination from the source once and only
once. (Sometimes this mode is known as "exactly once"). If both the source and the
destination are on the same JBoss Messaging server instance then this can be achieved by
sending and acknowledging the messages in the same local transaction. If the source and
destination are on different servers this is achieved by enlisting the sending and consuming
sessions in a JTA transaction. The JTA transaction is controlled by JBoss Transactions JTA
implementation which is a fully recovering transaction manager, thus providing a very high
degree of durability. If JTA is required then both supplied connection factories need to be
XAConnectionFactory implementations. This mode is only available for persistent messages.
This is likely to be the slowest mode since it requires logging on both the transaction manager
and resource side for recovery. If you require this level of QoS, please be sure to enable XA
recovery with JBoss Transactions.

Note

For a specific application it may possible to provide once and only once
semantics without using the QOS_ONCE_AND_ONLY_ONCE QoS level. This
can be done by using the QOS_DUPLICATES_OK mode and then checking for
duplicates at the destination and discarding them. This may be possible to
implement on the application level by maintaining a cache of received message
ids on disk and comparing received messages to them. The cache would only be
valid for a certain period of time so this approach is not as watertight as using
QOS_ONCE_AND_ONLY_ONCE but may be a good choice depending on your
specific application.

2. Bridge deployment

A message bridge is easily deployed by dropping the MBean descriptor in the deploy directory
of your JBoss AS installation which contains JBoss Messaging

3. Bridge configuration

In this section we describe how to configure the message bridge

Chapter 8. JBoss Messaging Message Bridge Configuration

60

Here is an example of a message bridge configuration, with all the attributes shown. Note that
some are commented out for this configuration, since it is not appropriate to specify them all at
once. Which ones are specified depends on the configuration you want.

<mbean code="org.jboss.jms.server.bridge.BridgeService"
name="jboss.messaging:service=Bridge,name=TestBridge"
xmbean-dd="xmdesc/Bridge-xmbean.xml">

<!-- The JMS provider loader that is used to lookup the source
destination -->

<depends optional-attribute-name="SourceProviderLoader">
jboss.messaging:service=JMSProviderLoader,name=JMSProvider</depends>

<!-- The JMS provider loader that is used to lookup the target
destination -->

<depends optional-attribute-name="TargetProviderLoader">
jboss.messaging:service=JMSProviderLoader,name=JMSProvider</depends>

<!-- The JNDI lookup for the source destination -->
<attribute name="SourceDestinationLookup">/queue/A</attribute>

<!-- The JNDI lookup for the target destination -->
<attribute name="TargetDestinationLookup">/queue/B</attribute>

<!-- The username to use for the source connection
<attribute name="SourceUsername">bob</attribute>
-->

<!-- The password to use for the source connection
<attribute name="SourcePassword">cheesecake</attribute>
-->

<!-- The username to use for the target connection
<attribute name="TargetUsername">mary</attribute>
-->

<!-- The password to use for the target connection
<attribute name="TargetPassword">hotdog</attribute>
-->

<!-- Optional: The Quality Of Service mode to use, one of:
QOS_AT_MOST_ONCE = 0;
QOS_DUPLICATES_OK = 1;
QOS_ONCE_AND_ONLY_ONCE = 2; -->

<attribute name="QualityOfServiceMode">0</attribute>

<!-- JMS selector to use for consuming messages from the source
<attribute name="Selector">specify jms selector here</attribute>
-->

<!-- The maximum number of messages to consume from the source
before sending to the target -->

<attribute name="MaxBatchSize">5</attribute>

<!-- The maximum time to wait (in ms) before sending a batch to the

Bridge configuration

61

target
even if MaxBatchSize is not exceeded.
-1 means wait forever -->

<attribute name="MaxBatchTime">-1</attribute>

<!-- If consuming from a durable subscription this is the subscription
name

<attribute name="SubName">mysub</attribute>
-->

<!-- If consuming from a durable subscription this is the client ID to
use

<attribute name="ClientID">myClientID</attribute>
-->

<!-- The number of ms to wait between connection retrues in the event
connections

to source or target fail -->
<attribute name="FailureRetryInterval">5000</attribute>

<!-- The maximum number of connection retries to make in case of
failure,

before giving up -1 means try forever-->
<attribute name="MaxRetries">-1</attribute>

<!-- If true then the message id of the message before bridging will
be added

as a header to the message so it is available to the receiver. Can
then be

sent as correlation id to correlate in a distributed
request-response -->

<attribute name="AddMessageIDInHeader">false</attribute>

</mbean>

We will now discuss each attribute

3.1. SourceProviderLoader

This is the object name of the JMSProviderLoader MBean that the bridge will use to lookup the
source connection factory and source destination.

By default JBoss AS ships with one JMSProviderLoader, deployed in the file jms-ds.xml - this
is the default local JMSProviderLoader. (This would be in hajndi-jms-ds.xml in a clustered
configuration)

If your source destination is on different servers or even correspond to a different, non JBoss
JMS provider, then you can deploy another JMSProviderLoader MBean instance which
references the remote JMS provider, and reference that from this attribute. The bridge would
then use that remote JMS provider to contact the source destination

Chapter 8. JBoss Messaging Message Bridge Configuration

62

Note that if you are using a remote non JBoss Messaging source or target and you wish once
and only once delivery then that remote JMS provider must provide a fully functional JMS XA
resource implementation that works remotely from the server - it is known that some non JBoss
JMS providers do not provide such a resource

3.2. TargetProviderLoader

This is the object name of the JMSProviderLoader MBean that the bridge will use to lookup the
target connection factory and target destination.

By default JBoss AS ships with one JMSProviderLoader, deployed in the file jms-ds.xml - this
is the default local JMSProviderLoader. (This would be in hajndi-jms-ds.xml in a clustered
configuration)

If your target destination is on a different server or even correspond to a different, non JBoss
JMS provider, then you can deploy another JMSProviderLoader MBean instance which
references the remote JMS provider, and reference that from this attribute. The bridge would
then use that remote JMS provider to contact the target destination

Note that if you are using a remote non JBoss Messaging source or target and you wish once
and only once delivery then that remote JMS provider must provide a fully functional JMS XA
resource implementation that works remotely from the server - it is known that some non JBoss
JMS providers do not provide such a resource

3.3. SourceDestinationLookup

This is the full JNDI lookup for the source destination using the SourceProviderLoader

An example would be /queue/mySourceQueue

3.4. TargetDestinationLookup

This is the full JNDI lookup for the target destination using the TargetProviderLoader

An example would be /topic/myTargetTopic

3.5. SourceUsername

This optional attribute is for when you need to specify the username for creating the source
connection

3.6. SourcePassword

This optional attribute is for when you need to specify the password for creating the source
connection

3.7. TargetUsername

This optional attribute is for when you need to specify the username for creating the target

TargetProviderLoader

63

connection

3.8. TargetPassword

This optional attribute is for when you need to specify the password for creating the target
connection

3.9. QualityOfServiceMode

This integer represents the desired quality of service mode

Possible values are:

• QOS_AT_MOST_ONCE = 0

• QOS_DUPLICATES_OK = 1

• QOS_ONCE_AND_ONLY_ONCE = 2

Please see Section 1, “Message bridge overview” for an explanation of what these mean.

3.10. Selector

This optional attribute can contain a JMS selector expression used for consuming messages
from the source destination. Only messages that match the selector expression will be bridged
from the source to the target destination

Please note it is always more performant to apply selectors on source topic subscriptions to
source queue consumers.

The selector expression must follow the JMS selector syntax specified here:
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

3.11. MaxBatchSize

This attribute specifies the maximum number of messages to consume from the source
destination before sending them in a batch to the target destination. It's value must >= 1

3.12. MaxBatchTime

This attribute specifies the maximum number of milliseconds to wait before sending a batch to
target, even if the number of messages consumed has not reached MaxBatchSize. It's value
must can be -1 to represent 'wait forever', or >=1 to specify an actual time.

3.13. SubName

If the source destination represents a topic, and you want to consume from the topic using a
durable subscription then this attribute represents the durable subscription name

Chapter 8. JBoss Messaging Message Bridge Configuration

64

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

3.14. ClientID

If the source destination represents a topic, and you want to consume from the topic using a
durable subscription then this attribute represents the the JMS client ID to use when
creating/looking up the durable subscription

3.15. FailureRetryInterval

This represents the amount of time in ms to wait between trying to recreate connections to the
source or target servers when the bridge has detected they have failed

3.16. MaxRetries

This represents the number of times to attempt to recreate connections to the source or target
servers when the bridge has detected they have failed. The bridge will give up after trying this
number of times. -1 represents 'try forever'

3.17. AddMessageIDInHeader

If true, then the original message's message id will appended in the message sent to the
destination in the header
JBossMessage.JBOSS_MESSAGING_BRIDGE_MESSAGE_ID_LIST. If the message is
bridged more than once each message-id will be appended. This enables a distributed
request-response pattern to be used

FailureRetryInterval

65

66

	JBoss Messaging User Guide
	Table of Contents
	Chapter 1. About this book
	Chapter 2. Introduction
	1. Feedback
	2. Other Manuals

	Chapter 3. JBoss Messaging - A Quick Tour
	1. Limitations of JBossMQ
	2. JBoss Messaging Features
	3. Clustering Features
	4. Compatibility with JBossMQ

	Chapter 4. JBoss Messaging Examples
	1. About the Examples
	2. Running the Examples
	2.1. Install Ant
	2.2. Set JBOSS_HOME Environment Variable
	2.3. Run the Example

	Chapter 5. Configuration
	1. Configuring the ServerPeer
	1.1. ServerPeer attributes
	1.1.1. ServerPeerID
	1.1.2. DefaultQueueJNDIContext
	1.1.3. DefaultTopicJNDIContext
	1.1.4. PostOffice
	1.1.5. SecurityDomain
	1.1.6. DefaultSecurityConfig
	1.1.7. DefaultDLQ
	1.1.8. DefaultMaxDeliveryAttempts
	1.1.9. DefaultExpiryQueue
	1.1.10. DefaultRedeliveryDelay
	1.1.11. MessageCounterSamplePeriod
	1.1.12. FailoverStartTimeout
	1.1.13. FailoverCompleteTimeout
	1.1.14. DefaultMessageCounterHistoryDayLimit
	1.1.15. ClusterPullConnectionFactory
	1.1.16. DefaultPreserveOrdering
	1.1.17. RecoverDeliveriesTimeout
	1.1.18. EnableMessageCounters
	1.1.19. SuckerPassword
	1.1.20. StrictTCK
	1.1.21. Destinations
	1.1.22. MessageCounters
	1.1.23. MessageCountersStatistics
	1.1.24. SupportsFailover
	1.1.25. PersistenceManager
	1.1.26. JMSUserManager
	1.1.27. MBean operations of the ServerPeer MBean.
	1.1.27.1. DeployQueue
	1.1.27.2. UndeployQueue
	1.1.27.3. DestroyQueue
	1.1.27.4. DeployTopic
	1.1.27.5. UndeployTopic
	1.1.27.6. DestroyTopic
	1.1.27.7. ListMessageCountersHTML
	1.1.27.8. ResetAllMesageCounters
	1.1.27.9. ResetAllMesageCounters
	1.1.27.10. EnableMessageCounters
	1.1.27.11. DisableMessageCounters
	1.1.27.12. RetrievePreparedTransactions
	1.1.27.13. ShowPreparedTransactions

	2. Changing the Database
	3. Configuring the Post office
	3.1. The post office has the following attributes
	3.1.1. DataSource
	3.1.2. SQLProperties
	3.1.3. CreateTablesOnStartup
	3.1.4. DetectDuplicates
	3.1.5. IDCacheSize
	3.1.6. PostOfficeName
	3.1.7. NodeIDView
	3.1.8. GroupName
	3.1.9. Clustered
	3.1.10. StateTimeout
	3.1.11. CastTimeout
	3.1.12. FailoverOnNodeLeave
	3.1.13. MaxConcurrentReplications
	3.1.14. ControlChannelConfig
	3.1.15. DataChannelConfig

	4. Configuring the Persistence Manager
	4.1. MBean attributes of the PersistenceManager MBean
	4.1.1. CreateTablesOnStartup
	4.1.2. UsingBatchUpdates
	4.1.3. UsingBinaryStream
	4.1.4. UsingTrailingByte
	4.1.5. SupportsBlobOnSelect
	4.1.6. SQLProperties
	4.1.7. MaxParams
	4.1.8. UseNDBFailoverStrategy

	5. Configuring the JMS user manager
	5.1. MBean attributes of the JMSUserManager MBean
	5.1.1. CreateTablesOnStartup
	5.1.2. UsingBatchUpdates
	5.1.3. SQLProperties

	6. Configuring Destinations
	6.1. Pre-configured destinations
	6.2. Configuring queues
	6.2.1. Attributes of the Queue MBean
	6.2.1.1. Name
	6.2.1.2. JNDIName
	6.2.1.3. DLQ
	6.2.1.4. ExpiryQueue
	6.2.1.5. RedeliveryDelay
	6.2.1.6. MaxDeliveryAttempts
	6.2.1.7. Destination Security Configuration
	6.2.1.8. Destination paging parameters
	6.2.1.9. CreatedProgrammatically
	6.2.1.10. MessageCount
	6.2.1.11. ScheduledMessageCount
	6.2.1.12. MaxSize
	6.2.1.13. Clustered
	6.2.1.14. MessageCounter
	6.2.1.15. MessageCounterStatistics
	6.2.1.16. MessageCounterHistoryDayLimit
	6.2.1.17. ConsumerCount

	6.2.2. MBean operations of the Queue MBean
	6.2.2.1. RemoveAllMessages
	6.2.2.2. ListAllMessages
	6.2.2.3. ListDurableMessages
	6.2.2.4. ListNonDurableMessages
	6.2.2.5. ResetMessageCounter
	6.2.2.6. ResetMessageCounterHistory
	6.2.2.7. ListMessageCounterAsHTML
	6.2.2.8. ListMessageCounterHistoryAsHTML

	6.3. Configuring topics
	6.3.1. MBean attributes of the Topic MBean
	6.3.1.1. Name
	6.3.1.2. JNDIName
	6.3.1.3. DLQ
	6.3.1.4. ExpiryQueue
	6.3.1.5. RedeliveryDelay
	6.3.1.6. MaxDeliveryAttempts
	6.3.1.7. Destination Security Configuration
	6.3.1.8. Destination paging parameters
	6.3.1.9. CreatedProgrammatically
	6.3.1.10. MaxSize
	6.3.1.11. Clustered
	6.3.1.12. MessageCounterHistoryDayLimit
	6.3.1.13. MessageCounters
	6.3.1.14. AllMessageCount
	6.3.1.15. DurableMessageCount
	6.3.1.16. NonDurableMessageCount
	6.3.1.17. AllSubscriptionsCount
	6.3.1.18. DurableSubscriptionsCount
	6.3.1.19. NonDurableSubscriptionsCount

	6.3.2. MBean operations of the Topic MBean
	6.3.2.1. RemoveAllMessages
	6.3.2.2. ListAllSubscriptions
	6.3.2.3. ListDurableSubscriptions
	6.3.2.4. ListNonDurableSubscriptions
	6.3.2.5. ListAllSubscriptionsAsHTML
	6.3.2.6. ListDurableSubscriptionsAsHTML
	6.3.2.7. ListNonDurableSubscriptionsAsHTML
	6.3.2.8. ListAllMessages
	6.3.2.9. ListNonDurableMessages
	6.3.2.10. ListDurableMessages

	7. Configuring Connection Factories
	7.1. MBean attributes of the ConnectionFactory MBean
	7.1.1. ClientID
	7.1.2. JNDIBindings
	7.1.3. PrefetchSize
	7.1.4. SlowConsumers
	7.1.5. StrictTck
	7.1.6. Temporary queue paging parameters
	7.1.7. DupsOKBatchSize
	7.1.8. SupportsLoadBalancing
	7.1.9. SupportsFailover
	7.1.10. DisableRemotingChecks
	7.1.11. LoadBalancingFactory
	7.1.12. Connector

	8. Configuring the remoting connector
	9. ServiceBindingManager

	Chapter 6. JBoss Messaging Clustering Configuration
	1. Unique server peer id
	2. Clustered destinations
	3. Clustered durable subs
	4. Clustered temporary destinations
	5. Non clustered servers
	6. Message ordering in the cluster
	7. Idempotent operations
	8. Clustered connection factories

	Chapter 7. JBoss Messaging XA Recovery Configuration
	Chapter 8. JBoss Messaging Message Bridge Configuration
	1. Message bridge overview
	2. Bridge deployment
	3. Bridge configuration
	3.1. SourceProviderLoader
	3.2. TargetProviderLoader
	3.3. SourceDestinationLookup
	3.4. TargetDestinationLookup
	3.5. SourceUsername
	3.6. SourcePassword
	3.7. TargetUsername
	3.8. TargetPassword
	3.9. QualityOfServiceMode
	3.10. Selector
	3.11. MaxBatchSize
	3.12. MaxBatchTime
	3.13. SubName
	3.14. ClientID
	3.15. FailureRetryInterval
	3.16. MaxRetries
	3.17. AddMessageIDInHeader

