JBossCache Tutorial

TreeCache and
PojoCache Tutorial

4.3

Ben Wang, Bela Ban
ISBN: N/A
Publication date:

JBossCache Tutorial

This book is a TreeCache and JBossCache Tutorial.

JBoss Cache: TreeCache and PojoCache Tutorial

Author Ben Wang, Bela Ban
Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072

USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

JBossCache Tutorial

IO)0 Yo [T3 1 o NN 1

IS Tolo o PP 1
b2 @1 1T 18 - 4o) o [S 3
T Yol | PPN 5
4, EXAMPIE POJO ...ttt aaa e 7
DL DBIMO it 9
6. PIAIN CACNE ... e 11
7. POJOCACKE ...t 13
8. PojoCache With TranSaCtioNcc.iiiiiiiiiii e e 15
9. CacheLoader XAMPIEScieiuiieieii et 17

1. Local cache with CacheLoaderooooeiiiiiiiiiiiiiiecee e 17
10. Replicated cache with shared datastoreccoooiiiiiiiiiiiiii e 19
11. Replicated cache with unshared (local) datastoreccccooveiiiiiiiiiiinieii e, 21

2 I (010 o] L= o o] T o [23

vi

Chapter 1.

Introduction

JBossCache is an in-memory replicated (synchronous or asynchronous), transactional, and
fine-grained cache. It consists of two subsystems: TreeCache (plaing cache) and PojoCache
(object-oriented POJO cache). In this tutorial, we will demonstrate the usage of both cache
features. For details of the usage and APIs, please refer to the user manuals for TreeCache?!
and PojoCachez.

1. Scope

» Cache creation and modification

* Replication

PojoCache

* Transaction

1 http://labs.jboss.org/portal/jbosscache/docs/index.html
2 http://labs.jboss.org/portal/jbosscache/docs/index.html

http://labs.jboss.org/portal/jbosscache/docs/index.html
http://labs.jboss.org/portal/jbosscache/docs/index.html
http://labs.jboss.org/portal/jbosscache/docs/index.html
http://labs.jboss.org/portal/jbosscache/docs/index.html

Chapter 2.

Configuration

First download the standalone TreeCache code from here®. Unzip it, and you will get a root
directory (jboss-cache in our example).

The configuration files are located under the etc directory. You can modify the behavior of
TreeCache through editing the various configuration files.

e | og4j . xm . Logging output. You can turn on logging level or change log file directory (default
is/tnp/jbosscache. | og).

* repl Sync-servi ce. xm . Tree cache configuration file (file name is not fixed. You specify the
file to be read in Proper t yConf i gur at or). The settings are for a replicated, synchronous,
and transactional cache. The default DummyTransactionManager is used with a transaction
isolation level of REPEATABLE_READ. For details of the configuration parameters, please
refer to the Treecache?. Note that this file is used in the BSH (BeanShell®, a lightweight Java
compatible scripting language) script to configure the cache.

e j boss-aop. xnl . AOP pointcut and advice definition for the example POJO classes, Person
and Address, respectively. For details of how to put your own class under AOP, please refer
to the PojoCache4. This file is read in when the process is started.

1 http://labs.jboss.org/portal/jbosscache/download/index.html
2 http://www.jboss.org/products/jbosscache/docs

% http:/fwww.beanshell.org/

4 http://www.jboss.org/products/jbosscache/docs

http://labs.jboss.org/portal/jbosscache/download/index.html
http://labs.jboss.org/portal/jbosscache/download/index.html
http://www.jboss.org/products/jbosscache/docs
http://www.beanshell.org/
http://www.jboss.org/products/jbosscache/docs
http://www.beanshell.org/
http://www.jboss.org/products/jbosscache/docs
http://www.jboss.org/products/jbosscache/docs

Chapter 3.

The script files that are needed (located under install directory) in this tutorial are:

e build.sh (or buil d. bat for DOS/Windows). Simple build script that wraps around ant. Users
can simply type sh bui | d. sh for help. Note from now on, we will only refer to the Unix
version with the understanding that there is a corresponding DOS counterpart. The same
goes for runDemosShell explained next.

e runDenpShel | . sh. Simple run script that wraps around BeanShell. This is used to operate
the replicated cache through interactive command line.

 pl ai n. bsh. Java code that instantiate and configure the cache. It also creates an example
cache entry.

* aop. bsh. Java codes that instantiate and configure the aop cache. In addition, it also sets up
the example POJO (plaing old Java object) classes (e.g., Person and Address).

e aopW t hTx. bsh. Same with aop.bsh except it also instantiates a transaction context.

Chapter 4.

Example POJO

The example POJO classes used for PojoCache demo are: Per son and Addr ess. They are
located under t est s/ or g/ j boss/ cache/ aop directory. Per son has attributes of Stri ng age,
Address addr, List |anguages ,etc. We will demonstrate that once you put the POJO
instance in the cache, plain get/set POJO methods will be intercepted by the cache.

Here is the snippet of the class definition for Per son and Addr ess .

public class Person {
String nane=nul | ;
i nt age=0;
Map hobbi es=nul | ;
Addr ess address=nul | ;
Set skills;
Li st | anguages;

public String getNanme() { return nane; }
public void setNane(String nanme) { this.nane=nane; }

public class Address {
String street=null;
String city=null;
int zi p=0;

public String getStreet() { return street; }
public void setStreet(String street) { this.street=street; }

Chapter 5.

Demo

To run the demo, you will need at least two windows: one to peruse the cache contents (plus
non-aop operations) and the other to operate the cache directly. Of course, you can also open
more than one GUI window to see the cache replication at work to multiple members. You will
also need to run the scripts under jboss-cache installation directory after you unzip the release
package (jboss-cache-dist.zip). Due to the limitation of the GUI, please note that:

» For each demo example, it'd be best if you re-start the whole setup.

« While you can modify the cache content on the GUI window and it will show up on the BSH
cache content (e.g., through cache. pri nt Det ai | s()), this won't work on PojoCache demo.
That is, you can only modify the cache content on the BSH window.

The two demo programs to run are:

« On the first window for the GUI, type sh bui | d. sh to see the available commands. To run
the GUI, type sh buil d. sh run. deno . It will startup a PojoCache GUI. Later on, you can
click on a node to view the the contents. Note that you can also add/modify the node contents
for non-AOP cache entries. Since the GUI entry only accepts String for now, operation on aop
cache from the GUI will not always work (unless it is a String type).

» On the second window for the interactive Java commands, type sh runShellDemo.sh to fire off
the BeanShell interactive command shell (you can use either D or ~Z in Windows and Unix
to exit afterward). You can then read in the Java code scripts to showcase the cache
capabilities (e.g., plain.bsh, aop.bsh, and aopWithTx.bsh). See the following for details.

10

Chapter 6.

Plain cache

Once you are in the shell, you can either execute the script to populate the cache, or type it in
manually by command line. To run the script, type sour ceRel ati ve(" pl ai n. bsh™); under the
interactive BSH shell. For this to work, you'll need to have your working directory set to the
directory in which plain.bsh resides (otherwise give the full pathname of plain.bsh). Basically,
the script will create cache entries that will be replicated onto the GUI. (You may have to type
show() into the resulting beanshell window yourself) Here are the snippets for the script:

i mport org.jboss. cache. *;
show(); // verbose node for bean shel
TreeCache tree = new TreeCache();
PropertyConfigurator config = new PropertyConfigurator();
/1 configure tree cache. Needs to be in the classpath
config.configure(tree, "META-INF/repl Sync-service.xm");
tree.start Service();
/1 kick start tree cache
tree.put("/a/b/c", "ben", "nme");
/'l create a cache entry.
/1 Node "/alb/c" will be created if it does not yet exist.

You should see in the GUI that a new entry of / a/ b/ ¢ has been created. Click on the node c to
see the content. You can modify the contents from the GUI as well. To create another node, for
example, you can type in the shell:

tree.put("/a/b/c/d", "JBoss", "QOpen Source");
tree.get("/alb/c/d", "JBoss");

11

12

Chapter 7.

PojoCache

Once you are in the shell, type sour ceRel ati ve("aop. bsh"); to execute the shell script.
Basically, aop.bsh illustrates the steps to instantiate a cache, configure it, and then create
entries under it. Here are the snippets:

i nport org.jboss. cache. PropertyConfi gurator;

i mport org.jboss. cache. aop. Poj oCache

i mport org.jboss. cache. aop. t est. Person;

i mport org.jboss. cache. aop. t est. Addr ess;

show(); // verbose node for bean shel l

Poj oCache tree = new PojoCache();

PropertyConfigurator config = new PropertyConfigurator(); //
configure tree cache.

config.configure(tree, "META-INF/ repl Sync-service.xm");

Person joe = new Person(); // instantiate a Person object named joe

j oe. set Nanme("Joe Bl ack");

j oe. set Age(31);

Address addr = new Address(); // instantiate a Address object naned
addr

addr . set G ty(" Sunnyval e")

addr.set Street ("123 Al bert Ave");

addr . set Zi p(94086); joe.setAddress(addr); // set the address
ref erence

tree.startService(); // kick start tree cache

tree. put Obj ect ("/aop/joe", joe);

/1 add aop sanctioned object (and sub-objects) into cache

/1 since it is aop-sanctioned, use of plain get/set nethods wll
take care

/| of cache contents automatically.

j oe. set Age(41);

Note the APl needed to put the object (and its dependent ones) into cache is putObject. Once
the second window finishes execution, you should see the first GUI window has been populated
with entries of /aop/joe/address. Click on each tree node will display different values associated
with that node.

Next step to see AOP in action, you can do plain get/set methods without ever worrying about
put it in the cache. For example, you can do in the shell window joe.setAge(20); and see that
GUI gets updated with the age field automatically (if not, click away and back will refresh the
GUI content). Also to demonstrate the object graph replication, you can modify Joe's address
and see the cache will update it automatically. For example, type addr.setCity("San Jose"); in
the interactive shell, you should see in the GUI that the address got modified.

Finally, PojoCache also supports get/set with parameter type of Collection classes (i.e., List,
Map, and Set). For example, type the following in the shell command line:

ArraylList lang = new ArraylList();
| ang. add(" Ensl i gh");
| ang. add(" Mandarin") ;

13

Chapter 7. PojoCache

j oe. set Languages(| ang) ;

14

Chapter 8.

PojoCache with Transaction

To see TreeCache transaction at work, you start with the same setup with last section except
you load the bsh of aopWithTx.bsh instead of aop.bsh. The additional snippets are:

i mport org.jboss. cache. PropertyConfi gurator;

i mport org.jboss. cache. aop. Poj oCache
i mport org.jboss. cache. aop. t est. Person;
i mport org.jboss. cache. aop. test. Address;// Tx inports
i mport javax.transaction. User Transaction; inport javax.nam ng.*
i mport org.jboss. cache.transacti on. DutmyTr ansact i onManager ;
show(); // verbose node for bean shell
/1 Set up transaction nanager
DumyTr ansact i onManager . get | nst ance() ;
Properties prop = new Properties();
prop. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,
"org.jboss. cache. transacti on. DummyCont ext Fact ory") ;
User Transacti on tx = (User Transacti on) new
Initial Context(prop).|ookup("UserTransacti on");
Poj oCache tree = new Poj oCache();
PropertyConfi gurator config = new PropertyConfigurator();
/'l configure tree cache
config.configure(tree, "META-INF/repl Sync-service.xm");
joe = new Person();
j oe. set Narme("Joe Bl ack");
j oe. set Age(31);

Address addr = new Address();
addr . set G ty("Sunnyval e");
addr.set Street ("123 Al bert Ave");
addr . set Zi p(94086) ;

j oe. set Addr ess(addr);

tree.startService(); // kick start tree cache
tree. put Cbj ect ("/aop/joe", joe); // add aop sancti oned object
/1 since it is aop-sanctioned, use of plain get/set nmethods wll

t ake care

of cache contents automatically.
/1l Also it is transacted

tx. begin();

j oe. set Age(41);

j oe. get Address() . set Zi p(95124);
tx.commit();

In this example, a default dummy transaction manager is used.

t x. begi n();

addr. set Zi p(95131) ;
tx. rol | back();

15

16

Chapter 9.

CachelLoader examples

All the examples below are based on the JBossCache standalone distribution. We assume the
ZIP file has been unzipped into a directory j boss- cache .

1. Local cache with CachelLoader

This demo shows a local PojoCache with a CacheLoader. We will insert a POJO into the cache,
and see that the POJO is transparently saved using the CachelLoader.

To run this, you have to modify j boss- cache/ out put / et ¢/ META- | NF/ oodb- ser vi ce. xm :
change CacheLoader Confi g to point to a valid directory (create it if it doesn't yet exist):

<attribute nane="CachelLoader Confi g">
| ocation=c:\\tnp\\oodb
</attribute>

Then start the beanshell and source oodb. bsh into it. Note that oodb. bsh already contains code
to create and retrieve POJO from the cache. So remember to comment them out if you decide
to create the Person instance yourself.

bel a@ apt op /cygdrive/c/jboss-cache
$./runShel | Deno. sh
BeanShell 1.3.0 - by Pat Ni eneyer (pat@at.net)
bsh % sourceRel ati ve("oodb. bsh");
interceptor chain is:
cl ass org.jboss.cache.interceptors. Calllnterceptor
cl ass org.jboss. cache. interceptors. CacheLoader | nt er cept or
cl ass org.jboss. cache.interceptors. Transacti onl nt er cept or
<nul | >
bsh %

Next, create an instance of Person, and set its address and other fields:

bsh % p=new Person();

<name=nul | , age=0, hobbi es=, address=null, skills=null,
| anguages=nul | >

bsh % p. age=3;

<3>

bsh % p. nane="M chel | e";

<M chel | e>

bsh % addr =new Address();

<street=null, city=null, zip=0>

bsh % addr.city="San Jose";

<San Jose>

bsh % addr. zi p=95124;

<95124>

bsh % addr.street="1704 Al nond Bl ossom Lane";

17

Chapter 9. CachelLoader examples

<1704 Al nond Bl ossom Lane>

bsh % p. set Addr ess(addr);

bsh % tree. put Obj ect ("/ person/ne", p);

bsh % p;

<name=M chel | e, age=3, hobbi es=, address=street=1704 Al nond

Bl ossom Lane,

city=San Jose, zip=95124, skills=null, |anguages=null>
bsh %

The Per son object with all of its fields and subobjects is now saved. Let's kill beanshell and
restart it. At this point, because the instance of Per son we created was given the name "p", we
can retrieve it again:

bel a@ apt op /cygdrive/c/jboss-cache

$./runShel | Deno. sh

BeanShell 1.3.0 - by Pat Nieneyer (pat@at. net)

bsh % sourceRel ati ve("oodb. bsh");

interceptor chain is:

cl ass org.]jboss. cache.interceptors. Calllnterceptor

cl ass org.jboss. cache.interceptors. CacheLoader | nt er cept or

cl ass org.jboss.cache.interceptors. Transacti onl nt er cept or
<nul | >

bsh % tree;

</ >

bsh % p=tree. get Cbj ect ("/ person/ ne");

<name=M chel | e, age=3, hobbi es=, address=street=1704 Al nond

Bl ossom Lane,

city=San Jose, zip=95124, skills=null, |anguages=null >
bsh % tree;
</p
/ addr ess
>

bsh %

The interesting thing here is that the cache was initially empty ("/"). Only when we loaded "p",
did it get populated (lazy loading). You can see that the values of "p" are loaded from the
datastore where they were previously saved.

18

Chapter 10.

Replicated cache with shared
datastore

The scenario that we'll run in this example is described in the documentation for JBossCache. It
consists of 2 separate nodes that replicate their contents between each other. In addition, they
both point to the same datastore. The configuration is in file

j boss- cache/ out put / et ¢/ META- | NF/ r epl AsyncShar edCachelLoader - servi ce. xm :

<!-- \Wether or not to fetch state on joining a cluster -->
<attribute nane="FetchStateOnSt artup">fal se</attribute>
<attribute

name=" CachelLoader C ass" >or g. j boss. cache. | oader. Fi | eCachelLoader </ attri but e>
<attribute nanme="CachelLoader Confi g">
| ocation=c:\\tnp
</attribute>
<attribute nanme="CachelLoader Shared">true</attri bute>
<attribute nane="CachelLoader Prel oad">/</attri bute>
<attribute

nanme="CachelLoader Fet chTr ansi ent St at e" >f al se</attri but e>
<attribute

nanme=" CachelLoader Fet chPer si st ent St at e" >t rue</attri bute>

The Fet chSt at eOnSt ar t up attribute set to f al se means that a newly started cache will not
attempt to fetch the state (neither transient nor persistent). Therefore, attributes

Cacheloader Fet chTr ansi ent St at e and CachelLoader Fet chPer si st ent St at e will be ignored.
CachelLoader Shar ed set to t r ue means that both nodes will share the same datastore, which
resides in c: \ t np in the example (this assumes that both nodes have access to the same file
system). Please make sure that c: \ t np exists, or point the config string to a different existing
directory.

This configuration would essentially provide for two col d nodes, in the sense that all contents of
a new cache is in the datastore, and is lazy-loaded via the CacheLoader when accessed.
However, this is not true, as CacheLoader Pr el oad points to "/", which is the root of the entire
tree. Therefore, all of the contents of the cache are recursively pre-loaded. This is probably a
bad configuration when you have a lot of data in the cache, because all of your data will be
loaded into the cache.

Note that with a shared datastore, the node that makes a modification is the one who writes it to
the store using the CachelLoader. This prevents both nodes from writing the same data twice.

We can now start 2 instances by opening two shells and executing the following ANT target:

bel a@ apt op /cygdrive/c/jboss-cache
$./build.sh run.denp. async. shar ed. cachel oader
Bui | dfile: build.xm

init:

19

Chapter 10. Replicated cache with shared datastore

conpi | e:

run. deno. async. shar ed. cachel oader:
[java] ** node | oaded: /a

[java] ** node | oaded: /al/b

[java] ** node | oaded: /al/b/c
[java] ** node | oaded: /uno

[java] ** node | oaded: /uno/due

[Java] -----mmmmm e e o
[java] GVS: address is 192.168.1.184: 1357
[Java] ----mmmmmmm e oo
[java] interceptor chain is:
[java] class org.jboss.cache.interceptors. Calllnterceptor
[java] class org.jboss.cache.interceptors. Replicationlnterceptor
[java] class org.jboss.cache.interceptors. CacheLoader | nt er ceptor
[java] class org.]jboss. cache.interceptors. Transacti onl nt er cept or
[java] ** view change: [192.168.1.184:1355| 1]

[192. 168. 1. 184: 1355,
192. 168. 1. 184: 1357]
[java] ** node nodified: /

2 GUI instances will appear, showing the tree structure of the cache graphically. Nodes can be
added, modified or removed by right-clicking or using the menu. Any modification is replicated
between the two nodes. If both nodes are killed, and subsequently one or both nodes are
restarted, the state is the same as before shutdown as it was persisted to the shared store via
the CacheLoader.

Note that the example above shows the 2 nodes running on the same machine (192.168.1.184)
on ports 1355 and 1357.

20

Chapter 11.

Replicated cache with unshared
(local) datastore

In this example, we'll run 2 nodes again, but this time, instead of sharing the same datastore,
each node has its own datastore. The configuration is in file
j boss-cache/ out put / et ¢/ META- | NF/ node{ 1, 2}. xm . We'll look at nodel.xml:

<attribute

nane=" CachelLoader C ass" >or g. j boss. cache. | oader . bdbj e. Bdbj eCachelLoader </ attri but e>
<attribute nane="CachelLoader Confi g">
| ocati on=c:\\tnp\\nodel
</attribute>
<attribute nane="CachelLoader Shar ed">f al se</attri but e>
<attribute nane="CachelLoader Prel oad">/</attri bute>
<attribute

nane="CachelLoader Fet chTr ansi ent St at e" >f al se</attri but e>
<attribute

nane=" CachelLoader Fet chPer si st ent St at e" >t rue</attri but e>

Again, we use the Sleepycat CachelLoader implementation in CacheLoader C ass . The
CacheLoader Confi g points to c: \'t np\ nodel . This is the directory in which the Sleepycat DB
for nodel will reside. File node2.xml has a configuration that points to c: \ t np\ node2 , so we
have 2 different unshared datastores. Note that, of course, we still have the same filesystem in
our case, because we run the 2 nodes on the same machine. In practice those two directories
would reside on two different machines, and each machine would run one JBossCache process.
Note that the 2 directories have to exis

To create an unshared datastore, we set the CachelLoader Shar ed attribute to f al se .

The example can be run by again opening 2 shells, and running 2 ANT targets (here we show
the target for nodel):

bel a@ apt op /cygdrive/c/jboss-cache
$./build.sh run. deno. unshar ed. node2
Bui l dfile: build.xm
init:
conpi | e:
run. deno. unshar ed. node2:

[java] ** node | oaded: /a
java] ** node | oaded: /al/aZ2
[java]

The run. denp. unshar ed. node2 target runs node2, which will have its own store located at

21

Chapter 11. Replicated cache with unshared (local) datastore

c:\ t np\ node2 (shown above). Whenever a change is made on either of the 2 nodes, it is
replicated to the other node, and persisted in both local datastores. You can kill and restart a
node, or even both nodes, and the data will still be available due to the persistent backend
store(s).

22

Chapter 12.

Troubleshooting

Here are some tips for troubleshooting, if you encounter problems during this demo.

» Most of the time, the problem will come from cache replication layer, i.e., JGroups package

On the output window, you can see the JGroups membership view. See if it is updated when
you run the BSH commands. It should show a view with at least two members. For example,

on my window, | see

[java] ** view change: [BWANG HOVE: 4381| 1] [BWANG HOVE: 4381,
BWANG- HOVE: 4383]

with 2 members: 4381 and 4383. On the other hand, if you don't close the previous running
cache instance, the membership view will also include the previous existing ones. This can
corrupt the states. So you will have to make sure there is no running TreeCache processes
before each demo. If you have problem with this, please consult the JGroups website !

1 http://www.jgroups.org/javagroupsnew/docs/index.html

23

http://www.jgroups.org/javagroupsnew/docs/index.html
http://www.jgroups.org/javagroupsnew/docs/index.html

24

	JBossCache Tutorial
	Table of Contents
	Chapter 1. Introduction
	1. Scope

	Chapter 2. Configuration
	Chapter 3. Script
	Chapter 4. Example POJO
	Chapter 5. Demo
	Chapter 6. Plain cache
	Chapter 7. PojoCache
	Chapter 8. PojoCache with Transaction
	Chapter 9. CacheLoader examples
	1. Local cache with CacheLoader

	Chapter 10. Replicated cache with shared datastore
	Chapter 11. Replicated cache with unshared (local) datastore
	Chapter 12. Troubleshooting

