Programmer’s Guide to cereal

Miloslav Trma ¢

mitr@volny.cz

Programmer’s Guide to cereal
by Miloslav Trmac

Copyright © 2002 by Miloslav Trmac

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

Documentation License."

Table of Contents

1. Introduction

2. General Conventions

3.cereal Modules

4. KDE UI extensions

5. cereal Front-end Interface

Module Handling ..o s
Port Space Handling ..o
Port Handlingcoocueiiiiiiii
Port Connection Handling.........c.cccccccoceiiiinnnnnnicccccene
Expression Handling ...,
Breakpoint Handling ..o
Initialization, Finalization, Saving and Loadingc.cccccccvvueuceee.
Starting the Emulation...........ccccociiiiiiiinniice,
8051-specific Interfaces..........oooeuevirieiciiiiciic

6. Happy Hacking!

A. GNU Free Documentation License

0. PREAMBLEoooiiiiiiiieiiecteseeet e
1. APPLICABILITY AND DEFINITIONS........ccccoceieniineineinenne
2. VERBATIM COPYINGccceoueciiiririnieieieieinrieenieieeeieee e
3. COPYING IN QUANTITY ..coooviiiiiiiiiiiiiiiiccicinccces
4. MODIFICATIONS......oouioiiieieeneieeeeeesee e
5. COMBINING DOCUMENTS.........ccccooiiiiiiiiiiiiiceae
6. COLLECTIONS OF DOCUMENTS.........ccccoviiiiiniiiiiiiiinnes

7. AGGREGATION WITH INDEPENDENT WORKS

8. TRANSLATION. ..ottt ettt ettt et saae e saaeeea
9. TERMINATION.......ooiiiiieeee ettt eeare e e
10. FUTURE REVISIONS OF THIS LICENSE........ccoccevveeieeeeneenee.
AdAENAUINL ... e

iii

v

Chapter 1. Introduction

The main strength of cereal , its ability to emulate connected sets of devices, can
rarely be fully exploited without writing custom modules emulating devices specific
to your application. This document aims to provide enough information to get you
started writing these modules and associated KDE UL The last chapter describes
interfaces you'll need for writing a new front-end to the emulation engine.

This document assumes reasonable user’s knowledge of cereal (do read the com-
plete User’s Tutorial), knowledge of the C programming language in its latest stan-
dardized version known as C99, and ability to use libxml2 for saving and loading
data (which takes about fifteen minutes to learn). For writing KDE UI extensions,
ability to program KDE programs is obviously essential.

This document is only meant to be an overview, assuming you can find the actual
interface definitions in the header files. You are also encouraged to use provided
modules as examples (remember, grep is your friend).

Additionally, in the sample directory you can find two modules which were used in
first real usage of cereal . While they can be viewed as an example how not to do
things (namely combining UI and emulation code), they are included also to show
how easy it can be.

Chapter 1. Introduction

Chapter 2. General Conventions

Errors are reported by returning a value described in the function synopsis. The re-
sponsibility to inform the user lies with the first function encountering the error con-
dition, therefore if you call a function and receive the error code, you can just pass it
to your caller without telling the user again. Errors are reported by calling the error

(function, which provided by the front-end.

Note: The KDE front-ends (cereal_kde and cereal_khwconf) sometimes (quite often
actually) need to try whether a particular operation is available or not without displaying
any error message, or displaying it in less obtrusive way (i.e. in the Evaluate/Modify di-
alog box). This is achieved by indirecting through error_handler , which can be locally
overridden to redirect the error messages.

For memory allocation in C use the provided xmalloc () , xrealloc () , xstrdup
() and xxmIMalloc () , unless you are prepared to handle out-of-memory conditions
gracefully. The provided functions check the result and abort when the allocation
fails.

For reading unsigned integers from strings, you may want to use the get_num ()
function which is simpler to use than strtoul () and unlike strtoul () also checks
that there are no trailing characters left.

Chapter 2. General Conventions

Chapter 3. cereal Modules

To implement a cereal module, you need to create a cereal_module structure which
describes the module. To create a built-it module, you need to add your module to
cereal linking process and add it to module_list.h. This will cause the module to
be automatically registered on cereal startup. To create a dynamically-loaded one,
create a shared library with a function struct cereal_module *register_self

(void) , which calls cereal_module_register () for your cereal_module and re-
turns a pointer to it. This library needs to be named libcereal ~ foo .so (where foo
is any string) and placed in a directory given by a CEREAL_MODULE_DIBnvironment
variable.

The cereal_module structure contains a few function pointers and description of
ports the module provides. You can view the cereal_module as an object with vir-
tual methods—except it is done in C. The following methods have to be defined:

Name Description

mi_new Called by the back-end to create a new
instance of your module. This instance is
by convention represented in a structure
called mi (for Module Instance) and is
completely private to your
implementation. After creating the
instance, return a pointer to it. In the
unlikely event you don’t need to keep
any state, allocate a dummy non-null
pointer using malloc (1) (note that malloc
(0) may return NULL).

mi_delete Called by the back-end to destroy an
instance created by a previous call to
mi_new. Perform needed cleanups and
free the data.

set_option Called to set an option of the given
instance. Options can be changed in the
cereal_khwconf module properties
dialog. The set of options is your choice.
If you need to pass complicated
commands to your module which can
not be reasonably implemented using
ports, you can define options that are
hidden from the user and used by your
front-end to communicate with the
emulated module. This is used in the
8051 module to allow the front-end to
load an Intel HEX file to the internal
rogram memory.

get_option The obvious counterpart of set_option.

Chapter 3. cereal Modules

Name Description

save_setup Called to save the current setup to an
XML file. The setup means properties of
your object that don’t change during
emulation. This usually means only the
options. Don’t save the port connections
here, this is done automatically by the
back-end. Saving and loading data in
XML is simple (and boring) work, see
8051/8051.c for a largish example. You
should select an XML namespace for
lyour module and save all data not
defined in the DTDs in doc/dtd using
this namespace.

load_setup The counterpart of save_setup. If your
save_setup function just saves the
options in a format
<ns:option>value</ns:option>, you can
use the
generic_module_load_setup_options

() function instead of parsing the XML
on your own. Other helpers to note
include get xml_num () and
get_xml_enum ()

save_state Called to save current emulation state.
This does not include the setup, the
back-ends saves both in a single file by
calling both save_setup and save_state.
For saving scheduling events (see
below), use schedule_save_event ()

load_state The counterpart of load_state. For
loading scheduling events use
schedule_load_state ()

It may make sense for set_option, get_option, load_setup and save_setup to
do nothing. In that case, you can initialize the cereal module members using
generic_module_... functions (you can’t just leave the pointers NULL).

You should already know that modules communicate with each other using ports
and ports are grouped in spaces. Ports in a space should be logically grouped, and
they all must have the same width,the number of bits that are transfered in one op-
eration. The cereal _module structure contains a module_width structure for each al-
lowed port width (which is internally represented by enum port_width, which cur-
rently allows 1, 8 and 16 bits). Thus any given port is completely identified by the
module, width, space (zero-based index) and port (zero-based index).

Note: It hasn’t been explicitly stated yet, so here we go: cereal can only represent digital
information with a simple, definite value. It can’t directly represent analog computers or
undefined states when the logical value is changing.

In the module_width structure, you need to fill in a pointer to array of structures
describing individual port spaces with given width, and number of entries in this
array. These entries are of type struct space and contain just pointers to functions.
First of them is a get_size function, which returns number of ports in this space.
Usually, this will be a constant, but it may also depend on a module option (such as
the data_mem_size option of the 8051 module). The size of the space may not change
during emulation (it must depend only on the module setup).

Chapter 3. cereal Modules

The space structure contains also two sets of function pointers, one per each port type
(read, write, display, modify). The get_fn[] pointers are used to get functions used to
access your ports (i.e. get_fn[PORT_TYPE_REAPs used to get a function that returns
the current value of the port, to be displayed to the user). The set_fn[] pointers are
used to connect other modules: if you connect for writing port A/A /A to port B/B/B
(in that order), the get_fn[PORT_TYPE_WRITEfunctions is called for the port B/B/B
and the result is passed to the set_fn[PORT_TYPE_WRITEunction for port A/A/A. As
a result, whenever port A/A/A has a value to write, it will call the function, which
will handle the write on behalf of port B/B/B.

The functions are represented as struct port_fn, which contain the needed function
pointer together with the destination module instance pointer and a function-specific
data. There are two reasons a pure function pointer is not enough: First, you'll usually
want to use a common function for the whole address space (i. e. when the address
space represents bytes stored in a memory chip), so you need to preserve the port
number given to the get_fn[] function. To understand why the instance pointer is
needed, recall what the function of sfr_ext space in the 8051 module is. The get_fn[]
of 8051 sfr space is implemented by returning the function connected (via set_fn[]) to
the corresponding port of the sfr_ext space. Thus the following accesses (which really
transfer data) go directly to the module connected on sfr_ext port without passing
through the 8051 sfr—sfr_ext combination on each access.

The get_fn[] and set_fn[] pointers are in some ways different from the other function
pointers used in cereal . First, the pointers can be NULL, which means that the opera-
tion is not supported. For a port to make sense, you need to support at least one type
of access, though (unless the port serves as a placeholder to keep a relation between
port addresses and some externally given addressing scheme (8051 SFR addresses)).
Another difference is that the set_fn[] functions just return error code without telling
the user.

In your module, you need to implement the “action” functions returned by get_fn[]
and store port_fn structures for the ports that you need to connect to. In the set[]
fn functions you then return either 0 if OK, ENOTSUH(the particular port doesn’t
support this type of access, or EBUSYif the port is already connected.

Now that you know how to create a module and how to make it communicate,
it is time to make it do some work. Although some modules (the simple
bit_report and bit_constant) modules can work with just immediately handling
read /write/modify/display requests, your module will quite often need to simulate
a separate process running in time (e.g. the uart module sending data). This is done
by representing the process you emulate as a state machine, which can react to port
accesses and timer expirations.

The timer expirations are represented by creating scheduling events. Schedule event is
a timer that can be armed to trigger at a specified time. Each time the timer triggers,
a handler function associated with the event is called. You can allocate scheduling
events in your mi_new function by calling schedule_new () and delete it in your
mi_delete function by calling schedule_delete () . To “arm” the event, call sched-
ule_add () ,specifying the handling function and relative time after which the event
triggers. At any time you can cancel the armed event by calling schedule_cancel

(0 . Usually, you'll want to arm one or more events in mi_new function to start your
process (in fact, cereal needs at least one such module to do anything at all), but you
may also want to arm an event in response to writing to one of your ports.

The back-end keeps the “emulation time” in the cereal_time variable, which
you can copy any time to get a “snapshot”. At a later time, you can call
schedule_difftime () to measure time between the snapshot and current time
(this can be useful for example for measuring frequency on one of your input ports).

Sometimes, you’ll want to report an error or a warning. Use the above-mentioned
error () , and also mark the fact by setting the bit ER_ERRORT ER_WARNINGn the
variable emulation_result . The front-ends should stop emulating when an error
occurs, and they look at the emulation_result to do so. For similar reasons, if you

7

Chapter 3. cereal Modules

are emulating a CPU and you have finished emulating an instruction (as defined by
the usual meaning of the “Step” command), set the ER_INSNbit.

After creating the module, you need to make the vast possibilities available to the
user. Create a module_name .xml in the xml directory. See the other files in that direc-
tory and doc/dtd/cereal_module.dtd for detailed information.

Chapter 4. KDE Ul extensions

KDE UI extensions are implemented as dynamically loaded KParts plugins to KC-
MainWin, the emulator main window. Using KParts mostly amounts to copying the
boilerplate code. You create a class derived from KLibFactory which can instantiate
your plugin. This plugin checks that it is really connected to KCMainWin and then
plugs its actions to its interface using the XMLGUI mechanism.

Note: When copying the boilerplate code, don't use LDFLAGS=$(KDE_PLUGIN), be-
cause the plugin references symbols in the main executable. Instead, use the flags de-
fined by $(KDE_PLUGIN) without the -no-undefined flag.

Usually, you'll want your module to provide an advanced interface to instances
of a particular module type. To do this, check whether the module type is avail-

able at all by calling cereal_module_find () , which returns a pointer to its ce-
real_module structure. Then, when the user invokes this interface, you can call KC-
MainWin::selectModule () to let the user select the particular module instance that

should be used. For a trivial example, see KC8051::loadProgram ()

If you want to create a window, you should create it as a child of the widget returned
by KCMainWindow::viewParent () . This will automatically insert the window in
the MDI framework. Your window should also in most cases inherit KCWindow and
implement the abstract functions. This will cause your window to get notifications
whenever the emulated state changes (if your window causes change of emulation
state, you have to report this by calling KCMainWin::updateViews ()), and to be
closed when the user loads a different file.

Itis nice to the user to save the state of your interface extension to the XML file the em-
ulation state is saved to, so that the user doesn’t have to reenter breakpoints each time
he runs cereal . To do this, implement the KCUIStateHandler interface (it is proba-
bly simplest to do so in your KParts plugin), its saveState () and loadState ()
methods, and register the handler by calling KCMainWin::registerStateHandler

() . As a convenience, your windows inherited from KCWindow have also a saveS-
tate method. Thus if all state you need to save is associated to your KCWindow
descendants, you should implement KCWindow::saveState () to save state created
with that particular window, leave KCUIStateHandler::saveState () empty and
in KCWindow::loadState () look for all window states saved, recreate the windows
and restore their state.

You may find useful these cereal -specific widgets: KCLineEdit and KCListView are
variants of KLineEdit and KListView with additional signals, KCExprLineEdit is an
KLineEdit with a Port... button which allows the user to easily add port references.
KCPortEdit is a KLineEdit with a label above which works as an Evaluate/Modify di-
alog box, except that the expression is fixed and invisible to the user. Finally KCBitE-
dit is a widget similar to KCPortEdit, except that it is used to modify a particular bit
of the expression.

For the “real” work, you can use the interfaces described in the next chapter. When
there is no special interface, just invoke the needed functionality directly (i.e.
set_option and get_option module methods). The core of cereal is not written in
C++ and does not have trivial wrapper functions around every data member.

Chapter 4. KDE UI extensions

10

Chapter 5. cereal Front-end Interface

cereal does not impose a specific structure to your front-end. For most purposes,
you can view the cereal core as a library which you can use when you need to.

Module Handling

To create modules, you need to find the module type you want to operate on. This
can be done either by searching by for it by name using cereal_module_find () , or
browsing cereal_module_list , the list of available module types.

Then you can create a module instance. Internally, module instances are usually
passed around using struct me_entry, which contains everything needed to handle
a module—the module type, name and instance data. Thus, you can create a mod-
ule using me_new, delete it using me_delete () , or rename it using me_rename () .
Module names are (mostly for simplicity) restricted to C-like identifiers. If you want
to check whether a given name is allowed (for example in a validator of an edit con-
trol), use me_name_ok () .

Once a module is created, you can obtain a pointer to its me_entry using me_find ()
(which doesn’t report a not-found error to the user) or me_get () (which does). To
handle options of the module, call the set_option and get_option functions directly.
All module instances can be enumerated by browsing the me_list

Port Space Handling

Port spaces are mostly a grouping of ports by a common set of get_fn[] and set_fn(]
functions, so there is no need to care about them for the sole purpose of emulating.
However, spaces are better presented to the user using human-readable names in-
stead of a tuple (width, index). The names are defined in the module XML file and
functions space_create_name () and space_find_name () allow you to directly
transform space names and indexes.

Note that these functions (and whole cereal core) use for representing port widths
enum port_width, not the integral values. Therefore, use WIDTH_8instead of just 8.
To communicate with the user, you can convert widths between these formats using
port_width_value array and get_port_width () function.

Port Handling

Ports themselves are more interesting than port spaces. A port of a given width can be
identified by its module instance and its space and port indexes, which are grouped
in struct port_id.

Similarly to spaces, ports can be also named in the module XML file. Use
port_create_name () and port_find_name () to convert names and indexes. On
a slightly higher level, to convert a port name in the cereal expression format of
module / space / port , use port_find

Once you have a determined a port, you can read its value (using the “display”
function, without side-effects) using port_disp_ W () and set it (using the “mod-
ify” function) using port_set_ W () , where Wis 1, 8 or 16, depending on the port
width. Usually it is easier to use cereal expressions interface described later.

When communicating with the user, you’ll want to present human-readable names
for the port types, which are internally represented by the PORT_TYPE* values. To
do this, use the port_type_name array and port_type_find () function.

11

Chapter 5. cereal ~ Front-end Interface

Port Connection Handling

A port connection is represented by a struct connect_entry, which contains the con-
nection type, width and the two ports. All current connections are in connect_list

To connect two ports, fill in a “template” and pass it to port_connect () , to discon-
nect them, use port_disconnect ()

When creating a GUI for connection modification, it might be undesirable
that modifying a connection (by disconnecting it and creating a new one) may
change address of its connect entry. In that case, disconnect the connection
using port_do_disconnect () , modify its members and reconnect it using
port_do_connect () . Also when creating the GUI, you'll want to allow the
users to cut the time spent creating the connections in half by allowing them to
create, modify and delete the connections in read/write pairs. When you have
one connection and want to find the other in its read/write pair (if it exists), call
port_peer_connection ()

Expression Handling

To evaluate a cereal expression, use expr_eval () , to modify one expression to a
value of another (as in the Evaluate/Modify dialog), use expr_modify . If you are
often evaluating the same expression over and over, you should compile it by calling
expr_compile () which compiles the expression to a P-code, and then just pass the
P-code to expr_exec () .Evaluating compiled expression was about five times faster
than parsing the expression each time for the expressions I have tested.

Breakpoint Handling

Breakpoint is represented by a struct breakpoint, which contains the expression
both in text and compiled form and a place for front-end-specific data, (such
as a breakpoint number in a gdb-like interface). Create a breakpoint using
breakpoint_new () , delete it using breakpoint_delete () , change it in-place
using breakpoint_change ()

To evaluate a breakpoint, you can wuse expr_eval () directly, or use
breakpoint_eval () , which will return just 0 or 1 (error in evaluation is taken
as 0). All breakpoints are in breakpoint_list , to check whether some of them
triggered use breakpoint_check () (which also handles the “triggers only when
was zero before” semantics, unlike breakpoint_eval ()).

Initialization, Finalization, Saving and Loading

The first thing you do with the cereal core should be calling setup_init () (which
registers all available module types) and the last thing you do should be calling
setup_destroy () , freeing used memory.

To save and load the "setup" (as in cereal khwconf), use setup_load () and
setup_save () . To save and load current emulation state (together with the used
setup), use state_load () and state_save () . The two latter functions also allow
you to save front-end-specific state along with the emulation state. Note however,
that this front-end-specific state should not be needed for emulation, because it can
be lost when the emulation state is opened in another front-end.

Starting the Emulation

Emulation is done by handling armed scheduling events in chronological order. To
do so, call schedule_run () , which will handle the first event in the queue. If there

12

Chapter 5. cereal Front-end Interface

are no events, it returns ER_HALT You may want to check for this condition in ad-
vance using schedule_pending ()

In case you wonder, yes, this section has been placed almost at the absolute end
intentionally. I wanted you to at least skim through all the interfaces, you'll need
most of them anyway.

8051-specific Interfaces

If it is customary in your CPU architecture to store programs in the Intel hex
format, use load_hex file () , load_hex_stdio () , load_xml_stdio () and
save_hex_xml () functions.

The 8051 disassembler used in cereal_disasm and the 8051 KDE Ul extension is avail-
able as i8051_disasm ()

13

Chapter 5. cereal ~ Front-end Interface

14

Chapter 6. Happy Hacking!

15

Chapter 6. Happy Hacking!

16

Appendix A. GNU Free Documentation License

Copyright © 2000 by Free Software Foundation, Inc.

Free Software Foundation, Inc.
59 Temple Place, Suite 330,
Boston,
MA 02111-1307
USA

Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written docu-
ment “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of “copyleft”, which means that derivative works of the doc-
ument must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public
is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of
the Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For example, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License.

17

Appendix A. GNU Free Documentation License

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents
can be viewed and edited directly and straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human mod-
ification. Opaque formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work'’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

18

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each

Appendix A. GNU Free Documentation License

Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-
network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If you use the
latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version un-
der precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever pos-
sesses a copy of it. In addition, you must do these things in the Modified Version:

A

Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C

State on the Title Page the name of the publisher of the Modified Version, as the
publisher.

D

Preserve all the copyright notices of the Document.

E
Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

19

Appendix A. GNU Free Documentation License

20

H

Include an unaltered copy of this License.

Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous
sentence.

J

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

K

In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L

Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M

Delete any section entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N

Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Docu-
ment already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

Appendix A. GNU Free Documentation License

The author(s) and publisher(s) of the Document do not by this License give permis-
sion to use their names for publicity for or to assert or imply endorsement of any
Modified Version .

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice.

The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invari-
ant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any
sections entitled “Acknowledgements”, and any sections entitled “Dedications”. You
must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and dispbibute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying
of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium,
does not as a whole count as a Modified Version of the Document, provided no com-
pilation copyright is claimed for the compilation. Such a compilation is called an
“aggregate”, and this License does not apply to the other self-contained works thus
compiled with the Document, on account of their being thus compiled, if they are
not themselves derivative works of the Document. If the Cover Text requirement of
section 3 is applicable to these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover Texts may be placed
on covers that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-

21

Appendix A. GNU Free Documentation License

lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation' may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http:/ /www.gnu.org/copyleft/>.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later ver-
sion” applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.

Addendum

Notes

22

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title

page:
Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and / or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of say-
ing which ones are invariant. If you have no Front-Cover Texts, write “no Front-
Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-Cover
Texts.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License®, to permit their use in free software.

1. http://www.gnu.org/fsf/fsf.html

Appendix A. GNU Free Documentation License

2. http://www.gnu.org/copyleft
3. http://www.gnu.org/copyleft/gpl.html

23

Appendix A. GNU Free Documentation License

24

	Programmer's Guide to cereal
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. General Conventions
	Chapter 3. cereal Modules
	Chapter 4. KDE UI extensions
	Chapter 5. cereal Frontend Interface
	Module Handling
	Port Space Handling
	Port Handling
	Port Connection Handling
	Expression Handling
	Breakpoint Handling
	Initialization, Finalization, Saving and Loading
	Starting the Emulation
	8051specific Interfaces
	Chapter 6. Happy Hacking!
	Appendix A. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	Addendum

