
User’s Tutorial to cereal

Miloslav Trma č

mitr@volny.cz

User’s Tutorial to cereal
by Miloslav Trmač

Copyright © 2002 by Miloslav Trmač

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License."

Table of Contents
1. Introduction ...1
2. Emulating Intel 8051...3

Setting Up Hardware...3
8051 Emulator Interface...5
Watches and Breakpoints ..6
cereal Expressions Compendium..7
Evaluate/Modify..10

3. Connecting External Devices..13
4. cereal Built-In Modules...15

The 8051 module ..15
The bit_constant Module...16
The bit_report Module...16
The byte_constant Module..17
The byte_latch module ..17
The memory Module ...17
The uart Module...18

5. cereal Command-Line Utilities..19
cereal_disasm ...19
cereal_text ...19

A. GNU Free Documentation License ..21
0. PREAMBLE...21
1. APPLICABILITY AND DEFINITIONS...21
2. VERBATIM COPYING ..22
3. COPYING IN QUANTITY..22
4. MODIFICATIONS..23
5. COMBINING DOCUMENTS...25
6. COLLECTIONS OF DOCUMENTS...25
7. AGGREGATION WITH INDEPENDENT WORKS..25
8. TRANSLATION..25
9. TERMINATION..26
10. FUTURE REVISIONS OF THIS LICENSE..26
Addendum ..26

iii

iv

Chapter 1. Introduction

The cereal emulator is an emulation framework featuring an Intel 8051 emulator
and powerful abilities to emulate connected peripherals, be it the common ones (i.e.
external memory) or any custom peripherals your application uses.

This document will guide you through operating cereal . You’ll learn how to emu-
late 8051 programs and how to connect peripherals. Then you’ll learn about all ce-
real built-in modules and finally, in the last chapter you’ll find description of the
command-line utilities provided with cereal .

1

Chapter 1. Introduction

2

Chapter 2. Emulating Intel 8051

While cereal is based on a generic framework able to support any CPU1, currently
only an Intel 8051 core has been implemented. In this chapter you’ll learn how to use
generic cereal features and the 8051 interface.

Setting Up Hardware
Because cereal can support virtually infinite number of hardware configurations,
you need to set up the hardware configuration you want to use. To do this, run ce-
real_khwconf, the cereal hardware configuration utility.

Main window of cereal_khwconf

Hardware is represented in cereal as a list of modules with optional connections.
All we want to emulate is a single 8051, so we need to add an 8051 module. Select
Item−→Insert. . .

3

Chapter 2. Emulating Intel 8051

cereal_khwconf Insert dialog

Select 8051 as Module type and name the module cpu . After you click OK, the cpu
module appears in the list.

There are many 8051-compatible CPUs differing for example in built-in data memory
size and built-in program size. If your application is timing-dependent, you may also
want to configure the frequency of CPU clock (although this is useful only if your are
also emulating the hardware the CPU is communicating with, such as an UART of
the communication partner). To configure the CPU, select Properties. . . in context
menu of the module (or just double-click the module).

4

Chapter 2. Emulating Intel 8051

cereal_khwconf 8051 configuration

After setting up the options, save the configuration.

8051 Emulator Interface
Now you can finally run cereal itself, cereal_kde. Open the configuration file you
have just created and cereal will start and automatically load the 8051 UI (user in-
terface) extension. This extension provides an 8051-specific window, which you can
open by selecting 8051−→New View.

cereal 8051 UI

All that is left is to load your program. Select 8051−→Load Program and load
your program (in Intel HEX format). If you don’t have one, a sample program
addregs.hex (which adds values of R0, R1, . . . R7, puts the result to DPTR and
loops infinitely) is included with this tutorial.

5

Chapter 2. Emulating Intel 8051

Now you can start emulating your program, using Run−→Step (F8). In the left part,
you’ll see a disassembling appear. The list contains recently executed instructions,
and the separate box below shows next instruction to be executed.

The right part contains most 8051 SFRs (special function registers), all of which you
can modify by typing in the desired value and pressing Enter or selecting a different
register. When you select an 8-bit SFR, the Bits box below updates to contains bits
of this register, so you can also examine and modify the registers bitwise. This is
particularly useful when examining PSW (program status word) or any of the MOD
and CON mode and control registers.

When modifying a register, you can insert any valid cereal expression, such as 1 +
1. You’ll learn about cereal expressions in the next two sections.

Note: You may notice that you can’t modify the lowest bit of PSW. That is because this bit
contains parity of the accumulator ACC, and cereal enforces the right value of the parity
bit.

Watches and Breakpoints
If you used the provided addregs.hex , you may have had a small difficulty when
checking the result. This stems from the fact that the 16b DPTR register is actually
composed of two separate 8b registers, DPH and DPL. Therefore you had to calculate
the total value by hand.

This problem can be solved using a watch. By selecting Data−→New Watch Window
you can open a watch window. Then you can add a watch expression by pressing
Insert or selecting Insert. . . from the context menu.

Add Watch window

We want to see value of 256 * DPH + DPL. Because cereal can emulate much more
than a simple CPU (in fact, you can easily emulate three CPUs running in parallel),
we must tell cereal which module should it read the values from. In our case, the
module is named cpu (this is the name given when configuring hardware). Addi-
tionally, there is more to the CPU than the registers—you may also want to watch a
byte of internal memory, or state of a CPU pin.

This all is contained in the concept of a port, which uniquely identifies a module and
a variable the module exports. That’s why there is the Port. . . button. Click it and
in the dialog select module cpu , space sfr (spaces are groups of ports with similar
properties) and port DPH.

Note: You can either select the port name from the drop-down list, or type it in, or type
the numerical index (in our case, DPH has 8051 address 0x83, so the offset is 0x03, as
described in the sfr space comment). Using the number is obviously bad idea here, but not

6

Chapter 2. Emulating Intel 8051

all ports have names—for example mem, the internal memory space, contains unnamed
ports for the whole memory space, which can be specified only using the numerical index.

After selecting the port, click OK and the a port reference ([cpu/sfr/DPH]) will ap-
pear in the Expression box. Append * 256 + and insert port reference to the DPL
register. After clicking OK, the watch will be added to the list and updated whenever
contents of the registers change.

Note: If you don’t like the Port dialog box, you can just type the port reference in, any
mistakes you might make will be reported in the Current Value field.

Another annoying thing when using the sample program is that in order to see the
value, you need to step through almost 70 instructions before you see the result. This
certainly disqualifies cereal from replacing your calculator application ;-). And be-
cause 8051 lacks any HALT or STOP instruction, you can’t just let the program run,
because simple inspection shows that the program is ended by an infinite loop at ad-
dress 0x0023. The solution is to create a breakpoint which triggers when the program
counter reaches 0x0023.

Breakpoints are conditions that are periodically evaluated and stop emulation
when they trigger. In cereal , breakpoints are ordinary expressions which trigger
whenever they evaluate to a non-zero value. Breakpoints are defined in the
same way as watches, except that you use a Breakpoints window (opened by
Data−→New Breakpoint Window). Enter the expression [cpu/misc16/PC] ==
0x0023 (of course, you can use the Port dialog to insert reference to PC). Now you
can just use Run−→Run (F9) to run through the whole program and get instant
results.

Note: When a breakpoint triggers, it is automatically deactivated until it evaluates to a
zero value at least once. This allows you to easily break program execution on a leading
edge of a signal (such as the ALE (Address Latch Enable) output from the CPU). Break-
ing program execution on falling edge of a signal can be accomplished by negating the
breakpoint condition.

cereal Expressions Compendium
You have seen how to use expressions for watches, breakpoints and modification of
8051 registers. This sections aims to be a complete reference of what you can and
cannot do using cereal expressions.

An expression is build from operands and operators, which may optionally be sepa-
rated by white space. All expressions are evaluated in the widest signed integral type
your compiler supports (which is at least 64 bits wide). The expressions are based on
C programming language, so if you know C, most of the description should sound
familiar.

Valid operands include:

Numeric constants

Numeric constants can be expressed in decimal, octal (with leading 0) or hex-
adecimal (with leading 0x).

7

Chapter 2. Emulating Intel 8051

Character constants

Character constants have value defined by the character set used by your OS. A
character constant is formed by enclosing a single character in apostrophes, like
this: ’A’ . Instead of a single character, you can also use a C-like escape sequence:

\’ The apostrophe character itself (you
can’t use ”’ to represent it).

\" , \? The " and ? characters. These escape
sequences are provided only for
compatibility with C.

\a Alarm (BEL) character.

\b Backspace (BS) character.

\f Form-feed (FF) character.

\n New-line (LF) character.

\t Horizontal tabulator (HT) character.

\r Carriage-return (CR) character.

\v Vertical tabulator (VT) character.

\ ooo Character with given code (in octal, up
to three digits).

\x x... Character with given code (in
hexadecimal, any number of digits)

\\ The \ character itself (single \
character is recognized as a start of an
escape sequence).

Port references

Port references are in the form [module / space / port] or
[c: module / space / port] . In most cases, there is the Port... button available
for easy port reference creation. The meaning of the [c: . . . form will be
explained in the following section.

Valid operators, listed in order of decreasing precedence (can be overridden by using
parentheses (and)):

• Unary operators

+ a Unary plus Unchanged value of a

- a Unary minus Value of a negated

! a Logical NOT 1 if a is 0, 0 otherwise

• Multiplicative operators

a * b Multiplication a multiplied by b

a / b Division a divided by b, rounded
toward zero

8

Chapter 2. Emulating Intel 8051

a %b Modulus Remainder of dividing a
by b. Note that when a is
negative, the remainder is
negative too.

• Additive operators

a + b Addition a added to b

a - b Subtraction b subtracted from a

• Bitwise shift operators

a << b Bitwise shift left a shifted to the left by
bbits

a >> b Bitwise shift right a shifted to the right by b
bits. Note that results of
shifting negative numbers
right may vary between
different computer
architectures.

• Relational operators

a < b Less than 1 if a is less than b, 0
otherwise

a > b Greater than 1 if a is greater than b, 0
otherwise

a <= b Less than or equal 1 if a is less than or equal
to b, 0 otherwise

a >= b Greater than or equal 1 if a is greater than or
equal to b, 0 otherwise

• Equality operators

a == b Equal 1 if a is equal to b, 0
otherwise

a != b Not equal 1 if a is not equal to b, 0
otherwise

•

a & b Bitwise AND Each bit of result is 1 if the
corresponding bits of both
a and b are 1, 0 otherwise

9

Chapter 2. Emulating Intel 8051

•

a ^ b Bitwise XOR Each bit of result is 1 if the
corresponding bits of a
and b are not equal, 0
otherwise

•

a | b Bitwise OR Each bit of result is 1 if at
least one of the
corresponding bits of a
and b is 1, 0 otherwise

•

a &&b Logical AND Result is 1 if both a and b
are non-zero, 0 otherwise

•

a || b Logical OR Result is 1 if at one of a
and b is non-zero, 0
otherwise

•

a ? b : c Condition b if a is non-zero, c
otherwise

Note that unlike in C, all expressions are completely evaluated and the &&, || and
? : operators have no shortcut semantics. Another difference from C is that the ~
(bitwise negation) operator is not included. The reason is that cereal expressions
have no associated type and the result would be bitwise negation in the integral type
expressions are evaluated with, which is probably not what you want. Instead of ~,
use explicit bitwise XOR: to negate an 8-bit value x , use x ^ 0xFF .

Evaluate/Modify
The last feature of the cereal UI is the Evaluate/Modify dialog box. Invoke it by se-
lecting Data−→Evaluate/Modify. . . (F4).

10

Chapter 2. Emulating Intel 8051

Evaluate/Modify window

The Evaluate/Modify dialog box can be used to compute value of an expression you
don’t need as a watch (this is the real replacement of your calculator application). Just
enter the expression and the value will be computed as you type.

The dialog box can be also used for modification of memory (or generally port) values
that are not available in the 8051 interface by referencing the port in the Expression box
and writing the new value to the New Value box.

The string you enter to the New Value box can of course be any valid cereal
expression. If you feel bored, set Expression to [cpu/sfr/ACC] , New Value to
[cpu/sfr/ACC] + 1 and hold the Enter key for a while.

When modifying a port value, you can use any valid cereal expression in the Expres-
sion box just as in the New Value box. Thus almost the same effect as in the previous
paragraph can be achieved by setting Expression to [cpu/sfr/ACC] - 1 and New
Value to [cpu/sfr/ACC] . cereal contains a minimal equation solver, which allows
you to modify values of simple expressions without computing the solution yourself.

The equation solver is quite a trivial piece, so about the best you can expect it to
solve is a linear equation, it can’t solve [cpu/sfr/ACC] * [cpu/sfr/ACC] = 4 .
The general rule is that the expression to be modified can only contain a single port
reference, together with the fact that cereal refuses to modify the port value if there
are multiple possible solutions.

Of course, changing the register values in the 8051 window is done using the same
mechanism and modifying the value in the ACC edit box is equivalent to doing it in
the Evaluate/Modify dialog box.

If you know the 8051 architecture a bit, you’ll recall that the R0, . . . , R7 registers
are not registers with fixed addresses at all. R0, . . . , R7 stand for internal memory
locations either 0, . . . 7 or 8, . . . , 15 or 16, . . . , 23 or finally 24, . . . 31 according to
RS1 and RS0 bits of PSW. This is still possible to implement using cereal expres-
sions. For example, the expression for value of R0 is ([c:@/sfr/PSW] & 0x10)
== 0 ? (([c:@/sfr/PSW] & 0x08) == 0 ? [@/mem/0] : [@/mem/8]) :
(([c:@/sfr/PSW] & 0x08) == 0 ? [@/mem/16] : [@/mem/24]) , where @
represents the module name. This expression is much more complicated than what
the rule above allows for expressions that the solver can handle (five different port
references, one of them repeated three times). But we know that we want to modify
one of the [@/mem/x] values and not the [@/sfr/PSW] value. Moreover, depend-
ing on the value of [@/sfr/PSW] , one simple expression (which can be handled
by the solver) is selected. In this expression, we have helped the solver by insert-
ing the c: (meaning constant) prefix to the PSW port references. This tells the solver
that these ports are not to be modified. The solver takes these port references as if
it were constants and with a bit of constant expression evaluation it can reduce the
expression to the [@/mem/x] form, which can be handled easily.

11

Chapter 2. Emulating Intel 8051

Notes
1. The code currently does not support data paths wider than 16 bits, but it is sim-

ple to extend it up to number of bits of widest integral data type your machine
supports.

12

Chapter 3. Connecting External Devices

The main strength of cereal (and, indeed, the very reason of its existence) is the
ability to emulate sets of connected devices as a group and support of comparatively
easy adding of new devices. In this chapter you’ll see this ability demonstrated by
connecting an external 64K × 8 memory chip to the 8051 CPU. To be able to use 8051
MOVX instructions, we need to connect port P2 to higher 8 memory address pins,
port P0 to memory data pins. Lower 8 bits of memory address are also provided at
port P0, and are supposed to be latched by the ALE signal. The whole situation is
depicted in the following schema:

In cereal , this is represented as a set of three modules, representing the CPU, the
latch and the memory chip, respectively. Unsurprisingly, all of them are available as
cereal built-in modules. Each of these modules exports the “pins of the emulated
chip”. We need to connect the modules: for example, we want to assure that when
the 8051 module changes value on the /RD pin, the memory module receives this
as a change of its /OE pin. Similarly, we want that when the memory module reads
current status of its /OE pin, it actually reads the value of the /RD pin of the 8051
module.

The two mentioned relationships are called connections in cereal and are configured
using the cereal hardware configuration utility. Run cereal_khwconf and insert
three modules: cpu of type 8051, latch of type byte_latch and ram of type mem-
ory. Don’t forget to set memory data_size to 65536!

We’ll start with the above mentioned examples: we want to create an write connection
from [cpu/pin/~RD] to ram/pin/~OE and a read in the reverse direction. This
situation (read/write in opposite directions) naturally occurs quite often, so you can
create only one of the connections and if possible, cereal will create the reverse one
automatically.

Note: The other two port types, display and modify are rarely used. They are the way the
user interface reads and changes the port values. The difference is sometimes important,
for example just reading a status register may clear an interrupt line. For example of
creating display or modify connections, see description the sfr_ext space of the 8051
module in the cereal Built-In Modules chapter.

To add the connection, bring up the Properties dialog for cpu , choose the Connections
tab and click on New.... By opening the Properties dialog for the cpu module, you
have implicitly defined the source module. Now select write in Type, 1 in Width
(single-bit connection), pin and ~RDin Source, ram in Destination module and

13

Chapter 3. Connecting External Devices

finally pin and ~OEin Destination. Note that the Add also reverse connection checkbox
is automatically checked. By clicking OK you create the connection.

Add Connection window

Similarly you can continue adding other connections. Admittedly it is a bit lengthy,
but you only need to do it once—not at all in this case, because the result,
8051_mem.xml is available with this tutorial.

Note: When trying to connect this yourself, you could have noticed that the precise config-
uration cannot be created, because the P0.x ports cannot be connected for writing twice
(to the latch and to the memory). The solution would be to add 8 "bit_tee" modules, but
this has been sidestepped by using the coincidence that the ram module always reads
the values from the CPU itself and therefore doesn’t need the write connection. This is
obviously a bad kludge, but it works and I didn’t have to program the bit_tee module, insert
it 8 times and create 8 more connections.

To test this module, you can use enclosed 8051_mem.hex , which negates all bytes of
the external memory.

Note: If you use /PSEN instead of /RD in the above example, the CPU will be able to fetch
instructions from the external memory (make sure to note the function of the EA pin). In
that case, the next instruction disassembling in the 8051 window is not available, because
there is no way for the 8051 UI to get the value from the external memory other than to
emulate the access just for the purpose of the disassembling, which of course doesn’t
happen in the real world.

14

Chapter 4. cereal Built-In Modules

With cereal comes the all-important 8051 module and a few quite simple modules
which should provide you with a starting point for creating your hardware configu-
ration as well as your own modules.

You can write additional modules, which can be either built-in (if you recompile ce-
real), or dynamically loaded, in which case you need to point environment variable
CEREAL_MODULE_DIRto a directory containing the modules.

The 8051 module
Need I say more? Emulates most of Intel 8051-compatible CPU. Unsupported fea-
tures include the PD (Power Down) and IDL (Idle) bits of PCON. Also, the module
has its own, built-in clock (i.e. you can’t emulate clever tricks with stopping the CPU
clock), although this is not terribly hard to fix (it will just slow down the emulation
even more).

The module has only one unexpected feature: XMEM is a built-in “external” memory,
a built-in memory accessed using the MOVX instruction. This occurs quite often in
practice, i.e. Atmel 89S8252 has a built-in EEPROM accessed using MOVX. This can-
not be always emulated by emulating a “true” external memory (as demonstrated in
the previous chapter), because using the “true” external memory uses 19 pins of the
CPU, while accessing the built-in EEPROM does not, and at least 18 of them can be
used for other purposes. Therefore applications that use this EEPROM and also use
some of the pins cannot be emulated without having XMEM.

Table 4-1. 8051 Module Options

Name Description

data_mem_size Size of internal data memory, one of 128,
192 and 256.

frequency A non-zero integer, number of oscillator
pulses per second (i.e. 11059200).

prog_mem_size Size of internal program memory, a
power of two in range [64, 65536].

xmem_mem_size Size of XMEM (described above), a
power of two less than or equal to 65536,
or 0 to use “regular” external memory.

load_hex A hidden option which causes the
module to load the Intel HEX file
provided as a parameter.

Table 4-2. 8051 Module Spaces

Name Width Description

bit 1 Equivalent to 8051 bit
addresses.

pin 1 Contains emulated 8051
pins.

mem 8 The 8051 internal data
memory.

prog 8 The 8051 internal program
memory.

15

Chapter 4. cereal Built-In Modules

Name Width Description

sfr 8 Contains the SFR address
space (0x80 . . . 0xFF).
Because port addresses are
0-based, this is mapped to
range 0x00 . . . 0x7F.

sfr_ext 8 A mirror of the sfr space
for the purpose of
extending the 8051
emulator. To emulate an
additional SFR, create a
separate module for it
implementing all four port
types (read, write, display
modify) that make sense
for the SFR, and connect it
to the appropriate sfr_ext
port. Then any connection
your SFR in the sfr space
will be forwarded to the
module you connected to
the sfr_ext space.

prev_insn 8 Contains the last executed
instruction. Used in the
KDE UI plug-in.

next_insn 8 Contains the next executed
instruction, if not using
external memory. Used in
the KDE UI plug-in.

misc16 16 Contains the program
counter and its value at
previous instruction.

The bit_constant Module
This module has a single port that can be read by other modules and modified by the
user.

Table 4-3. bit_constant Module Spaces

Name Width Description

bit 1 Contains the bit.

The bit_report Module
This module has a single port that can be written by other modules and reports
changes of its value.

Table 4-4. bit_report Module Options

Name Description

16

Chapter 4. cereal Built-In Modules

Name Description

name A string the module prepends to its
value change reports.

Table 4-5. bit_report Module Spaces

Name Width Description

bit 1 Contains the bit.

The byte_constant Module
This module has a single port that can be read by other modules and modified by the
user.

Table 4-6. byte_constant Module Spaces

Name Width Description

byte 8 Contains the byte.

The byte_latch module
This module emulates a 8-bit latch. If somebody cares, it was created using documen-
tation of Czech chip MH74ALS373.

Table 4-7. byte_latch Module Spaces

Name Width Description

pin 1 Contains the pins of the
latch.

The memory Module
This module emulates a static memory of up to 64K × 8.

Table 4-8. memory Module Options

Name Description

data_size A power of two less than or equal to
65536, capacity of the memory module in
bytes. The module ignores unneeded
address lines.

Table 4-9. memory Module Spaces

Name Width Description

pin 1 Contains the memory pins.

17

Chapter 4. cereal Built-In Modules

Name Width Description

data 8 Contains the data kept in
the memory.

The uart Module
Emulates a very simple UART. Connect RXD and the module will write any received
data to RX, write data to TX and the module will transmit it on TXD. After completion
it will set RX_done or TX_done, respectively, to 1 (stays 1 until cleared by writing a
0).

Table 4-10. uart Module Options

Name Description

baud_rate An integer, baud rate the UART is using.

data_bits A non-zero integer less than or equal to
13, number of bits in one data unit.

Table 4-11. uart Module Spaces

Name Width Description

pin 1 Contains the UART pins.

data 16 Contains the received and
transmitted data units.

18

Chapter 5. cereal Command-Line Utilities

In the course of writing cereal , two command-line utilities were created. They are
used in the automatic testsuite created during cereal development, but they may be
useful also to you.

cereal_disasm
The cereal_disasm utility is a simple 8051 disassembler. When invoked with argu-
ments, it treats them as file names of Intel HEX files, loads them all in the order given
on the command line. When given no arguments, it reads one Intel HEX file from
standard input instead. Then it outputs the disassembling to standard output.

cereal_text
The cereal_text utility is a text interface to the cereal emulation framework, which
is able to do most of what is available using the GUI. It can be used for automatic
regression testing not only of cereal itself, but also of your applications.

The user interface is admittedly crude. It expects commands on the standard input
and writes results to the standard output. An empty line means to repeat the previous
command.

Table 5-1. cereal_text commands

Synopsis Description

help commandor command --help Gives short help on usage of command.

mod_new type name Creates a new module name of type
type .

mod_delete name Deletes module name

option module option Displays current value of option option
of module module .

option module option value Sets option option of module module
to value .

connect_1 type port_1 port_2 Connects for type bit port port_1 to
port_2 .

mod_rename old new Renames module old to new

breakpoint expression Creates a new breakpoint on
expression

bp_list Lists defined breakpoints, along with
their ID numbers. If a breakpoint
currently evaluates to nonzero, it is
marked by a "+" character.

bp_del id Deletes breakpoint with ID id .

print expression Prints current value of expression .

set dest = src Sets port referenced in dest so that
dest == src .

19

Chapter 5. cereal Command-Line Utilities

Synopsis Description

step condition... Runs one step of emulation. If there is a
list of condition s specified, runs until
one of them is met. Valid conditions are
error, warning, insn (end of instruction)
and breakpoint.

setup_load file Loads hardware setup from file

setup_save file Saves hardware setup to file

state_load file Loads emulation state from file

state_save file Saves emulation state to file

20

Appendix A. GNU Free Documentation License

Copyright © 2000 by Free Software Foundation, Inc.

Free Software Foundation, Inc.
59 Temple Place, Suite 330,
Boston,
MA 02111-1307

USA

Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written docu-
ment “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of “copyleft”, which means that derivative works of the doc-
ument must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public
is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of
the Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For example, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License.

21

Appendix A. GNU Free Documentation License

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents
can be viewed and edited directly and straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human mod-
ification. Opaque formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each

22

Appendix A. GNU Free Documentation License

Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-
network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If you use the
latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version un-
der precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever pos-
sesses a copy of it. In addition, you must do these things in the Modified Version:

A

Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C

State on the Title Page the name of the publisher of the Modified Version, as the
publisher.

D

Preserve all the copyright notices of the Document.

E

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

23

Appendix A. GNU Free Documentation License

H

Include an unaltered copy of this License.

I

Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous
sentence.

J

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

K

In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L

Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M

Delete any section entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N

Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Docu-
ment already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

24

Appendix A. GNU Free Documentation License

The author(s) and publisher(s) of the Document do not by this License give permis-
sion to use their names for publicity for or to assert or imply endorsement of any
Modified Version .

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice.

The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invari-
ant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any
sections entitled “Acknowledgements”, and any sections entitled “Dedications”. You
must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and dispbibute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying
of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium,
does not as a whole count as a Modified Version of the Document, provided no com-
pilation copyright is claimed for the compilation. Such a compilation is called an
“aggregate”, and this License does not apply to the other self-contained works thus
compiled with the Document, on account of their being thus compiled, if they are
not themselves derivative works of the Document. If the Cover Text requirement of
section 3 is applicable to these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover Texts may be placed
on covers that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-

25

Appendix A. GNU Free Documentation License

lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation1 may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/2.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later ver-
sion” applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.

Addendum
To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of say-
ing which ones are invariant. If you have no Front-Cover Texts, write “no Front-
Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-Cover
Texts.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License3, to permit their use in free software.

Notes
1. http://www.gnu.org/fsf/fsf.html

26

Appendix A. GNU Free Documentation License

2. http://www.gnu.org/copyleft

3. http://www.gnu.org/copyleft/gpl.html

27

Appendix A. GNU Free Documentation License

28

	User's Tutorial to cereal
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Emulating Intel 8051
	Setting Up Hardware
	8051 Emulator Interface
	Watches and Breakpoints
	cereal Expressions Compendium
	Evaluate/Modify
	Chapter 3. Connecting External Devices
	Chapter 4. cereal BuiltIn Modules
	The 8051 module
	The bitconstant Module
	The bitreport Module
	The byteconstant Module
	The bytelatch module
	The memory Module
	The uart Module
	Chapter 5. cereal CommandLine Utilities
	cerealdisasm
	cerealtext
	Appendix A. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	Addendum

